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Abstract: This paper deals with scheduling divisible load applications on star networks,
in presence of return messages. This work is a follow-on of [7, 8], where the same problem
was considered under the 2-port model, where a given processor can simultaneously send
and receive messages. Here, we concentrate on the one-port model, where a processor can
either send or receive a message at a given time step. The problem of scheduling divisible
load on star platforms turns out to be very difficult as soon as return messages are involved.
Unfortunately, we have not been able to assess its complexity, but we provide an optimal
solution in the special (but important) case of FIFO communication schemes. We also provide
an explicit formula for the optimal number of load units that can be processed by a FIFO
ordering on a bus network. Finally, we provide a set of MPI experiments to assess the accuracy
and usefulness of our results in a real framework.

Key-words: Scheduling, divisible load, master-worker platform, heterogeneous cluster,
return messages, one-port model
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Ordonnancement FIFO de tâches divisibles avec messages de

retour sous le modèle un-port

Résumé : Dans ce rapport, nous nous intéressons à l’ordonnancement de tâches divisibles sur
des plates-formes mâıtre-esclave hétérogènes, en prenant en compte les messages de retour.
Ce travail fait suite à [7, 8], où le problème était considéré avec le modèle 2-port, autorisant
un processeur à envoyer et recevoir des données simultanément. Ici, nous nous intéressons au
modèle un-port selon lequel ces deux opérations doivent être séquentialisées. Ordonnancer
des tâches divisibles se révèle difficile dès que l’on prend en compte les messages de retour.
Nous n’avons pas réussi à établir la complexité du problème général, mais nous proposons
une solution optimale dans le cas particulier (mais important) des schémas de communication
FIFO. Nous proposons également une formule pour calculer le débit optimal quand les liens
de communication sont homogènes. Enfin, nous fournissons un jeu d’expériences utilisant
MPI pour évaluer la précision et l’utilité de nos résultats dans un contexte réel.

Mots-clés : Ordonnancement, tâches divisibles, plate-forme mâıtre-esclave, grappe hétérogène,
messages de retour, modèle un-port



One-port FIFO scheduling of divisible loads 3

1 Introduction

This paper deals with scheduling divisible load applications on heterogeneous platforms. As
their name suggests, divisible load applications can be divided among worker processors ar-
bitrarily, i.e. into any number of independent pieces. This corresponds to a perfectly parallel
job: any sub-task can itself be processed in parallel, and on any number of workers. In prac-
tice, the Divisible Load Scheduling model, or DLS model, is an approximation of applications
that consist of large numbers of identical, low-granularity computations.

Quite naturally, we target a master-worker implementation where the master initially
holds (or generates data for) a large amount of work that will be executed by the workers.
In the end, output results will be returned by the workers to the master. Each worker has a
different computational speed, and each master-worker link has a different bandwidth, thereby
making the platform fully heterogeneous. The scheduling problem is first to decide how many
load units the master sends to each worker, and in which order. After receiving its share of
the data, each worker executes the corresponding work and returns the results to the master.
Again, the ordering of the return messages must be decided by the scheduler.

The DLS model has been widely studied in the last several years, after having been
popularized by the landmark book [10]. The DLS model provides a practical framework for
the mapping of independent tasks onto heterogeneous platforms, and has been applied to
a large spectrum of scientific problems. From a theoretical standpoint, the success of the
DLS model is mostly due to its analytical tractability. Optimal algorithms and closed-form
formulas exist for important instances of the divisible load problem. A famous example is the
closed-form formula given in [5, 10] for a bus network. The hypotheses are the following: (i)
the master distributes the load to the workers, but no results are returned to the master; (ii) a
linear cost model is assumed both for computations and for communications (see Section 2.1);
and (iii) all master-worker communication links have same bandwidth (but the workers have
different processing speeds). The proof to derive the closed-form formula proceeds in several
steps: it is shown that in an optimal solution: (i) all workers participate in the computation,
then that (ii) they never stop working after having received their data from the master, and
finally that (iii) they all terminate the execution of their load simultaneously. These conditions
give rise to a set of equations from which the optimal load assignment αi can be computed
for each worker Pi.

Extending this property to a star network (with different master-worker link bandwidths),
but still (1) without return messages and (2) with a linear cost model, has been achieved only
recently [6]. The proof basically goes along the same steps as for a bus network, but the main
additional difficulty was to find the optimal ordering of the messages from the master to the
workers. It turns out that the best strategy is to serve workers with larger bandwidth first,
independently of their computing power.

The next natural step is to include return messages in the picture. This is very important
in practice, because in most applications the workers are expected to return some results to
the master. When no return messages are assumed, it is implicitly assumed that the size of
the results to be transmitted to the master after the computation is negligible, and hence
has no (or very little) impact on the whole DLS problem. This may be realistic for some
particular DLS applications, but not for all of them. For example suppose that the master
is distributing files to the workers. After processing a file, the worker will typically return
results in the form of another file, possibly of shorter size, but still non-negligible. In some
situations, the size of the return message may even be larger than the size of the original
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4 O. Beaumont, L. Marchal, V. Rehn and Y. Robert

message: for instance the master initially scatters instructions on some large computations
to be performed by each worker, such as the generation of several cryptographic keys; in this
case each worker would receive a few bytes of control instructions and would return longer
files containing the keys.

Because it is very natural and important in practice, several authors have investigated
the problem with return messages: see the papers [4, 15, 24, 3, 1]. However, all the results
obtained so far are very partial. Intuitively, there are hints that suggest that the problem
with return messages is much more complicated. The first hint lies in the combinatorial space
that is open for searching the best solution. There is no reason for the ordering of the initial
messages sent by the master to be the same as the ordering for the messages returned to the
master by the workers after the execution. In some situations a FIFO strategy (the worker
first served by the master is the first to return results, and so on) may be preferred, because it
provides a smooth and well-structured pipelining scheme. In [1], Adler, Gong and Rosenberg
show that all FIFO strategies are equally performing on a bus network, but even the analysis
of FIFO strategies is a difficult open problem on a star network.

This work is a follow-on of [7, 8] where we have studied FIFO strategies under the two-
port model, where the master can simultaneously send data to one worker and receive from
another. In this paper, we study FIFO strategies under the one-port model, where the master
can only be enrolled in a single communication at any time-step. The one-port model turns
to be be more complicated to analyze, because of the additional constraint imposed on the
communication medium. However, it is also more realistic in practice, and all the MPI
experiments reported in Section 5 obey this model.

Adding return messages dramatically complicates the search for an optimal solution, de-
spite the simplicity of the linear cost model. In fact, we show that the best FIFO schedule
may well not involve all processors, which is in sharp contrast with previous results from the
literature.

The main contributions of this paper are the characterization of the best FIFO strategy
on a star network, together with an experimental comparison of them. Rather than simula-
tions [7, 8] we perform extensive MPI experiments on heterogeneous platforms.

The rest of the paper is organized as follows. In Section 2, we state precisely the DLS
problem, with all application and platform parameters. Section 3 deals with the characteriza-
tion of the optimal FIFO solution. When the platform reduces to a bus, we are able to provide
an explicit formula for the best throughput, as shown in Section 4. We report extensive MPI
experiments in Section 5. Section 6 is devoted to an overview of related work. Finally, we
state some concluding remarks in Section 7.

2 Framework

2.1 Target platform and model

As illustrated in Figure 1, we target a star network S = {P0, P1, P2, . . . , Pp}, composed of a
master P0 and of p workers Pi, 1 ≤ i ≤ p. There is a communication link from the master
P0 to each worker Pi. In the linear cost model, each worker Pi has a (relative) computing
power wi: it takes X.wi time units to execute X units of load on worker Pi. Similarly, it
takes X.ci time units to send the initial data needed for computing X units of load from
P0 to Pi, and X.di time units to return the corresponding results from Pi to P0. Without
loss of generality we assume that the master has no processing capability (otherwise, add a
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One-port FIFO scheduling of divisible loads 5

P1 Pp

P0

PiP2

w1 wp

cp, dpc1, d1

wi

ci, dic2, d2

w2

Figure 1: Platform

fictitious extra worker paying no communication cost to simulate computation at the master).
Note that a bus network is a star network such that all communication links have the same
characteristics: ci = c and di = d for each worker Pi, 1 ≤ i ≤ p.

It is natural to assume that the quantity di

ci
is a constant z that depends on the application

but not on the selected worker. In other words, workers who communicate faster with the
master for the initial message will also communicate faster for the return message. In the
following, we keep using both values di and ci, because many results are valid even without
the relation di = zci, and we explicitly mention when we use this relation.

The standard one-port model in DLS problems for communications is defined as follows:

� the master can only send data to, and receive data from, a single worker at a given
time-step,

� a given worker cannot start execution before it has terminated the reception of the
message from the master; similarly, it cannot start sending the results back to the
master before finishing the computation.

In fact, this one-port model naturally comes in two flavors with return messages, depending
upon whether we allow the master to simultaneously send and receive messages or not. If
we do allow for simultaneous sends and receives, we have the two-port model which we have
studied in the companion paper [8]. Here we concentrate on the true one-port model, where
the master cannot be enrolled in more than one communication at any time-step. Although
more complicated to analyze, the one-port model is more realistic: all the MPI experiments
in Section 5 obey this model.

2.2 Scheduling problem

We focus on the following problem: given a time bound T , what is the maximum number of
load units that can be processed within time T ? As we adopt the classical linear cost model
(communication and computation costs are proportional to the number of load units), we can
consider that T = 1 without loss of generality. Also, owing to the linearity of the model, this
problem is equivalent to the problem of minimizing the execution time for a given amount of
load to be processed.

A solution to the scheduling problem is characterized by the following information:

� The subset of enrolled processors, and their respective loads. We let αi denote the
amount of load assigned to, and processed by, each participating worker Pi.
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6 O. Beaumont, L. Marchal, V. Rehn and Y. Robert

� The dates at which each event (incoming communication, computation, return message)
starts on each processor.

We can make a few useful simplifications. First, we can assume that each worker starts
computing right upon completion of the initial communication from the master. Also, we
can assume that the master sends initial messages as soon as possible, i.e. without any delay
between two consecutive ones. Symmetrically, we can assume that return messages are sent
consecutively, and as late as possible, to the master. However, some idle time may well occur
between the time at which a worker Pi has completed its work and the time at which it starts
returning the message, just because the master may be busy communicating with another
worker. This idle time for Pi will be denoted as xi. Although it is a classical assumption in
DLS theory that all workers work without interruption until the end of the schedule, we point
out that we cannot enforce it here a priori.

We can now sum up the description of a schedule by:

� a first permutation σ1 representing the order of sending operations, from the master to
each worker,

� a second permutation σ2 representing the order of the receiving operations, from each
worker to the master,

� the quantity αi of load units sent to each worker Pi,

� the idle time xi of each worker Pi.

This knowledge allows us to totally describe a schedule, as represented in Figure 2.

t

Pi

αi × ci αi × wi xi αi × di

Figure 2: Example of a general schedule. The permutation for input messages is σ1 =
(1, 2, 3, 4), while the permutation for output messages is σ2 = (1, 3, 2, 4).

We have not been able to assess a general complexity result, but we have explored special
instances of the scheduling problem, namely FIFO schedules for which the order for result
messages is the same as the order for input data messages (σ2 = σ1): the first worker receiving
its data is also the first to send back its results. Figure 3(a) gives an example of such a FIFO
schedule.

Note that when the order for results messages is the reverse of the order for input data
messages (σ2 = σR

1 ), we have a LIFO schedule: the first worker receiving its data is the last
to send back its results. Figure 3(b) presents an example of such a LIFO schedule. All LIFO
schedules naturally obey the one-port model, and we refer to [7, 8] for a characterization of
the optimal LIFO schedule.
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One-port FIFO scheduling of divisible loads 7

xi αidiαiwi
αici

t

Pi

(a) FIFO

t

αici αiwi xi αidi

Pi

(b) LIFO

Figure 3: Examples of FIFO and LIFO schedules.

2.3 Linear Program for a given scenario

In this section, we show that a linear programming approach can be used to compute the
throughput, once the set of participating processors and the ordering of the messages (per-
mutations σ1 and σ2) have been determined. We illustrate this approach for a FIFO solution,
because we mainly concentrate on FIFO schedules in the following. However, the method can
easily be extended to any permutation pair.

Consider the FIFO schedule represented on Figure 3(a), where q processors numbered P1

to Pq are enrolled in the computation. Consider processor Pi. Before receiving its initial
data, Pi has to wait for all previous data transfers, i.e. the time needed for the master to
send αj load units to each processor Pj , for j < i; this takes

∑i−1
j=1 αj × cj time-steps. Then

processor Pi receives its data in αi×ci time-steps, and processes it in αi×wi time-steps. Next
Pi possibly waits for the communication medium to be free, during xi times-steps. Finally,
processor Pi sends back its results to the master, in αi ×di time-steps. There remains to wait
for processors Pi+1 to Pq to send their results to the master, which requires

∑q
j=i+1 αj × dj

time-steps. Altogether, all this has to be done within a time less than the total execution
time T = 1, hence we derive the constraint:

i∑

j=1

αj × cj + αj × wj +

q
∑

j=i

αj × dj + xi ≤ 1 (1)

To enforce one-port constraints, we have to ensure that no communications are overlapped,
which translates into:

q
∑

i=1

αi × ci +

q
∑

i=1

αi × di ≤ 1

The throughput ρ of the schedule the total number of tasks processed in time T = 1:
ρ =

∑q
i=1 αi.
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8 O. Beaumont, L. Marchal, V. Rehn and Y. Robert

To sum it up, given a scenario consisting of a set of q participating processors and two
permutations for initial and back communications, we can compute the optimal throughput
and derive a schedule achieving such a throughput by solving the following linear program:

Maximize ρ =
∑q

i=1 αi,
under the constraints






(2a) ∀i = 1, . . . q,
i∑

j=1

αj × cj + αj × wj +

q
∑

j=i

αj × dj + xi ≤ 1

(2b)

q
∑

i=1

αi × ci +

q
∑

i=1

αi × di ≤ 1

(2c) ∀i = 1, . . . q, αi ≥ 0

(2d) ∀i = 1, . . . q, xi ≥ 0

(2)

For a given scenario, the cost of this linear programming approach may be acceptable.
However, as already pointed out, there is an exponential number of scenarios. Worse, there
is an exponential number of FIFO scenarios, even though there is a single permutation to try
in this case. The goal of Section 3 is to determine the best FIFO solution in polynomial time.

3 Optimal FIFO schedule on a star platform

In this section, we analyze FIFO schedules. We assume that di = zci for 1 ≤ i ≤ p, with
0 < z < 1. The case z > 1 is symmetrical and will be discussed at the end of the section.
The following theorem summarizes the main result:

Theorem 1. There exists an optimal one-port FIFO schedule where:

� processors are ordered in non-decreasing value of ci;

� all processors taking part in the computation have no idle time, except possibly the last
one.

We start the proof with some preliminary lemmas. For a while, we assume that the set
of participating processors has been determined, and we come back to this resource selection
problem later. The following lemmas provide useful characterizations of an optimal solution:

Lemma 1. There exists an optimal FIFO one-port schedule where at most one participating
processor has some idle time.

Proof. Let us assume that there are q processors participating in the solution. Any optimal
FIFO one-port schedule is an optimal solution to the linear program (2). In this linear
program, there are 2q unknowns (the αi’s and the xi’s) and 3q + 1 constraints. Using linear
programming theory [25], we know that there is a vertex of the polyhedron defined by the
constraints which is optimal. At this optimum, there are 2q out of the 3q+1 constraints which
are tight, i.e. which are equalities. Since we are considering q workers participating to the
processing, none of the αi ≥ 0 constraints is an equality. So, at this optimal vertex, there are
2q equalities among the remaining 2q + 1 constraints: in other words, at most one constraint
is not tight. In particular, there exists at most one processor Pi with xi > 0, which means
that there is at most one processor with idle time, what achieves the proof of Lemma 1.
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One-port FIFO scheduling of divisible loads 9

Lemma 2. There exists an optimal FIFO one-port schedule where only the last participating
processor may have some idle time.

Proof. Let S be an optimal FIFO one-port schedule, and assume that it involves processors
P1 to Pq in this order. According to Lemma 1, there is at most one processor that may have
some idle time between the end of its processing and the start of its backward communication.
By contradiction, suppose that this processor is Pi, where i < q and xi > 0. We focus on
processors Pi and Pj = Pi+1. Their activity in S is represented on Figure 4. We aim at

αiwi
xi

αidiαici

αjcj αjwj αjdj

Pi

Pi+1 = Pj

Figure 4: Activity of Pi and Pi+1 in the initial schedule S

building a schedule S ′, where the i-th participating processor has no idle time, but the i + 1-
th participating processor may have idle time, and the number of tasks processed in S’ is not
smaller than the number of tasks processed in S.

We consider two different cases, according to the communication speeds of Pi and Pj:

� Case 1, ci ≤ cj .
The transformation used to analyze this case is depicted in Figure 5. Roughly, we keep

αiwi
xi

αidiαici

αjcj αjwj αjdj

Pi

Pj

α′
ici α′

idi

α′
jcj α′

jwj α′
jdj

α′
iwi

Pi

Pj
x′

j

Figure 5: From S to S ′, in the case ci ≤ cj

the overall communication time and the time intervals used for forward and backward
communications unchanged, so that other communications (with Pk 6= Pi, Pj) are not
affected by the transformation. We increase the amount of tasks processed by Pi, and
decrease the amount of tasks processed by Pj , so that the overall number of tasks
processed by Pi and Pj increases.

More precisely, let us set

α′

i = αi +
xi

ci + wi

, α′

j = αj −
ci

cj

xi

ci + wi

, α′

k = αk for all k 6= i, j
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10 O. Beaumont, L. Marchal, V. Rehn and Y. Robert

We set x′

i = 0, and we will formulate the xj value later. The total time needed for data
transfers in the new schedule S ′ is given by

ciα
′

i + cjα
′

j = ciαi + cjαj + ci

xi

ci + wi

− cj

ci

cj

xi

ci + wi

= ciαi + cjαj

Therefore, the total communication time for sending data messages to (Pi, Pj) is the
same for S and S ′. In other words, Pj starts computing at the same date in S and in
S ′. Since di = zci, we also have

diα
′

i + djα
′

j = z
(
ciα

′

i + cjα
′

j

)
= z (ciαi + cjαj) = diαi + djαj ,

so that the total time for backward communications is also the same.

The time between the start of the data transfer for Pi and the start of its return transfer
is given by

in S : (ci + wi)αi + xi

in S ′ : (ci + wi)α
′

i = (ci + wi)(αi +
xi

ci + wi

) = (ci + wi)αi + xi

So the transfer of the return message for Pi starts at the same date in S and S ′. Together
with the fact that communication times are identical in S and S ′ for the group (Pi, Pj),
this ensures that we do not perturb the rest of the execution: nothing changes in the
data transfers before the date when Pi starts receiving, and after Pj stops receiving.
The same holds true for transferring results back to the master.

In S ′, Pj has fewer tasks to process than in S, but it can start computing at the same
date (since the total data transfer time is the same), and it can stop working later, as
its return transfer is shorter. Therefore, we need to introduce some idle time x ′

j on Pj .
Since the time between the start of its computation and the end of its output transfer
is the same for S and S ′, we can write:

(wj + dj)α
′

j + x′

j = (wj + dj)αj

(wj + dj) ×
−ci

cj

xi

ci + wi

+ x′

j = 0

x′

j = xi

(
ci

cj

wj + dj

ci + wi

)

Thus, x′

j > 0 as soon as ci > cj , and x′

j = 0 otherwise (ci = cj). The new schedule S ′ is
represented in Figure 5, where it is compared to S. The amount of tasks processed by
both Pi and Pj in S ′ is given by

∑

i

α′

i =
∑

i

αi + εi − εj =
∑

i

αi +
cj − ci

cj

xi

ci + wi

.

Since cj ≥ ci, S
′ processes at least as many tasks as S and we have moved the gap one

step further from Pi to Pj .

� case 2, ci > cj .
In this case, it is not worth moving the gap from Pi to Pj . Therefore, the transformation

INRIA



One-port FIFO scheduling of divisible loads 11

(see Figure 6) consists in keeping the gap at Pi, while changing the communication
ordering of the FIFO schedule, by switching Pi and Pj . The sketch of the proof is
essentially the same as in the first case. We choose the transformation so that the
overall communication time for both forward and backward communications to Pi and
Pj is the same, thus letting other communications unchanged. Then, we prove that such
a transformation increases the overall number of tasks processed by Pi and Pj . More

αiwi
xi

αidiαici

αjcj αjwj αjdj

Pi

Pj

Pj

Pi
x′

i

α′
jcj α′

jwj α′
jdj

α′
ici α′

iwi α′
idi

Figure 6: From S to S ′, in the case ci > cj

precisely, after the exchange, the number of tasks processed by each processor is the
following:

α′

j = αj +
αici(1 − z)

cj + wj

α′

i = αi −
αicj(1 − z)

cj + wj

α′

k = αk for each processor Pk with k 6= i, j

Moreover, let us set x′

k = 0 for all k 6= i and x′

i = xi

(
wj+dj

cj+wj

)

. As previously, we need

to check that the description of the new schedule in Figure 6 is valid:

– communications for Pi, Pj take the same time in S and S ′:
The time needed for data transfers for (Pi, Pj) in S ′ is

cjα
′

j + ciα
′

i = cjαj + cj

αici(1 − z)

cj + wj

+ ciαi − ci

αicj(1 − z)

cj + wj

= cjαj + ciαi

which is the time for data transfers for (Pi, Pj) in S. Since di/ci = dj/cj = z, the
same analysis holds true for output messages.

– Pj starts sending output messages in S ′ at the same date as Pi does in S:
If we assume that the first processor among Pi, Pj starts receiving data at time 0,
then Pj starts sending its results at time

Tj = α′

jcj + α′

jwj =

(

αj +
αici(1 − z)

cj + wj

)

· (cj + wj) = αj(cj + wj) + αi(ci − di)

But in S, we have αj(cj + wj) = αi(wi + di) + xi, so Tj = αi(ci + wi) + xi, which
is exactly the date when the output transfer of Pi starts in S.
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12 O. Beaumont, L. Marchal, V. Rehn and Y. Robert

– Pi has enough time to process its tasks:
The time between the beginning of the data transfer for Pi and the beginning of
its output transfer in S ′ is

T 2
i = α′

ici + α′

iwi + x′

i =

(

αi −
αicj(1 − z)

cj + wj

)

︸ ︷︷ ︸

αi

wj+dj

cj+wj

(ci + wi) + xi

(
wj + dj

cj + wj

)

=
wj + dj

cj + wj

(
(ci + wi)αi + xi

)

and the time between the start of Pj ’s computation and the end of its output
transfer in S ′ is

T 2
j = α′

jwj + α′

jdj =

(

αj +
αi(ci − di)

cj + wj

)

(wj + dj).

As previously, we have in S αj(cj + wj) = αi(wi + di) + xi, so that we can replace
αj by its actual value in the previous equation:

T 2
j =

(
αi(wi + di) + xi

cj + wj

+
αi(ci − di))

cj + wj

)

(wj+dj) =
wj + dj

cj + wj

(
(ci+wi)αi+xi

)
= T 2

i .

Therefore, in S ′, the end of Pj ’s output transfer corresponds to the start of Pi’s
output transfer.

The number of tasks processed in S ′ is:

∑

i

α′

i =
∑

i

αi +
αi(ci − cj)(1 − z)

cj + wj

Since ci > cj , we have built a FIFO one-port schedule that processes more tasks than
S, which is in contradiction with the optimality of S, so the case ci > cj never happens.

We apply this approach as many times as needed so that, at the end, the only processor
with some idle time is the last enrolled processor Pq.

We are now able to prove Theorem 1.

Proof. The previous lemmas prove that there exists an optimal FIFO one-port schedule
where the only participating processor possibly with idle time is the last one. In order to
achieve the proof Theorem 1, we still need to prove that there exists an optimal FIFO schedule
where processors are ordered by non-decreasing values of the ci’s.

Let us consider an optimal one-port schedule S where the last processor only has idle
time. We denote by P1, . . . , Pq the processors taking part to the computation, in this order.
Suppose that processors are not ordered by non-decreasing value of ci. Then, there exists an
index k such that ck > ck+1. We apply the transformation of the second case of the proof of
Lemma 2 to processors Pi = Pk and Pj = Pk+1. Note that this transformation is valid even if

there is no idle time for processor Pi (xi = 0). In this case we get x′

i = 0 since x′

i = xi

(
wj+dj

cj+wj

)

,
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so that there is no idle time for Pi and Pj in the new schedule S ′. However, the total amount
of tasks processed in S ′ is given by

∑

i

α′

i =
∑

i

αi +
αi(ci − cj)(1 − z)

cj + wj

.

Since z < 1 and ci > cj , S ′ processes strictly more tasks than S, which contradicts the
optimality of S. Therefore, in S, processors are ordered by non-decreasing values of the
ci’s.

Proposition 1. An optimal FIFO schedule (with resource selection) can be determined in
polynomial time.

Proof. Thanks to Theorem 1, we know that there exists an optimal FIFO schedule where
processors are ordered by non-decreasing values of ci, but we do not know the optimal num-
ber of enrolled processors. The following algorithm computes in polynomial time the best
throughput, and exhibits an optimal schedule:

1. Sort processors by non-decreasing values of the ci’s: P1, . . . , Pp.

2. Build a linear program enrolling all p processors, but with an idle-time variable xi for
each of them. This requires the resolution (in rational numbers) of a linear program
with 2p variables and 3p + 1 constraints.

3. The solution of the linear program provides the set of participating processors (those
Pi such that αi 6= 0) and their load.

To finish with optimal FIFO schedules on a star, we must deal with the case z > 1.
We adopt the approach introduced in [8]. Given a FIFO schedule S on a platform whose
parameters are wi, ci, di and with z > 1, we consider the mirror image of S, with time flying
backwards, we have a FIFO solution for the platform whose parameters are wi, di, ci. This
simple observation leads to the optimal FIFO solution when z > 1: solve the problem with
wi, di, ci as explained in this section (because ci = 1

z
di with 1

z
≤ 1, Theorem 1 is applicable)

and flip over the solution. Note that this implies that initial messages are sent in non-
increasing order of the ci’s, rather than in non-decreasing order as was the case for z < 1. In
passing, this also shows that when z = 1, i.e. ci = di, the ordering of participating workers
has no importance (but some workers may not be enrolled).

4 Optimal FIFO throughput on a bus network

In this section, we give an explicit formula for the optimal throughput of a FIFO schedule,
when the platform reduces to a bus network:

Theorem 2. The optimal FIFO one-port solution when ci = c and di = d achieves the
throughput

ρopt = min

{
1

c + d
,

∑p
i=1 ui

1 + d
∑p

i=1 ui

}

where ui = 1
d+wi

∏i
j=1

(
d+wj

c+wj

)

. Note that all processors are enrolled in the optimal solution.
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Proof. First of all, we show that for a given FIFO one-port schedule the throughput ρ is less

than min
{

1
c+d

,
Pk

i=1 ui

1+
Pk

i=1 uid

}

.

Let S be a given one-port schedule enrolling workers P1 to Pq, and let αi be the number
of load units processed by Pi. As we target a bus network, sending one load unit from the
master to any processor takes a time c, whereas receiving one unit from any worker takes a
time d. So the time needed to send the total data from the master is: Tsend =

∑q
i=1 αic and

the time needed to receive all results is: Trecv =
∑q

i=1 αid. As the schedule obeys the one-port
model, we know that no reception of the master can start until all sends are completed. Thus
we get the constraint Tsend + Trecv ≤ 1. Hence:

Tsend + Trecv =

q
∑

i=1

αic +

q
∑

i=1

αid = ρ(c + d) ≤ 1

It remains to show that ρ ≤ ρ̃, where ρ̃ =
Pk

i=1 ui

1+
Pk

i=1 uid
. Consider a given FIFO one-port

schedule S with throughput ρ. S can be viewed as a two-port schedule, so its throughput
cannot exceed that of the optimal throughput in the two-port model. As shown in [7, 8],
the optimal two-port solution for a bus network involves all processors and achieves the
throughput ρ̃, hence the result.

Then, we prove that their exists a schedule reaching the optimal throughput ρopt.

ρ̃ × (c + d)

T

Figure 7: How to transform an optimal two-port schedule into a one-port schedule.

We start with an optimal FIFO two-port schedule S whose throughput is ρ̃ and we trans-
form it into a one-port schedule. We consider two cases:
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One-port FIFO scheduling of divisible loads 15

� ρ̃ ≤ 1
c+d

. Then there is no overlap between forth and back communications. The
two-port schedule actually is a one-port schedule, whose throughput is ρ̃ = ρopt.

� ρ̃ ≥ 1
c+d

. This is the case with overlap between communication from and to the master,
represented in Figure 7. Therefore we have to delay the receptions of the return messages
until the master has finished sending data (see second schedule on Figure 7). For this,
we add a gap of length x = ρ̃× (c + d)− 1 between the end of the computation and the
transmission of the return message on each processor. The total execution time of the
schedule becomes T ′ = ρ̃× (c + d). Finally, to obtain a schedule of total execution time
1, we scale down all quantities by a factor 1

ρ̃×(c+d) (see the third schedule on Figure 7).
We obtain the following characteristics:

number of tasks processed by Pi : α′

i =
αi

ρ̃ × (c + d)

gap for every processor: x = 1 −
1

ρ̃ × (c + d)

The throughput of this new schedule is:

ρ′ =
ρ̃

ρ̃ × (c + d)
=

1

c + d

It remains to show that the new schedule satisfies the conditions for the one-port model.
We will show that T ′

send + T ′

recv ≤ 1:

T ′

send + T ′

recv = (c + d)ρ′ = 1

Hence this schedule obeys the one-port model, and achieves the bound ρopt.

5 MPI experiments

In this section we present practical tests using one-port LIFO and FIFO strategies. We
choose matrix multiplication as the target application to be implemented on a master/worker
platform. The multiplication of two matrices results in a single matrix, hence the initial
data message will be twice bigger than the output message: the parameter z introduced in
Section 2.1 is equal to 1/2.

Because we deal with a large number M of matrix products to compute, the application
can be approximated as a divisible load application, even though side effects are likely to
appear: indeed, we need to assign an integer number of matrix products to each worker,
instead of a rational number as computed by the linear program.

The objective is to minimize the total execution time for executing the M products. This
is a slightly different problem than maximizing the total number of load units processed within
a given time bound. However, due to the linear cost model, both problems are equivalent,
and the linear programming approach can easily be adapted to this objective.

In our tests we compare the behavior of the following algorithms:

� a FIFO heuristic using all processors, sorted by non-decreasing values of ci (faster com-
municating workers first), called INC C
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16 O. Beaumont, L. Marchal, V. Rehn and Y. Robert

� a FIFO heuristic using all processors, sorted by non-decreasing values of wi (faster
computing workers first), called INC W

� the optimal one-port LIFO solution, called LIFO

By construction, the optimal two-port LIFO solution of [7, 8] is indeed a one-port schedule.
It involves all processors sorted by by non-decreasing values of ci. These three heuristics are
implemented using the linear programming framework developed in Section 2.3: the choice
of the heuristic provides both transfer permutations σ1 and σ2; the optimal value of the αi’s,
as computed by the linear program, are used for the scheduling. As already mentioned, the
solution of the linear program is expressed in rational numbers, but we need to send, process
and return integer numbers of matrices. The policy to round the αi’s to integer values is
the following. We first round down every value to the immediate lower integer, and then
we distribute the K remaining tasks to the first K workers of the schedule in the order of
the sending permutation σ1, by giving one more matrix to process to each of these workers.
For instance with 4 processors P1 to P4 used in this order for σ1, if M = 1000, α1 = 200.4,
α2 = 300.2, α3 = 139.8 and α4 = 359.6, then K = 2, and we assign 200 + 1 matrices to P1,
300 + 1 to P2, 139 to P3 and 359 to P4. Obviously, rounding induces some load imbalance,
which may slightly impact the actual performance of the heuristics.

5.1 Experimental setting

All tests were made on the cluster gdsdmi, which is located within the LIP laboratory at ENS
Lyon, and consists in P4 2.4GHz processors with either 256MB or 1GB of memory. In this
cluster, 12 nodes are available, so we mainly conduct experiments with one master and 11
workers. To run our test application, we use the MPICH implementation [18] of the Message
Passing Interface MPI. To solve all linear programs, we used the lp solve solver [9]. The total
number M of matrices to be processed has been fixed to M = 1000.

5.2 Heterogeneity and linear model

The cluster described in the previous section allows us to start with homogeneous condi-
tions: all nodes have the same computation and communicating capabilities. As we target
heterogeneous platforms, we simulate heterogeneity by slowing down or speeding up some
operation (transfer or computation). We chose to consider the original speed as the slowest
available, and sometimes speed up communication or computation when we want to simulate
faster workers. For example, to simulate a worker which communicates twice faster than the
original speed, we reduce the size of the data and result messages by a factor 2. The data
missing for the computation might appear critical, but we are interested in the execution time
rather than in the result, so we randomly fill up all the matrices we use. We proceed in the
same manner for the computation: simulating a processor which is 5 times faster is done by
processing only a fifth of the original computation amount. We have chosen not to slow down
transfers or computations in order to avoid problems of memory swapping, which could have
happened with very big message sizes, and also in order to reduce execution time.

First, we check that the basic linear cost model which we adopted in our divisible load
approach is valid. So we perform a linearity test, by sending different sizes of messages to
worker with different (simulated) communication speeds. The results of this test are presented
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in Figure 8 and show that our assumption on linearity holds true, and that no latency needs
to be taken into account.

 0
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 0.4
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 0  1  2  3  4  5

tim
e

mega bytes

INC_C linearity test

worker 1
worker 2
worker 3
worker 4
worker 5

Figure 8: Linearity test with different message sizes, simulating heterogeneous workers.

5.3 Experimental results

5.3.1 Execution analysis

Figure 9: Visualizing an execution on a heterogeneous platform.

To analyze the behavior of the platforms during our experiments, we perform some trace
analysis. Figure 9 presents the visualization of one execution. The first line represents the
activity of the master, while the other five lines represent workers with different speeds. The
initialization of the workers is not shown on this figure. The visualization shows the data
transfers (in white), the computation (in dark gray) and the output transfers (in pale gray).
Note that for each transfer, the bar “starts” when the receiver is ready for communicating,
and “ends” when it has received all data. This explains why at the beginning, all workers
start receiving, as they are all waiting for the master to send them some data. As the workers
of the platform have (simulated) heterogeneous communicating and computing speeds, not
necessary all workers are involved in the computation. Indeed, in the execution shown in
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18 O. Beaumont, L. Marchal, V. Rehn and Y. Robert

Figure 9, only the first three workers are actually performing some computation. In this
experiment, we use FIFO ordering: the sending order is the same for input data and results.

5.3.2 Heuristics comparison

We present here the results of the experiments for a large number of platforms, randomly
generated, with parameters varying from 1 to 10, where 1 represents the original speed either
for communication or for computation, and 10 represents a worker 10 times faster.
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Figure 10: Average of the execution times for 50 homogeneous random platforms, normalized
by FIFO theoretical performance.

Homogeneous bus platforms. Figure 10 shows the experimental results for homogeneous
bus platforms: in these tests, all workers have the same communication and computation
capabilities.

In this figure, as in the following ones, we both plot the actual execution time of each
heuristic, after having normalized it against the theoretical prediction for the INC C heuristic.
For example the line “LIFO real/INC_C lp” means (execution time of the LIFO heuristic in
the experiments)/(theoretical execution time of the INC C heuristic).

We plot only the INC C FIFO heuristic because all FIFO strategies are the same with
homogeneous communication and computation speeds. In these homogeneous settings, LIFO
performs better than FIFO, both in the linear program and in the real experiments.

Heterogeneous bus platforms. Our results on platforms with homogeneous communica-
tions and heterogeneous calculation powers are presented on Figure 11. This kind of platform
corresponds exactly to the platforms used in Theorem 2. These results supports the theoret-
ical study: INC C gives better results that INC W. Again, LIFO performs better than the
FIFO strategies. Although the experimental results differ from the theoretical prediction, the
theory correctly ranks the different heuristics: in the linear programming approach, LIFO is
better than INC C, which is better than INC W, and this order in the same in the practical
experiments.
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Figure 11: Average of the execution times for 50 random platforms with homogeneous com-
munication power and heterogeneous calculation power, normalized by FIFO theoretical per-
formance.
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Figure 12: Average of the execution times for 50 heterogeneous random platforms, normalized
by FIFO theoretical performance.
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Heterogeneous star platforms. Figure 12 presents the results for the case of platforms
with heterogeneous communication speed and heterogeneous computation capabilities. Again,
INC C is the best FIFO strategy, as predicted by Theorem 1. The results are very similar
to the heterogeneous bus network case: LIFO is better than the FIFO strategies, and the
linear program correctly predicts the relative performance of the heuristics, although absolute
performance differ from what is predicted by a factor bounded by 20%.

5.3.3 Changing the communication/computation ratio

In this section, we describe the experiments which we performed to better understand the
impact of the ratio between communication and computation cost. Starting from the last set
of experiments (Figure 12), we first increase the computation power of each processors by a
factor 10, and perform the same experiments. Results are presented in Figure 13(a). The
test shows that with small matrix sizes, the performances of the LIFO heuristic are much
worse than expected, while the performance of both FIFO strategies are very close to each
other. This is quite unexpected as the linear program gives a good performance to the LIFO
strategy, as in the previous scenarios. The LIFO heuristic might be very sensitive to small
performance variations in this case.
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(a) Computation 10 times faster
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Figure 13: Average of the execution times for 50 heterogeneous random platforms, normalized
by FIFO theoretical performance.

Then, we perform the same experiments with platforms where the communication is 10
times faster than in the original tests, and computation speeds are not changed. Results
are presented in Figure 13(b). This shows the limits of the linear cost model, as the ratio
between practical performance and theoretical throughput increases linearly with the size of
the matrices. However the linear program correctly predicts the relative performance of the
different heuristics.

5.3.4 Observing the number of participating workers

As stated earlier, when considering return messages, it can happen that not all workers should
be enrolled in the solution to obtain best performances. In this section, we want to check if
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our framework correctly determines the optimal number of workers that are involved in the
computation. We use a platform consisting in 4 workers, where the first 3 workers are fast
both in computation and in communication, and the last worker is slower. The following
table precisely describes their characteristics:

worker: 1 2 3 4

communication speed: 10 8 8 x

computation speed: 9 9 10 1

Depending on the value of the communication speed x of the last worker, this one should
participate or not in the computation. In the following tests, we run our program with a
number of slaves from one to four. Then, we record the number of slaves that were really
used, and the performance obtained. Figure 14(a) presents the results for x = 1. In this
case, the last worker is never used (even when we authorize four workers to be used). In
Figure 14(b), we present the results for the case x = 3. In this case, the fourth worker is
used, and the performance is slightly better when using all four workers (even it is hardly
noticeable on the graph). This shows that our framework, on this little example, is able to
make the right choice about the number of participating processors.
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Figure 14: Test of participating workers on a heterogeneous platform.

6 Related work

In addition to the landmark book [10], several sources to DLS literature are available: see the
two introductory surveys [11, 23], the special issue of the Cluster Computing journal entirely
devoted to divisible load scheduling [17], and the Web page collecting DLS-related papers is
maintained [22].

DLS applications include linear algebra [13], image processing [19, 21], video and multi-
media broadcasting [2, 3], database searching [14, 12], and the processing of large distributed
files [26]. These applications are amenable to the simple master-worker programming model
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and can thus be easily implemented and deployed on computing platforms ranging from small
commodity clusters to computational grids [16].

The DLS model comes in two flavors, with a linear cost model and with an affine cost
model. The linear cost model is the original model, and has been widely adopted because of
its simplicity: several closed-form formulas are available for star, tree, mesh networks among
others [10, 22]. The affine cost model (which amounts to introduce a start-up overhead in the
communication cost, and/or in the computation cost) has been advocated more recently, for
two main reasons: (i) it is more realistic than the linear model; and (ii) it cannot be avoided
when dealing with multiple-round scenarios, where the master is allowed to send data to
the workers with several messages rather than with a single one. Multiple-round strategies
are better amenable to pipelining than one-round approaches, but using a linear cost model
would then favor sending a large collection of infinitely small messages, hence the need to
add communication latencies. However, latencies render the problem more complex: the DLS
problem has recently been proved NP-hard on a star network with the affine model [20].

When dealing with one-round scenarios, as in this paper, the linear model is more realistic,
especially when the total work to be distributed to the slaves is large. From a theoretical
perspective, one major question was to determine whether adding return messages, while
retaining the linear model, would keep the DLS scheduling problem polynomially tractable.
We failed to answer this question, but we have been able to characterize optimal solutions
for FIFO strategies under the one-port model. This result nicely complements our previous
study under the two-port model.

Relatively few papers have considered adding return messages in the study of DLS prob-
lems. Pioneering results are reported by Barlas [4], who tackles the same problem as in this
paper (one round, star platform) but with an affine framework model. Barlas [4] concentrates
on two particular cases: one called query processing, where communication time (both for
initial and return messages) is a constant independent of the message size, and the other
called image processing, which reduces to linear communication times on a bus network, but
with affine computation times. In both cases, the optimal sequence of messages is given,
and a closed-form solution to the DLS problem is derived. In [15], the authors consider ex-
perimental validation of the DLS model for several applications (pattern searching, graph
coloring, compression and join operations in databases). They consider both FIFO and LIFO
distributions, but they do not discuss communication ordering.

Rosenberg [24] and Adler, Gong and Rosenberg [1] also tackle the DLS model with return
messages, but they limit themselves to a bus network (same link bandwidth for all workers).
They introduce a very detailed communication model, but they state results for affine com-
munication costs and linear computation costs. They have the additional hypothesis that
worker processors can be slowed down instead of working at full speed, which allows them
to consider no idle times between the end of the execution and the emission of the return
messages. They state the very interesting result that all FIFO strategies are equivalent, and
that they perform better than any other protocol. Note that our results, although not derived
under the same model, are in accordance with these results: when the star platform reduces
to a bus platform, the results of Section 3 show that all processors should be involved in the
computation, and that their ordering has no impact on the quality of the solution.

Finally, we point out that Altilar and Paker [3] also investigate the DLS problem on a star
network, but their paper is devoted to the asymptotic study of several multi-round strategies.
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7 Conclusion

In this paper, we present two optimality results for scheduling divisible load on star networks
in presence of return messages and under the one-port model. First we are able to characterize
the optimal FIFO scheduling on general star networks, where fast-communicating processors
should be enrolled first in the computation. We also provide an analytic expression of the
total amount of load that can be processed by a FIFO scheduling on homogeneous networks.
We have also provided a set of MPI experiments to assess the performance of several heuristics
in a real framework.

This paper constitutes the first attempt, to the best of our knowledge, to take return mes-
sages into account under the one-port model. Nevertheless, we are still far from the optimal
solution of the general problem. Indeed, we are only able to provide optimal schedulings for
fixed communication orderings such as FIFO or LIFO. The complexity of finding the pair of
optimal permutations for forward and return messages remains open, both under the one-port
and two-port models. Despite the simplicity of the linear cost model both for computations
and communications, the problem looks very combinatorial, and we conjecture that it is
NP-hard.
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