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Paramétrisation quasi-optimale de l’intersection de quadriques :
IV. Une implantation exacte et efficace

Résumé : Nous présentons la première implantation complète, robuste et efficace pour calculer une
paramétrisation exacte de l’intersection de deux quadriques données sous forme implicite avec coef-
ficients entiers. Cette implantation est basée sur l’algorithme présentée dans les Parties I, II et III [5,
6, 7] de cet article. Notre implantation identifie dans tous les cas chaque composante algébrique de
l’intersection et en calcule une paramétrisation avec des fonctions rationnelles lorsqu’une telle para-
métrisation existe. De plus, le corps des coefficients de la paramétrisation est soit de degré minimal,
soit contient une racine carrée qui peut éventuellement être évitée.

Nous calculons des bornes supérieures sur la taille des coefficients des paramétrisations calcu-
lées et comparons ces bornes aux tailles observées expérimentalement. Nous présentons également
d’autres résultats expérimentaux et des exemples.

Mots-clés : Intersection de surfaces, quadriques, paramétrisation, implantation.
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1 Introduction

In this paper, we present the first complete, exact, and efficient implementation of an algorithm
for parameterizing the intersection of two arbitrary quadrics in three-dimensional real space, given
in implicit form with integer coefficients. (Note that quadrics with rational or finite floating-point
coefficients can be trivially converted to integer form.) This implementation is based on the param-
eterization method described in Parts I, II, and III [5, 6, 7] of this paper.

Precisely, our implementation has the following features:

• it computes an exact parameterization of the intersection of two quadrics with integer coefficients
of arbitrary size;

• it places no restriction of any kind on the type of the intersection or the type of the input quadrics;

• it correctly identifies, separates, and parameterizes all the algebraic components of the intersection
and gives all the relevant topological information;

• the parameterization is rational when one exists; otherwise the intersection is a smooth quartic and
the parameterization involves the square root of a polynomial;

• the parameterization is either optimal in the degree of the extension of Z on which its coefficients
are defined or, in a small number of well-identified cases, involves one extra possibly unnecessary
square root;

• the implementation is carefully designed so that the size of the coefficients is kept small;

• it is fast and efficient, and can routinely compute parameterizations of the intersection of quadrics
with input coefficients having ten digits in less than 50 milliseconds on a mainstream PC.

Our code can be downloaded from the LORIA and INRIA web sites1. The C++ implementation can
also be queried via a web interface. A preliminary version of this paper was presented in [10].

The paper is organized as follows. First, in Section 2, we describe the main design choices
we made to implement our near-optimal parameterization algorithm. Then, in Section 3, we prove
theoretical bounds on the size of the output coefficients when the intersection is generic and compare
those bounds to observed values. A similar work is carried out in Section 4 for singular intersections
and the results are used to validate a key design choice we made in our implementation. We then
give experimental results and performance evaluation in Section 5, both on random and real data.
Finally, we show the output produced by our implementation for some examples in Section 6, before
concluding.

2 Implementation

We first present the main design choices we made to implement our near-optimal parameterization
algorithm. We then describe our scheme for generating random pairs of quadrics whose intersection
have a prescribed real type, which we use for testing our implementation.

1http://www.loria.fr, http://www.inria.fr
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4 S. Lazard & L. M. Peñaranda & S. Petitjean

2.1 Implementation outline

Our implementation builds upon the LiDIA [11] and GMP [8] C/C++ libraries. LiDIA was originally
developed for computational number theory purposes, but includes many types of simple parame-
terized and template classes that are useful for our application. Apart from simple linear algebra
routines and algebraic operations on univariate polynomials, we use LiDIA’s number theory pack-
age and its ability to manipulate vectors of polynomials, polynomials having other polynomials as
coefficients, etc. On top of it, we have added our own data structures. We have compiled LiDIA
so that it uses GMP multiprecision integer arithmetic. From now on, we refer to the multiprecision
integers as bigints, following the terminology of LiDIA.

Our implementation consists of more than 17,000 lines of source code, which is essentially
divided into the following chapters:

• data structures (1,500 lines): structures for intersections of quadrics, for components of the in-
tersection, for homogeneous polynomials with bigint coefficients (coordinates of components),
for homogeneous polynomials with bigint polynomials as coefficients, and basic operations on
these structures, etc.

• elementary operations (2,000 lines): computing the inertia of a quadric of bigints, the coeffi-
cients of the determinantal equation, the gcd of the derivatives of the determinantal equation, the
adjoint of a matrix, the singular space of a quadric, the intersection between two linear spaces, ap-
plying Descartes’s Sign Rule, the Gauss decomposition of a quadratic form into a sum of squares,
isolating the roots of a univariate polynomial using Uspensky’s method, etc.

• number theory and simplifications (1,500 lines): gcd simplifications of the bigint coefficients of
a polynomial, a vector or a matrix, simplifications of the coefficients of pairs and triples of vectors,
reparameterization of lines so that its representative points have small height, . . .

• quadric parameterizations (2,000 lines): parameterization of a quadric of inertia (2,2) with
bigint coefficients going through a rational point, of a cone (resp. conic), of a cone (resp. conic)
with a rational point, of a pair of planes, etc.

• intersection parameterizations (9,000 lines): dedicated procedures for parameterizing the compo-
nents of the intersection in all possible cases, i.e., when the determinantal equation has no multiple
root (1,500 lines), one multiple root (3,000 lines), two multiple roots (1,500 lines) or when it van-
ishes identically (3,000 lines).

• printing and debugging (1,000 lines): turning on debugging information with the DEBUG prepro-
cessor directive, checking whether the computed parameterizations are correct, pretty printing the
parameterizations, etc.

2.2 Implementation variants

Three variants of our implementation are available and using one rather than the other might depend
on the context or the application (see Section 5). They are:

• unsimplified: nothing is done to simplify the coefficients either during the computations or in the
parameterizations computed;

INRIA



Near-Opt. Param. of the Intersec. of Quadrics: IV. An Efficient and Exact Implementation 5

• mildly simplified: some gcds are performed at an early stage (optimization of the coefficients and
of the roots of the determinantal equation, optimization of the coordinates of singular and rational
points, etc.) to avoid hampering later calculations with unnecessarily big numbers;

• strongly simplified: mildly simplified, plus extraction of the square factors of some bigints (like
in the smooth quartic case, where

√
detR can be replaced by b

√
a if detR = ab2) and gcd simpli-

fications of the coefficients of the final parameterizations.

For the extraction of the square factors of an integer n, the strongly simplified variant finds all the
prime factors of n up to min(d 3

√
ne,MAXFACTOR), where MAXFACTOR is a predefined global variable.

Let us finally mention that we tried a fourth variant of our implementation where the extraction
of the square factors is done by fully factoring the numbers (using the Elliptic Curve Method and the
Quadratic Sieve implemented in LiDIA [11]). But this variant is almost of no interest: for small input
coefficients, the strongly simplified variant already finds all the necessary factors, and for medium
to large input coefficients, integer factoring becomes extremely time consuming.

2.3 Generating random intersections

Our implementation has been tested both on real and random data (see Section 5). Generating
random intersections of a given type, i.e., random pairs of quadrics intersecting along a curve of
prescribed topology, is however difficult. We discuss this issue here.

In the smooth quartic case, random examples can be generated by taking input quadrics with
random coefficients. Indeed, given two random quadrics, the intersection is a smooth quartic or the
empty set with probability one. (Of course, this does not allow to distinguish between the different
morphologies of a real smooth quartic, i.e., one or two, affinely finite or infinite, components.)

When the desired intersection is not a smooth quartic, one way to proceed is to start with a canon-
ical pair of quadrics intersecting in a curve of the prescribed type and apply to this pair a random
transformation. More precisely, given a canonical pair S, T , four random coefficients r1,r2,r3,r4,
with r1r4 − r2r3 6= 0, and a random projective transformation P, we consider the “random” quadrics
with matrices S′ and T ′:

S′ = PT (r1S + r2T )P, T ′ = PT (r3S + r4T )P.

If we take the ri and the coefficients of P randomly in the range [−d 3
√

10se,d 3
√

10se], then the quadrics
S′ and T ′ have asymptotic expected size s (the size of the canonical pair S,T can be neglected).

The problem here is two-fold. First, since we want the matrices S′ and T ′ to have integer co-
efficients (because that is what our implementation takes), we have to assume that the ri and the
coefficients of P are integers. But then the above procedure certainly does not reflect a truly random
distribution in the space of quadrics with integer coefficients. Indeed, quadrics S′ and T ′ with inte-
ger coefficients intersecting in the prescribed curve might exist without P having integer coefficients.
Consider for instance the two pairs of quadrics

{

QS : x2 −w2 = 0,
QT : xy+ z2 = 0,

{

QS′ : x2 −2w2 = 0,
QT ′ : xy+ z2 = 0.

RR n° 5670
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The first pair is a canonical form for the case of an intersection made of two real tangent conics.
Both pairs generate an intersection of the same type. But the second form cannot be generated from
the first using a transformation matrix P with integer coefficients.

As for the second issue, consider the determinantal equation of the pencil generated by S′,T ′:

detR′(λ,µ) = det(λS′ +µT ′) = (detP)2 det
(

(λr1 +µr3)S +(λr2 +µr4)T
)

.

In other words, since P is now assumed to have integer entries, the coefficients of the determinantal
equation all have a common integer factor, (detP)2. So, after simplification by this common factor,
the coefficients have asymptotic height 4

3 , instead of 4, with respect to S′,T ′. This explains why the
asymptotic heights are not reached.

Note that the same problems appear when working the reverse way, i.e., start with the canonical
parameterization X of a required type of intersection, apply a random transformation P, recover the
pencil of quadrics R′(λ,µ) containing the curve parameterized by PX and filter them according to the
height of their coefficients. Indeed, in that case, R′(λ,µ) = PT R(λ,µ)P, where R(λ,µ) is the pencil
of quadrics through the curve parameterized by X.

Effectively generating random pairs of quadrics with a prescribed intersection type is an open
problem.

3 Height of output coefficients: smooth quartics

In this section and the next, we prove theoretical bounds on the height of the coefficients of the
parameterizations computed by our intersection software and compare these bounds to observed
values. We start by defining the notions of height and asymptotic height.

3.1 Definition of height

In what follows, we bound the asymptotic height of the coefficients of the parameterization of the
intersection of two quadrics S and T with respect to the size of the coefficients of S and T . The height
of such a coefficient is roughly its logarithm with base the maximum of the coefficients of S and T
(in absolute value); if such a coefficient has a polynomial expression in terms of the coefficients of
S and T , its asymptotic height is the (total) degree of this polynomial. However, a precise definition
of the height of these coefficients needs care for various reasons. First, we want to compare, and
thus define, observed heights (the heights computed for specific values of the input) and theoretical
asymptotic heights.

We face the following problem for computing theoretical asymptotic heights of the coefficients
of the parameterizations. Despite being, ultimately, only functions of the input S and T , these co-
efficients, in the smooth quartic case, are functions of not just S and T but also of an intermediate
rational point p which depends implicitly (and not explicitly) on S,T . Since obtaining a bound on
the height of p is very hard, we chose to express the asymptotic height of the parameterization as a
function of the height of p. As it turns out, the height of p can, in practice, be neglected, so it is not
really a problem (see the discussion at the end of Section 3.2).

INRIA
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In what follows, the size of an integer e is log10 |e| (assuming |e| > 1). The size of an algebraic
number e1 +

√
δe2, where e1,e2,δ are integers and any two factors of δ are relatively prime, is the

maximum of the sizes of e1,e2, and δ. The size of a vector or matrix, with at most a constant number
of entries, is the maximum size of the entries.

The height of an entity E (an integer, a vector, or a matrix) with respect to another entity x (also
an integer, a vector, or a matrix) is the size of e over the size of x (assuming that the sizes of e and x
are nonzero); note that if E and x are integers, the height is also equal to log|x| |E|. The asymptotic
height of a function f (x) with respect to an integer x is the limit of the height of f (x) with respect to
x when x tends to infinity. If a function f depends on a set X of variables, the asymptotic height of
f (X) with respect to X is the sum of the asymptotic heights of f with respect to each of the variables
of X . For instance, if f is a polynomial in a constant number of variables, the asymptotic height of
f with respect to these variables is the (total) degree of f . Finally, if F(X) is matrix of functions
depending on a set of variables X , the asymptotic height of F(X) with respect to X is the maximum
of the asymptotic heights of the entries of the matrix.

We mostly consider in the sequel heights and asymptotic heights with respect to S and T (that is
with respect to the set of coefficients of S and T ). Heights and asymptotic heights are thus considered
with respect to S and T unless specified otherwise.

3.2 Height of the parameterization in the smooth quartic case

We consider now the case of a smooth quartic. This case is important because it is the generic
intersection situation (given two random quadrics, a non-empty intersection is a smooth quartic with
probability 1) and because it is also the worst case from the point of view of the height of the
coefficients involved.

Let QR be the quadric of inertia (2,2) used to parameterize the intersection and p be a point of
P3(Z) on QR, as described in Section I.4.

Proposition 3.1. The parameterization of a smooth quartic

X(u,v) = X1(u,v)±X2(u,v)
√

∆(u,v)

is such that

• X1 has asymptotic height at most 27+36hp,

• X2 has asymptotic height at most 8+11hp,

• ∆(u,v) has asymptotic height at most 38+50hp,

where hp is the asymptotic height of p.

Proof. We first show how the parameterization of QR is computed and then bound the height of its
coefficients.

Let P be a projective transformation sending the point p0 = (1,0,0,0)T to the point p. Let Y
denote the quadric obtained from R through the projective transformation P: Y = PT RP. It follows

RR n° 5670



8 S. Lazard & L. M. Peñaranda & S. Petitjean

from Sylvester’s Inertia Law [9] that Y has the same inertia as R, i.e. (2,2). Moreover, the point p0

belongs to QY since Pp0 = p.
Let x denote the vector (x1,x2,x3,x4)

T . Let L be 1/2 times the differential of quadric QY at p0

(one can trivially show that L is the first row of Y ) and let i be such that Y1,i 6= 0 (such an i necessarily
exists). We compute the polynomial division of QY = xTY x by Lx with respect to the variable xi.
The result of the division is

Y 2
1,i (x

TY x) = (Lx)(L′x)+A, (1)

where the ξ-th coordinate of L′ is equal to L′
ξ = −Yi,i Y1,ξ +2Y1,i Yi,ξ for ξ = 1, . . . ,4 and

A = c j x2
j + ck x2

k +2c jk x j xk

where j and k are equal to the two values in {2,3,4} distinct from i, and c j,ck, and c jk are coefficients
defined as follows:

cξ = Yξ,ξ Y 2
i,1 +Yi,i Y

2
ξ,1 −2Yξ,1 Yi,1 Yi,ξ, ξ ∈ { j,k},

c jk = Y j,k Y 2
i,1 +Y j,1 Yk,1 Yi,i − (Y j,1 Yk,i +Yk,1 Y j,i)Yi,1.

We assume in the following that c j 6= 0 (if c j = 0 but ck 6= 0, we exchange the roles of j and k;
otherwise the analysis is different but similar and we omit it here). For clarity we denote in the
following

c = c j and r = Y1,i.

We consider the projective transformation M such that, in the new projective frame, the quadric
QY has equation (up to a factor)

x′T MTY Mx′ = 4x′1 x′2 + x′3
2 − cx′4

2
.

In accordance with Equation (1) we choose x′1 = Lx, x′2 = L′x. We apply Gauss’ decomposition of
quadratic forms into sum of squares to A and set x′3 = cx j + c jk xk and x′4 = xk. Precisely, we define
M such that its adjoint has its first row equal to L, its second row equal to L′, and the last two rows
equal to zero except for the entry (3, j) equal to c, the entry (3,k) equal to c jk, and the entry (4,k)
equal to 1.

Straightforward computations show that the four columns of M can be simplified by the factors
r c, r, 2r, and 2r2, respectively. We then get

xT MTY Mx = r2c(4x1x2 + x2
3 −det(Y )x2

4). (2)

If i, j,k are equal to 2,3,4 respectively, M is equal to

M =









Y2,2 −c Y2,2 Y1,3 − rY2,3 M1,4

−2r 0 −rY1,3 M2,4

0 0 r2 M3,4

0 0 0 r c









,

INRIA
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M1,4 = r (Y1,4 (Y2,2 Y3,3 −Y 2
2,3)+Y3,4(rY2,3 −Y2,2 Y1,3)+Y2,4(Y1,3 Y2,3 − rY3,3)),

M2,4 = r (Y1,4 (Y1,3 Y2,3 − rY3,3)+Y1,3 (rY3,4 −Y1,3 Y2,4)),

M3,4 = r (−r2 Y3,4 −Y2,2 Y1,3Y1,4 + r (Y1,3Y2,4 +Y1,4 Y2,3)).

We can easily parameterize the quadric of Equation (2) and the parameterization of the original
QR is, with δ = det(Y ) and (u,v) and (s, t) in P1(R),

PM
(

ut
√

δ, sv
√

δ, (us− tv)
√

δ, us+ tv
)T

. (3)

We now bound the asymptotic height of this parameterization with respect to S,T and p. For
simplicity, asymptotic heights are referred to as heights until the end of the proof. First note that the
matrix Y is equal to PT RP, where R is the matrix λ1S + µ1T of the pencil such that (λ1,µ1) ∈ P1 is
solution of

pT (λ1S +µ1T )p = 0. (4)

So (λ1,µ1) = (−pT T p,pT Sp) has height 1 + 2hp and R = λ1S + µ1T has height 2 + 2hp. Since
Pp0 = p, the first column of P has height hp and the rest of P has height 0. We can now deduce
the heights of the entries of Y = PT RP. Note first that Y1,1 is zero because p0 belongs to QY . A
straightforward computation thus gives that the first line and column of Y have height 2 + 3hp and
the other entries have height 2+2hp. Note that it follows that δ = detY has height 8+10hp and that,
when δ is a square,

√
δ has height 4+5hp.

It directly follows from the heights of the coefficients of Y and P that the heights of the four
columns of PM are, respectively,

2+3hp, 6+9hp, 4+6hp, and 8+11hp.

The worst case for the height of the coefficients of the parameterization of QR happens when
√

δ
is a square, because the height of these coefficients is at least the height of PM which is larger than
the height of δ. We can thus assume for the rest of the proof that

√
δ is a square. It then follows from

(3) that the coordinates of the parameterization of QR are polynomials of the form

ρ1 ut +ρ2 sv+ρ3 us+ρ4 tv. (5)

The height of ρ1 is the sum of the heights of the first column of PM and of
√

δ. Similarly, we get
that the heights of ρ1, . . . ,ρ4 are

hρ1 = 6+8hp, hρ2 = 10+14hp, and hρ3 = hρ4 = 8+11hp.

When substituting the parameterization of QR into the equation of one of the initial quadrics (say
QS), we obtain an equation which can be written as

as2 +bst + ct2 = 0, (6)

where a, b, and c depend on (u,v) and whose heights are

ha = 1+2max(hρ2 , hρ3) = 21+28hp,

RR n° 5670
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Figure 1: Evolution of the height of ∆(u,v) (smooth quartic case) as a function of the size of the
input, with the standard deviation displayed on the simplified plot.

hb = 1+max(hρ2 ,hρ3)+max(hρ1 ,hρ4) = 19+25hp,

hc = 1+2max(hρ1 , hρ4) = 17+22hp.

When substituting the solution (s = 2c, t =−b±
√

b2 −4ac) into each coordinate, of the form (5), of
the parameterization (3) we obtain a parameterization of the smooth quartic in which each coordinate
has the form

χ1(u,v)±χ2(u,v)
√

∆(u,v).

The height of the coefficients of χ1, χ2, and ∆ are

hχ1 = max(hρ1 +hb, hρ2 +hc, hρ3 +hc, hρ4 +hb) = 27+36hp,

hχ2 = max(hρ1 , hρ4) = 8+11hp,

∆ = max(2hb, ha +hc) = 38+50hp.

which concludes the proof.

Figure 1 shows how the observed height of the coefficients of ∆(u,v) evolves as a function of
the input size s for the three variants of our implementation discussed in Section 2. For each value
of s in a set of samples between 0 and 60, we have generated random quadrics with coefficients in
the range [−10s,10s], computed the height of the coefficients of the parameterization of the smooth
quartic and averaged the results.

The plots of Figure 1 show that the observed height of the coefficients of ∆(u,v) converges
to 38 when no gcd computation is performed for simplifying the output parameterization. Since

INRIA



Near-Opt. Param. of the Intersec. of Quadrics: IV. An Efficient and Exact Implementation 11

the asymptotic height of ∆(u,v) is at most 38 plus 50 times the height of p, this suggests that the
asymptotic height of p is zero. Indeed, we have observed experimentally that the coordinates of p
are integers between −2 and 2 most of the time. Out of thousands of runs we have encountered
no example where the size of p had a significant impact on the height of the coefficients of the
parameterization.

Backing this observation by theoretical results is hard, if not out of reach. Let R = R(λ1,µ1)
be the quadric through p. By Eq. (4), the size of the rational point p is intimately related to the
height of (λ1,µ1). It is intuitively clear that if the size of the interval on which (λ1,µ1) is taken
is small, then the size of p will increase. It thus seems natural to look for results on the distance
between roots of integer polynomials. Various upper and lower bounds are known as a function
of the degree of the polynomial and the height of its coefficients (see, e.g., [2]), and pathological
examples exhibiting root distances almost matching those bounds can be constructed. However,
nothing is known about the average distance between the roots of a polynomial whose coefficients
are uniformly distributed between −h and h for some fixed integer h (personal communication with
Y. Bugeaud and M. Mignotte).

Figure 1 also shows that the observed height of the coefficients of ∆(u,v) converges to 36 when
gcd computations are performed. We ran experiments with inputs of size up to 10,000 and observed
the same limit of 36 on the height of the coefficients when gcd computations are performed. We do
not have any explanation as to why the bound of 38 is not reached in that case.

4 Height of output coefficients: singular intersections

In this section, we analyze two different types of situations to validate a key design choice we made,
which is to take the quadric with rational coefficients of lowest possible rank to parameterize the
intersection. We first consider the case when the pencil contains a rational cone and then when it
contains a rational pair of planes. In both cases, we illustrate the fact that better results are obtained
than when using a quadric of inertia (2,2) as intermediate quadric.

Table 1 summarizes the asymptotic heights of the parameterizations in many cases of interest.

4.1 Preliminaries

Let QR be a singular quadric corresponding to a rational root (λ0,µ0) ∈ P1(Z) of multiplicity d > 1
of the determinantal equation det(λS + µT ) = 0. Here, we further assume that (λ0,µ0) is a repre-
sentative of the root in Z2 such that gcd(λ0,µ0) = 1. We also assume that QR has rank r (recall that
3 > r > 4−d).

Lemma 4.1. The asymptotic height of (λ0,µ0) is at most 4
d , and the asymptotic height of R =

λ0S +µ0T is at most 1+ 4
d .

Proof. We have that

det(λS +µT ) = C(µ0λ−λ0µ)d(α0λn−d + · · ·+αn−dµn−d).
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real type of intersection height of parameterization inertia of QR used

smooth quartic 38+50hp (2,2)
nodal quartic 22 (2,1) without rational point

cuspidal quartic 38∗ (2,1) with rational point
cubic and secant line 22 (cubic), 9 (line) (2,1) with rational point∗∗

cubic and tangent line 20 (cubic), 11 (line) (2,1) with rational point
two tangent conics 20+ 1

6 (1,1)

double conic 13+ 2
3 (1,0)

conic and two lines crossing 17+ 1
2 (conic) and 9 (lines) (1,1)

two skew lines and a double line 9 (lines) and 4 (double line) (1,1)
two double lines 12 (1,0)

Table 1: Asymptotic heights of parameterizations in major cases, when the determinantal equation
has a unique multiple root. In the singular cases, these values should be compared to the bound of
27 for each component if a quadric of inertia (2,2) had been used, keeping in mind that the result
could also contain an unnecessary square root. Note: (∗) Since 38 is larger than 27, it might seem
that using a quadric QR of inertia (2,1) in the cuspidal quartic case is a bad idea and that a quadric of
inertia (2,2) would have given better results. This is in no way the case: since the intersection curve
is irreducible, the equation in the parameters using a quadric of inertia (2,2) would also have been
irreducible, therefore producing a parameterization involving the square root of some polynomial.
(∗∗) We can easily find a rational point on QR here only when the intersection points between the
cubic and the line are rational. Otherwise, we need to use a quadric QR of inertia (2,2).

Since the coefficients of det(λS+µT ) are integers, we can assume that the αi are integers and C ∈Q.
We can also assume that the gcd of all the αi is one. Recall that an integer polynomial is called
primitive if the gcd of all its coefficients is one. Since the product of two primitive polynomials is
primitive, by Gauss’s Lemma (see [4, §4.1.2]), C is an integer (equal to the gcd of the coefficients
of det(λS + µT )). Therefore, since the coefficient Cµd

0α0 = detS of λ4 has asymptotic height 4, µ0

has asymptotic height at most 4
d , and similarly for λ0. It directly follows that R = λ0S + µ0T has

asymptotic height at most 1+ 4
d .

Lemma 4.2. The singular set of QR contains a basis of points of asymptotic height at most r
(

1+ 4
d

)

.

Proof. Assume first that R has rank 3, i.e., QR has a singular point. Finding this singular point
amounts to finding a point c ∈ P3(Z) in the kernel of R, i.e., such that Rc = 0. Since R has rank 3,
at least one of its 3×3 minors is non-zero. Assume that the upper left 3×3 minor has this property.
We decompose R such that Ru is the upper left 3×3 matrix of R and r4 is the first three coordinates
of the last column of R, and c such that cu is the first three coordinates and c4 is the last. Then c is
found by solving

Rucu = −c4r4.
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A solution is thus c = (−R∗
ur4,detRu), where R∗

u is the adjoint of Ru. The asymptotic heights of R∗
u,

r4, and detRu are the asymptotic height of R times 2, 1, and 3, respectively. The asymptotic height
of c is thus 3 times the asymptotic height of R. Hence, c has asymptotic height at most 3

(

1+ 4
d

)

.
The extension to general rank r is similar: QR contains in this case a linear space of dimension

3 − r of singular points. One can extract a non-singular submatrix of R of size r and points in
the kernel of R have asymptotic height r with respect to the coefficients of the matrix. The result
follows.

4.2 When QR is a cone

4.2.1 Parameterization of a cone

Assume now that QR is a real cone with vertex c containing a rational point p 6= c. We want to find a
rational parameterization of QR. First, we apply to R a projective transformation P sending the point
(0,0,0,1)T to c and the point (0,0,1,0)T to p. We are left with the problem of parameterizing the
cone QPT RP with apex (0,0,0,1)T and going through the point (0,0,1,0)T . Such a cone has equation

a1x2 +a2xy+a3y2 +a4yz+a5xz = 0. (7)

A parameterization of this cone is given by

X′(u,v,s) =









a5 0 a4 0
0 a4 a5 0

−a1 −a3 −a2 0
0 0 0 1

















u2

v2

uv
s









, (u,v,s) ∈ P?2(R). (8)

Here, P?2(R) is the real quasi-projective space defined as the quotient of R3 \ {0,0,0} by the
equivalence relation ∼ where (x,y,z) ∼ (x′,y′,z′) if and only if there exists λ ∈ R \ {0} such that
(x,y,z) = (λx′,λy′,λ2z′). Lifting the parameterization to the original space by multiplying by matrix
P, we have a parameterization of QR.

Let hR (resp. hp,hc) denote the asymptotic height of R (resp. of p,c). From the above, we can
deduce the following.

Lemma 4.3. The parameterization X(u,v,s) of QR is such that:

• the asymptotic height of the coefficients of u2,v2,uv is hR +hp;

• the asymptotic height of the coefficients of s is hc.

Proof. The matrix P has its third column set to p and its fourth column set to c. We complete it
so that it indeed represents a real projective transformation (i.e., its columns form a basis of P3).
So the first two columns have height 0 in R, p, and c. Computing PT RP, we see that the height of
a1,a2, and a3 is the height of R and the asymptotic height of a4 and a5 is the sum of the asymptotic
heights of R and p. From this, we see that the asymptotic height of the coefficients of u2,v2,uv
in X(u,v,s) = PX′(u,v,s) is the sum of the asymptotic heights of R and p; also the height of the
coefficients of s is the height of c.
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4.2.2 Cubic and tangent line

We now consider the case of an intersection consisting of a cubic and a tangent line. In this case, we
can parameterize the intersection using an intermediate rational quadric QR of inertia either (2,2) or
(2,1): the pencil contains an instance of both types of quadrics.

We prove the following theoretical bounds on the asymptotic height of the coefficients of the
parameterizations of the cubic and the line.

Proposition 4.4. When a quadric QR of inertia (2,2) is used to parameterize the intersection, the
parameterizations of the cubic and the line have asymptotic height at most 27 plus 36 times the
asymptotic height of the point p ∈ QR used for parameterizing QR.

Proof. The bounds found in the proof of Proposition 3.1 apply here, and in particular, the bounds
hρ1 , . . . ,hρ4 , ha, hb, and hc on the heights of the coefficients of Equations (5) and (6). Equation (6)
factors here into two terms, one of degree 0 and the other of degree 2 in, say, (u,v), and both linear
in, say, (s, t); Equation (6) can thus be written as

(αs+βt)(α′s+β′t) = as2 +bst + ct2 = 0,

where α, β are constants and α′, β′ are polynomials in (u,v). Since αβ′ + βα′ = b, α and the
coefficients of α′ have asymptotic height at most hb. Similarly, ββ′ = c thus β and the coefficients of
β′ have asymptotic height at most hc. Substituting the solutions (s = β, t =−α) and (s = β′, t =−α′)
into the parameterization (3), we get parameterizations of the cubic and the line whose coefficients
have asymptotic height at most

hc +max(hρ2 , hρ3) = hb +max(hρ1 , hρ4) = 27+36hp

where hp is asymptotic height of p.

Proposition 4.5. When a quadric QR of inertia (2,1) is used to parameterize the intersection, then
asymptotically the parameterization of the line has height at most 11, and the parameterization of
the cubic has height at most 20.

Proof. We follow the algorithm outlined in Section III.2.4 to determine the asymptotic height of the
output.

Here, the determinantal equation has a quadruple root (λ0,µ0) corresponding to a quadric QR

of inertia (2,1). The asymptotic height hR of R = λ0S +µ0T is at most 2, by Lemma 4.1. The
asymptotic height hc of the singular point c of QR is at most 6, by applying Lemma 4.2 with d = 4
and r = 3.

Since the line of the intersection is the (double) intersection of QR and the tangent plane to QS at
c, any point p on this line satisfies

Rp = Sc. (9)

(Observe that if p is a solution, any a1p + a2c is also solution.) The right-hand side Sc of (9) has
asymptotic height at most 6+1 = 7. As in the proof of Lemma 4.2, one can assume that detRu 6= 0
and there is a unique point p having zero as last coordinate. Point p satisfies pu = R∗

u(Sc)u and thus,
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its asymptotic height hp is at most 4+7 = 11. Overall, the coefficients of the line (c,p) have height
11.

We can now compute the asymptotic height of the parameterization X(u,v,s) of QR as defined in
Section 4.2.1. By Lemma 4.3, the asymptotic height hu,v of coefficients of u2,v2,uv in X(u,v,s) is
hR +hp, and the asymptotic height hs of the coefficient of s is hc. Plugging X(u,v,s) in the equation
of any other quadric of the pencil gives an equation in the parameters of the form

as2 +b(u,v)s+ c(u,v) = 0, (10)

where b(u,v) and c(u,v) have asymptotic heights respectively equal to

1+hu,v +hs = 1+hR +hp +hc, and 1+2hu,v = 1+2(hR +hp).

Observe that a = 0 since the singularity of the cone, which is a point of the intersection, is reached
at (u,v) = (0,0) and at this point s 6= 0 necessarily (because X(u,v,s) is a faithful parameterization
of the cone). We also know that (10) has a linear factor corresponding to the line of the intersection.
By construction (see (8)), this line (c,p) is represented in parameter space by the line a5 u+a4 v = 0,
where a4 and a5 have asymptotic height hR + hp (see the proof of Lemma 4.3). So, after factoring
out the linear term, (10) can be rewritten as

b′(u,v)s+ c′(u,v) = 0. (11)

The asymptotic height hb′ of b′(u,v) is 1 + hc, the difference of the asymptotic heights of b(u,v)
and of the linear factor. Similarly, the asymptotic height hc′ of c′(u,v) is 1+hR +hp, the difference
of the asymptotic heights of c(u,v) and of the linear factor. We plug the solution of (11) in s into
the parameterization X(u,v,s) of QR. Multiplying by b′(u,v) to clear the denominators, we get a
parameterization of the cubic of asymptotic height

max(hu,v +hb′ ,hs +hc′) = 1+hR +hp +hc 6 1+2+11+6 = 20.

The difference in the asymptotic heights of the parameterizations underscored in the above two
propositions is vindicated by some experiments we made. Figure 2 shows the observed heights of
the coefficients of the parameterization of the cubic when a quadric QR of inertia (2,2) or (2,1) is
used. The plots clearly show that the coefficients of the cubic are smaller when a cone is used to
parameterize the intersection. The fact that the observed heights are, in the limit, so different from
the theoretical bounds (8 instead of 20 when a cone is used) is most likely a consequence of the
way the random quadrics are generated: it does not reflect a truly random distribution in the space of
quadrics with integer coefficients of given size intersecting in a cubic and a tangent line, as explained
in Section 2.3.

Figure 3 further reinforces our choice of using a cone: the parameterizations have not only
smaller coefficients, they are also faster to compute.
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Figure 2: Observed height of the parameterization of the cubic in the cubic and tangent line case.

Figure 3: Computation time for the cubic and tangent line case.
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4.3 When QR is a pair of planes

4.3.1 Parameterization of a pair of planes

We now suppose that the singular quadric QR corresponding to a root of multiplicity d of the deter-
minantal equation is a pair of planes (i.e., has inertia (1,1)). Let p1 and p2 two distinct points on
the singular line of QR. Let P be a projective transformation matrix sending the point (0,0,1,0)T to
p1 and the point (0,0,0,1)T to p2. We are left with the problem of parameterizing the pair of planes
QPT RP whose singular line contains (0,0,1,0)T and (0,0,0,1)T . Such a pair of planes has equation

a1x2 +2a2xy+a3y2 = 0,

and it can be parameterized by M±(u,v,s)T with

M± =









−a2 ±
√

δ 0 0
a1 0 0
0 1 0
0 0 1









, δ = a2
2 −a1a3, (u,v,s) ∈ P2.

Lifting this parameterization to the original space by multiplying by matrix P, we obtain a parame-
terization of QR.

Let hR (resp. hp1 ,hp2 ) denote the asymptotic height of R (resp. of p1,p2). From the above, we
deduce the following.

Lemma 4.6. The asymptotic height of the coefficients ai in M± is hR. Furthermore, if δ is a square,
the parameterization X±(u,v,s) is such that:

• the asymptotic height of the coefficients of u is hR;

• the asymptotic heights of the coefficients of v and s are hp1 and hp2 , respectively.

Proof. In the parameterization of the pair of planes, the first two columns of P can be completed with
0 and 1 so that it is a non-singular matrix. A straightforward computation then gives that the height
of a1,a2, and a3 is the height of R. Hence, the coefficient of u in X±(u,v,s) has same asymptotic
height as R, and the coefficients of v and s have the same heights as p1 and p2, respectively.

4.3.2 Two tangent conics

We now consider the case of two tangent conics. This time, we have three possibilities for QR:
inertia (2,2), (2,1), or (1,1).

Proposition 4.7. When the intersection consists of two tangent conics, the parameterization of each
of the conics is as follows:

• when QR has inertia (1,1), the parameterization has asymptotic height at most 20+ 1
6 ;

• when QR has inertia (2,1), the parameterization has asymptotic height at most 30+ 5
6 ;
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• when QR has inertia (2,2), the parameterization has asymptotic height at most 27 plus 36
times the asymptotic height of the point on QR used for parameterizing QR; moreover the
coefficients may contain an unnecessary square root.

Proof. The determinantal equation in this case has a real rational triple root corresponding to a pair of
planes and a real rational simple root corresponding to a real cone. The pencil also contains quadrics
of inertia (2,2). The rational point of tangency p of the two conics is the point of intersection of the
singular line of the pair of planes with any other quadric of the pencil.

Let us first bound the asymptotic height hp of point p. Let c1,c2 be a basis for the singular set
of the pair of planes of the pencil. By Lemma 4.2, with d = 3 and r = 2, c1 and c2 have asymptotic
height hci at most 14

3 . p is the point of tangency of the line spanned by c1 and c2 with any quadric of
the pencil other than the pair of planes. Let p = α0c1 +β0c2, where (α0,β0) ∈ P1. Then (α0,β0) is
the double root of the equation

(α0c1 +β0c2)
T S(α0c1 +β0c2) = 0.

By Lemma 4.1, the asymptotic height of (α0,β0) is at most hci +
1
2 . Thus, hp 6 2hci +

1
2 6 2 14

3 + 1
2 =

59
6 .

QR has inertia (1,1). We consider the case where QR is the pair of planes of the pencil. We compute
a parameterization X±(u,v,s) = PM± (u,v,s)T of each of the planes of QR by sending (0,0,1,0)T

to c1 and (0,0,0,1)T to p as in Section 4.3.1. Plugging each of the X+(u,v,s) and X−(u,v,s) in the
equation of QS gives a degree-two homogeneous equation in u, v, and s (i.e., XT

±(u,v,s)SX±(u,v,s)).
This projective conic contains the point (0,0,1)T since PM±(0,0,1)T = p by definition of P and
M±. Such a conic has equation

XT
±(u,v,s)SX±(u,v,s) = b1u2 +b2uv+b3v2 +b4vs+b5us = 0 (12)

which can be parameterized, similarly as for (7), by

X′(u′,v′,s′) =





b5 0 b4

0 b4 b5

−b1 −b3 −b2









u′2

v′2

u′v′



 , (u′,v′) ∈ P1(R).

Plugging X′(u′,v′,s′) into the parameterization of QR gives PM±X′(u′,v′,s′), the parameterizations
of the two conics of intersection.

We now compute the asymptotic height of the parameterizations PM±X′(u′,v′,s′). We assume
first that δ in M± is a square. Let hbi , denote the asymptotic height of bi, and ha the asymptotic
height of {a1,a2,a3} in M±. The asymptotic height of the three coordinates of X′(u′,v′,s′) are,
respectively,

max(hb4 ,hb5), max(hb4 ,hb5), and max(hb1 ,hb2 ,hb3).

Thus, the asymptotic height of each of the coordinates of M±X′(u′,v′,s′) are, respectively,

ha +max(hb4 ,hb5), ha +max(hb4 ,hb5), max(hb4 ,hb5), and max(hb1 ,hb2 ,hb3).
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The third and fourth columns of P are c1 and p, and P can be completed with 0 and 1 so that it is a
non-singular matrix. Thus, the asymptotic height of PM±X′(u′,v′,s′) is the maximum of

ha +max(hb4 ,hb5), hci +max(hb4 ,hb5), and hp +max(hb1 ,hb2 ,hb3).

Now, the asymptotic height of each bi is one plus the sum of the asymptotic heights of two of the
coefficients of u, v, and s in X±(u,v,s) (by Equation (12)). Lemma 4.6 yields

hb1 = 1+2hR, hb2 = 1+hR +hci , hb3 = 1+2hci , hb4 = 1+hci +hp, hb5 = 1+hR +hp.

Since hR 6 1+ 4
3 = 7

3 by Lemma 4.1, ha 6
7
3 by Lemma 4.6, hci 6

14
3 , and hp 6

59
6 , we get hb1 6

17
3 ,

hb2 6
24
3 , hb3 6

31
3 , hb4 6

31
2 , and hb5 6

79
6 . Hence, if δ is a square, the asymptotic height of the

parameterization PM±X′(u′,v′,s′) of the two conics of intersection is at most

max

(

7
3

+
31
2

,
14
3

+
31
2

,
59
6

+
31
3

)

=
121
6

= 20+
1
6
.

Finally, since this bound is larger than the asymptotic height of δ (which is 2ha 6
14
3 ), the asymptotic

height of PM±X′(u′,v′,s′) can only be less than or equal to 20+ 1
6 , even if δ is not a square.

QR has inertia (2,1). Let now QR be the cone of the pencil with apex c. By Lemma 4.3, we have
a rational parameterization X(u,v,s) of QR whose coefficients in u2,v2,uv have asymptotic height
hR +hp and whose coefficient in s has asymptotic height hc. Plugging this parameterization into the
equation of any other quadric of the pencil gives an equation in the parameters of the form

as2 +b(u,v)s+ c(u,v) = 0, (13)

where the asymptotic heights of a,b(u,v), and c(u,v) are, respectively,

1+2hc, 1+hc +hR +hp, and 1+2(hR +hp).

We know (13) factors in two quadratic factors corresponding to the two conics. Also, by construction
(see (8)), the ruling of QR on which p lies is represented in parameter space by the line a5 u+a4 v = 0,
where a4,a5 are as in Section 4.2.1. As in the proof of Lemma 4.3, the asymptotic height of a4 and
a5 is hR +hp. Point p must be on each conic on intersection, and p corresponds in parameter space
to (u,v,s) such that s = a5 u+a4 v = 0. So (13) rewrites

(α1s+(a5u+a4v)β1(u,v))(α2s+(a5u+a4v)β2(u,v)) = 0,

where β1 and β2 are linear in u,v (possibly defined over an extension of Z by the square root of the
discriminant of the pair of planes containing the conics). The asymptotic height of α1β2 + α2β1 is
1 + hc, the difference of the asymptotic heights of b(u,v) and of the linear factor. The asymptotic
height of β1β2 is 1, the difference of the asymptotic height of c(u,v) and of twice the asymptotic
height of the linear factor. Hence, the asymptotic height of each βi is at most 1, and the height of
each αi is at most 1 + hc. Solving each factor rationally for s and plugging the solution into the
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parameterization X(u,v,s) of QR, we get parameterizations of the conics with asymptotic height
1 + hc + hR + hp. Applying Lemmas 4.1 and 4.2 with r = 3 and d = 1, and the bound on hp found
above, the asymptotic height of the parameterizations of the conics is at most 1 + 15 + 5 + 59

6 =

30+ 5
6 .

QR has inertia (2,2). When a quadric QR of inertia (2,2) is used, the biquadratic equation (6)
factors in two factors of bidegree (1,1) corresponding to the conics. Factoring introduces, as above,
the square root of the discriminant of the pair of planes containing the conics. Proceeding as in
the proof of Proposition 4.4, we get that the height of each factor is at most 27 plus 36 times the
asymptotic height of the point on QR used for parameterizing QR.

Moreover, we might have an extra square root in the result if the determinant of R is not a square.
Consider for instance

{

QS : x2 −2w2 = 0,
QT : xy+ z2 = 0.

Here, the determinantal equation is 2λµ3 = 0.
√

2 (i.e., the discriminant of the pair of planes) cannot
be avoided in the result. The point p = (−1,3,0,0) is contained in the quadric 3QS + QT of inertia
(2,2) and determinant 6. If this quadric is used to parameterize the intersection, we have an extra
square root, namely

√
6.

5 Experimental results

We now report on some experimental results and findings from our implementation.
The experiments were made on a Dell Precision 360 with a 2.60 GHz Intel Pentium CPU. LiDIA,

GMP and our code were compiled with g++ 3.2.2.

5.1 Random data

Let us first discuss the impact of the MAXFACTOR variable (see Section 2.2) on the output. Figure 4
shows that values of 105 and higher have a dramatic impact on computation time while all values
less than 104 are acceptable. We have determined that the best compromise between efficiency and
complexity of the output is obtained by setting MAXFACTOR to 103, which we assume now.

Figure 5 shows the evolution of the aggregate computation time in the smooth quartic case,
which is the most computationally demanding case, with the three variants outlined above. We infer
from these plots that the computation times for the unsimplified and mildly simplified variants are
very similar, while we observe (see Figure 1) a dramatic improvement in the height of the output
coefficients with the mildly simplified variant for reasonably small inputs. This explains our choice
of putting the mild simplifications in the form of a preprocessor directive, not a binary argument:
they might as well have been called mandatory simplifications.

A second lesson to be learned from Figures 1 and 5 is that for an input with coefficients ranging
from roughly 5 to 60 digits, the computation time is roughly 30% larger for the strongly simplified
variant than for the mildly simplified. At the same time, the height of the output is on average
between 20% (input size of 5) and 5% (input size of 60) smaller. For large values of the input size,
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Figure 4: Evolution of execution time in the smooth quartic case as a function of the size of the input
for very large input sizes.

Figure 5: Evolution of execution time in the smooth quartic case as a function of the input size, with
the standard deviation shown on the simplified plot.
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Figure 6: Computation time for 120 pairs of quadrics covering all intersection cases, with standard
deviation.

the difference in computation time between the mildly simplified and the strongly simplified variants
drops to less than 10% (see the two curves in Figure 4 with MAXFACTOR equal to 1 and 104), but not
much is gained in terms of height of the output (see Figure 1).

Another interesting piece of information inferred from Figure 1 is that the standard deviation of
the height of the output coefficients is large for small input size in the strongly simplified variant.
This means that in the good cases the height of the output is dramatically smaller than the height in
the mildly simplified case, and in the bad cases is similar to it.

Deciding to spend time on simplification essentially depends on the application. For most real-
world applications, where the size of the input quadrics is small by construction, we believe simpli-
fying is important: it should be kept in mind that the computed parameterizations are often the input
to a later processing step (like in boundary evaluation) and limiting the growth of the coefficients at
an early stage makes good sense.

A last comment that can be made looking at Figure 4 concerns the efficiency of our implemen-
tation. Indeed, those plots show that we can compute the parameterization of the intersection of two
quadrics with coefficients having 400 digits in 1 second and 1,000 digits in 5 seconds (on average).

Efficiency can be measured in a different way. In Figure 6, we have plotted the total computation
time, with the strongly simplified variant, for a file containing 120 pairs of quadrics covering all
intersection situations over the reals. The “random” quadrics were generated as in Section 4.2.2.
For an input size s = 500, the total computation time is roughly 72 seconds, on average, for the 120
pairs of quadrics, i.e., 0.6 second per intersection. This should be compared to the 1.7 seconds on
average needed to compute the intersection in the smooth quartic case for the same size of input
(Figure 4). This difference is simply explained by the fact that very degenerate intersections (like
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a. b.

c.

Figure 7: Three CSG models made entirely of quadrics (models courtesy of SGDL Systems, Inc.).
a. A teapot. b. A pencil box. c. A chess set, with a close-up on the knight.

when the determinantal equation vanishes identically, which represents 36 of the 120 quadrics in the
file) are usually much faster to compute.

Our last word will be on memory consumption. Our implementation consumes very little mem-
ory. In the smooth quartic case, the total memory chunks allocated sum up to less than 64 kilobytes
for input sizes up to 20. It takes input coefficients of more than 700 digits to get to the 1 MB range
of used memory.
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5.2 Real data

Our intersection code has also been tested on real solid modeling data. Our three test scenes are the
teapot, the pencil box, and the chess set (Figure 7). They were modeled with the SGDL modeling ker-
nel [12]. The chess set was rendered with a radiosity algorithm using the virtual mesh paradigm [1].
All computations were made with the strongly simplified variant of our implementation.

The teapot (Figure 7.a) is made of 18 distinct quadrics (one hyperboloid of one sheet, one cone,
one circular cylinder, two elliptic cylinders, two ellipsoids, four spheres, and seven pairs of planes).
The coefficients of each input quadric have between 2 and 5 digits. The 153 intersections (i.e., pairs
of quadrics) are computed in 450 milliseconds, or 2.9 ms on average per intersection. They consist
in 51 real smooth quartics, 31 nodal quartics, 35 cuspidal quartics, 65 conics, 101 lines, and 9 points.
The height of the output never exceeds 6 in terms of the input.

The pencil box (Figure 7.b) is made of 61 quadrics, most of which are pairs of planes. The input
size for each quadric is between 2 and 5 for most quadrics, with four quadrics having a size of 18.
The 1,830 intersections are computed in 6.25 s, or 3.4 ms per intersection on average. They consist
in 65 smooth quartics, 356 nodal quartics, 119 cubics, 612 conics, 2,797 lines, and 139 points. The
height of the output reaches 11 for some smooth quartics.

In the chess set (Figure 7.c), the pawn, the bishop, the knight, the rook, the king, and the queen
are respectively made of 12, 14, 20, 18, 19, and 25 quadrics. Most of the quadrics have coefficients
with between 2 and 7 digits, except for a small number having 15 digits (the crown of the queen
has for instance been generated by rotations of π/10 applied to a sphere). The intersections were
computed for each piece separately. They consist in 86 smooth quartics, 123 nodal quadrics, 360
cuspidal quartics, 284 conics, 484 lines, and 13 points. In total, the 971 intersections were computed
in 3.33 s, or 3.4 ms per intersection on average. The height of the output never exceeds 8.

6 Examples

We now give four examples of parameterizations computed by our algorithm. Other examples can
be tested by querying our parameterization server.

Comparing our results with the parameterizations computed with other methods does not make
much sense since our implementation is the first to output exact parameterizations in all cases. How-
ever, for the sake of illustration, our first two examples are taken from the paper describing the plane
cubic curve method of Wang, Joe, and Goldman [13].

6.1 Example 1: smooth quartic

Our first example is Example 4 from [13]. The two quadrics are a quadric of inertia (2,1) (an elliptic
cylinder) and a quadric of inertia (2,2) (a hyperboloid of one sheet). The curve of intersection C has
implicit equation

{

4x2 + z2 −w2 = 0,
x2 +4y2 − z2 −w2 = 0.

A rendering of the intersection is given in Figure 8.a.
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a. b. c.

Figure 8: Further examples of intersection. a. b. Smooth quartics. c. Four skew lines.

In [13], the authors find the following parameterization for C:

X(u,v) = X1(u,v)±X2(u,v)
√

∆(u,v), (u,v) ∈ P1(R), (14)

with

X1(u,v)=













0.0

1131.3708u3−5760.0u2v+10861.1602uv2−8192.0v3

−1600.0u3+10861.1602u2v−21504.0uv2+11585.2375v3

1600.0u3+3620.2867u2v+5120.0uv2+11585.2375v3













, X2(u,v)=













−80.0u+1181.0193v

0.0

0.0

0.0













,

and ∆(u,v) = 905.0967u3v−3328.0u2v2 + 2896.3094uv3. The authors report a computation error
on this example (measured as the maximum distance from a sequence of sample points on the curve
to the input quadrics) of order O(10−7).

Our implementation outputs the following exact and simple result in less than 10 ms:

X(u,v) =









2u3 −6uv2

7u2v+3v3

10u2v−6v3

2u3 +18uv2









±









−2v
u

2u
2v









√

−3u4 +26u2v2 −3v4, (u,v) ∈ P1(R).

The polynomials involved in the parameterization are defined in Z[u,v], which means we are in
the lucky case where the intermediate quadric of inertia (2,2) found to parameterize the intersection
has a square as determinant. So the parameterization obtained is optimal (in the extension of Z on
which its coefficients are defined).
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Output 1 Execution trace for Example 2.
>> quadric 1: 19*x^2 + 22*y^2 + 21*z^2 - 20*w^2
>> quadric 2: x^2 + y^2 + z^2 - w^2

>> launching intersection
>> determinantal equation: - 175560*l^4 - 34358*l^3*m - 2519*l^2*m^2 - 82*l*m^3 - m^4
>> gcd of derivatives of determinantal equation: 1
>> number of real roots: 4
>> intervals: ]-14/2^8, -13/2^8[, ]-26/2^9, -25/2^9[, ]-25/2^9, -24/2^9[, ]-3/2^6, -2/2^6[
>> picked test point 1 at [ -13 256 ], sign > 0 -- inertia [ 2 2 ] found
>> picked test point 2 at [ -3 64 ], sign > 0 -- inertia [ 2 2 ] found
>> quadric (2,2) found: - 16*x^2 + 5*y^2 - 2*z^2 + 9*w^2
>> decomposition of its determinant [a,b] (det = a^2*b): [ 12 10 ]
>> a point on the quadric: [ 3 0 0 4 ]
>> param of quadric (2,2): [0, - 24*s*u - 24*t*v, 0, 0] + sqrt(10)*[3*t*u + 6*s*v, 0, 12*s*u

- 12*t*v, - 4*t*u + 8*s*v]
>> status of smooth quartic param: near-optimal
>> end of intersection

>> complex intersection: smooth quartic
>> real intersection: smooth quartic, two real bounded components
>> parameterization of smooth quartic, branch 1:
[(72*u^3 + 4*u*v^2)*sqrt(10) + 3*v*sqrt(10)*sqrt(Delta), - 340*u^2*v + 10*v^3 - 24*u*sqrt(Delta),
(- 118*u^2*v + 5*v^3)*sqrt(10) + 12*u*sqrt(10)*sqrt(Delta), (96*u^3 - 12*u*v^2)*sqrt(10)
- 4*v*sqrt(10)*sqrt(Delta)]

>> parameterization of smooth quartic, branch 2:
[(72*u^3 + 4*u*v^2)*sqrt(10) - 3*v*sqrt(10)*sqrt(Delta), - 340*u^2*v + 10*v^3 + 24*u*sqrt(Delta),
(- 118*u^2*v + 5*v^3)*sqrt(10) - 12*u*sqrt(10)*sqrt(Delta), (96*u^3 - 12*u*v^2)*sqrt(10)
+ 4*v*sqrt(10)*sqrt(Delta)]

>> Delta = 20*u^4 - 140*u^2*v^2 + 5*v^4
>> size of input: 2.3424, height of Delta: 1.3431

>> time spent: < 10 ms

6.2 Example 2: smooth quartic

Our second example is Example 5 from [13]. It is the intersection of a sphere and an ellipsoid that
are very similar (see Figure 8.b):

{

19x2 +22y2 +21z2 −20w2 = 0,
x2 + y2 + z2 −w2 = 0.

In [13], the authors compute the parameterization (14) with

X1(u,v) =









−0.72u3 −0.72u2v+0.08uv2 +0.08v3

0.0
0.72u3 −1.2u2v−0.72uv2 −0.08v3

1.0182u3 +0.3394u2v+0.3394uv2 +0.1131v3









, X2(u,v) =









0.0
1.697u+0.5656v

0.0
0.0









,

and ∆(u,v) = 0.48u3v−0.32u2v2 −0.16uv3.
Our implementation gives the result displayed in Output 1. Since the polynomials of X(u,v)

involve a square root
√

10, the quadric QR of inertia (2,2) used to parameterize the intersection is
such that its determinant is not a square. As explained in Section I.4, the parameterization is thus
only near-optimal in the sense that it is possible, though not necessary, that the square root can be
avoided in the coefficients.
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Output 2 Execution trace for Example 3.
>> quadric 1: - 4*x^2 - 56*x*y - 24*x*z - 79*y^2 - 116*y*z + 70*y*w - 85*z^2 - 20*z*w + 9*w^2
>> quadric 2: 6*x^2 + 84*x*y + 36*x*z + 45*y^2 + 160*y*z - 210*y*w + 131*z^2 + 30*z*w - 45*w^2

>> launching intersection
>> determinantal equation: 8*l^4 - 76*l^3*m + 234*l^2*m^2 - 297*l*m^3 + 135*m^4
>> gcd of derivatives of determinantal equation: 4*l^2 - 12*l*m + 9*m^2
>> triple real root: [ -3 -2 ]
>> inertia: [ 1 1 ]
>> rational point on cone: [ 0 0 0 1 ]
>> parameterization of cone with rational point
>> parameterization of pair of planes
>> the two conics are tangent at [ -39 3 6 -5 ]
>> status of intersection param: optimal
>> end of intersection

>> complex intersection: two tangent conics
>> real intersection: two tangent conics
>> parameterization of conic:
[- 39*u^2 + 443*u*v - 7254*v^2, 3*u^2 - 66*u*v + 1388*v^2, 6*u^2 - 132*u*v + 701*v^2, - 5*u^2
+ 110*u*v - 3005*v^2]

>> cut parameter: (u, v) = [1, 0]
>> size of input: 3.3222, height of output: 1.4631
>> parameterization of conic:
[- 39*u^2 + 443*u*v - 4004*v^2, 3*u^2 - 66*u*v + 1138*v^2, 6*u^2 - 132*u*v + 201*v^2, - 5*u^2
+ 110*u*v - 1205*v^2]

>> cut parameter: (u, v) = [1, 0]
>> size of input: 3.3222, height of output: 1.3854

>> time spent: 10 ms

It turns out that in this particular example it can be avoided. Consider the cone QR corresponding
to the rational root (−1,21) of the determinantal equation:

QR : −QS +21QT = 2x2 − y2 −w2.

QR contains the obvious rational point (1,1,0,1), which is not its singular point. This implies that it
can be rationally parameterized. Plugging this parameterization in the equation of QS or QT gives a
simple parameterization of the intersection:

X(u,v) =









u2 +2v2

2uv
u2 −2v2

0









±









0
0
0
1









√

2u4 +4u2v2 +8v4, (u,v) ∈ P1(R).

6.3 Example 3: two tangent conics

Our next two examples illustrate the fact that our implementation is complete in the sense that it
computes parameterizations in all possible cases.

Output 2 shows the execution trace for two quadrics intersecting in two conics that are tangent
in one point. As can be seen, our implementation gives information about the incidence between the
different components of the intersection: for each component, we give the parameter values (“cut
parameters”) at which it intersects the other components of the intersection.
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Output 3 Execution trace for Example 4.
>> quadric 1: 199*x^2 - 4*x*y + 830*x*z + 1068*x*w - 55*y^2 - 278*y*z - 528*y*w + 587*z^2

+ 1146*z*w + 360*w^2
>> quadric 2: 41*x^2 - 64*x*y + 92*x*z + 108*x*w + 23*y^2 - 32*y*z - 24*y*w + 80*z^2

+ 174*z*w + 72*w^2

>> launching intersection
>> determinantal equation: 49*l^4 - 84*l^3*m + 22*l^2*m^2 + 12*l*m^3 + m^4
>> gcd of derivatives of determinantal equation: 7*l^2 - 6*l*m - m^2
>> ranks of singular quadrics: 2 and 2
>> two real rational double roots: [ -1 -1 ] and [ -1 7 ]
>> status of intersection param: optimal
>> end of intersection

>> complex intersection: four skew lines
>> real intersection: four skew lines
>> parameterization of line:
[- 42*v, 32*u - 78*v, 28*u, - 25*u + v]
>> cut parameter: (u, v) = [- 19, 8]
>> cut parameter: (u, v) = [- 51, - 22]
>> size of input: 4.0592, height of output: 0.71248
>> parameterization of line:
[48*v, 64*u + 176*v, 68*u + 76*v, - 47*u - 69*v]
>> cut parameter: (u, v) = [0, 1]
>> cut parameter: (u, v) = [59, - 25]
>> size of input: 4.0592, height of output: 0.79955
>> parameterization of line:
[6*u, 6*u - 40*v, - 68*v, - 7*u + 111*v]
>> cut parameter: (u, v) = [49, 4]
>> cut parameter: (u, v) = [22, 3]
>> size of input: 4.0592, height of output: 0.75023
>> parameterization of line:
[- 12*v, 4*u, - 52*u - 60*v, 33*u + 41*v]
>> cut parameter: (u, v) = [67, - 49]
>> cut parameter: (u, v) = [39, - 25]
>> size of input: 4.0592, height of output: 0.68441

>> time spent: 10 ms

6.4 Example 4: four skew lines

Our final example concerns an intersection made of four skew lines, as depicted in Figure 8.c. Out-
put 3 shows the execution trace for this example, again illustrating the efficiency and completeness
of our implementation.

7 Conclusion

We have presented a C++ implementation of an algorithm for computing an exact parameterization
of the intersection of two quadrics. The implementation is efficient and covers all the possible cases
of intersection. This implementation is based on the LiDIA library and uses the multiprecision
integer arithmetic of GMP.

Future work will be devoted to understanding the gaps between predicted and observed values
for the height of the coefficients of the parameterizations, to working out predicates and filters for
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making the code robust with floating point data (many classes and data structures have already been
templated for a future use with floating point coefficients) and to porting our code to the CGAL
geometry algorithms library [3].
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