
HAL Id: inria-00070276
https://inria.hal.science/inria-00070276

Submitted on 19 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generalized Multisets for Chemical Programming
Jean-Pierre Banâtre, Pascal Fradet, Yann Radenac

To cite this version:
Jean-Pierre Banâtre, Pascal Fradet, Yann Radenac. Generalized Multisets for Chemical Programming.
[Research Report] RR-5743, INRIA. 2005, pp.26. �inria-00070276�

https://inria.hal.science/inria-00070276
https://hal.archives-ouvertes.fr

IS
S

N
 0

24
9-

63
99

 IS
R

N
 IN

R
IA

/R
R

--
57

43
--

F
R

+
E

N
G

ap por t

de r ech er ch e

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Generalized Multisets
for

Chemical Programming

Jean-Pierre Banâtre, Pascal Fradet, Yann Radenac

N˚5743

Novembre 2005

Systèmes numériques — Systèmes communicants

Generalized Multisets
for

Chemical Programming

Jean-Pierre Banâtre∗, Pascal Fradet†, Yann Radenac∗

Systèmes numériques — Systèmes communicants
Projets PARIS et POP-ART

Rapport de recherche n˚5743 — Novembre 2005 — 26 pages

Abstract: Gamma is a programming model where computation can be seen as chemical reactions
between data represented as molecules floating in a chemical solution. This model can be formalized
as associative, commutative, conditional rewritings of multisets where rewrite rules and multisets
represent chemical reactions and solutions, respectively. In this article, we generalize the notion of
multiset used by Gamma and present applications through various programming examples. First,
multisets are generalized to include rewrite rules which become first-class citizen. This extension is
formalized by the γ-calculus, a chemical model that summarizes in a few rules the essence of higher-
order chemical programming. By extending the γ-calculus with constants, operators, types and
expressive patterns, we build a higher-order chemical programming language called HOCL. Finally,
multisets are further generalized by allowing elements to have infinite and negative multiplicities.
Semantics, implementation and applications of this extension are considered.

Key-words: multisets, chemical programming model, rewriting, higher-order, infinite and negative
multiplicities

(Résumé : tsvp)

∗ IRISA, Université Rennes 1, Inria Rennes
† Inria Rhône-Alpes

Unité de recherche INRIA Rennes
IRISA, Campus universitaire de Beaulieu, 35042 RENNES Cedex (France)

Téléphone : 02 99 84 71 00 - International : +33 2 99 84 71 00
Télécopie : 02 99 84 71 71 - International : +33 2 99 84 71 71

Multi-ensembles généralisés pour la programmation chimique

Résumé : Gamma est un modèle de programmation où les calculs peuvent être vus comme des
réactions chimiques entre des données représentées comme des molécules flottant dans une solution
chimique. Ce modèle peut être formalisé par la réécriture associative, commutative et conditionnelle
de multi-ensembles où les règles de réécriture et les multi-ensembles représentent respectivement les
réactions et les solutions chimiques. Dans cet article, nous généralisons la notion de multi-ensemble
utilisé dans Gamma et nous présentons des applications à travers divers exemples de programmes.
Dans un premier temps, les multi-ensembles sont étendus pour inclure les règles de réécriture qui
deviennent donc des molécules comme les autres (ordre supérieur). Cette extension est formalisée
par le γ-calcul, un modèle de calcul chimique qui contient en quelques règles l’essence même des
programmes chimiques d’ordre supérieur. Ensuite, en étendant le γ-calcul avec des constantes, des
opérateurs, des types et des motifs plus expressifs, nous construisons un langage de programmation
qu’on appelle HOCL. Enfin, les multi-ensembles sont de nouveau étendus en permettant d’exprimer
des multiplicités infinies et négatives. Sémantique, implémentation et applications de cette extension
sont abordées.

Mots-clé : multi-ensemble, modèle de programmation chimique, réécriture, ordre supérieur, multi-
plicités infinie et négative

Generalized Multisets for Chemical Programming 3

1 Introduction

The Gamma formalism was proposed in (Banâtre & Le Métayer 1993) to capture the intuition of
computation as the global evolution of a collection of atomic values interacting freely. Gamma
can be introduced intuitively through the chemical reaction metaphor. The unique data structure in
Gamma is the multiset which can be seen as a chemical solution. A simple program is made of a
reaction condition and an action. Execution proceeds by replacing elements satisfying the reaction
condition by the elements specified by the action. The result of a Gamma program is obtained when
a stable state is reached, that is to say, when no more reactions can take place.

For example, the computation of the maximum element of a non empty multiset can be described
by the reaction rule

replacex, y by x if x ≥ y

meaning that any couple of elements x and y of the multiset is replaced by x if the condition is
fulfilled. This process goes on till a stable state is reached, that is to say, when only the maxi-
mum element remains. Note that, in this definition, nothing is said about the order of evaluation
of the comparisons. If several disjoint pairs of elements satisfy the condition, the reactions can be
performed in parallel.

Gamma can be formalized as a multiset rewriting language. The literature about Gamma, as
summarized in (Banâtre, et al. 2001), is based on finite multisets of basic values (often called bags).
However, one may think of extensions to this basic concept by allowing elements of multisets to be
reactions themselves (higher-order multisets), to have an infinite multiplicity (infinite multisets) and
even to have a negative multiplicity (hybrid multisets).

In this paper, we investigate these unconventional multiset structures (higher-order, infinite and
hybrid multisets) and show how they can be interpreted in a chemical programming framework.
Section 2 presents the multiset as a mathematical structure and how it has been used to express
programs. Section 3 presents the γ-calculus, a small higher-order calculus that summarizes the fun-
damental concepts of chemical programming. Section 4 introduces HOCL, a programming language
built by extending the γ-calculus with constants, operators, types and more expressive patterns. Sec-
tion 5 presents the extensions of HOCL needed to handle explicitly, positive or negative, finite or
infinite, multiplicities. Section 6 proposes a representation of multisets suited to the implementation
of these extensions. We conclude in Section 7 with a review of related work and a few perspectives.

2 A quick survey of the concept of multiset

2.1 Multiset as a mathematical structure

The notion of multiset is a concept appearing in many areas of mathematics and computer science.
Intuitively, multiset are a generalization of sets in which elements can occur more than once. The
number of occurrences of an element is called its multiplicity. The multiset {a, a, b}, which is not
a set, is distinct from {a, b}; the multiplicity of a is 2 in the former and 1 in the later. The word
multiset has been coined by De Bruijn in a private communication with D. Knuth (Knuth 1981);

RR n˚5743

4 Jean-Pierre Banâtre, Pascal Fradet, Yann Radenac

other terms have appeared here and there in the literature such as bag, heap, sample, occurrence
set, etc. A survey of the theory of multisets can be found in (Blizard 1991).

Even if the concept of multiset is very present in mathematics, logic and, more and more, in
computer science, it has long been eclipsed by the classical Cantorian view of a set. Cantor states
that a given element can appear only once in a set. We will not go into details here, but its is clear that
this vision suffers some limitations; a well-known representation of numbers is a collection of units,
for example the number 5 can be represented as | | | | | which looks like a multiset of |. Cantor states
that every | is a different “instance” of | and may be distinguished from the other |’s, however this
looks a bit artificial. In some way, multiset can be considered as a non-classical (i.e. non-cantorian)
set theory.

So far, we have implicitly assumed that the multiplicity of multiset elements was positive and
finite. An intriguing extension of multisets, called hybrid multisets, has been introduced in (Loeb
1992). Hybrid multisets can contain elements with either positive or negative multiplicity. For
example, the roots of the polynomial fraction x−1

(x−2)2(x−3) can be represented as the hybrid multiset

{1, 2−2, 3−1}. Multiplicities of elements are denoted by the exponent; roots of polynomials under
the fraction bar are denoted by a negative membership.

Finally, it is interesting to get rid of finiteness limitations and consider infinite multisets. Infinity
can come from an infinity of different elements (e.g. all integers) or from an element with an infinite
multiplicity. The later form, called multiplet, is the only form of infinity that we will consider here.
For example, the multiplet {1∞}, represents a multiset containing an unbounded number of 1’s.

2.2 Multiset as a programming structure

Coming back to Computer Science, the article of (Dershowitz & Manna 1979) introduced a multiset
ordering and used it to prove program termination. Actually, given a well-founded ordering on
elements of the multiset, it is possible to derive a well-founded ordering on multisets themselves.
This nice result allows elegant proofs of termination which otherwise could be awkward. Without
going into details, let us mention several areas of computer science where multisets are used: Petri
nets, databases, logics, formal language theory, rewriting systems, etc. More can be found in (Calude,
et al. 2001).

From Dershowitz & Manna’s work, stemmed another fruitful idea (later called the Chemical
Metaphor): the Gamma formalism where computation was presented as multiset rewriting (Banâtre
& Le Métayer 1993). Gamma has been a source of inspiration in many unexpected areas as de-
scribed in (Banâtre et al. 2001). Gamma is a simple model operating on multisets of basic data. A
natural extension of Gamma is to generalize multisets so that they may contain not only data but
also programs (abstractions/reactions). This is the first extension presented in this article in the form
of a higher-order chemical calculus. We proceed by extending that simple model into an expressive
Higher-Order Chemical Language: HOCL.

Another extension concerns infinite multiplets and their use in HOCL. These (infinite) multisets
can be atomically handled as any element (for example, it is possible to atomically extract an infinite
multiplet from a chemical solution), but it is also possible to select a finite subset of the (infinite)

INRIA

Generalized Multisets for Chemical Programming 5

multiset to react with other elements while leaving the multiplet unchanged (as it contains an infinity
of elements!).

Finally, we consider the introduction of hybrid multisets and the interpretation of negative mul-
tiplicities in a programming context. There are several possible interpretations; the one we take
consists in seeing an element with a negative multiplicity as an anti-element (an annihilator). For
example, if an element such as 2−5 appears in a multiset it is interpreted as “annihilate” five 2’s. Of
course, the extensions can be combined to allow elements with a negative and infinite multiplicity.
For example, 2−∞ will instantaneously delete the 2’s present or added in the multiset whatever their
number of occurrences.

3 The γ-calculus: a higher-order chemical model

In this section, we introduce a higher-order chemical model called the γ-calculus (Banâtre, et al.
2005a, Banâtre, et al. 2005b). γ-expressions are made of molecules. A molecule can be (cf. Gram-

M ::= x ; variable
| γ(P)bM1c.M2 ; γ-abstraction (reaction rule)
| M1, M2 ; multiset
| 〈M〉 ; solution

P ::= x ; matches any molecule
| P1, P2 ; matches a compound molecule
| 〈P 〉 ; matches an inert solution

Grammar 1: Syntax of molecules in the γ-calculus.

mar 1) (1) a variable x that can represent any molecule, (2) a γ-abstraction γ(P)bM1c.M2 where
P is the pattern which determines the format (or type) of the expected molecule, M1 is the reac-
tion condition and M2 the result of the reaction, (3) a compound molecule (M1, M2) built with
the associative and commutative constructor “,”, or (4) a solution denoted by 〈M〉 which isolates a
molecule M from the others. The model is completed by a small pattern language to match multisets
or solutions.

Molecules can be freely organized using the associativity and commutativity (AC) of the multiset
constructor “,”:

(M1, M2), M3 ≡ M1, (M2, M3) M1, M2 ≡ M2, M1

These rules can be seen as a formalization of the Brownian motion of chemical solutions. The
operator ≡ denotes the syntactic equality of two molecules. Two molecules are syntactically equal
if any of them can be rewritten in the other one by the AC operations and by the renaming of bound
variables.

RR n˚5743

6 Jean-Pierre Banâtre, Pascal Fradet, Yann Radenac

A solution 〈M〉 is a membrane that encapsulates a molecule M . Molecules inside a solution
cannot react or be rearranged with molecules outside that solution. However, molecules can be
explicitly added to (or extracted from) solutions by reactions.

Another distinctive feature of chemical models is the reaction concept. In our model, it is rep-
resented by a conditional rewrite rule called the γ-reduction. In order to represent conditions, we
assume an encoding for the booleans true and false, for example:

true
def
= γ〈x〉.γ〈y〉.x and false

def
= γ〈x〉.γ〈y〉.y

A reaction is a rule of the form

(γ(P)bCc.M), N → φM if match(P, N) = φ ∧ φC
∗
→ true

If a γ-abstraction “meets” a closed molecule N that matches the pattern P (modulo a substitution
φ) and satisfies the reaction condition C (i.e. φC reduces to true), then they may react. The γ-
abstraction γ(P)bCc.M and the molecule N are replaced by the molecule φM (i.e. the body of the
abstraction after substitution).

Substitution maps pattern variables to molecules e.g. φ = {x 7→ true, y 7→ false}. A substitu-
tion is applied to a molecule using the following rules

φx = M if φ = {. . . , x 7→ M, . . . }
φ (M1, M2) = (φM1), (φM2)

φ〈M〉 = 〈φM〉
φ(γ(P)bCc.M) = γ(P)bCc.φ|P M

where φ|P is the substitution φ restricted to the variables that do not occur in P .
Pattern-matching can either succeed (it returns a substitution φ) or fail (it returns fail). It is

formalized as follows:

match(x, M) = {x 7→ M}
match(〈P 〉, 〈M〉) = match(P, M) ∧ Inert(M)
match((P1, P2), (M1, M2)) = (match(P1, M1)) ⊕ (match(P2, M2))
match(P, M) = fail otherwise

A variable matches any molecule, a pattern 〈P 〉 matches any inert solution 〈M〉 (i.e. no reaction can
take place within M) such that P matches M . This entails that a molecule can be extracted from its
enclosing solution only when it has reached an inert state. It is an important restriction that permits
to order (sequentialize) rewritings.

A pattern P1, P2 matches any compound molecule M1, M2 such that P1 matches M1, P2 matches
M2 and the two substitutions are compatible. Since patterns are non linear, variables occurring in
P1 and P2 must match identical molecules. The operator ⊕ is defined as follows:

φ2 ⊕ φ1 =

{

φ2 ◦ φ1 if @x.φ1x = M1 ∧ φ2x = M2 ∧ M1 6≡ M2

fail otherwise

fail⊕ x = x ⊕ fail = fail

INRIA

Generalized Multisets for Chemical Programming 7

where the composition of compatible substitutions is such that (φ2 ◦ φ1)M
def
= φ2(φ1M).

An execution consists in γ-reductions (“chemical” reactions) until the solution representing the
program becomes inert and no further rewriting is possible. Besides AC rules which can always
been applied, there are two structural rules:

locality
M1 → M2

M, M1 → M, M2
solution

M1 → M2

〈M1〉 → 〈M2〉

The locality rule states that if a molecule M1 can react then it can do so whatever its context M .
The solution rule states that reactions can occur within nested solutions.

This model of computation is intrinsically non-deterministic and parallel. As long as reactions
involve disjoint molecules, they can take place simultaneously in a solution. Consider, for exam-
ple, the solution 〈(γ(x, y).x), true, false〉, it may reduce to two distinct inert solutions (〈true〉 or
〈false〉) depending on the application of AC rules and whether x will match true or false.

The γ-calculus is quite expressive and can easily encode the λ-calculus. The following transla-
tion gives a possible encoding for the strict λ-calculus. The function [[·]] takes a λ-term and returns
its translation as a γ-term.

[[x]]
def
= x

[[λx.E]]
def
= γ〈x〉.[[E]]

[[E1 E2]]
def
= 〈[[E1]]〉, (γ〈f〉.f, 〈[[E2]]〉)

The standard call-by-name λ-calculus can also be encoded but the translation is slightly more in-
volved. As in the λ-calculus, recursion, integers, booleans, data structures, arithmetic, logical and
comparison operators can be defined within the γ-calculus. We do not give their precise definitions
here since they are similar to their definitions as λ-terms. From now on, we will give our examples
assuming these extensions (a pair of molecules is written M1:M2).

Note that abstractions (γ(P)bCc.M) disappear in reactions: they are said to be one-shot. It is
easy (using recursion) to define n-shot reactions which do not disappear after reacting. We write
them replaceP by M if C as in Gamma. Formally:

replaceP by M if C
def
= let rec f = γ(P)bCc.(M, f) in f

For instance, the following program

〈〈2〉, 〈10〉, 〈5〉, 〈8〉, 〈11〉, 〈8〉, replace〈x〉, 〈y〉by〈x〉 if x ≥ y〉

computes the maximum of a multiset of integers. The reaction rule does not disappear and reacts as
long as there are at least two integers in the solution. The resulting inert solution is

〈〈11〉, replace〈x〉, 〈y〉by〈x〉 if x ≥ y〉

Note that each integer is inside a solution so that the reaction can match exactly two integers
(replace〈x〉, 〈y〉by . . . would match any, possibly compound, molecule). This encoding is made
useless in the next section using types and the ability to match molecules of designated types.

RR n˚5743

8 Jean-Pierre Banâtre, Pascal Fradet, Yann Radenac

largestPrime10 =
let sieve = replace〈x〉, 〈y〉by〈x〉 if x div y in

letmax = replace〈x〉, 〈y〉by〈x〉 if x ≥ y in

〈〈〈2〉, . . . , 〈10〉, sieve〉, (γ〈x〉.x, max)〉

Program 1: Computes the largest prime number lower than 10.

Program 1 is the higher-order chemical version of the sieve of Eratosthenes used to compute the
largest prime number lower than 10. The execution proceeds as follows:

〈〈〈2〉, . . . , 〈10〉, sieve〉, γ〈x〉.(x, max)〉
∗
→ 〈〈〈7〉, 〈5〉, 〈3〉, 〈2〉, sieve〉, γ〈x〉.(x, max)〉
∗
→ 〈〈7〉, 〈5〉, 〈3〉, 〈2〉, sieve, max〉
∗
→ 〈〈7〉, sieve, max〉

First, the n-shot reaction sieve computes all prime numbers. It selects two integers x and y such
that x divides y (so, y is not a prime number) and replaces them by x (i.e. removes y). Several sieve
reactions can take place in parallel as long as they involve different pairs of integers. When the sub-
solution becomes inert (i.e. all prime numbers have been computed), the abstraction γ〈x〉.x, max
extracts the inert solution and adds the prime numbers to the reaction max which computes their
maximum. The final inert solution is 〈〈7〉, sieve, max〉. The one-shot reaction rule γ〈〈i〉, x〉.〈i〉
could be used to remove reactions and return only the integer as result.

4 HOCL: a higher-order chemical language

HOCL is a programming language based on the previous model extended with expressions, types,
pairs, empty solutions and naming (see Grammar 2). Expressions consist in integer, boolean, string
constants and associated operations. This extension, already used in the previous section, is very
standard and does not need further explanation. We also reuse the notation replace . . .by . . . if . . .
for n-shot (recursive) reaction rules. We present each other extension in turn.

4.1 Types

The functional core of HOCL (the expressions) is statically typed using standard types (see Gram-
mar 2). We do not describe the typing rules which are the same as any (first-order) statically typed
functional language. The chemical style of programming has been designed to be very flexible.
In particular, solutions contain usually molecules of different types (e.g. reactions, integers, etc.).
Therefore, it would not make sense to enforce homogeneous solutions and compound molecules are
typed using the universal type ?. Any type is a subtype of ? (∀T, T � ?). Types are particularly

INRIA

Generalized Multisets for Chemical Programming 9

Solutions
S ::= 〈M〉 ; solution

| 〈〉 ; empty solution

Molecules
M ::= x ; variable

| M1, M2 ; compound molecule
| A ; atom

Atoms
A ::= x ; variable

| [name =]γ(P)bV c.M ; one-shot reaction rule, possibly named
| S ; solution
| V ; basic value
| (A1:A2) ; pair

Basic Values
V ::= x | 0 | 1 | . . . | V1 + V2 | −V1 | . . . ; integer, boolean and string expressions

| true | false | V1 ∧ V2 | . . .
| V1 = V2 | V1 ≤ V2 | . . .
| “string” | V1@V2 | . . .

Patterns
P ::= x::T ; matches any molecule of type T

| ω ; matches any molecule even empty
| name = x ; matches a named reaction
| 〈P 〉 ; matches an inert solution
| (P1:P2) ; matches a pair
| P1, P2 ; matches a compound molecule

Types
T ::= B ; basic type

| T1 × T2 ; product type
| ? ; universal type

Basic Types
B ::= Int | Bool | String

Grammar 2: Syntax of programs.

RR n˚5743

10 Jean-Pierre Banâtre, Pascal Fradet, Yann Radenac

useful in patterns where they serve to select values. The associated pattern-matching rule is

match(x::T, N) = {x 7→ N} if Type(N) � T

We make use of type inference to circumvent type annotations in patterns. For instance, we may
write γ(x)bV c.x + 1 instead of γ(x::Int)bV c.x + 1 since the type of x can be statically inferred.

4.2 Pairs

This extension, denoted here by A1:A2, is very standard. Note that the elements of a pair are atoms
and not multisets. Pairs of multisets would play a role similar to solutions by providing a way of
isolating compound molecules from each other.

The rule for pattern-matching pairs is:

match((P1:P2), (N1:N2)) = φ1 ⊕ φ2 if match(P1, N1) = φ1 ∧ match(P2, N2) = φ2

4.3 Empty solutions

The notion of empty solution in HOCL comes from the pattern ω which can match any molecules
even the “empty one” (introduced below). This pattern is very convenient to extract elements from
a solution. For example, the following reaction extracts 1’s from its solution argument.

rmunit = replace〈x, ω〉by〈ω〉 if x = 1

The pattern ω matches the rest of the solution which is returned as result. If the solution contains
only a 1 then ω matches the empty molecule and the empty solution is returned:

rmunit, 〈2, 1, 3〉 → 〈2, 3〉 and rmunit, 〈1〉 → 〈〉

The rule for pattern-matching ω is just

match(ω, M) = {ω 7→ M}

The “empty molecule” is introduced by the rule for patterns on the form (P, ω).

match((P, ω), M) =

{

(match(P, M1)) ⊕ (match(ω, M2)) if M = M1, M2

(match(P, M)) ⊕ (match(ω, ∅)) otherwise

When a molecule M is decomposed into M1, M2 to match a pattern P1, P2, one of M1 or M2

can now be the empty molecule ∅. Reaction rules involving ω patterns need a special treatment.
Consider, for example, the reaction

(replace〈x, ω〉by ω), 〈1〉, 2

With the usual reduction rules, this molecule would reduce to ∅, 2 which is not a legal molecule.
Only the empty solution is legal, so if a reaction produces the empty molecule it must be reduced as
follows

〈(γ(P)bCc.M), N, X〉 → 〈X〉 if match(P, N) = φ ∧ φC ∧ φM = ∅

with X possibly empty. The reaction takes into account its enclosing solution and becomes global.
When a reaction produces a non-empty molecule it is reduced locally as usual.

INRIA

Generalized Multisets for Chemical Programming 11

4.4 Naming

Reactions can be named (or tagged) using the syntax name = γ(P) Note that if others atoms
can be named using pairs e.g. (name:a), it would not be appropriate to use pairs to tag reactions
since they would not be able to react with other molecules anymore. Names are used to match and
extract specific reactions. The rule for pattern-matching named reaction is

match((name = x), (name = N)) = {x 7→ N}

We assume that when the let operator names a reaction, that name is kept in the solution:

letname = M inN
def
= N [(name = M)/name]

that is, the occurrences of name in N are replaced by name = M . For example, in the follow-
ing example, the reaction incrementing the integer is named succ. After an arbitrary number of
increments, the reaction stop removes succ from the solution:

let succ = replacexby x + 1 in

let stop = γ((succ = x), ω).ω in

〈1, succ, stop〉

This example also illustrates non-determinism in HOCL since the resulting solution may be any
integer.

4.5 Example of a distributed versions system (DVS)

As a more involved example, we consider several persons editing concurrently a document made out
of a set of files. These editors are distributed over a network and each one works on one node of that
network. Each node is independent from the others. Each editor makes his own modifications in the
files and commits them locally on his node. So each editor keeps a local version (and its history) of
these files. That version consists in the start files and several ordered patches applied to them: this
history is called a branch. From time to time, two or more editors merge their branches so that an
editor propagates (pushes) its modifications to others and/or get changes from other editors.

The following example is inspired from Monotone1, a distributed version control system. Ver-
sions are identified by a hash (Sha1) which is used to check if two editors have the same version or
not. Our system provides also the function Merge(b1, b2) which returns a branch that contains all
modifications from two given branches b1 and b2. If a conflict occurs, the initiator of the merge must
resolve it. For simplicity sake, we assume in this example that the function Merge always succeeds:
either there is not any conflict, or if any conflict occurs it is solved by an editor.

An editor can express his dependency on modifications made by other editors. If the edi-
tor on node Ni depends on modifications made by editor on node Nj then the boolean function
Serve(bi, bj) will be true. In other words, modifications present in the branch Bi should be propa-
gated to the branch bj . They may be both dependent on each other. Since any branch can merge with

1http://venge.net/monotone/

RR n˚5743

12 Jean-Pierre Banâtre, Pascal Fradet, Yann Radenac

dvs =
let edit = replace bby Edit(b) in
let push = replace b1, b2

by b1, Merge(b1, b2)
if Serve(b1, b2) ∧ Sha1(b1) 6= Sha1(b2)

in

let sync = replace b1, b2

by Merge(b1, b2), Merge(b2, b1)
if Serve(b1, b2) ∧ Serve(b2, b1) ∧ Sha1(b1) 6= Sha1(b2)

in

let crash = replace b1 by Start if Crash(b1) in
let freeze = replace (edit = e), xby x in

letnewV ersion = replace 〈b1, x〉by NewRelease(b1), 〈b1, edit, x〉 in
〈〈B1, . . . , Bn, edit, push, sync, crash, freeze〉, newV ersion〉

Program 2: Distributed Versions System.

any other branch, editors have to organize themselves so that all modifications from all editors are
taken into account sooner or later. For example, the Serve function may induce a tree where mod-
ifications may be propagated from the root to the leaves and vice versa. Or they may be organized
as a ring, or any structures. Regularly, a freeze (snapshot) of the document is made to release a new
version to users. This is performed by a call to the function NewRelease.

The overall system is described by Program 2. It consists in a solution containing all branches bi.
The reaction rule edit represents the edition of any branch. It adds a modification to a branch, a call
to the function Edit. Reaction rules push and sync merge branches: push propagates modifications
in one way, and sync synchronizes two branches. If a node crashes (Crash(bi)), the editor loses the
corresponding branch. The reaction rule crash resets the corresponding branch to an empty branch
(Start). At any time, the reaction freeze can initiate a snapshot of the document by removing the
edition rule edit to stop any modification. When the solution becomes inert, all branches linked by a
Serve relation are up to date and the reaction newV ersion can occur. It uses a branch that has all the
modifications (it depends on the relations Serve) to release a new version (a call to NewRelease)
and regenerates the system by adding the rule edit to allow new modifications for the next release.
Figure 1 gives a possible state reached by the system. The edition is pending and two releases have
been made (V ersion1 and V ersion2).

This example illustrates several properties of HOCL:

• The execution is non-deterministic. Any two branches may react to merge their differences
(if at least one of them serves the other). Merges (reactions push and sync) may not occur
each time a modification is made on a branch. In fact, editions and merges are asynchronous:
several editions may occur before a merge.

INRIA

Generalized Multisets for Chemical Programming 13

B2

edit
B1

sync

crash

freeze
pushB4

Version1
B3

B5
newVersion

Version2

Figure 1: A possible state of the DVS.

• The execution is potentially parallel. Several editions may occur at the same time and several
merges may happen at the same time if they deal with disjoint branches.

• The system is autonomic in that it is self-repairing. If a crash occurs, we lose a branch,
but a simple push or sync with another branch allows to recover all modifications that have
been propagated (however the editor loses all his local non-propagated modifications). Other
autonomic properties may be included in a chemical program. The interested reader is referred
to (Banâtre, et al. 2004) for more details on autonomic chemical programs.

• The specification is higher-order and manipulates reaction rules to express coordination. The
freeze reaction removes the edit rule to stop edition. The newV ersion rule waits for inertia
to call NewRelease which illustrates a basic sequentiality coordination. The newV ersion
rule relaunches also the system by re-generating the solution with the rule edit.

5 Multiplets, infinite and hybrid multisets

Another generalization is to extend the class of multisets to infinite multisets and elements with a
negative multiplicity. The extension amounts to introducing operations to explicitly manipulate the
finite or infinite, positive or negative, multiplicity of elements. The syntax of these extensions are
summarized in Grammar 3.

5.1 Multiplets

A multiplet is a finite multiset of identical elements. This notion relies on an equality relation be-
tween elements. Considering multiplets of reactions would cause semantic problems as it would

RR n˚5743

14 Jean-Pierre Banâtre, Pascal Fradet, Yann Radenac

let choose = γ〈x::String, ω〉.x in

letwheel = 〈“cherry”, “lemon”, “bell”, “bar”, “plum”, “orange”, “melon”, “seven”〉 in
letwin = γ(x::String)3.“Jackpot!” in

〈wheel, wheel, wheel, choose, choose, choose, win〉

Program 3: The Jackpot program.

require an equality relation between programs whereas multiplets of solutions would pose imple-
mentations issues. In this paper, we limit ourselves to multiplets of basic values (integers, booleans,
strings). In HOCL multiplets are defined and matched using an exponential notation (see Grammar
3):

• if v is a basic value then vk (k > 0) denotes a multiplet of k elements v. Similarly, in a
reaction, xk denotes a multiplet of k elements. The variable x must have a basic type (x::B).

• in order to match multiplets, the language of patterns is extended likewise. A pattern, P k

matches any multiplet of k identical elements matching P .

Semantically, a multiplet vk is just a shorthand for k identical v’s. Formally:

v1 def
= v and vk def

= v(k−1), v if k > 1

Semantically, a pattern P k is just a shorthand for the nonlinear pattern defined by

P 1 def
= P and P k def

= P k−1, P if k > 1

For example, the reaction replacing four 1’s by four 2’s can be specified as

γ(x4)bx = 1c.24 or equivalently γ(x, x, x, x)bx = 1c.2, 2, 2, 2

Another elementary example is the n-shot reaction computing the root set of a multiplet by removing
repeatedly pairs of identical elements:

toSet1 = replacex2 by x

In the Jackpot! program (Program 3), the reactions choose pick up nondeterministically an element
from the solutions representing the three wheels of a slot machine. The win reaction checks if the
three drawn symbols are identical, i.e. if it can match a multiplet of size 3.

5.2 Variable-sized multiplets

A first generalization of multiplets is to allow variables in the exponentiation of constants or patterns.
The size of a multiplet becomes dynamic.

INRIA

Generalized Multisets for Chemical Programming 15

Molecules
M ::= . . . ; as before

| V V2

1 ; multiplet with an integer expression V

Basic Values
V ::= . . . ; as before

| [−]∞ ; positive and negative infinity

Patterns
P ::= . . . ; as before

| P k ; matches a finite size multiplet
| P x ; matches multiplets of any size
| P x ; matches all elements of a multiplet

Grammar 3: HOCL extended with multiplets, infinite and negative multiplicities.

Let v be a basic constant and V an integer expression, then vV denotes a multiplet. If the normal
form of V is the integer k then vV ≡ vk. We assume in this section that k > 0. If k = 0 the multiplet
is empty and is treated in much the same way as a ω-variable which has matched the empty molecule
(cf. Section 4.3). The case of a negative exponent is dealt with in Section 5.4.

A pattern P x matches any strictly positive number of identical atoms. Formally:

match(P x, (V1, . . . , Vk)) = match(P, V1) ⊕ {x 7→ k} if k > 0 ∧ ∀i, j ∈ [1, k].Vi = Vj

The substitution returned by a successful match maps the exponent variable x to the number of
matched values.

For example, the n-shot reaction computing the root set of a multiplet of the previous section can
be expressed using variable sized multiplet matching:

toSet2 = replacexn by x if n > 1

Whereas the previous version (toSet1) eliminated duplicates two by two, the rule toSet2 eliminates
a variable number (potentially greater than 2) duplicates at each step.

Another example is a quite natural specification of integer division (see Program 4). The program
makes use of two values R and Q which can be distinct strings for example. The dividend x is
translated into the multiplet Rx whereas the divisor d is left as an integer. The integer division of
x by d is performed by grouping d occurrences of R’s and replacing them by one occurrence of Q.
When the solution becomes inert, the multiplicity of Q represents the quotient and the multiplicity
of R represents the remainder. For example, the division of 7 by 2 is performed as follows:

〈cluster, 2, R7〉 → 〈cluster, 2, R5, Q〉 → 〈cluster, 2, R3, Q2〉 → 〈cluster, 2, R, Q3〉

RR n˚5743

16 Jean-Pierre Banâtre, Pascal Fradet, Yann Radenac

intdiv = γ(x:d).
let cluster = replace (d, Rd)by(d, Q) in
〈Rx, d, cluster〉

Program 4: Integer division.

5.3 Infinite multiplets

Another generalization consists in infinite multiplets. Let v be a basic value or a variable with a
basic type, then v∞ denotes an infinite multiplet made of an infinity of copies of v. Formally:

v∞
def
= M such that Card(M) = ∞∧ ∀x ∈ M. x = v

We do not introduce patterns of the form P∞ to match an infinity of identical elements. Indeed,
extracting an infinity of elements from an infinity would not be well defined. Instead we introduce a
pattern matching all occurrences of a constant in the solution. Using such patterns, infinite multiplets
can be manipulated as a single atomic molecule.

The pattern P x matches all identical atoms occurring in the enclosing solution. Formally:

matchM (P x, N) = (match(P, a)) ⊕ {x 7→ Card(N)} ∧ (∀a′ ∈ N.a′ = a)
∧ a 6∈ M

The substitution returned by a successful match maps the variable x to the finite or infinite multi-
plicity of the matched value.

Note that pattern matching must take an additional argument (here M) representing the remain-
ing of the enclosing solution to check that all occurrences have been taken into account. The reduc-
tion of a reaction with such patterns is of the form:

〈(γ(P)bCc.X), N, M〉 → 〈φX, M〉 if matchM (P, N) = φ ∧ φC

The complete solution is taken by the reaction and no other reaction in the same solution may occur
in parallel. Taking atomically all identical elements of a solution is intrinsically a global operation.

For example, the n-shot reaction computing the root set of a multiplet of the previous sections
can now be expressed as follows:

toSet3 = replacexn by x if n > 1

All duplicates of an element are removed in one reaction rule. For example, the solution 〈a10, b4, toSet3〉
is rewritten in two steps:

〈a10, b4, toSet3〉 → 〈a, b4, toSet3〉 → 〈a, b, toSet3〉

As another example, consider the traditional quicksort program where a set of integers has to
be compared with a predefined pivot. In order to distinguish the pivot from the other integers, we

INRIA

Generalized Multisets for Chemical Programming 17

assume that the pivot had a special type Pivot (e.g. a type synonym of Int). In the following solution
all integers lower or equal to the pivot are removed. We consider the pivot as a infinite multiplet of
an integer of type Pivot (5∞ here):

〈5∞, 8, 3, 6, 4, 5, 3, replace(p::Pivot), x, ω by ω if x ≤ p〉

As the number of pivots is infinite, all possible reactions may be carried out independently. This is
a way of expressing the fact that the pivot is a read only element and as such can be accessed con-
currently. The use of read only elements in chemical specifications has been proposed in (Chaudron
1994).

A standard way of accommodating infinite objects in programming (e.g. in lazy functional lan-
guages) is to use generators and on-demand evaluation. Following this idea, we would represent
infinite multiplets, for example the multiplet 4∞, as

gen4 = replace xby x, x if(x = 4)

However, this encoding suffers two main problems: it makes difficult to manipulate infinite multi-
plets (e.g. removing them) and the property v∞, v∞ ≡ v∞ is not satisfied.

5.4 Negative multiplicities

Hybrid multisets (Blizard 1990, Loeb 1992) are a generalization of multisets where the multiplicity
of elements can be negative. A molecule v−1 can be viewed as a piece of “antimatter”or an anti-
v. Positive and negative multiplets of the same value cannot cohabit in the same solution, they
merge into one multiplet whose exponent is the sum of their exponent. Assuming a representation
of negative values v−1, a negative multiplet is defined as:

v−k def
= v−k+1, v−1 if − k < −1

The pattern P−1 is defined as matching (the representation of) v−1 such that match(P, v). The
pattern P−k is defined as k occurrences of P−1 :

P−k def
= P−k+1, P−1 if − k < −1

The representation of negative values using reaction rules consuming elements such as killv =
γ(x, ω)bx = vc.ω would not be sufficient. The intended semantics enforces that v and v−1 can-
not be in a solution at the same time. There is no guarantee about when a reaction killv will react.
When negative multiplicities are allowed, the negative and positive multiplets of the identical ele-
ments must be merged after each reaction before proceeding with other reactions. In other words,
reactions become global rewritings w.r.t. their solution. We define this merging process using the
new reduction relation ↪→ defined by the two following rules:

〈v, v−1〉 ↪→ 〈〉 〈v, v−1, X〉 ↪→ 〈X〉

RR n˚5743

18 Jean-Pierre Banâtre, Pascal Fradet, Yann Radenac

The rule for reactions becomes

match(P, N) = φ ∧ φC ∧ 〈φM, X〉
∗

↪→ 〈Y 〉 ∧ 〈Y 〉 6↪→ 〈Z〉

〈(γ(P)bCc.M), N, X〉 → 〈Y 〉

A reaction takes a molecule (N) matching its pattern but also the remaining of the solution (X). The
positive and negative multiplets occurring in the result of the reaction (φM) are simplified with the
other multiplets occurring in X . A reduction step is global and consists in a reaction followed by a
normalization by ↪→.

Variable sized and infinite multiplet with negative multiplicities are defined exactly the same way
as before. We match and produce values v−1 instead of v. In any case, a solution must be normalized
using ↪→ between two successive reactions.

As an example of use of negative multiplicities, rational numbers p

q
are represented by a molecule

which contains the prime factorization of p and q but with negative multiplicities for the latter.
For example, 20

9 is represented by the molecule 〈22, 5, 3−2〉. The product of rational numbers is
computed simply by putting them in the same solution. For example, the product 20

9 ∗ 15
8 is performed

by merging their representations:

〈22, 5, 3−2〉, 〈3, 5, 2−3〉, γ(〈f〉, 〈g〉).〈f, g〉 → 〈52, 3−1, 2−1〉

Infinite negative multiplets can be used to filter out all occurrences of an element (present or
to come) within a solution. Let pi be the reaction computing the product of a multiset of integers.
Then, the integer 1, being the neutral element of the product, can be deleted prior to performing pi.
The pi operator may be encoded by:

pi = γ〈x〉.〈1−∞, x, (replace x, y by x ∗ y)〉

Before considering any product, all 1’s are annihilated, for example:

〈22, 9, 13, 5, 6〉, pi → 〈1−∞, 22, 9, 5, 6, (replacex, y by x ∗ y)〉 → . . .

After stabilization, 1−∞ must be replaced by 1 (in case that the solution contained only 1’s) and then
the reaction rule can be removed.

Other examples that come to mind include the specifications of a garbage collector that destroys
useless molecules by generating their negative counterpart, or an anti-virus that generates v−∞ each
time it identifies a virus v. The negative multiplet will remove all occurrences (present or future) of
the corresponding virus from the solution.

6 Operational semantics and implementation

In previous work on chemical programming (Banâtre & Le Métayer 1993, Banâtre et al. 2001,
Banâtre et al. 2005b), solutions were always represented straightforwardly as multisets of elements
and reactions as AC rewritings. In the previous section, we followed the same idea and presented

INRIA

Generalized Multisets for Chemical Programming 19

the semantics of multiplets by enumerating them in order to keep using plain multisets and rewrit-
ings. However, we had to use infinite multisets and auxiliary reduction rules. Part of that semantics
description (in particular, the treatment of infinite multisets) is not directly implementable whereas
others facets (e.g. normalization by ↪→) seem very costly.

Here, we propose an alternative and more concrete (operational) semantics which can be used as
a basis for a reasonable implementation of multiplets. Since our extensions can be seen as program-
ming constructs manipulating the multiplicities of values, we propose a representation that makes
multiplicities explicit.

6.1 Representation of solutions

The central idea is to use the standard mathematical representation of a multiset, that is, a function
associating to each element of the multiset its multiplicity. Such a function can be represented by
a table whose entries are the atoms of the solution; basic values are associated with a non-zero
integer whereas other atoms (reactions, sub-solutions) are always associated with 1. In this paper,
we represent such functions/tables by sets of indexed elements. A closed molecule M is represented
by a set denoted by [M].

[M] : : = [A] | [M1], [M2]
[A] : : = vk | γ(P)bCc.M | 〈[M]〉 | (A1:A2)

Each basic value is associated with its multiplicities, other atoms are implicitly associated with 1
and sub-solutions are represented by a set as well. As before, atoms of the form a1 are written a.
The key property of that representation is for any basic values v1 and v2

vk1

1 , vk2

2 ∈ [M] ⇒ v1 6= v2

that is to say, [M] is a set w.r.t. to basic values.
Note that in set representation, a molecule X belongs to another one M (i.e. X ∈ M) if X

appears with exactly the same multiplicities in M (modulo AC). For example:

23 ∈ (4, 23, 5) (23, 4) ∈ (4, 23, 5) but 22 6∈ (4, 23, 5)

The translation of a closed molecule in its set-representation is described in Figure 2. The first rule
(associativity) serves to transform the molecule into the normalized form a1, (a2, . . . , (an−1, an) . . .).
Identical basic values are merged into a single value associated with its global multiplicity. Sub-
solutions are translated into set-representation as well whereas other atoms are left unchanged. Mul-
tiplicities can be negative and infinite, that is:

ki ∈
� ∗
∞ = −∞, . . . ,−2,−1, 1, 2, . . . ,∞

Addition is extended to deal with infinity as follows:

∀k ∈
�

∞ + k = ∞ −∞ + k = −∞ −∞ + ∞ = ⊥

For example, the solution 〈2, (γ(x).x + 1), 〈23, 9, 2−∞〉, 2, (γ(y).y + 1)〉 is represented as the set
〈22, (γ(x).x + 1), (γ(y).y + 1), 〈2−∞, 9〉〉.

RR n˚5743

20 Jean-Pierre Banâtre, Pascal Fradet, Yann Radenac

[(M1,M2),M3] = [M1, (M2, M3)]

[vk1 , M] =

�� � [vk1+k2 , M − vk2] if vk2 ∈ M ∧ k1 + k2 6= 0
[M − vk2] if vk2 ∈ M ∧ k1 + k2 = 0
vk1 , [M] if � vk2 ∈ M

[〈M1〉, M2] = [〈M1〉], [M2]

[a, M] = a, [M] for other atoms a i.e. reactions or pairs

[〈〉] = 〈〉 empty solution

[〈M〉] = 〈[M]〉

[vk] = vk

Figure 2: Transforming molecules into set representation.

6.2 Reduction of molecules in set representation

Pattern-matching a molecule in set-representation is more complex than before. It takes the complete
solution and yields a substitution and a remainder. The remainder of a match is the molecule taken
in entry minus the extracted molecule matching the pattern. For example, the only possible result
for

match []((x
y, z2, z2), (23, 45, 〈7〉))

is ({x 7→ 2, y 7→ 3, z 7→ 4}, (4, 〈7〉)). The only molecule included in (23, 45, 〈7〉) matching the
pattern is (23, 44).

We say that a molecule X is included into another molecule M , and we write X v M , if it can
be extracted from M . All atoms of X must occur in M with greater or equal multiplicities. For
example, 22 v (4, 23, 5) and, of course, X ∈ M ⇒ X v M . By convention the empty molecule
cannot be extracted from a molecule.

Pattern-matching is defined using this notion in Figure 3. A composed pattern P1, P2 is matched
by considering P1 and P2 in sequence. Pattern-matching P1 yields a substitution φ1 and a remainder
M1. Next P2 is matched against M1 and yields a substitution φ2 and a remainder M2 (M1 minus
the extracted match). The result is the composition of the two substitutions and M2.

The pattern name = x matches any reaction of M tagged with that name.
The pattern 〈P 〉 involves extracting a solution 〈X〉 from M and enforcing that P matches com-

pletely X (i.e. match [](P, X) returns an empty remainder).
The pattern x::T matches any molecule X whose type is smaller than T and which can be

extracted from M . Similarly, the pattern ω matches any molecule which can be extracted from M
but matches also the empty molecule.

The pattern (P1:P2) involves extracting a pair from M and using standard pattern matching.
Patterns for multiplets involves selecting a basic value vj from M . To match P k (i.e. to extract

vk), j must greater or equal if positive (lower or equal if negative). Matching P x amounts to ex-

INRIA

Generalized Multisets for Chemical Programming 21

match []((P1 , P2), M) = (φ1 ⊕ φ2, M2)
if match [](P1, M) = (φ1, M1) ∧ match [](P2, M1) = (φ2,M2)

match [](x::T,M) = ({x 7→ X}, M − X)
if X v M ∧ Type(X) � T

match [](ω, M) =

����
��
� ({x 7→ ∅}, ∅)

if M = ∅

({x 7→ X}, M − X)
if X v M

match [](name = x, M) = ({x 7→ R}, M − (name = R))
if (name = R) ∈ M

match []((P1 :P2),M) = (φ1 ⊕ φ2, M − (X1:X2))
if match(P1, X1) = φ1 ∧ match(P2,X2) = φ2 ∧ (X1:X2) ∈ M

match [](〈P 〉, M) = (φ, M − 〈X〉)
if 〈X〉 ∈ M ∧ match [](P,X) = (φ, ∅)

match [](P
k ,M) = (match(P, v), M − vj + vj−k)

if vj ∈ M ∧ 0 < k ≤ j ∨ j ≤ k < 0

match [](P
x, M) = (match(P, v) ⊕ {x 7→ k}, M − vj + vj−k)

if vj ∈ M ∧ 0 < k ≤ j ∨ j ≤ k < 0

match [](P
x, M) = (match(P, v) ⊕ {x 7→ j}, M − vj)

if vj ∈ M

match [](P, M) = fail

otherwise

Figure 3: Pattern-matching molecules in set representation.

RR n˚5743

22 Jean-Pierre Banâtre, Pascal Fradet, Yann Radenac

tracting non deterministically a value vk (k lying between 0 and j). Matching P x extracts vj and
associates x with j.

Chemical reactions are rephrased in this setting as follows:

〈(γ(P)bCc.M), N〉 → 〈[φM, Y]〉 if match [](P, N) = (φ, Y) ∧ φC

A reaction can be decomposed in three steps:

1. A molecule X matching P and satisfying the reaction condition is extracted from the solution
N . Pattern-matching yields a substitution φ and the remainder Y such that N = [X, Y].

2. The body of the reaction is produced (i.e. φ is applied and the expressions in φM are reduced).

3. The result of the reaction (φM) is put back in the solution Y . Since the reaction may pro-
duce atoms which are already present in the solution, (φM, Y) must be normalized in set-
representation using []. In an implementation, this would boil down to updating multiplicities
in the table representing the current solution. Note that the normalization may produce a
dynamic error e.g. if v−∞ occurs in Y and φM contains v∞ (or vice versa).

For example,
let prod = replacex, y by x ∗ y in

let rmunit = γ(〈xy, ω〉)bx = 1c.ω in

〈prod, rmunit, 〈14, 2, 3, 6〉〉
→ 〈prod, 2, 3, 6〉
→ 〈prod, 62〉
→ 〈prod, 36〉

The reaction rmunit extracts the sub-solution after having removed all the occurrences of 1’s in one
step. The n-shot reaction prod computes 2 ∗ 3; then the solution is normalized to 〈prod, 62〉 (i.e. 6’s
are grouped). The last reaction (where x and y each matches an occurrence of 6) yields 36.

For simplicity reasons, we have formalized reactions on set-representations as a global operation.
In practice, the first and last steps needs an atomic access only on the entries (atoms) they modify.
The second step can be done in parallel with other reactions. A real implementation would extract
only a (smartly chosen) selection of atoms for pattern-matching and would update only the entries
(value, multiplicity) corresponding to the atoms produced by the reaction. Therefore, reactions
involving different atoms could take place in parallel.

The framework presented in this section does not describe a complete implementation which
would require other refinements. However, it does show a representation of solutions which allows
to explicitly manipulate constant, infinite and negative multiplicities. A drawback is that we lose
some locality in the reactions, but this is unavoidable with patterns matching all the occurrences of
a specific value in a solution.

7 Related work and perspectives

To the best of our knowledge, Gamma (Banâtre & Le Métayer 1986, Banâtre & Le Métayer 1993)
was the first chemical model to be proposed. It consists in a single multiset containing basic inactive

INRIA

Generalized Multisets for Chemical Programming 23

molecules and external reactions. Reactions are n-shot: they are applied until no reaction can take
place. They are first-order: they are not part of the multiset and cannot be taken as argument or
returned as result. Moreover, there is no nested solutions. Even if sub-solutions can be encoded, there
is no notion of inertia in Gamma (only global termination). A standard Gamma program is easily
expressed in the γ-calculus as a solution with a collection of recursive γ-abstractions representing
the reactions and a sub-solution of values representing the multiset. Gamma has inspired many
extensions (e.g. composition operators (Hankin, et al. 1992)) and other chemical models.

The chemical abstract machine (Berry & Boudol 1992) (CHAM) is a chemical approach intro-
duced to describe concurrent computations without explicit control. It started from Gamma and
added many features such as membranes, (sub)solutions, inertia and airlocks. Like Gamma, re-
actions are n-shot rewrite rules which are not part of the multisets. The selection pattern in the
left-hand side of rewrite rules can include constants which is a form of reaction condition. For ex-
ample, in (Berry & Boudol 1992), the description of the operational semantics of the TCCS and
CCS calculi contains a cleanup rule (0 ⇀) which removes molecules equal to 0. The CHAM would
be equivalent to the γ-calculus if it was higher-order.

Our minimal chemical calculus is quite close to Berry and Boudol’s concurrent λ-calculus (re-
ferred to here as the γbb-calculus) introduced after the chemical abstract machine (CHAM) in (Berry
& Boudol 1992). The γbb-calculus relies also on variables, abstractions, an associative and commu-
tative application operator and solutions. However, to distinguish between the γ-abstraction and its
argument, it adds the notion of positive ions (denoted M+). The γ-abstractions are negative ions
(denoted x−M) which can react only with positive ions:

β-reaction: (x−M), N+ → M [x := N]

In fact, no reaction can occur within a positive ion and so arguments are passed unchanged to ab-
stractions. Furthermore, an additional reduction law, the hatching rule, extracts an inert molecule
M from a solution 〈M〉:

hatching: 〈W 〉
 W if W is inert

In the γ-calculus, these two notions are replaced by the strict γ-reduction. In particular, hatching
can be written explicitly as

(γ〈x〉.x), 〈M〉

which extracts M from its solution when it becomes inert. Even if the γ-calculus looks simpler than
the γbb-calculus, it seems that they cannot be translated easily into each other (e.g. by a translation
defined on the syntax rules).

A first higher-order extension of Gamma has been proposed in (Le Métayer 1994). The definition
of Gamma involves two different kinds of terms: the program (set of rewrite rules) and multisets. The
main extension of higher-order Gamma consists in unifying these two categories of expression into
a single notion of configuration. A configuration contains a program and a list of named multisets.
It is denoted by [Prog, V ar1 = Multiset1, . . . , V arn = Multisetn]. The program Prog is
a rewrite rule of the multisets (named V ari) of the configuration. This model is an higher-order
model because any configuration can handle other configurations through their program. It includes
reaction conditions and n-ary rewrite rules. However, reactions are not first-class citizens since they
are kept separate from multisets of data.

RR n˚5743

24 Jean-Pierre Banâtre, Pascal Fradet, Yann Radenac

The hmm-calculus (Cohen & Muylaert-Filho 1996) (for higher-order multiset machines) is de-
scribed as an extension of Gamma where reactions are one-shot and first-class citizens. An abstrac-
tion denoted by λx̃.M1 ⇐ M0 describes a reaction rule: it takes several terms denoted by a tuple
x̃, the term M1 is the action and the term M0 is the reaction condition. Like γbb, the hmm-calculus
uses a call-by-name strategy. It needs an hatching rule to extract an inert molecule from its solution.
Any reaction can occur within solutions and within abstractions. The hmm-calculus can be seen as
a call-by-name version of the γ-calculus, or as an extension of the γbb-calculus with conditional and
n-ary reactions.

P-systems (Păun 2000) are computing devices inspired from biology. It consists in nested mem-
branes in which molecules react. Molecules can cross and move between membranes. A set of
partially ordered rewrite rules is associated to each membrane. These rules describe possible reac-
tions and communications between membranes of molecules. These features can be expressed in
HOCL: a membrane is a solution, i.e. a multiset.

Our list of comparisons is not exhaustive and other models could have been considered. For
example, we can mention work out about concurrent λ-calculus according to a chemical metaphor
such as (Fontana & Buss 1994), or, for example, various models based on real chemistry as described
in (Dittrich, et al. 2001).

To summarize the main contributions of this paper, we can emphasize (1) the use of a very general
version of multisets with elements possessing various kinds of (finite or infinite) multiplicities and
(2) the introduction of a higher order model of computation (HOCL) dealing with such multisets.
Several programming examples illustrate the salient features of the language. In order to simplify the
presentation, we limited multiplets to basic values. This restriction can be relaxed in several ways.
Multiplets of pairs or solutions of values would not cause any other problems than efficiency if these
structures include too many elements. Note also that the equality relation which prevented the use
of multiplets of reactions is only needed for matching multiplets. The definition of finite multiplets
(MV), which can be seen as syntactic sugar for V occurrences of M , could apply to reactions and to
any molecule. With these modest extensions the Jackpot! program (see Program 3) would be more
elegantly expressed as

〈wheel3, choose3, win〉

A current research direction concerns the use of HOCL as a coordination language for the de-
scription of GRID systems and applications. The basic challenge consists in showing that the chem-
ical paradigm, represented by HOCL, allows a clean and elegant expression of features such as
program mobility, load balancing, crash recovery, etc. Basically, the overall system is expressed
as a “soup” (represented by a multiset) of resources such as processors, storage, communication
links, etc. whose combinations are described by appropriate reaction rules.

References

J.-P. Banâtre, et al. (2001). ‘Gamma and the Chemical Reaction Model: Fifteen Years After’. In
Multiset Processing, vol. 2235 of LNCS, pp. 17–44. Springer-Verlag.

INRIA

Generalized Multisets for Chemical Programming 25

J.-P. Banâtre, et al. (2004). ‘Chemical Specification of Autonomic Systems’. In Proc. of the 13th
Int. Conf. on Intelligent and Adaptive Systems and Software Engineering (IASSE’04).

J.-P. Banâtre, et al. (2005a). ‘Higher-order Programming Style’. In Proc. of the workshop on Un-
conventional Programming Paradigms (UPP’04), vol. 3566 of LNCS. Springer-Verlag.

J.-P. Banâtre, et al. (2005b). ‘Principles of Chemical Programming’. In S. Abdennadher &
C. Ringeissen (eds.), Proceedings of the 5th International Workshop on Rule-Based Program-
ming (RULE 2004), vol. 124 of ENTCS, pp. 133–147. Elsevier.

J.-P. Banâtre & D. Le Métayer (1986). ‘A new computational model and its discipline of program-
ming’. Tech. Rep. RR0566, INRIA.

J.-P. Banâtre & D. Le Métayer (1993). ‘Programming by Multiset Transformation’. Communications
of the ACM (CACM) 36(1):98–111.

G. Berry & G. Boudol (1992). ‘The Chemical Abstract Machine’. Theoretical Computer Science
96:217–248.

W. Blizard (1990). ‘Negative Membership’. Notre Dame Journal of Formal Logic 31(3):346–368.

W. Blizard (1991). ‘The development of multiset theory’. Modern Logic 1:319 – 352.

C. Calude, et al. (eds.) (2001). Multiset Processing, Mathematical, Computer Science and Molecular
Computing Points of View, Lecture Notes on Computer Science. Springer-Verlag.

M. Chaudron (1994). ‘Schedules for Multiset Transformer Programs’. Tech. Rep. tr94-36, Rijksuni-
versiteit Leiden.

D. Cohen & J. Muylaert-Filho (1996). ‘Introducing a Calculus for Higher-Order Multiset Program-
ming’. In Coordination Languages and Models, vol. 1061 of LNCS, pp. 124–141.

N. Dershowitz & Z. Manna (1979). ‘Proving Termination with Multiset Orderings’. Communica-
tions of the ACM 22(8):465–476.

P. Dittrich, et al. (2001). ‘Artificial Chemistries – A Review’. Artificial Life 7(3):225–275.

W. Fontana & L. Buss (1994). ‘The Arrival of the Fittest: Toward a Theory of Biological Organiza-
tion’. Bulletin of Mathematical Biology 56.

C. Hankin, et al. (1992). ‘A Calculus of Gamma Programs’. In Languages and Compilers for Parallel
Computing, 5th International Workshop, vol. 757 of LNCS, pp. 342–355. Springer-Verlag.

D. E. Knuth (1981). The Art of Computer Programming, vol. 2 Seminumerical Algorithms of
Addison-Wesley Series in Computer Science and Information Processing. Addison-Wesley, 2nd
edn.

RR n˚5743

26 Jean-Pierre Banâtre, Pascal Fradet, Yann Radenac

D. Le Métayer (1994). ‘Higher-order multiset programming’. In A. M. S. (AMS) (ed.), Proc. of the
DIMACS workshop on specifications of parallel algorithms, vol. 18 of Dimacs Series in Discrete
Mathematics.

D. Loeb (1992). ‘Sets with a negative number of elements’. Advances in Mathematics 91:64–74.

G. Păun (2000). ‘Computing with Membranes’. Journal of Computer and System Sciences
61(1):108–143.

INRIA

Unité de recherche INRIA Lorraine, Technopôle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LÈS NANCY

Unité de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unité de recherche INRIA Rhône-Alpes, 655, avenue de l’Europe, 38330 MONTBONNOT ST MARTIN

Unité de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unité de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Éditeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)

http://www.inria.fr
ISSN 0249-6399

