
HAL Id: inria-00070290
https://inria.hal.science/inria-00070290

Submitted on 19 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Compositional modeling and transformation of
multi-clocked mode automata
Christian Brunette, Jean-Pierre Talpin

To cite this version:
Christian Brunette, Jean-Pierre Talpin. Compositional modeling and transformation of multi-clocked
mode automata. [Research Report] RR-5728, INRIA. 2005, pp.20. �inria-00070290�

https://inria.hal.science/inria-00070290
https://hal.archives-ouvertes.fr

IS
S

N
 0

24
9-

63
99

 IS
R

N
 IN

R
IA

/R
R

--
57

28
--

F
R

+
E

N
G

ap por t

de r ech er ch e

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Compositional modeling and transformation of
multi-clocked mode automata

Christian Brunette , Jean-Pierre Talpin

N˚5728

Octobre 2005

Systèmes communicants

Compositional modeling and transformation of

multi-clocked mode automata

Christian Brunette∗ , Jean-Pierre Talpin†

Systèmes communicants
Projet Expresso

Rapport de recherche n˚5728 — Octobre 2005 — 20 pages

Abstract: This article presents the modeling and implementation of multi-clocked mode
automata using the model-driven engineering tool Gme(Generic Modeling Environment)
and starting from a meta-model for the computer-aided embedded system design tool Poly-

chrony.
The article presents the design of a meta-model in Gme for the data-flow multi-clocked

synchronous formalism Signal of Polychrony, its extension to multi-clocked mode au-
tomata and the use of model transformation technologies of the Gme environment to embed
the latter extension in the former workbench. The complete model and transformation
process is formalized and given a formal operational semantics.

Key-words: Mode automata, model transformation, Gme, synchronous languages, Sig-

nal

(Résumé : tsvp)

∗ christian.brunette@irisa.fr
† jean-pierre.talpin@irisa.fr

Unité de recherche INRIA Rennes
IRISA, Campus universitaire de Beaulieu, 35042 RENNES Cedex (France)

Téléphone : 02 99 84 71 00 - International : +33 2 99 84 71 00
Télécopie : 02 99 84 71 71 - International : +33 2 99 84 71 71

Modélisation et transformation d’automate de mode

multi-horloge

Résumé : Cet article présente le paradigme de conception réalisé pour modéliser des
automates de mode multi-horloges dans l’environnment générique de modélisation (Gme).
Ce paradigme est construit comme une extension de Signal-Meta, le paradigme réalisé pour
le formalisme synchrone orienté flot de données de la plateforme Polychrony, Signal.

L’article décrit rapidement le métamodèle Signal-Meta, et plus précisément l’extension
faite de ce métamodèle pour représenter les automates de mode et la manière dont de tels
automates sont traduits en Signal. Une sémantique formelle est donnée pour tous les
mo‘èles et les transformations qui leur sont appliquées.

Mots-clé : Automata de mode, transformation de modèle, Gme, langages synchrones,
Signal

Modeling multi-clocked mode automata 3

Contents

1 Introduction 4

2 Data-flow specification of multi-clocked systems 5

2.1 Multi-clocked data-flow . 5
2.2 Example of a crossbar switch . 6
2.3 Modeling multi-clocked systems . 6
2.4 Mode automata . 7

3 A meta-modeling approach 8

3.1 The Signal meta-model . 8
3.2 Refinement of the meta-model with modes . 9
3.3 Example of the switch . 10

4 Operational semantics framework 11

4.1 Micro-step synchronous automata . 11
4.2 Micro-step semantics of Signal’s data-flow graphs 12
4.3 Operational semantics of mode automata . 14

5 Model transformation 15

5.1 Compilation of mode automata . 15
5.2 Extensions and variants . 16
5.3 Implementation in Gme . 17

6 Conclusions 18

7 Acknowledgments 18

RR n˚5728

4 Brunette & Talpin

1 Introduction

Inspired by concepts and practices borrowed to digital circuit design and automatic con-
trol, the synchronous hypothesis has been proposed in the late ’80s and extensively used for
embedded software design ever since to facilitate the specification and analysis of control-
dominated systems. Nowadays synchronous languages are commonly used in the European
industry, especially in avionics, to rapidly prototype, simulate, verify and synthesize embed-
ded software for mission critical applications.

In this spirit, synchronous data-flow programming languages, such as Lustre [1], Lu-
cid [12] and Signal [4], implement a model of computation in which time is abstracted
by symbolic synchronization and scheduling relations to facilitate behavioral reasoning and
functional correctness verification. While block diagrammatic modeling concepts are best
suited for data-flow dominated applications, control-dominated processes may sometimes be
preferably modeled using imperative formalisms, such as Esterel [17], Statecharts [15] or
Syncharts [16].

In the particular case of the Polychrony workbench, on which Signal is based, time
is represented by partially ordered synchronization and scheduling relations, to provide an
additional ability to model high-level abstractions of system paced by multiple clocks: glob-
ally asynchronous systems. This gives the opportunity to seamlessly model heterogeneous
and complex distributed embedded systems at a high level of abstraction, while reasoning
within a simple and formally defined mathematical model.

In Polychrony, design proceeds in a compositional and refinement-based manner by
first considering a weakly timed data-flow model of the system under consideration and then
provide expressive timing relation to gradually refine its synchronization and scheduling
structure to finally check correctness of the assembled components using assumption/gua-
rantee reasoning. Signal favors the progressive design of correct by construction systems
by means of well-defined model transformations, that preserve the intended semantics of
early requirement specifications to eventually provide a functionally correct deployment on
the target architecture of choice.

Previous work Gathering advantages of declarative and imperative approaches, mode au-
tomata were originally proposed by Maraninchi et al. [3] to extend the functionality-oriented
data-flow paradigm with the capability to model transition systems easily and provide an
additional imperative flavor. Similar variants and extensions of the same approach to mix
multiple programming paradigms or heterogeneous models of computation [13] have been
proposed until recently, the latest advance being the combination of stream functions with
automata in [14]. Nowadays, commercial toolsets such as the Esterel Studio’s Scade or
Matlab/Simulink’s Stateflow are largely inspired from similar concepts.

Contributions While the introduction of preemption mechanism in the multi-clocked
data-flow formalism Signal was previously studied by Rutten et al. in [19], no attempt has
been made to extend mode automata with the capability to model multi-clocked systems

INRIA

Modeling multi-clocked mode automata 5

and multi-rate systems, which is the aim of this article. Taking advantage of recent works
extending Polychrony with a meta-model [18] in the model-driven engineering framework
of Gme (Generic modeling environment [2]), we position our problem as extending to the
meta-model on which Signal is based with an inherited meta-model of multi-clocked mode
automata to finally demonstrate how the later can be translated in the former by operating
a model transformation. We put an emphasis on simplicity both for the specification (one
third of a page, Figure 1) and for the formalization (five rules, Section 5.1) of mode automata.

Implementation This framework of mode automata was specified and implemented in
the matter of a month, thanks to the facilities offered by the Gme environment and is
currently being ported on Eclipse [10].

Roadmap Section 2 first gives an informal presentation of the Signal formalism, and of
the timed data-flow graphs structure it is based on, before to outline the extension with
mode we propose. Section 3 then presents the meta-model on which Signal is based (a
meta-model for timed data-flow graphs) and its extension with modes. Section 4 provides
an operational framework to specify the semantics of data-flow graphs and mode automata
based on micro-step synchronous automata [11]. Section 5 gives the specification for the
translation of mode automata by data-flow graphs before addressing possible variants and
extensions.

2 Data-flow specification of multi-clocked systems

We position the problem by considering multi-clocked synchronous (or polychronous) spec-
ifications using the data-flow formalism Signal [4].

2.1 Multi-clocked data-flow

A Signal process consists of the simultaneous composition of equations on signals that
partially relate them with respect to an abstract timing model. In Signal [4], a process p is
an infinite loop that consists of the synchronous composition p || q of simultaneous equations
x = y f z over signals noted x, y, z. Restricting the lexical scope of a signal name x to a
process p is noted p/x.

p, q ::= p || q | p/x | x =

e
︷︸︸︷

y f z (process)

An equation x = y f z defines partially timed relations between an expression e over input
signals and an output signal. There are three primitive expressions in Signal: delay,
sampling and merge.

- A delay equation x = y pre v initially defines the signal x by the value v and then by
the previous value of the signal y. In a delay equation, the signals x and y are assumed to
be synchronous, i.e., either simultaneously present or simultaneously absent at all times.

RR n˚5728

6 Brunette & Talpin

- A sampling x = y when z defines x by y when z is true and both y and z are present.
In a sampling equation, the output signal x is present iff both input signals y and z are
present and z holds the value true.

- A merge x = y default z defines x by y when y is present and by z otherwise. In a
merge equation, the output signal is present iff either of the input signals y or z is present.

2.2 Example of a crossbar switch

To support the presentation of our modeling techniques thorough the article, we consider
the example of a simple crossbar switch. Its interface is composed of two input data signals
y1 and y2 and a reset input signal r. Data signals are routed along the output data signals
x1 and x2 upon the internal state s of the switch. The state is toggled using the reset signal
by the functionality toggle(s, r). Data is routed along an output signal x from two possible
input sources y1 or y2 upon depending on the value of s by two instance of the functionality
x = route(s, y1, y2).

r

$$HHHHH y1

��
y2 // switch //

��

x2

x1

(x1, x2) = switch(y1, y2, r)
def
=





s = toggle(r)
|| x1 = route(s, y1, y2)
|| x2 = route(s, y2, y1)



 /s

The subprocess toggle defines the state of the switch by the signal s. If the reset signal r
is present and true, then the next state t is defined by the negation of current state s and
otherwise by s.

s = toggle(r)
def
= (s = t pre true || t = not s when r default s) /t

The subprocess route selects which of the values v and w of its input signals y or z to send
along its output signal x depending on the boolean signal s. If s is present and true, it
chooses v and else, if s is present and false, it chooses w.

x = route(s, y, z)
def
= x = (y when s) default (z when not s)

Remember that Signal equations partially synchronize input and output signals. In the
route process, this implies that none of the signals y, z and s are synchronized, and that the
output signal x is present iff either y is present and s true or z is present and s false.

2.3 Modeling multi-clocked systems

Just as in the Polychrony workbench it is built upon, the data-flow synchronous formalism
Signal supports an intermediate representation of multi-clocked specification that exposes
its control and data-flow properties for the purpose of analysis and transformation. A process
p is represented as a data-flow graph G. In this graph, a vertex g is a data-flow relation

INRIA

Modeling multi-clocked mode automata 7

that partially defines a clock or a signal. A signal vertex c ⇒ x = f(y1..n) partially defines
x by f(y1..n) at the clock c. A clock vertex x̂ = e defines a relation between two particular
signals or events called clocks.

G, H ::= g | (G ||H) |G/x (graph) g, h ::= x̂ = e | c ⇒ x = f(y1..n) (vertices)

A clock c expresses control and defines a condition upon which a data-flow relation is exe-
cuted. The clock x̂ defines when the signal x is present (its value is available). The clocks
x and ¬x mean that x is true and false, respectively, and hence present. A clock expression
e is Boolean expression that defines how a clock is computed. 0 means never.

c ::= x̂ |x | ¬x (clock) e ::= 0 | c | e1 \ e2, | e1 ∨ e2 | e1 ∧ e2 (expression)

The decomposition of a process into the synchronous composition of clock and signal vertices
is defined by induction on the structure of p. Each equation is decomposed into data-flow
functions guarded by a condition, the clock x̂ of the output. This clock will need to be
computed for the function to be executed.

G[x=y pre v]
def
= (x̂ ⇒ x = y pre v) || (x̂ = ŷ)

G[x=y when z]
def
= (x̂ ⇒ x = y) || (x̂ = ŷ ∧ z)

G[x=y default z]
def
= (ŷ ⇒ x = y) || (ẑ \ ŷ ⇒ x = z) || (x̂ = ŷ ∨ ẑ)

G[p || q]
def
= G[p] ||G[q]

G[p/x]
def
= G[p]/x

Case of the crossbar switch Let us construct the graph of the crossbar switch. It can
modularly be defined by one instance of the toggle functionality and two instances of the
router. Each functionality can be decomposed into an untimed data-flow graph and its
specific timing model be expressed by clock relations.

Gswitch
def
= (Gtoggle ||Groute1 ||Groute2) /st

Gtoggle
def
= (ŝ ⇒ s = t pre true) || (r ⇒ t = not s) || (t̂ \ r ⇒ t = s) || (t̂ = ŝ)

0 < i 6= j ≤ 2, Groutei

def
= (s ⇒ xi = yi) || (¬s ⇒ xi = yj)

2.4 Mode automata

The switch is a typical example of specification where an imperative automata-like structure
superimposed to a native data-flow structure gives a shorter and more intuitive description
of the system’s behavior. The mode automata of the switch consists of two states flip and
flop, in which routing is performed from y1,2 to either x1,2 or x2,1 depending on the current
mode of the automaton. The mode toggles from flip to flop, or converse, upon an occurrence
of the event r.

RR n˚5728

8 Brunette & Talpin

(x1, x2) = switch(y1, y2, r)
def
=







init flip : (x1 = y1 ||x2 = y2)
|| flop : (x1 = y2 ||x2 = y1)
|| r ⇒ flip → flop

|| r ⇒ flop → flip







To express mode automata, we consider a super-class of our meta-model for Signal, which
comprises the following base syntactic elements. init s specifies the initial state of an au-
tomaton a, s : p the behavior p associated to mode s and e ⇒ s → t gives the clock e
(or guard) of the transition from state s to state t. Automata a and b naturally compose
synchronously with a || b.

a, b ::= init s | (s : p) | (e ⇒ s → t) | a || b

3 A meta-modeling approach

To develop our meta-modeling approach, we have used the Gme environment [2]. Gme is a
configurable Uml-based toolkit that supports the creation of domain-specific modeling and
program synthesis environments. It is developed by the ISIS institute at Vanderbilt Uni-
versity, and freely available at [8]. Meta-models are proposed in Gme to describe modeling
paradigms for specific domains. Such a paradigm includes, for a given domain, the necessary
basic concepts in order to represent models from a syntactical viewpoint to a semantical one.

3.1 The Signal meta-model

The definition of a meta-model in Gme is realized using a specific paradigm called MetaGME.
First, modeling paradigm concepts are described in an Uml class diagram. To achieve it,
MetaGME offers some predefined Uml-stereotypes [9], among which FCO, Atom, Model,
and Connection. FCO (First Class Object) constitutes the basic stereotype in the sense
that all the other stereotypes inherit from it. It is used for expressing abstract concepts.
Atoms are elementary objects that cannot include any sub-part. On the contrary, Models
may be composed of several FCOs. Containment and Inheritance relations are represented
as in Uml. All the other types of relations are specified through Connections. Some of these
stereotypes are used in the class diagram in Fig. 1. For the Signal meta-model (Signal-
Meta), class diagrams describe as concepts all syntactic elements defined in Signal v4 [7].
Among these concept, there are an Atom for each Signal operator (e.g. numeric, clock re-
lations, constraints), a Model for each Signal container (e.g. process declaration, module),
and a Connection for each relation between Signal operators (e.g. definition, dependence).

In these class diagrams, Gme provides a means to express the visibility of FCOs within a
Model through the notion of Aspect. Each FCO must be associated, at least, to one Aspect
in which it is visible. Signal-Meta comprises two main Aspects: Computation part and Clock
and Dependence Relations. The first Aspect manages all data-flow relations of the model,
and the second one, all clock relations between signals.

INRIA

Modeling multi-clocked mode automata 9

The last step of the definition of a modeling paradigm in Gme is to add some OCL Con-
straints in order to check some dynamic properties on a model designed with this paradigm.
In Signal-Meta, OCL constraints check the validity of attribute values, such as the unique-
ness of names inside a Model.

3.2 Refinement of the meta-model with modes

To manage mode automata, we extend Signal-Meta with a new class diagram represented
in Fig. 1. An Automaton is a Model composed of states, transitions, and StateObservers.

There are three kinds of state: AndState, Automaton, and State. The two former are
Model composed of other states, whereas the last one is a terminal state composed of equa-
tions. An AndState consists of two or more states that are composed in parallel. An
Automaton can be added to another Automaton as a state, or to one of the Signal-Meta
Models, represented in the class diagram by the ModelsWithDataflow Model. Thus, mode
automata can be easily compose with Signal programs or with other mode automata. This
abstract concept represents Models including the two Aspects mentioned in previous section
and all operators described in Signal-Meta. State inherits from this Model to be able to
describe Signal equations. Finally, the InitState Atom is dedicated to be connected to the
initial state of the automaton.

Figure 1: Extension of the Signal meta-model for mode automata.

Transitions are represented as Connection in the meta-model. There are two kinds of
transitions: InitialTransition, and Transition. InitialTransition connects an InitState Atom
to a state of an Automaton. There can only be one such Connection in an Automaton. For
a Transition, it connects a state to another. The source and the destination can be the same
state. This connection has a Guard attribute, which corresponds to a boolean expression.
To guarantee the determinism of the automaton, an attribute (TransitionPriority) is added
to express the priority of a Transition. Thus, the smaller the value of the transition is, the

RR n˚5728

10 Brunette & Talpin

more the transition has priority. An OCL constraint checks that for each state, all output
transitions have different priorities.

To follow the state of an automaton, we add the StateObserver Atom, which allows to call
a process using the current state of the automaton as the only input signal of this process.
The name of the process is given through the attribute ProcessName. If this attribute is not
defined, the current state is written on the standard output.

Basically, the clock of an automaton depends of the clock of the signals used in all its
transitions and states. The clock of an automaton can alternatively be explicitly specified.
In the meta-model, this is translated by the inheritance of Automaton from ConstraintInput.

3.3 Example of the switch

We illustrate the use of the mode automata extension on the example of the switch. Fig.
2 represents the mode automaton of the switch inside the Gme environment. Concepts
described in the previous section appear in the bottom frame of Fig. 2.

Figure 2: Example of the SwitchAtm automaton in Gme.

The SwitchAtm automaton contains two terminal states (flip and flop). Transitions
are guarded by the value of the event r, as labeled on the middle of transitions. The 0
indicates the transition priority. The content of flip (resp. flop) state is represented
at the left (resp. right) of Fig. 3. On these figures, dotted arrows correspond to partial
definitions in Signal, and x1, x2, y1, and y2 are references to signal declared in an upper
Model.

The upper Model is that of the switch and the SwitchAtm automaton and all the signals
it uses are declared there. Fig. 4 shows two main Aspects of the switch Model: the
computation part on the left, and the clock relation on the right. In this Model, y1, y2, and
r are input signals, and x1 and x2 are output signals.

INRIA

Modeling multi-clocked mode automata 11

Figure 3: Content of states flip and flop.

In the clock relation Aspect, the clock of SwitchAtm is synchronized with the union of
the clock of the y1, y2, and r. The clock of x1 and x2 have to be specified explicitly because
they are defined using partial definition. Therefore, the MinClock operator is used to define
the clock of x1 and x2 as the union of clocks of their partial definitions. The DATA_TYPE

parameter is only used to define a generic type for input and output signals.

Figure 4: The switch process.

4 Operational semantics framework

The semantics of multi-clocked data-flow graphs and mode automata is described by con-
sidering the theory of synchronous micro-step automata proposed by Potop et al. in [5].
As already demonstrated for Signal, this framework accurately renders concurrency and
causality for synchronous (multi-clocked) specifications [6].

4.1 Micro-step synchronous automata

Micro-step automata communicate through signals x ∈ X . The labels l ∈ LX generated
by the set of names X are represented by a partial map of domain from a set of signals X
noted vars(l) to a set of values V ⊥ = V ∪ {⊥} and tags. The label ⊥ denotes the absence
of communication during a transition of the automaton. We note l′ ≤ l iff there exists l′′

disjoint from l′ such that l = l′ ∪ l′′ and then l \ l′ = l′′. We say that l and l′ are compatible,
written l ./ l′, iff l(x) = l′(x) for all x ∈ vars(l) ∩ vars(l′) and, if so, note l ∪ l′ their union.
We write supp(l) = {x ∈ X | l(x) 6= ⊥} for the support of a label l and ⊥X for the empty
support.

Synchronous automata account for primitive communications using read and write op-
erations ondirected communication channels pairing variables x with directions represented
by tags. Emitting a value v along a channel x is written !x = v and receiving it ?x = v.
We write vars(D) for the channel names associated to a set of directed channels D. The
undirected or untagged variables of a synchronous automaton are its clocks noted c.

RR n˚5728

12 Brunette & Talpin

An automaton A = (s0, S, X,→) is defined by an initial state s0, a finite set of states S
noted s or x = v, labels LX and by a transition relation → on S × LX × S. The product
A1 ⊗ A2 of Ai = (s0

i , Si, Xi,→i) for 0 < i ≤ 2 is defined by ((s0
1, s

0
2), S1 × S2, X1 ∪ X2,→)

where (s1, s2) →l (s′1, s
′
2) iff si →l|Xi s′i for 0 < i ≤ 2 and l|Xi

the projection of l on Xi. An
automaton A = (s0, S, X,→) is concurrent iff s →⊥ s for all s ∈ S and if s →l s′ and l′ ≤ l
then there exists s′′ ∈ S such that s →l′ s′′ and s′′ →l\l′ s′. A synchronous automaton
A = (s0, S, X, c,→), of clock c ∈ X , consists of a concurrent automaton (s0, S, X,→) which
satisfies

- 1. s →l s implies l = c or c 6≤ l
- 2. s0 →c s0

- 3. s →c s′ implies s′ →c s′

- 4. if si−1 →li si and li 6= 1 for 0 < i, j ≤ n then vars(li) ∩ vars(lj) = ∅ iff i 6= j.
We assume that a channel x connects at most one emitter with at most one receiver.

Multicast will however be used in examples and is modeled by substituting variable names
(one !x = v and two ?x = w1,2 will be substituted by two !x = v, !x2 = v and two ?x = w1

?x2 = w2 by introducing a local signal x2).
The composition of automata is defined by synchronized product and synchronous com-

munication using 1-place synchronous FIFO buffers. The synchronous FIFO of clock c and
channel x is noted sfifo(x, c). It serializes the emission event !x = v followed by the receipt
event ?x = v within the same transition (the clock tick c occurs after).

sfifo(x, c)
def
=



s0, {s0..2}, {?x, !x, c}, c, s0c 77
!x=v// s1

?x=v// s2

c
``





Two synchronous automata are composable if their tagged variables are mutually disjoint.
Let Ai = (s0

i , Si, Xi, ci,→i)i=1,2 be two composable synchronous automata and c a clock and
write A[c2/c1] for the substitution of c1 by c2 in A. The synchronous composition A1 || cA2 is
defined by the product of A1, of A2 and of a series of synchronous FIFO buffers sfifo(x, c)
that are all synchronized at the same clock c.

A1 ||
cA2

def
= (A1[c/c1]) ⊗





x∈vars(X2)
⊗

x∈vars(X1)

sfifo(x, c)



⊗ (A2[c/c2])

4.2 Micro-step semantics of Signal’s data-flow graphs

Micro-step automata provide a simple and expressive operational framework to formalize
the semantics of multi-clocked data-flow graphs.

INRIA

Modeling multi-clocked mode automata 13

Clocks A clock expression e corresponds to a transition system T st
e from s to t which

evaluates the presence of signals in accordance to e.

T s,t
c

def
=

(

s
lc−→t
)

T s,t
c∧d

def
=







s′ ld
""EE

EE

s

lc <<xxxx

ld
""FF

FF
lcld // t

t′
lc

<<yyyy







/s′t′ T s,t
c∨d

def
=

(
T st

c∧d ∪ T st
c ∪ T st

d

)

We write lc for the label l that corresponds to the clock c and canonically denote vx the
generic value of the signal x.

lx̂=def(?x = vx) lx=def(?x = 1) l¬x=def(?x = 0)

Relations A synchronization relation x̂ = e accepts the events x̂ and e in any order, or
none of them, and then performs a clock transition c. Hence, the conditions expressed by x̂
and e need to occur at the same time.

Ax̂=e
def
=



s, {s, t}, {c, x} ∪ vars(e), c,
(

t
c

−→s
) vx∈V⋃

vy∈V | y∈vars(e)

T s,t
x̂∧e





Clock expressions must be rewritten to fit the definition of Te:

x̂ = e ∧ f
def
= (x̂ = ŷ ∧ ẑ || ŷ = e || ẑ = f) /yz

x̂ = e ∨ f
def
= (x̂ = ŷ ∨ ẑ || ŷ = e || ẑ = f) /yz

x̂ = e \ f
def
= (x̂ = y || ŷ = e ∨ f || ¬y = f) /y

Equations A partial equation c ⇒ x = f(y) synchronizes x to the value of f by y at the
clock c. But x may also be present when either c or y is absent. Therefore, the automaton
requires x to be emitted with the value f(vy) only after the events y and c have occurred. If
at least one of either c or y is present, then x may or may not be present with some value u
computed by another partial equation. The semantics (combinatorially) generalizes to the
case of c ⇒ x = f(y1..n) with n ≥ 0.

Ac⇒x=f(y)
def
=
















s0, {s0..1, s2..4
vy

, | vy ∈ V }, {x, y} ∪ vars(d), τ,

⋃vz∈V | z∈vars(c)
vx,vy∈V













s1

τ

}}||
||

||
| ?y=vy

''OOOOOOOOOOOO
?x=vx

��
s0

τ

,,

?x=vx

22
lc

NN

?y=vy

��

lc?y=vy // s3
vy

!x=f(vy)// s4
vy

τ // s0

s2
vy

τ

``@@@@@@ lc

88ppppppppppp
?x=vx

OO




























RR n˚5728

14 Brunette & Talpin

Structuration Composition p || q and restriction p/x are defined by structural induction
starting from the previous axioms with

Ap || q
def
= Ap ||

cAq Ap/x
def
= (Ap)/x

Example 1. Consider the transition system for the switch process (the notation yjxi

stands for two steps ◦ →?yj=v ◦ →!xj=v ◦). The switch automaton consists of two mirrored
structures that allow for concurrently receiving y1 and y2 and transmitting them along x1

or x2 according to the mode s1 or s2, toggled using the signal r.

Tswitch =












◦

c

vv

y2x1

��

◦

c

((

y2x2

��
s1c 77

y1x2

66

y2x1 ((

y1x2y2x1
** ◦

c

kk
r

''
◦

c
++

r
gg s2 cgg

y1x1

hh

y2x2vv

y1x1y2x2jj

◦

c

hh

y1x2

??

◦

c

66

y1x1

__












4.3 Operational semantics of mode automata

The operational semantics of a mode automaton is described using one equation to define
the micro-step automaton Aa corresponding to the mode declaration a. To this end, a
mode automaton a is considered as a set of synchronously composed modes and transitions.
Hence, we write (s : p) ∈ a and (c ⇒ s → t) ∈ a for the modes and transitions it contains.

The semantics of a mode automaton a consists of a transition system that is the union
of the transition systems of all modes (s : p) ∈ a. The transition system of a mode (s : p)
consists of Tp (that of the process p) where sp (the initial state) is substituted by s (the
mode state). For all mode transitions c ⇒ s → t ∈ a, the transition system is completed
with the transitions from the final states u of Tp to the mode state t.

We write final(T) = {s | t →τ s ∈ T} for the final states of T (the sources of clock
transitions τ in T) and Sa = {s | (s : p) ∈ a} for the states of a. As usual, sa denotes the
initial state of a and, referring to automaton Ap of a process p, sp its initial state, Sp its
states, Xp its variables and Tp its transition system.

Aa
def
=



sa, Sa

⋃

(s:p)∈a

Sp, vars(a),
⋃

(s:p)∈a



Tp[s/sp]

(c⇒s→t)∈a
⋃

u∈final(Tp)\sp

((

Aur
c ∪ r

τ
−→t

)

/r
)









Example 2. In the case of the switch, this amount to superimpose two transitions of
condition r to the transition systems of the flip and flop modes.

Tswitch =

(

Tflip◦
r ,,

◦Tflop

r
kk

)

INRIA

Modeling multi-clocked mode automata 15

5 Model transformation

We use the Polychrony workbench on top of which our modeling framework is built to
perform formal verification (model checking and controller synthesis are provided with the
Sigali tool) and code generation (in C, C++ or Java) starting from mode automata. Taking
advantage of the meta-modeling framework provided by the Gme, we define this necessary
mapping from the meta-model of mode automata to that of the timed data-flow graphs of
Polychrony.

5.1 Compilation of mode automata

The compilation of a mode automaton as a timed data-flow graph consists of its structural
translation into partial equations modeling guarded commands and the necessary synchro-
nization relations described by clock equations. The top level rule Ca defines the current
state of a, represented by a signal x (its next value being synchronously carried by the x′).
The clock of the mode automaton is hence x̂. It is synchronized to the clock expression ex,
the activity clock of the automaton: if at least one signal y defined by the automaton has
an active clock ŷ, the automaton is activated to compute it and to possibly perform some
transition.

The rule Cx
init s defines x initially by the initial state s and then by the previous value of

the next state x′. The rule Cx
c⇒s→t defines the next state x′ by t if the current state s is

x and the condition c holds. The rule Cx
s:p defines a mode s by guarding the graph of the

process p by the condition x = s. The term (x = s) is the clock that corresponds to the
condition of x being equal to s a state of the automaton. To be precise, it stands for the
clock y defined by the equality test y = eq (x, s).

Ca
def
= (Cx

a || (x̂ = x̂′) || (x̂ = ex)) /xx′ with ex
def
=

∨

y∈defs(a) ŷ

Cx
init s

def
= x̂ ⇒ x = x′ pre s

Cx
s:p

def
= (x = s) ⇒ Gp

Cx
c⇒s→t

def
= (x = s) ∧ c ⇒ x′ = t

Cx
a || b

def
= Ca ||Cb

The notation (x = s) ⇒ Gp conditions the data-flow graph Gp of the process p, that models
the behavior of the automaton in mode s, by the clock (x = s). This means that each and
every relation in Gp is then further conditioned by that clock. We write:

c ⇒ (G ||H)
def
= (c ⇒ G) || (c ⇒ H)

c ⇒ (G/x)
def
= (c ⇒ G)/x, x 6∈ vars(c)

c ⇒ (x̂ = e)
def
= (c ∧ x̂) = (c ∧ e)

c ⇒ (d ⇒ x = f(y1..n))
def
= (c ∧ d) ⇒ x = f(y1..n)

RR n˚5728

16 Brunette & Talpin

5.2 Extensions and variants

While the model of mode automata we present is primarily designed to be simple, it supports
extensions and variants that are of equal simplicity to formalize, thanks to the adequate
intermediate representation under consideration.

Strong versus weak preemption While the presentation put the emphasis on weak
preemption to model mode transitions, strong preemption can be specified and transformed
into the core meta-model of Signal with an equal simplicity. Let us note c ⇒ s � t that
immediately performs a transition from mode s to mode t upon some condition materialized
by the clock c (most likely a condition on input signals such as an alarm). Then the only
item to be modified in our translation scheme is the default rule for definition of the present
mode x (the rule associated to init s0). It is defined by the previous value of the next state
x′ unless one of the conditions c of strongly preemptive transitions prevail. The effect of
a strongly preemptive transition c ⇒ s � t is to define the current state x by t when the
condition c holds and when entering in state s (i.e. when the previous value of the next state
x′ is s).

Cx
init s0

def
= x̂ \ fx ⇒ x = x′ pre s0 where fx =

∨

(c⇒s�p)∈a c

Cx
c⇒s�t

def
= ((x′ pre s0) = s) ∧ c ⇒ x = t

Reseting versus history When a mode automaton performs a transition from a mode
to another, it always resets the local state of the target mode: all delayed signals defined
locally in that mode are defined by their initially value while the automaton enters that
mode (see Section 4.3). It may be desirable to extend this default behavior with a notion
of history similar to that found in StateCharts, for instance. This can easily be done, by
associating every locally delayed signal x = y pre v with a default assignment i that is read
when the mode is entered (name this clock c) and written when the mode is left (name this
clock d).

x = y pre v becomes (x = (z pre v) when c default (y pre v) || z = x when d) /z

Hierarchy and locality While the meta-model inherently supports notions of hierarchy
and locality inherited from the GME elements, this aspect is not displayed in the formal
presentation of the core model. Hierarchization is here the capability to syntactically struc-
ture an automaton into sub-automata, each of them corresponding to a particular mode, or
embed mode automata into a Signal process. It is rather simple to envisage the semantics
of such an extension. Should a mode be described by a mode-sub-automaton a, then its
meaning would simply be that of the process Ca. This is not surprising, as hierarchical
descriptions in StateCharts are mostly a syntactically structuring mechanism.

INRIA

Modeling multi-clocked mode automata 17

5.3 Implementation in Gme

Gme offers different means to extend its environment with tools, such as the MetaGME
Interpreter, which is a plug-in accessible via the Gme User Interface while modeling with
MetaGME. This tool first checks the correctness of the meta-model, generates the paradigm
file, and registers it into Gme. This file is then used by Gme to configure its environment
for the newly defined paradigm.

1. process Switch =
2. { type DATA_TYPE; }

3. (? DATA_TYPE y1, y2; event r;
4. ! DATA_TYPE x1, x2;)
5. (| min_clock(x1) | min_clock(x2)

6. | SwitchAtm::(| _SwitchAtm_0_currentState ^= (y1 ^+ y2 ^+ r)
7. | _SwitchAtm_0_reinit := ^0

8. | _SwitchAtm_0_nextState := (#flip when _SwitchAtm_0_reinit)
9. default (#flop when (r)) when (_SwitchAtm_0_currentState = #flip)

10. default (#flip when (r)) when (_SwitchAtm_0_currentState = #flop)
11. default _SwitchAtm_0_currentState
12. | _SwitchAtm_0_currentState := _SwitchAtm_0_nextState$ init #flip

13. | case _SwitchAtm_0_currentState in
14. {#flip}: (| x2 ::= y2 | x1 ::= y1 |)

15. {#flop}: (| x1 ::= y2 | x2 ::= y1 |)
16. end
17. |)

18. where type _SwitchAtm_0_type = enum(flip, flop);
19. _SwitchAtm_0_type _SwitchAtm_0_currentState, _SwitchAtm_0_nextState;

20. event _SwitchAtm_0_reinit;
21. end

22. |)
23. where label SwitchAtm;
24. end; % process Switch %

Figure 5: The code generated from the switch Model by the Signal Interpreter

In a similar way as the MetaGME Interpreter, we developed an Interpreter to analyze
Signal-Meta graphical models and produce the corresponding Signal programs. This in-
terpreter is written in C++ using the Builder Object Network API (BON2) provided with
Gme. We then extended this interpreter to produce the Signal equations corresponding
to mode automata descriptions. The code in Fig. 5 illustrates how the interpreter works
on the switch example, which is specified in Fig. 2, 3, and 4. The transformation works as
follows. For each automaton,

• one enumeration type is built (line 18). Each value of the enumeration is the name of
a state (the uniqueness of names is checked).

• three signals are created: two signals for the current and next state of the automa-
ton, which use the type built at the previous step (line 19), and one event for the
reinitialization of the automaton (line 20).

• The currentState is defined by the value of nextState at the previous instant, and
as the initial state for the first instant (line 12).

RR n˚5728

18 Brunette & Talpin

• The nextState signal is first defined by the initial state if the Automaton is reinitial-
ized (line 8) and then, for each transition, by the destination state if the transition
guard is true and if currentState is equal to the source of the transition (line 9-10).
Finally, it is defined by the currentState of the Automaton (line 11). Note that the
transitions are ordered according to their priority only for a state that has several
output transitions.

• The reinit event is present when the reinit event of the upper level (for hierarchical
Automaton) is present or when the nextState and the currentState of the upper
level are different. In Fig. 5, such a definition does not appear because there are no
hierarchical Automaton in the switch example. For the highest level of the automaton,
the reinit is always absent (line 7).

• Mode changes are expressed according to the value of currentState (line 13-16).

In a given Automaton, the clock of currentState is synchronized to that of nextState.
Nonetheless, it may be defined by that of another Automata. At the top-level, the clock of
currentState is synchronized (line 6) only if there is some explicit synchronization in the
Model, such as the Connection to SwitchAtm on the right of Fig. 4.

For AndStates, the interpreter only has to compose the equations of all sub-states. Fi-
nally, for States, equations are produced as for any Signal-Meta Models, which inherit from
ModelsWithDataflow Model [18].

6 Conclusions

We have presented a model of multi-clocked mode automata defined by extending the meta-
model of the synchronous data-flow specification formalism Signal in the tool GME. A salient
feature of our presentation is the simplicity incurred by the separation of concerns between
data-flow (that expresses structure) and control-flow (that expresses a timing model) that
is characteristic to the design methodology of Signal.

While the specification of mode automata in related works requires a primary address on
the semantics and on compilation of control, the use of Signal as a foundation allows to waive
this specific issue to its analysis and code generation engine Polychrony and clearly expose
the semantics and transformation of mode automata in a much simpler way by making use
of clearly separated concerns expressed by guarded commands (data-flow relations) and by
clock equations (control-flow relations).

7 Acknowledgments

The authors would like to thank Thierry Gautier for his interesting remarks on this paper.

INRIA

Modeling multi-clocked mode automata 19

References

[1] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataflow pro-
gramming language Lustre. IEEE, vol.79(9), pages 1305-1320. Septembre, 1991.

[2] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett, C. Thomason, G. Nordstrom,
J. Sprinkle, and P. Volgyesi. The Generic Modeling Environment. In Proc. of the IEEE
Workshop on Intelligent Signal Processing (WISP?01), May 2001.

[3] F. Maraninchi, and Y. Rémond, Mode-automata: a new domain-specific construct for
the development of safe critical systems. Science of Computer Programming, v. 46(3). El-
sevier, 2003.

[4] P. Le Guernic, J.-P. Talpin, and J.-C. Le Lann. Polychrony for system design. Journal
of Circuits, Systems and Computers. World Scientific, 2003.

[5] D. Potop-Butucaru and B. Caillaud. Correct-by-construction asynchronous implemen-
tation of modular synchronous specification. In Application of Concurrency to System
Design. IEEE Press, 2005.

[6] J.-P. Talpin, D. Potop-Butucaru, J. Ouy, B. Caillaud. From multi-clocked synchronous
processes to latency-insensitive modules. In Proc. of the 5th ACM international confer-
ence on Embedded software 2005, Jersey City.

[7] L. Besnard, T. Gautier, and P. Le Guernic. Signal V4: reference manual. http://www.
irisa.fr/espresso/Polychrony/doc_V4.15.7/document/V4_def.pdf

[8] ISIS, Vanderbilt University. The Gme Website. http://www.isis.vanderbilt.edu/

Projects/gme

[9] ISIS, Vanderbilt University. Gme User Manual. http://www.isis.vanderbilt.edu/

Projects/gme/GMEUMan.pdf

[10] J. Bézivin, C. Brunette, R. Chevrel, F. Jouault, and I. Kurtev Bridging the Generic
Modeling Environment (Gme) and the Eclipse Modeling Framework (EMF) 4th Work-
shop on Best Practices for Model Driven Software Development, OOPSLA, San Diego,
2005.

[11] Potop, D., Caillaud, B. Correct-by-construction asynchronous implementation of mod-
ular synchronous specifications. In Applications of Concurrency to System Design. IEEE
Press, 2005.

[12] Colaco, J. L., Girault, A., Hamon, G., Pouzet, M. Towards a higher-order synchronous
dataflow language. In Embedded Software Conference, Springer Verlag lectures notes in
computer science, 2004.

RR n˚5728

20 Brunette & Talpin

[13] J. T. Buck, S. Ha, E. A. Lee and D. G. Messerschmitt. Ptolemy: A Framework for Sim-
ulating and Prototyping Heterogeneous Systems. In International Journal of Computer
Simulation, special issue on Simulation Software Development. v. 4, pp. 155-182. Ablex,
1994.

[14] Colaco, J.-L., Pagano, B., Pouzet, M. A conservative extension of synchronous data-flow
with state machines. In Embedded Software Conference. ACM Press, 2005.

[15] D. Harel. Statecharts: a visual approach to complex systems. Science of Computer
Programming, v. 8(3). Elsevier, 1987.

[16] C. André. Representation and analysis of reactive behaviors: a synchronous ap-
proach. In Computational Engineering in Systems Applications. IMACS-IEEE, 1996.

[17] G. Berry and G. Gonthier. The Esterel synchronous programming language: design,
semantics, implementation. Science of Computer Programming, v. 19(2). Elsevier, 1992.

[18] Gamatié, A., Brunette, C., Delamare, R., Gauthier, T., Talpin, J.-P. A Modeling
Paradigm for Integrated Modular Avionics Design. Submitted for publication. INRIA,
2005.

[19] E. Rutten, F. Martinez. Signal GTI: implementing task preemption and time intervals
in the synchronous data flow language Signal. In Euromicro Workshop on Real-Time
Systems. IEEE Press, 1995.

INRIA

Unité de recherche INRIA Lorraine, Technopôle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LÈS NANCY

Unité de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unité de recherche INRIA Rhône-Alpes, 655, avenue de l’Europe, 38330 MONTBONNOT ST MARTIN

Unité de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unité de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Éditeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)

http://www.inria.fr

ISSN 0249-6399

