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Abstract: Most computer programs store elements of a given nature into container-
based data structures such as lists, arrays, sets, and multisets. To verify the correct-
ness of these programs, one needs to combine a theory modeling the data structure
with a theory modeling the elements. This combination can be achieved using the
classic Nelson-Oppen method only if both theories are stably infinite.

The goal of this report is to relax the stable infiniteness requirement. To achieve
this goal, we introduce the notion of polite theories, and we show that natural ex-
amples of polite theories include those modeling data structures such as lists, arrays,
sets, and multisets. Furthemore, we provide a method that is able to combine a
polite theory with any theory of the elements, regardless of whether the latter is
stably infinite or not.

The results of this report generalize to many-sorted logic those recently obtained
by Tinelli and Zarba for combining the so-called shiny theories with nonstably infinite
theories in one-sorted logic.
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Combinaison de structures de données avec des théories
non-stable infinies dans une logique multi-sortée

Résumé : La plupart des programmes informatiques emmagasinent des éléments
d’un certain type dans des structures de données telles que listes, tableaux, ensembles
et multi-ensembles. Pour vérifier la correction de ces programmes, on a besoin de
combiner une théorie modélisant la structure de données avec une théorie modélisant
les éléments. Cette combinaison peut étre effectuée en utilisant la méthode classique
de Nelson-Oppen uniquement si ces théories sont toutes les deux stable infinies.

L’objectif de ce rapport est de relacher 'hypothése stipulant que les théories
doivent étre stable infinies. Pour atteindre cet objectif, nous introduisons la notion de
théorie polie, et nous montrons que des exemples naturels de théories polies incluent
celles modélisant des structures de données telles que listes, tableaux, ensembles
et multi-ensembles. De plus, nous donnons une méthode capable de combiner une
théorie polie avec une théorie pour les éléments, que cette derniére soit ou non stable
infinie.

Les résultats de ce rapport généralisent au cas multi-sorté des résultats obtenus
par Tinelli et Zarba permettant de combiner des théories dites brillantes avec des
théories non-stable infinies dans une logique mono-sortée.

Mots-clés : Combinaison de procédures de satisfaisabilité, Problémes de décision,
Logique multi-sortée, Déduction automatique



Combining Data Structures with Nonstably Infinite Theories 3

1 Introduction

In program verification one has often to decide the satisfiability or validity of logical
formulae involving data structures such as lists, arrays, sets, and multisets. These
data structures can be considered as structured containers of elements of a given
nature. For instance, one may want to reason about lists of integers, sets of booleans,
or multisets of reals.

One way to reason about data structures over elements of a given nature is to
use the Nelson-Oppen method in order to modularly combine a decision procedure
for a theory S modeling the data structure with a decision procedure for a theory T
modeling the elements. However, this solution requires that both .S and T be stably
infinite. Unfortunately, this requirement is not satisfied by many practically relevant
theories such as, for instance, the theory of booleans, the theory of integers modulo
n, and the theory of fixed-width bit-vectors [8].

Recently, Tinelli and Zarba [12] introduced a generalization of the one-sorted
version of the Nelson-Oppen method in order to combine theories that are not stably
infinite. More precisely, they introduce the notion of shiny theories, and prove that
a shiny theory S can be combined with any other arbitrary theory T, even if the
latter is not stably infinite. They also provide a list of shiny theories which includes
the theory of equality, the theory of partial orders, the theory of total orders, and
the theory of bounded lattices.

Despite these promising results, Tinelli and Zarba’s method has two drawbacks.

First, when combining a shiny theory .S, one has to compute a function mincardg.
This function takes as input an S-satisfiable conjunction I of literals, and returns the
minimal cardinality k& for which there is a T-model of T" of cardinality k. Although
mincardg is computable for a wide class of theories, its complexity is in general
NP-hard. Due to this high complexity, it is natural to study how to avoid the
computation of mincardg.

Second, the notion of shininess is too strong, and it may be very difficult to find
further examples of practically relevant shiny theories. We believe that this difficulty
is due to the fact that the notion of shiny theories was introduced in one-sorted logic.

In this report we are interested in the problem of combining a theory S modeling
a data structure with a nonstably infinite theory 7" modeling the elements. More in
detail, the contributions of this report are:

1. In order to sidestep the difficulties of finding shiny theories, we operate in
many-sorted logic rather than in one-sorted logic.
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4 Ranise, Ringeissen, Zarba

2. We introduce the notion of polite theories, and we prove that natural examples
of polite theories are those modeling data structures such as lists, arrays, sets,
and multisets.

3. We provide a new combination method that is able to combine a polite theory
S with any theory T, regardless of whether T is stably infinite or not.

4. We generalize the notion of shininess from one-sorted logic to many-sorted logic,
and we prove that—under rather weak assumptions—shininess is equivalent to
politeness in one-sorted logic. The equivalence is less clear in many-sorted
logic.

The crux of our combination method is to modify the Nelson-Oppen method.
The nondeterministic version of this method consists in guessing an arrangement
over the set of shared variables. This arrangement is used to build equalities and
disequalities between variables, to constrain simultaneously the inputs of decision
procedures for component theories. Our modification is related to the variables
involved in an arrangement; precisely:

Modification 1: Guess an arrangement over an extended set of variables, and not
just the shared ones. For correctness, the extended arrangement must also
contain opportunely introduced fresh variables, whose role is to witness that
certain facts hold for the data structure.

Our method does not require the computation of a mincardg function, and it is
therefore easier to implement than the one presented in [12].

Related work. Implicit versions of Modification 1 were already used by Zarba in
order to combine the theory of sets [14] and the theory of multisets [13| with any
arbitrary theory T of the elements, even if T is not stably infinite.

The first explicit version of Modification 1 is due to Fontaine and Gribomont [6]
who combine the theory of arrays with any other nonstably infinite theory 7" not con-
taining the sort array. Their result applies to conjunctions of literals not containing
disequalities between terms of sort array.

The latest explicit version of Modification 1 was used by Fontaine, Ranise, and
Zarba [7], in order to combine a nonstably infinite theory 7" of the elements with the
theory Tiength of lists of elements with length constraints.

Baader and Ghilardi [1, 2] have recently introduced a new method for combining
theories over nondisjoint signatures using many-sorted logic. Their result for theo-

INRIA



Combining Data Structures with Nonstably Infinite Theories 5

ries over nondisjoint signatures—together with ours for nonstably infinite theories—
shows that it is very convenient to combine theories using many-sorted logic.

Organization of the report. In Section 2 we introduce some preliminary no-
tions, as well as the concept of polite theories. In Section 3 we prove some auxiliary
propositions that are useful when proving that certain theories are polite. In Sec-
tion 4 we present our combination method. In Section 5 we compare the notion of
polite theories with the notion of shiny theories. In Sections 6-10 we prove that
natural examples of polite theories are those modeling data structures, as well as the
ubiquitous theory of equality. In Section 11 we draw conclusions from our work.

2 Preliminaries

2.1 Syntax

A signature ¥ is a triple (S, F, P) where S is a set of sorts, F' is a set of function
symbols, P is a set of predicate symbols, and all the symbols in F, P have arities
constructed using the sorts in S. Given a signature ¥ = (S, F, P), we write ¥ for S,
YF for F, and XF for P. If ¥y = (S1, F1, Py) and ¥y = (S, Fy, P») are signatures,
their union is the signature X1 U Xy = (S1 U Sy, Fy U Fy, Py U P;).

Given a signature X, we assume the standard notions of X-term, X-literal, and
Y-formula. A Y-sentence is a X-formula with no free variables. A literal is flat if it is
of the form z ~y, x %y, x =~ f(y1,...,Yn), P(Y1,---,Yn), and =p(y1,...,Yn), where
z,Y,Y1,---,Yn are variables, f is a function symbol, and p is a predicate symbol.

If ¢t is a term, we denote with vars,(t) the set of variables of sort o occurring
in ¢. Similarly, if ¢ is a formula, we denote with vars,(y) the set of free variables
of sort o occurring in ¢. If ¢ is either a term or a formula, we denote with vars(y)
the set (U, vars,(yp). Finally, if ® is a set of terms or a set of formulae, we let
varsq () = Uyep varsq(¢) and vars(®) = U, cq vars(p).

In the rest of this paper, we identify conjunctions of formulae ¢1 A - - A ¢, with
the set {©1,...,¢n}

2.2 Semantics

Definition 1. Let ¥ be a signature, and let X be a set of variables whose sorts
are in ¥5. A Y-INTERPRETATION A over X is a map which interprets each sort
o € ¥5 as a non-empty domain A,, each variable z € X of sort o as an element
A e A,, each function symbol f € YF of arity o1 X --- X 0, — 7 as a function
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6 Ranise, Ringeissen, Zarba

fA tAgy X -+ X A, — A, and each predicate symbol p € »P of arity o1 X «-- X oy,
as a subset p™ of Ay, X --- X A, .
A 3-STRUCTURE is a Y-interpretation over an empty set of variables. O

A Y-formula ¢ over a set X of variables is satisfiable if it is true in some -
interpretation over X. Two YX-formulae ¢ and 1 over a set X of variables are equiv-
alent if ¢ = 1A, for all S-interpretations over X.

Let A be an Q-interpretation over some set V' of variables. For a signature ¥ C Q2
and a set of variables U C V, we denote with AU the interpretation obtained
from A by restricting it to interpret only the symbols in ¥ and the variables in U.
Furthermore, we let A¥ = A0

2.3 Theories

Following Ganzinger [9], we define theories as sets of structures rather than as sets
of sentences. More formally, we give the following definition.

Definition 2. A ¥-THEORY is a pair (X, A) where ¥ is a signature and A is a
class of ¥-structures. Given a theory 7' = (3, A), a T-INTERPRETATION is a %-
interpretation A such that A* € A. O

Given a X-theory T, a X-formula ¢ over a set X of variables is T'-satisfiable
if it is true in some T-interpretation over X. We write A 7 ¢ when A is a T-
interpretation satisfying ¢. Given a X-theory T', two ¥-formulae ¢ and v over a set
X of variables are T-equivalent if oA = ), for all T-interpretations over X.

Given a Y-theory T, the quantifier-free satisfiability problem of T is the problem
of deciding, for each quantifier-free ¥-formula ¢, whether or not ¢ is T-satisfiable.

Definition 3 (Combination). Let T; = (X;,A;) be a theory, for i = 1,2. The
COMBINATION of T} and T is the theory 77 & Ty = (3, A) where ¥ = ¥ U ¥ and
A={A| A% € A and A™? € A, }. 0

If ® is a set of Y-sentences, we let Theory™(®) = (X, A) be the theory such that
A is the class of all 3-structures satisfying ®.

Proposition 4. Let ®; be a set of X;-sentences, for i =1,2. Then

Theory™ (®1) & Theory™?(®y) = Theory™1V>2 (D1 U dy) . o

INRIA
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PROOF. Let
(27 Al) = Th@OT’yzl (@1) )
(%, Ag) = Theory™ (®s),
(3,A) = TheoryEluz2 (P UDy),
(2, B) = Theory™ (®1) @ Theory™?(®s)
Then:
AeB A € A; and A¥2 € A,

<~

<  A™ satisfies ®; and A>? satisfies P

<= A satisfies &1 U @9

— AcA. =

We introduce below several classes of theories. We will see how they relate in
Remark 10.

Definition 5 (Finite model property). Let ¥ be a signature, let S C 5 be a set
of sorts, and let T" be a X-theory. We say that T has the FINITE MODEL PROPERTY
with respect to S if for every T-satisfiable quantifier-free >-formula ¢ there exists a
T-interpretation A satisfying ¢ such that A, is finite, for each sort o € S. o

Definition 6 (Stable infiniteness). Let ¥ be a signature, let S C ¥° be a set of
sorts, and let T be a 3-theory. We say that T' is STABLY INFINITE with respect to S
if for every T-satisfiable quantifier-free Y-formula ¢ there exists a T-interpretation
A satisfying ¢ such that A, is infinite, for each sort o € S. O

Definition 7 (Smoothness). Let 3 be a signature, let S = {01,...,0,} C &5 be
a set of sorts, and let 1" be a X-theory. We say that T is SMOOTH with respect to .S
if:

e for every T-satisfiable quantifier-free ¥-formula ¢,

e for every T-interpretation A satisfying ¢,

e for every cardinal number ky,..., K, such that k; > |A,,|, fori=1,...,n,
there exists a T-interpretation B satisfying ¢ such that

‘BO'Z‘|:K/7;7 fOTiZl,...,n. 0O

RR n° 5678



8 Ranise, Ringeissen, Zarba

Finite witnessable) Finite model property

< >
Stably infinite }
~ =

Figure 1: Relationships between classes of theories.

Definition 8 (Finite witnessability). Let ¥ be a signature, let S C %5 be a set
of sorts, and let 7" be a X-theory. We say that T' is FINITELY WITNESSABLE with
respect to S if there exists a computable function witness that for every quantifier-
free Y-formula ¢ returns a quantifier-free X-formula v = witness(y) such that:

(i) ¢ and (Jv)y are T-equivalent, where v = vars(¢) \ vars(y);

(i) if ¢ is T-satisfiable then there exists a T-interpretation A satisfying ¢ such
that A, = [vars, ()], for each o € S. O

Definition 9 (Politeness). Let ¥ be a signature, let S C ¥5 be a set of sorts, and
let T be a X-theory. We say that 1" is POLITE with respect to S if it is both smooth
and finitely witnessable with respect to S. O

Remark 10. Let ¥ be a signature, let S C 5, and let T’ be a X-theory. Then the
following holds (cf. Figure 1):

e If T is smooth with respect to S then T is stably infinite with respect to S.

e If T is finitely witnessable with respect to S then T has the finite model prop-
erty with respect to S. O

3 Flat literals

In the rest of this report we will prove that several theories are polite.

For convenience, when proving that a 3-theory 7' is smooth with respect to a set
S of sorts, we will restrict ourselves to conjunctions of flat X-literals. Furthermore,
when proving that 7' is finitely witnessable with respect to S, we will define the

INRIA
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function witnesst by restricting ourselves to conjunctions I' of flat »-literals such
that vars,(T") # 0, for each sort o € S.

The following two propositions show that this can be done without loss of gen-
erality.

Proposition 11. Let ¥ be a signature, let S = {o1,...,0,} C X5 be a set of sorts,
and let T be a X-theory. Assume that for every conjunction I' of flat X-literals, for
every T-interpretation A satisfying T', for every sort = € S, and for every cardinal
number k > |A;|, there exists a T-interpretation B satisfying I' such that

|Br| = K,
and
|Bs| = |4s], foro e S\ {r}.
Then T is smooth with respect to S. O

PRrOOF. It suffices to note that every quantifier-free Y-formula is T-equivalent to a
DNF I'y vV --- VT, such that all the I'; belong to L. u

Proposition 12. Let ¥ be a signature, let S = {o1,...,0,} C X5 be a set of sorts,
and let T be a X-theory. Also, let L be the set of all conjunctions I' of flat X-literals
such that vars,(I') # 0, for each sort o € S.

Assume that there exists a computable function w that, for every conjunction T’
in L, returns a quantifier-free X-formula 1» = w(I') such that:

(i) T and (30)y are T-equivalent, where v = vars(y) \ vars(L');

(ii) if ¢ is T-satisfiable then there exists a T-interpretation A satisfying ¢ such that
A, = [vars, ()4, for each o € S.

Then T is finitely witnessable with respect to S. O

PROOF. We want to define a witness function witness on all quantifier-free X:-
formulae by using as a black box the function w defined on L.
To do so, let ¢ be a quantifier-free Y:-formula, and perform the following:

e convert ¢ into a T-equivalent DNF T'; \ --- V T'), such that vars,(T") # 0, for
each o € S,

o let witness(v) = w(l'y) V- Vw(ly,). n

RR n° 5678



10 Ranise, Ringeissen, Zarba

4 The combination method

Let T; be a %;-theory, for i = 1,2, and let S = %7 N £5. Assume that:
e the quantifier-free satisfiability problem of T; is decidable, for i = 1, 2;
e YNXY =0 and =¥ NP =0
e T, is polite with respect to S.

In this section we describe a method for combining the decision procedures for the
quantifier-free satisfiability problems of 77 and of T in order to decide the quantifier-
free satisfiability problem of T} & T5. Without loss of generality, we restrict ourselves
to conjunctions of literals.

The combination method consists of four phases: wariable abstraction, witness
introduction, decomposition, and check.

First phase: variable abstraction. Let I" be a conjunction of (X7 U Xs)-literals.
The output of the variable abstraction phase is a conjunction I'; U T’y satisfying the
following properties:

(a) each literal in T; is a 3;-literal, for ¢ = 1, 2;
(b) Ty UTy is (T1 @ T>)-satisfiable if and only if T" is (T} @ T»)-satisfiable.

Note that properties (a) and (b) can be effectively enforced with the help of fresh
variables. We call 'y UT's a conjunction of literals in separate form.

Second phase: witness introduction. Let I'1 UT's be a conjunction of literals in
separate form returned in the variable abstraction phase. In the witness introduction
phase we compute 19 = witnesst,(I's), and we output I'; U {t¢)2}. Intuitively, this
phase introduces the fresh variables in wvars(¢2) \ vars(I'), whose role is to witness
that certain facts hold for the polite theory T5.!

!For instance, in the theory of arrays a literal a .y b implies that there is an index i such that
read(a, i) % read(b, ). Then, i can be thought of as a witness of a Zarray b.

INRIA



Combining Data Structures with Nonstably Infinite Theories 11

Third phase: decomposition. Let I'y U {2} be the conjunction obtained in
the witness introduction phase. Let V, = vars,(¢) for each o0 € 5, and let V =
U,es Vo- In the decomposition phase we nondeterministically guess a family £
of equivalence relations £ = {E, C V, x V, | 0 € S}. Then, we construct the
arrangement of V induced by E, defined by

arr(V,E)={z=~y| (z,y) € E, and 0 € S} U
{z 2yl (v,y) € (Vo xV;)\ E, and o € S},

and we output the conjunction I'y U {¢2} U arr(V, E).

Fourth phase: check. Let I'yU{¢2}Uarr(V, E) be a conjunction obtained in the
decomposition phase. The check phase consists in performing the following steps:

Step 1. If I'TUarr(V, E) is T} -satisfiable go to the next step; otherwise output fail.

Step 2. If {yo} U arr(V, E) is Th-satisfiable go to the next step; otherwise output
fail.

Step 3. output succeed.

4.1 An example

Let 1 be the signature containing a sort elem, as well as two constant symbols a
and b of sort elem. Consider the ¥i-theory 71 = Theory™ (®;), where

D1 = {(Velem z)(x ~a V xx~b)}.

Clearly, for every Tj-interpretation A, we have |Aeem| < 2. Therefore, T} is not
stably infinite with respect to {elem}.

Next, consider the Y¢ei-theory Tt of sets of elements. The signature gt con-
tains, among other set-theoretical symbols, a sort elem for elements, and a sort set
for sets of elements. The theory Tyt will be defined more formally in Subsection 9.
For this example, it suffices to know that Ty is polite with respect to {elem}.

Next, consider the following conjunction I' of (X1 U Xeet )-literals:

amb,
x %0

T = ’ :
y#0,
xNy =0

RR n° 5678



12 Ranise, Ringeissen, Zarba

where x and y are set-variables.

Note that I is (7 @ Teet)-unsatisfiable. To see this, assume by contradiction that
A is a (T1 @ Tet)-interpretation such that I' is true in A. By the first literal in T,
we have |Agem| = 1. However, by the three last literals in I', we have |Agem| > 2, a
contradiction.

We want to formally detect that I' is (77 @ Tet)-unsatisfiable by using our com-
bination method.

Since all literals in I" are either ¥;-literals or Yqci-literals, in the variable abstrac-
tion phase we do not need to introduce fresh variables, and we simply return the two
conjunctions:

z#0,
Flz{a%b}, Dser = yf;é@,
zNy =0

In the witness introduction phase we need to compute witnessset(I'set). The
intuition behind the computation of witnessset(T'set) is as follows.?

The literal 2 % () implies the existence of an element w, in x. Likewise, the literal
y % 0 implies the existence of an element w, in y. The output of witnessset(Iset) is
a conjunction A that makes explicit the existence of the elements w, and w,. We
can do this by letting

wy € T,
Ager = Wy €Y,
zNy =~

Note that I'set and (Jelem Wz )(Jelem Wy)Aset are Tyet-equivalent.

In the decomposition phase we need to guess an equivalence relation FEeem over
the variables in varseiem(Aset). Since varseiem(Aset) = {wy, wy }, there are two pos-
sible choices: either we guess (wg, wy) € Felem OF We guess (Wg, Wy) ¢ Eelem-

If we guess (wg,wy) € Feem then we have that Agt U {w, = wy} is Teer-
unsatisfiable, and we will output fail in step 2 of the check phase. If instead
we guess (Wy, Wy) ¢ Felem then we have that I'y U {w, % w,} is T1-unsatisfiable, and
we will output fail in step 1 of the check phase.

Since the check phase outputs fail for any equivalence relation Feem of varseem (Aset)s
our combination method correctly concludes that I" is (7} @ Ttet)-unsatisfiable.

2A formal definition of a function witnesss: can be found in Subsection 9. For this example, we
prefer to stick to intuitive arguments.

INRIA



Combining Data Structures with Nonstably Infinite Theories 13

4.2 Correctness and complexity

The correctness of our combination method is based on the following Combination
Theorem, which is a particular case of a combination result holding for order-sorted
logic [11].

Theorem 13 (Combination). Let ¥ and X be signatures such that ¥ NXY = ()
and Zlf N 25 = (). Also, let ®; be a set of X;-formulae, for i = 1,2. Then ®; U Py
is satisfiable if and only if there exists an interpretation A satisfying ®1 and an
interpretation B satisfying ®o such that:

(i) | 45| = By, for every o € 5 155

(i) A =y if and only if 2B = yB, for every x,y € vars(®1) N vars(®s). o
Proposition 14. Let T; be a X;-theory such that XX NS5 = ) and XY N5 =0,
for i =1,2. Assume that T5 is polite with respect to S = E? N Eg. Also, let 'y UTy
be a conjunction of literals in separate form, and let 1y = witnesst,(I's). Finally,

let V, = varsy(2), for each o € S, and let V = J,cg V>. Then the following are
equivalent:

1. Ty Uy is (T1 & Tv)-satisfiable;
2. There exists a family E of equivalence relations
E={E,CV,xV,|o€S},

such that T'1 U arr(V, E) is Ti-satisfiable and {2} U arr(V, E) is Ty-satisfiable.

O

PROOF. (1 = 2). Assume that I'y UTy is (177 @ T»)-satisfiable. Let v = vars(q) \
vars(T'y). Since I'y and (Jv)1py are Th-equivalent, it follows that I'y U {9} is also

(T1®Ty)-satisfiable. Thus, we can fix a (77 ®T»)-interpretation A satisfying I'yU{2 }.
Next, let F ={FE, | 0 € S} where

E, ={(z,y) | 2,y € V; and 24 =y}, foroc e S.

By construction, we have that I'y Uarr(V, E) is Ty-satisfiable and {¢9 }Uarr(V, E)
is Ty-satisfiable.

(2 = 1). Let A be a Ti-interpretation satisfying I'y U arr(V, E), and let B be a
T-interpretation satisfying {12} U arr(V, E). Since T5 is finitely witnessable, we can
assume without loss of generality that B, = V.2, for each o € S.

RR n° 5678



14 Ranise, Ringeissen, Zarba

Thus, for each o € S, we have

|Bs| = V| since B, = VP
= VA since both A and B satisfy arr(V, E)
< |4, since VA C A, .

But then, by the smoothness of 75, there exists a Tr-interpretation C satisfying
{2} U arr(V, E) such that |C,| = |A,|, for each 0 € S. We can therefore apply
Theorem 13 to A and C, obtaining the existence of a (7} @ T3)-interpretation F
satisfying I'1 U {¢2} U arr(V, E). Since I's and (30)1py are Th-equivalent, it follows
that F also satisfies I'; U I's. -

Using Proposition 14 and the fact that our combination method is terminating,
we obtain the correctness of our combination method.

Theorem 15 (Correctness and complexity). Let T; be a X;-theory, fori=1,2.
Assume that:

e the quantifier-free satisfiability problem of T; is decidable, for i =1,2;
e XNl =0 and 2V NP =0,
e 15 1is polite with respect to Z? N Eg.

Then the quantifier-free satisfiability problem of is decidable.

Moreover, if the quantifier-free satisfiability problems of T1 and of Ts are in NP,
and witnesst, is computable in polynomial time, then the quantifier-free satisfiability
problem of Th ® Tb is NP-complete. O

PRrooOF. Clearly, the decidability of the quantifier-free satisfiability problem of T7$T5
follows by Proposition 14 and the fact that our combination method is terminating.

Concerning NP-hardness, note that if we can solve the quantifier-free satisfiability
problem of 17 @ T3, then we can also solve propositional satisfiability.

Concerning membership in NP, assume that the quantifier-free satisfiability prob-
lems of T and of 75 are in NP, and that witnessy, is computable in polynomial time.
Without loss of generality, it is enough to show that in nondeterministic polynomial
time we can check the (77 @ T5)-satisfiability of conjunctions of (3 U ¥9)-literals.
To see this, note that the execution of our combination method requires to guess an
arrangement over a set of variables whose cardinality is polynomial with respect to
the size of the input. This guess can be done in nondeterministic polynomial time.

|
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Combining Data Structures with Nonstably Infinite Theories 15

Theorem 15 can be repeatedly applied to consider the union of n theories T &
-« @ T,, where Ty, ..., T, are polite with respect to the set of shared sorts. This
leads to the following generalization of Theorem 15 for n theories.

Theorem 16. Let n > 2, and let T; be a X;-theory, for 1 < i < n. Also, let
S = Ui#(zis N ZJS) Assume that:

e the quantifier-free satisfiability problem of T; is decidable, for 1 <i < n;
° Uz’;ﬁj(zis n E]S) =0 Ez‘si

o ZiFﬂXl?:@ andeﬂZ?ZQ,f0r1§i<j§n;

e T; is polite with respect to S, for 2 < i < n.

Then the quantifier-free satisfiability problem of Ty @ - - - ® T, is decidable.
Moreover, if the quantifier-free satisfiability problem of T; is in NP, for1 <i <n,

and witnesst, is computable in polynomial time, for 2 < ¢ < n, then the quantifier-

free satisfiability problem of Th & --- & T, is NP-complete. O

PROOF. We proceed by induction on n. If n = 2 we can apply our combination
method to T} and 75, and the claim follows by Theorem 15. If instead n > 2, it
suffices to apply our combination method first to 77 and 75, and subsequently to
ol Ts, ..., Ty. n

5 Shiny theories

Shiny theories were introduced by Tinelli and Zarba [12] in order to extend the one-
sorted version of the Nelson-Oppen method to the combination of nonstably infinite
theories. Shiny theories are interesting because every shiny theory .S can be combined
with any other theory T, even if the latter is not stably infinite.

The notion of shininess was originally introduced in one-sorted logic, and in this
section we generalize it to many-sorted logic. We also prove that, under rather weak
assumptions, shininess is equivalent to politeness in one-sorted logic. The equivalence
is less clear in many-sorted logic.

Definition 17. Let T be a Y-theory, let S C 5, and let ¢ be a T-satisfiable
quantifier-free ¥-formula. We denote with mincardr s(y) the minimum of the fol-
lowing set of cardinal numbers:

{(glgglAaO | AEr @}- O
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16 Ranise, Ringeissen, Zarba

Remark 18. Let T be a Y-theory that has the finite model property with re-
spect to S. Then, for every T-satisfiable quantifier-free ¥-formula ¢, we have
mincardr s(p) € N*T. o

Definition 19 (Shininess). Let X be a signature, let S C ¥° be a set of sorts, and
let T' be a X-theory. We say that T is SHINY with respect to S if:

e T is smooth with respect to S,
e T has the finite model property with respect to S;

e mincardr s is computable. O

The following proposition shows that shinineness always implies politeness.

Proposition 20. Let T be a shiny theory with respect to a set S of sorts. Then T
is polite with respect to S. O

PROOF. By assumption, 7" is smooth with respect to S. To prove that T is also
finitely witnessable with respect to S, let ¢ be a T-satisfiable quantifier-free -
formula, and let n = mincardr s(p).

Then there exists a T-interpretation A satisfying ¢ such that |A,| < n, for each
o € S. Therefore, for each o € S, we can let A, = {af,...,af_}, with ks <n.

For each sort o € S, let w{,...,wy be fresh variables of sort o not occurring in
. Consider the formula:

n
v oo A /\ /\(wf%wf)
oeSi=1

Clearly, ¢ and (3w)y are T-equivalent, where w = vars(y) \ vars(yp). Moreover, ¢
is true in the T-interpretation B obtained by extending A as follows:

q)B: al , ifi<k,,
ay, ifi>k,.

But then, we can define a witness function for 7" by letting witness(¢) =1. nu

The following proposition establishes sufficient conditions under which politeness
implies shininess.
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Combining Data Structures with Nonstably Infinite Theories 17

Proposition 21. Let ¥ be a signature, let S C X5 be a set of sorts, and let T be a
Y-theory. Assume that:

° ZS — S,'
e X is finite;

e For each Y-interpretation A such that |J,.q Ao is finite, it is decidable to check
whether A is a T-interpretation or not;

e T is polite with respect to S.
Then T is shiny with respect to S. O

PROOF. By assumption, T is smooth with respect to S. Also, T has the finite model
property with respect to S.

Next, we claim that the function mincardr g can be effectively computed by the
procedure MINCARD in Figure 2. To see this, we need to show that the procedure
MINCARD is terminating and partially correct.

Concerning termination, just note that since X5 = S, it follows that, for each
k > 0, the number of interpretations enumerated (modulo isomorphism) in line 4 is
finite.

Concerning partial correctness, assume that the procedure MINCARD exits at
line 6. Then there exists an integer k such that ¢ = true, for some T-interpretation
A such that |A,| <k, for all 0 € S. Moreover, for all T-interpretations 5 such that
|B,| <k —1,for all o € S, we have ¢ = false. Therefore, mincardr s(¢) = k.

Next, assume that the procedure MINCARD exits at line 7. It follows that for all
T-interpretations B such that |B,| < n — 1, for all o € S, we have ¢® = false. This
implies that mincardr s(p) > n. Moreover, since

n=max{j | j= |varsy(witness(yp))| and o € S} ,

it follows that there exists a T-interpretation A such that A = true and |A,| < n,
for all o € S. This implies that mincardr s(p) < n.
Since mincardr s(p) > n and mincardr s(¢) < n, we obtain mincardr s(p) = n.

When |ZS| = 1, Proposition 21 tells us that in the one-sorted case politeness
and shininess are the same concept for all practical purposes. When |ZS‘ > 1,
the hypothesis ¥ = S may be too strong. Consequently, the equivalence between
politeness and shininess is less clear in the many-sorted case.
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18 Ranise, Ringeissen, Zarba

Input: A T-satisfiable quantifier-free Y-formula ¢
Output: mincardr s(p)

1: procedure MINCARD(yp)

2 n«— max{j | j = |vars,(witness(y))| and o € S}

3 for k—1ton—-1do

4: for all -interpretations A over vars(yp) s.t. kK = max,es |Aos| do
5 if A =7 ¢ then

6 return £

7 return n

Figure 2: A procedure for computing mincardr ..

6 Equality

Definition 22. The THEORY OF EQUALITY with signature ¥ is the theory T2 =
(¥, A), where A is the class of all ¥-structures. o

6.1 Smoothness

Proposition 23. Let ¥ be a signature, and let T € X5. Also, let T be a satisfiable
conjunction of flat X-literals, let A be a X-interpretation satisfying ', and let k >
A,].

Then there exists a X-interpretation B satisfying I' such that

K, ifo=r1,
|Bcr|:{ O

|As|, otherwise.

PROOF. Let V, = vars,(T), for 0 € 5 and let V = |J,cx5s V. We construct a
Y-interpretation B over V as follows. Fix a set A’ such that |A, U A’| = k, and let

B - A;UA ) ifo=rT1,
7 ) A, , otherwise ,
and
B = xA, for each variable x € V.

In order to define B over the symbols in ¥, fix an element af in A,, for each
o € ¥5. Then, we let:
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Combining Data Structures with Nonstably Infinite Theories 19

e for function symbols f of arity o1 X -+ X 0, — 0

Blar,... an) = {fA(a1,...,an), ifa; € Agyy...,an € Ay,

ag , otherwise ,

e for predicate symbols p of arity o1 X -+ X g,:

(a1,...,ap) epP —= aq ¢ Ay yan € Ay, and (aq,...,an) ept.
By construction, B is a T5-interpretation such that |B,| = » and |B,| = |4,

for o # 7. Next, we show that B satisfies all literals in I'.
Literals of the form z =y and x # y. Immediate.

Literals of the form x = f(y1,...,y,), where f is a function symbol of arity
o1 X+ X0, — 0. We have:

B A
= A )
— B (yf,...,yf) since (yf‘,...,y;j‘) €Ay XX Ay,

Literals of the form p(y1,...,y,) and —p(y1,...,yn), where p is a predicate

symbol of arity o1 x --- X o,. Just observe that, since (y{l, e ,y;fl) € Ay XX
A, , we have that (y{,...,y) € pAiff (y5,...,95) € pB. =
Proposition 24 (Smoothness). For each signature 3, and for any non-empty set
of sorts S C ¥.5, the theory T is smooth with respect to S. O
PrOOF. By Propositions 11 and 23. m

6.2 Finite witnessability

Witness function. A witness function witness for TE can be defined as fol-
lows. Without loss of generality, let I' be a conjunction of flat 3-literals such that
varsy (') # 0, for each sort o € S. Then we simply let witness~(T') =T.

Proposition 25. Let T' be a conjunction of flat S-literals, and let S C X5. Assume
that vars,(T') # 0, for each sort o € S. Then the following are equivalent:
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1. T is satisfiable.

2. There ezists a S-interpretation A satisfying T such that A, = [vars,(T)]4, for
each sort o € S. O

PRrROOF. (2 = 1). Immediate.

(1 = 2). Let V,, = vars,(T), for 0 € £5, and let V = (J,css V. Since I is satisfiable,
there exists a Y-interpretation B satisfying I'. We will use I' in order to construct
an opportune T.>-interpretation A.

For ¢ € S, denote with ~, the equivalence relation over the YX-terms over V of
sort o, defined by s ~, t iff s® = 5. In the following, we write ~ in place of ~g
when the sort ¢ is clear from the context.

Next, let T, be the set of terms of sort o that occur in I'. If for a sort o we have
T, =0, fix a fresh variable x{ of sort o.

Let A be the X-interpretation over V and the variables x§ constructed as follows.
First, we let

A = T,/ ~, ifT,#0,
- {[flfg]N}, otherwise.
and

= [z]., for each variable x .

In order to define A over the symbols in 3, fix an element af in A,, for each
o € ¥5. Then, we let:

e for function symbols f of arity o1 X -+ X 0, — 0

Al ] = {[]:(tl,...,tn)]w, if f(t1,... ) € Ty,

ag , otherwise ,

e for predicate symbols p of arity o1 X -+ X 0:

([t1]ms - - -, [tn]~) € p™ — (t5,....t5) e pP.

Note that A is a well-defined Y-interpretation, and that A, = [vars,(T")]*, for
each sort o € S. Next, we show that A satisfies all literals in I.
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Literals of the form x =y and = # y. Immediate.

Literals of the form x = f(y1,...,y,), where f is a function symbol of arity
o1 X -+ X o, — 0. We have:

= [z]~
= [f(yh cee 7yn)]N
= fA(yil~s - lynlo) since f(y1,....yn) € Ty

= A )

Literals of the form p(y1,...,y,) and —p(y1,...,yn), where p is a predicate
symbol of arity o1 x --- X 0,. Just observe that:

(W, y8) € P <= (]~ - [ynl~) € 27
= (') ep™. -

Proposition 26 (Finite witnessability). For each signature 3, and for any nonempty
set of sorts S C X5, the theory T is finite witnessable with respect to S. O

PROOF. By Propositions 12 and 25. n

6.3 Politeness

Theorem 27 (Politeness). For each signature ¥, and for any nonempty set of

sorts S C X5, the theory T is polite with respect to S. O
PRrROOF. By Propositions 24 and 26. u
7 Lists

Let A be a nonempty set. A list x over A is a sequence (aj,...,ay), where n > 0

and {ay,...,a,} C A. We denote with A* the set of lists over A.
The theory of lists T}y has a signature Yj;i; containing a sort elem for elements
and a sort list for lists of elements, plus the following symbols:

e the constant symbol nil, of sort list;

e the function symbols
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— car, of arity list — elem;
— cdr, of arity list — list;
— cons, of arity elem X list — list.

Definition 28. A STANDARD list-INTERPRETATION A is a Xjs-interpretation satis-
fying the following conditions:

o Ajst = (Aelem)*E

e nilt = ();

o car((e1,...,e,)) = ey, for each n > 0 and ey, ..., e, € Acjem;

o cdrt((er,...,en)) = (ea,...,ep), for each n >0 and ey,..., e, € Aciem:

e cons(e, (e1,...,en)) = (e,eq,...,e,), foreach n >0 and e, ey, ..., e, € Acem.

The THEORY OF LISTS is the pair T} = (Xjist, A), where A is the class of all standard
list-structures. |
7.1 Smoothness

Proposition 29. Let A be a Tjsi-interpretation satisfying a conjunction I' of flat
Yiist-literals, and such that Agem 1S finite. Then there exists a Tjis-interpretation B
satisfying I' such that |Belem| = K, for each cardinal number k > |Aeiem |- O

PROOF. Let V, = vars,(T'), for o € {elem,list}. We construct a Tj-interpretation
B over Vejem U Viist as follows. Fix a set A’ such that |Aeem U A’| = &, and let

Belem = Aelem U Ala
and

e” = eA, for each elem-variable e € Vgem ,

x° =z, for each list-variable x € Vs .

By construction, B is a Tjg-interpretation such that |Bejem| = x. Moreover, it is
trivial to check that B satisfies all literals in I'. n

Proposition 30 (Smoothness). The theory Tt is smooth with respect to {elem}.
o

PrOOF. By Propositions 11 and 29. -
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7.2 Auxiliary functions

In order to prove that the theory Tji is finitely witnessable with respect to {elem},
we will use the auxiliary functions compress and d.

Given ¢ € A* and X C A, the function compress returns the list obtained from
x by removing all elements that are not in X. Formally:

(), itn=0,
compress((a1,...,an),X) = < {a1) o compress({aa,...,a,), X), ifn>0and a; € X,
compress({ag, ..., an), X), otherwise,

where o is the concatenation operator over lists.
Given z,y € A*, the function § tests whether x = y or x # y. Formally:

0, ifn=0and m=0,
{a1}, ifn>0and m=0,

6([ars -y, [Brs oy Bm]) = { {61} if n=0and m >0,
{a1, b1}, if n,m >0and oy # 31,
(o, anl, [B2,- ., Bm]), otherwise.

Proposition 31. For all lists x,y, the following holds:

(a) x # vy if and only if 5(x,y) # 0;

(b) for any set X, if x # y and 6(x,y) C X then compress(x, X ) # compress(y, X).
O

7.3 Finite witnessability

Witness function. A witness function witness)s; for the theory Tj;s; can be defined
as follows. Without loss of generality, let I' be a conjunction of flat ¥jis-literals such
that varseem (I') # 0. We let witnessist(I') be the result of applying to I the following
transformations:

e Replace each literal of the form e ~ car(z) in I' with the formula z % nil —
x = cons(e,y’), where y' is a fresh list-variable.

e Replace each literal of the form = ~ cdr(y) in I" with the formula x % nil —
y ~ cons(e’, ), where €’ is a fresh elem-variable.
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e For each literal of the form x #& y in ', generate two fresh elem-variables
wy, , and wy ,, and add the literals w;, , ~ w;, , and wy , ~ wy , to T

Remark 32. Let I' be a conjunction of flat Yjg-literals, let A = witnessjs(I"), and
let v = vars(A) \ vars(T"). Then I" and (3v)A are Tjist-equivalent. o

Proposition 33. Let I' be a conjunction of flat Xijst-literals such that varseem(I') #
0, and not containing any literal of the form e ~ car(x) and x =~ cdr(y). Also, let k
be the number of literals of the form x %t y occurring in I'. Then the following are
equivalent:

1. T is Tyist-satisfiable.
2. There exists a Tjist-interpretation A satisfying T' such that
Aclem = [v07Sejem ()[4 U A'
where |A'| < 2k. o
PROOF. (2 = 1). Immediate.

(1 = 2). Let V,, = vars,('), for o € {elem, list}. Since T' is T}-satisfiable, there
exists a Tjg-interpretation B satisfying I'. We will use B in order to construct an
opportune Tjisi-interpretation A.

More specifically, we let A be the unique Tjis;-interpretation constructed by letting

Aelem = VB U

elem

{a €9 (a:B,yB) | the literal x % y is in F} ,
and

et =e€>, for each elem-variable e € Vgem ,

Tt = compress (a:B , Ae|em) , for each list-variable x € Vst .

Note that A is a well-defined Tjigt-interpretation, and that Aejem = VoA U A’ for

elem

a set A’ such that |A’| < 2k. Next, we show that A satisfies all literals in T

Literals of the form e; ~gem €2 and e #ejem €2. Immediate.
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Literals of the form x =~ y. We have

A = compress (mB, Ae|em)

= compress (yB, Ae|em)

Literals of the form z #;i; y. By Proposition 31 (with X = Agjem)-

Literals of the form z ~ nil. We have

At = compress (mB, Ae|em)

compress ( <> ’ Aelem )

= ).

Literals of the form z ~ cons(e,y). We have

At = compress (a:B, Ae|em)
= compress (<68> o yB, Ae|em)
= <eB> o compress (yB, Ae|em) since €8 € Agem
= <6A> O y'A | |
Proposition 34 (Finite witnessability). The theory Tis is finitely witnessable
with respect to {elem}. o
PROOF. By Propositions 12, Remark 32, and Proposition 33. n

7.4 Politeness
Theorem 35 (Politeness). The theory Ty is polite with respect to {elem}. O

ProOOF. By Propositions 30 and 34. n

7.5 A conjecture.

We conjecture that a more efficient witness function witnessig, for Tjis: can be defined
as follows. Without loss of generality, let I' be a conjunction of flat ¥ji-literals such
that varseiem(I') # 0. We let witness|, be the result of applying to I' the following
transformation:
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e Replace each literal of the form = ~ cdr(y) in I" with the formula x % nil —
y ~ cons(e’, ), where €’ is a fresh elem-variable.

We do not have yet a formal proof of this claim.

8 Arrays

The theory of arrays Tiray has a signature X,y containing a sort elem for elements,
a sort index for indices, and a sort array for arrays, plus the following two function
symbols:

e read, of sort array x index — elem;

e write, of sort array X index x elem — array.

Notation. Givena: 1l — E, i€ [ and e € F, we define a;. : I — E as follows:
aie(1) = e and a;.(3) = a(j), for j #i.

Definition 36. A STANDARD array-INTERPRETATION A is a X,qray-interpretation
satisfying the following conditions:

_ A; .
L4 Aarray = (Aelem) index ¢

. readA(a,z’) = a(i), for each a € Aapray and @ € Ajngex;

. writeA(a,z’,e) = Qj—e, for each a € Aapray, @ € Aindex; and e € Agjem.

The THEORY OF ARRAYS is the pair Thrray = (Zarray, A), where A is the class of all
standard array-structures. O
8.1 Smoothness

Proposition 37. Let A be a Tyray-interpretation satisfying a conjunction I' of flat
Yarray-literals, and such that Aingex 15 finite. Then there exists a Tiay-interpretation
B satisfying I' such that |Bejem| = |Aelem| and |Bindex| = K, for each cardinal number
K > | Ajindex|- O
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PRrROOF. Let V, = vars,(T'), for 0 € {elem,index,array}. We constructs a Tapray-
interpretation B over Vejem U Vindex U Varray as follows. Fix a set A’ such that |Ajngex U
A'| = Kk, and let

Bindex = Aindex U A s

Belem = Aelem s
and
iB = iA, for each index-variable i € Vipgex ,
B = eA, for each elem-variable e € Vjem -

In order to define B over the array-variables, fix an element ey € Agem. Then, for
each array-variable a € Vjpray, we let

B/ _ aA(i) ) ifi e AindeX7
a (i) = .
€0, otherwise .

By construction, B is a Tyray-interpretation such that |Bejem| = |Aelem| and

| Bindex| = k- Next, we show that B satisfies all literals in I

Literals of the form e; ~gem €2, €1 Felem €25 © Findex Js AN 7 Findex J. Immedi-
ate.

Literals of the form a ~aay b. Let i € Bingex- If i € Ajndex then aP(i) = a (i) =
bA(z') =bB(i). If i ¢ Ajngex then aB(i) = eg = aB(4). Thus, a8 = V5.

Literals of the form a %, b. Since a’ # bA, there exists an index i € Ajndex
such that a(i) # b(i). Tt follows that a®(i) # bP(i), which implies a® # b5.

Literals of the form e ~ read(a,i). We have:

read(a, i)]"

A (Z'A)

—

I
S

aB (z’B) since i € Ajngex -
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Literals of the form a = write(b,i,e). We have a®(i®) = aA(iA) et = B
Next, let j € Bindex such that j # 8. If j € Ajnqex then we have a (]) =aq ( ) =
bA(§) = bB(j). If instead j ¢ Ajngex then aB(j) = eg = b5(4). Thus, a® = szHeB n

Proposition 38. Let A be a Tyray-interpretation satisfying a conjunction I' of flat
Yarray-literals, and such that Agem is finite. Then there exists a Tiay-interpretation
B satisfying T' such that |Bindex| = |Aindex| and |Belem| = K, for each k > |Acem|- 0O

PROOF. Similar to the proof of Proposition 37. n

Proposition 39 (Smoothness). For any non-empty set of sorts S C {elem, index},
the theory Tyyray is smooth with respect to S. O

PRrOOF. By Propositions 11, 37, and 38. ]

8.2 Finite witnessability

Witness Function. A witness function witness,wray for the theory Ty can be
defined as follows. Without loss of generality, let I' be a conjunction of flat 3,ray-
literals such that varsingex(I') # 0 and varseem(I') # 0. We let witnessaray(I') be the
result of applying to I' the following transformation:

e Replace each literal of the form a #uay b in I' with a literal of the form
read(a,i’) % read(b,i’), where i’ is a fresh index-variable.

Remark 40. Let I' be a conjunction of flat ¥, ay-literals, let A = witnessapray(I'),
and let o = vars(A) \ vars(I'). Then I' and (30)A are Thrray-equivalent. 0

Proposition 41. LetT' be a conjunction of flat Xyray-literals such that varsingex(I') #
0 and varseem(I') # 0, and not containing any literal of the form x Zaway y. Then
the following are equivalent:

1. T is Tyray-satisfiable.

2. There exists a Tyray-interpretation A satisfying I' such that Ajngex = [varsindeX(F)]A
and Agem = [Va75elem (T)]A. O

PROOF. (2= 1). Immediate.

(1= 2). Let V, = vars,(I"), for o € {elem,index, array}. Since I is Thay-satisfiable,
there exists a Tjay-interpretation B satisfying I'. We will use B in order to construct
an opportune Tyray-interpretation A.
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More specifically, we let A be the T,ray-interpretation over Vejem U Vindex U Varray
constructed as follows. First, we let

B
Aindex = Wndex 9
B
Aelem = ‘/;Iem )
and
iA =B , for each index-variable i € Vipgex ,
et = eB, for each elem-variable e € Vgjem -

In order to define A over the array-variables, fix an ey € Agem. Then, for each
ac Varray and ¢ € Vipgex, we let

A (.A) aB(iB) ) if aB(iB) € Aelem )
Qa VA =
€, otherwise .

Note that A is a well-defined T, -interpretation, and that A, = [Uarsg(F)]A,
for o € {index, elem}. Next, we show that A satisfies all literals in T

Literals of the form e; ~¢jem €2, €1 Felem €25 © Nindex Js ANA 7 Fijndex J. Immedi-
ate.

Literals of the form a ~yray b. Let i € Ajngex. If a® (i%) € Agjem then aASiA) =
aB (iP) = bB (iP) = bA (i). If instead aB (i%) ¢ Agem then a?(i) = ey = bA(iH).

Literals of the form e ~ read(a,i). We have:

A B

e e

[read(a, i)]B
aB (z’B)

A (Z'A)

since a (z’B) € Agjem -

a

Literals of the form a = write(b,i,e). Since a® (Z'B) = eB € Agjem, we have we
have a? (1“4) = BB (z’B) = eB = eA. Next, let j € Ajngex such that j # A, If
aB(j) € Acem then a(j) = aP(j) = b5(j) = bA(j). If instead aB(j) ¢ Actem then

a’(j) = eg = bA(j). n
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Proposition 42 (Finite witnessability). For any nonempty set of sorts S C {elem,index},
the theory Tyyray is finite witnessable with respect to S. 0

PRrROOF. By Propositions 12, Remark 40, and Proposition 41. ™

8.3 DPoliteness

Theorem 43 (Politeness). For any nonempty set of sorts S C {elem,index}, the

theory Tyray is polite with respect to S. 0o
ProOOF. By Propositions 39 and 42. u
9 Sets

The theory of sets Tt has a signature ¢ containing a sort elem for elements and
a sort set for sets of elements, plus the following symbols:

e the constant symbol (), of sort set;
e the function symbols:

— {-}, of sort elem — set;

— U, N, and \, of sort set x set — set;
e the predicate symbol €, of sort elem x set.

Definition 44. A STANDARD set-INTERPRETATION A is a Ygt-interpretation sat-
isfying the following conditions:

o At = P(Aelem)§

e the symbols 0, {-}, U, N, \, and € are interpreted according to their standard
interpretation over sets.

The THEORY OF SETS is the pair Tget = (Xeet, A), where A is the class of all standard
set-structures. O
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9.1 Smoothness

Proposition 45. Let A be a Te-interpretation satisfying a conjunction I of flat
Yset-literals, and such that Aqem 18 finite. Then there exists a Tser-interpretation B
satisfying I’ such that |Belem| = K, for each £ > |Agem|- O

PrOOF. Let V, = vars,(T'), for o € {elem,set}. We construct a Tye-interpretation
B over Vejem U Veer as follows. Fix a set A’ such that |Aeem U A’| = Kk, and let

Belem = Aelem U Ala
and

e” = eA, for each elem-variable e € Vgem ,
° =z, for each set-variable x € Vit .

By construction B is a Tg-interpretation such that |Beem| = £. Moreover, it is
trivial to check that B satisfies all literals in I'. -

Proposition 46 (Smoothness). The theory Tset is smooth with respect to the sort
elem. O

PRroOOF. By Propositions 11 and 45. ]

9.2 Finite witnessability

Witness Function. A witness function witnessse for the theory Tt can be defined
as follows. Without loss of generality, let I be a conjunction of flat Yg-literals such
that varseem(I') # 0. We let witnessset(T') be the result of applying to I the following
transformation:

e Replace each literal of the form x % vy in I' with a literal of the form ¢’ €
(x\y) U (y\ z), where ¢ is a fresh elem-variable.

Remark 47. Let I' be a conjunction of flat Ye-literals, let A = witnessset(I'), and
let © = vars(A) \ vars(T"). Then I" and (30)A are Teer-equivalent. O

Proposition 48. Let I' be a conjunction of flat Yset-literals such that varseem(I') #

0, and not containing any literal of the form x %set y. Then the following are
equivalent:
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1. T is Teet-satisfiable.

2. There exists a Tuer-interpretation A satisfying T such that Aejem = [varseiem (I')]4
O

PROOF. (2 = 1). Immediate.

(1 = 2). Let V, = vars,(T"), for 0 € {elem,set}. Since I is Ty-satisfiable, there
exists a Tset-interpretation B satisfying I'. We will use B in order to construct an
opportune Tiet-interpretation A.

More specifically, we let A be the Tsi-interpretation over Vejem U Vier constructed
by letting

B
Aelem = ‘/;Iem )
and
A =B , for each elem-variable e € Vgem ,
22 = 2% N Adem for each set-variable x € Vet .

By construction, A is a well-defined Tei-intepretation such that Agem = [va75ejem (I')]A
Next, we show that A satisfies all literals in I'.

Literals of the form e; ~gem €2 and e #ejem €2. Immediate.

Literals of the form = ~¢ y. We have 24 = 28 N Agem = 2 N Agem = y™.
Literals of the form z ~ (. We have 24 = 28 N Agem = 0 N Agjer = 0.
Literals of the form z ~ {e}. We have 24 = 28N Agem = {68} N Agjem = {68}.

Literals of the form z ~ yUz. We have 2 = 28 N Agjem = (yB U zB) N Aelem =
(yB N Aelem) U (ZB N Aelem) = yA UzA.

Literals of the form z ~ yNz. We have 22 = 28 N Agjem = (yB N zB) N Aelem =
(yB N Aelem) N (ZB N Aelem) = yA NzA.

Literals of the form z ~ y\ z. We have 2 = 25N Agem = (45 \ 28) N Aetem =
(yB N Aelem) \ (ZB N Aelem) = yA \ ZA'
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Literals of the form e € x and e & z. Just observe that e € Agem. n

Proposition 49 (Finite witnessability). The theory Te is finitely witnessable
with respect to {elem}. O

PROOF. By Proposition 12, Remark 47, and Proposition 48. ]

9.3 Politeness
Theorem 50 (Politeness). The theory Tee is polite with respect to {elem}. O

PROOF. By Propositions 46 and 49. n

10 Multisets

Multisets—also known as bags—are collections that may contain duplicate elements.
Formally, a multiset « is a function z : A — N, for some set A.

We use the symbol [] to denote the empty multiset. When n > 0, we write [e] ™
to denote the multiset containing exactly n occurrences of e and nothing else. When
n < 0, we let [e]™ =[]

Let z,y be two multisets. Then:

e their union x Uy is the multiset z such that, for each element e, the equality
z(e) = max(z(e), y(e)) holds;

e their sum x Wy is the multiset z such that, for each element e, the equality
z(e) = z(e) + y(e) holds;

e their intersection = Ny is the multiset z such that, for each element e, the
equality z(e) = min(z(e),y(e)) holds.

The theory of multisets Th,g has a signature Xy,,, containing a sort int for integers,
a sort elem for elements, and a sort bag for multisets, plus the following symbols:

e the constant symbols:

— 0 and 1, of sort int;
— [], of sort bag;

e the function symbols:
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— 4+, —, max, and min, of sort int X int — int;
— []©, of sort elem x int — bag;

— U, W, and N, of sort bag x bag — bag;

count, of sort elem x bag — int;
e the predicate symbol <, of sort int X int.

Definition 51. A STANDARD bag-INTERPRETATION A is a Yp,g-interpretation sat-
isfying the following conditions:

o Aine = Z;
° Abag — NAelem;

e the symbols 0, 1, +, —, max, min, and < are interpreted according to their
standard interpretation over the integers;

e the symbol [], U, N, \, []*) are interpreted according to their standard inter-
pretation over multisets;

° countA(e,w) = x(e), for each e € A¢jem and x € Ap,g.

The THEORY OF MULTISETS is the pair Thag = (Ypag, A), where A is the class of all
standard bag-structures. O

10.1 Smoothness

Proposition 52. Let A be a Thag-interpretation satisfying a conjunction I' of flat
Ybag-literals, and such that Aclem 15 finite. Then there exists a Thag-interpretation B
satisfying I’ such that |Belem| = K, for each £ > |Agem|- O

PROOF. Let V, = vars,(I"), for o € {elem, int, bag}. We construct a Thag-interpretation
B over Veiem U Vint U Viag as follows. Fix a set A’ such that |Aeem U A’| = K, and let

Belem = Aelem U Ala
and

e” = eA, for each elem-variable ¢ € Vgem ,

u> =u’, for each int-variable u € Vit .
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Furthermore, for every bag-variable x € V},5; and e € Bejem, we let

B _ ‘TA(G) ) ifee Aelem 5
z”(e) = .
0, otherwise .

By construction, B is a Thag-interpretation such that |Bejem| = k. Next, we show
that B satisfies all literals in I'.

Literals of the form e; ~¢jem €2, €1 Felem €2, U Fint U, and u #Ejny v Immediate.

Literals of the form = ~p,g y. Let € € Bejem. If € € Aglem then 2B(e) = a:A(e) =
yA(e) = yB(e). If € € Ajndex then z8(e) = 0 = yB(e). Thus, 28 = ¢/5.

Literals of the form z %,,; y. Since A # yA, there exists an e € Agem such
that 274 (e) # yA(e). It follows that x5(e) # y5(e), which implies 8 # /5.

Literals of the form v ~ 0, u = 1, u v +w, u = v — w, u ~ max(v,w),
u~ min(v,w). Immediate.

Literals of the form z ~ [¢](®. Since €8 € Agem, we have 28(e8) = z4(eA)
u? = uB. Next, let ¢/ € Bejem such that ¢/ # eB. If ¢/ € Agjem then 258(e’) = z4(e’) =
0. If instead €’ ¢ Aejem then 25(e/) = 0. Thus 2% = [€F] (u5),

Literals of the form x =~ yUz, x =~ yWz, and x =~ yNz. This case is similar to
the case of literals of the form x = [e]®.

Literals of the form u =~ count(z,e). Since ¥ € Agem, we have u? = v =

#A (e4) = a8 (). .

Proposition 53 (Smoothness). The theory Ti.g is smooth with respect to {elem}.
O

ProoOF. By Propositions 11 and 52. =
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10.2 Finite witnessability

Witness Function. A witness function witnessy,g for the theory Ti,,, can be de-
fined as follows. Without loss of generality, let I" be a conjunction of flat Yp,s-literals
such that varseem(I') # 0. We let witnesspag(I') be the result of applying to I' the
following transformation:

e Replace each literal of the form x #p,g y in I' with a literal of the form
count(e’, x) % count(e’,y), where €’ is a fresh elem-variable.

Remark 54. Let I' be a conjunction of flat Yp,g-literals, let A = witnesspag ('), and
let v = vars(A) \ vars(I'). Then I' and (39)A are Thag-equivalent. O

Proposition 55. Let I' be a conjunction of flat Yyag-literals such that varseem(I') #
0, and not containing any literal of the form x #pag y. Then the following are
equivalent:

1. T is Tyag-satisfiable.

2. There exists a Thag-interpretation A satisfying I' such that Aejem = [varsejem (T)]A
o

PROOF. (2 = 1). Immediate.

(1 = 2). Let V, = vars,(I"), for o € {elem,int,bag}. Since I' is T},g-satisfiable,
there exists a Tjag-interpretation B satisfying I'. We will use B in order to construct
an opportune Th,g-interpretation A.

More specifically, we let A be the Th,g-interpretation over Veem U Vine U Viag
constructed by letting

Aelem = Vellim )
and
et = €8, for each elem-variable e € Vgem ,
u?t =B , for each int-variable u € Vit .

Furthermore, for every bag-variable x € Vi,5q, we let
A (e) = 2B(e), for each e € Aelem -

By contruction A is a Th,g-interpretation such that Agem = [varseem(T')]A. Next,
we show that A satisfies all literals in I'.
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Literals of the form e; ~¢jem €2, €1 Felem €25 U ~int v, and u #jny v. Immediate.

Literals of the form x ~p,; y. Since for each e € Agjem, we have zi(e) = 28(e) =
yB(e) = y(e), it follows that 24 = y4.

Literals of the form v ~ 0, u ~ 1, u v +w, u = v — w, u ~ max(v,w),
u~ min(v,w). Immediate.
5(

Literals of the form z ~ [[e]](“). Since €8 € Agem, we have 2 (e?) By =

uB = uA. Next, let ¢/ € Agjem and €’ # €B. Then z4(e) = 2B(e/) = 0.

=T e

Literals of the form x ~ yUz, x ® yWz, and x ~ yNz. This case is similar to
the case of literals of the form x = [e] ™.

Literals of the form u =~ count(z,e). Since ¥ € Agem, we have vt = u8 =

B (66) — A (eA)_ u

Proposition 56 (Finite witnessability). The theory Ti.g is finitely witnessable
with respect to the sort elem. O

Proor. By Proposition 12, Remark 54, and Proposition 55. n

10.3 Politeness
Theorem 57 (Politeness). The theory Thag is polite with respect to {elem}. O

Proor. By Proposition 53 and 56. n

11 Conclusion

We addressed the problem of combining a theory S modeling a data structure con-
taining elements of a given nature with a theory T of the elements. We were partic-
ularly interested in the case in which 7T is not stably infinite.

To solve this problem, we defined the notion of polite theories, and we showed
that a polite theory S can be combined with any theory T, regardless of whether T’
is stably infinite or not. We then proved that natural examples of polite theories are
given by the theory of equality, lists, arrays, sets, and multisets.
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Our results were developed using many-sorted logic rather than one-sorted logic.
In our experience, combining nonstably infinite theories in one-sorted logic is difficult.
By moving to many-sorted logic, we were able to find many practically relevant
theories (e.g., lists, arrays, sets, and multisets) that can be combined with nonstably
infinite theories.

Concerning future research, we wish to study how polite theories relate to ob-
servable theories [3] and local theory extensions [10]. We also wish to implement
our combination method in haRVey [5], and apply it to the verification of set-based
specifications of smart-cards [4].
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