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Une méthode d’éléments finis stabilisée par pénalisation
intérieure pour les équations de Navier-Stokes
instationnaires: discrétisation en espace et convergence

Résumé : Dans ce travail on s’intéresse & I’analyse numérique d’une méthode d’éléments
finis stabilisée pour les équations de Navier-Stokes instationnaires. L’incompressibilité et la
convection sont stabilisées en ajoutant un terme de pénalisation qui fournit un controle, en
norme L2, du saut du gradient de la solution sur les faces internes. En utilisant des éléments
finis continus, du méme ordre pour la vitesse et la pression et dans une formulation semi-
discrétisée en espace, on montre convergence de ’approximation. Les estimations d’erreur
sont indépendantes du nombre de Reynolds (et donc valables pour le cas des équations
d’Euler) en supposant que la solution est suffisamment réguliére.

Mots-clés : méthode d’éléments finis, méthode stabilisée, pénalisation intérieure, équa-
tions de Navier-Stokes, probléme instationnaire.
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1 Introduction

In this paper we propose a finite element method based on edge oriented stabilization for the
incompressible Navier-Stokes equations. This method method was introduced by Burman
and Hansbo in [I1]], as an extension of the interior penalty method proposed by Douglas and
Dupont in [I7] to the case of pure transport problems or convection-dominated problems.
Pressure stabilization for the Stokes problem was then considered by Burman and Hansbo
in [T2] and the Oseen’s problem was analyzed by Burman, Fernandez and Hansbo in [10]. In
the latter, a priori error estimates that hold uniformly in the Reynolds number were proven
for sufficiently smooth solutions. In this paper we focus on the time dependent, non-linear
Navier-Stokes equations. There exists a vast literature on finite element methods for the
Navier-Stokes equations. Let us cite the monograph of Girault and Raviart [20] and the
series of papers by Heywood and Rannacher |25, 26, 27]. In the case of stabilized finite
elements using SUPG-like stabilizations, we cite the work of Johnson and Saranen [29] on
a velocity-vorticity formulation, and the paper by Hansbo and Szepessy on the velocity-
pressure formulation [23]. Other relevant works on the Navier-Stokes equations include
the paper by Tobiska and Verfiihrt [32], the work by Blasco and Codina [15], the work on
stabilized mixed methods for the Navier-Stokes equations by He, Lin and Sun [24], and the
work on numerical methods for LES using hyperviscosity by Guermond and Prud’homme
[22]. For relevant references on stabilized methods we refer to the subgrid viscosity method
by Guermond [Z21], the orthogonal subscale method by Codina [I4], the local projection
method by Becker, Braack and Burman [I}, & [B] and the work on minimal stabilisation
procedures by Brezzi and Fortin [§].

The key issue in this paper is that the stabilization allows for estimates that are uniform in
the Reynolds number. Hence the incompressible Euler equations are covered by the analysis.
It is interesting to note that the present stabilized method allows for a complete decoupling of
the analysis for the velocities and pressures. The only requirement for convergence is that the
solution is sufficiently smooth, in a sense that will be detailed later, but most importantly we
assume that the velocities u € [L2(0,T; H21¢(€)) N L>(0,T; Wh>(Q)) N H' (0, T; L2())]*
and the pressure p € L2(0,T; H2+<(Q)). In case the solution has sufficient additional regu-
larity we obtain the quasi optimal error estimate for the velocity approximation:

0 — | o< 0,7;2202)) < CRFT2(|(0, ) 20,7, 10+1 ()

where k denotes the polynomial order.

Our analysis is inspired by the one by Hansbo and Szepessy reported in [23], but our
results using edge oriented stabilization are sharper. In fact, to control the convective veloc-
ity, which is only weakly divergence free, special nonlinear stabilization terms are introduced
in [23], leading to a more complex formulation and stronger regularity assumptions on the
exact solution are required. In our case, the fact that the stabilization of the velocities is
decoupled from the stabilization of the pressure allows us to prove convergence using es-
sentially the stabilization terms of the linear case (see [I0]), and under similar regularity
assumptions. Moreover, we prove convergence for all polynomial orders, whereas in [23] the
analysis was restricted to piecewise linear approximations in space and in time.
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4 E. Burman, M.A. Ferndndez

In this work we only consider discretization in space. Focus will be put entirely on the
convergence in the high Reynolds number regime (v < h). The estimates are of course still
valid in the low Reynolds number regime (h < v), but then the regularity hypothesis may
be relaxed while keeping optimal convergence if the stabilization parameters are properly
chosen, see [I0].

In the next section we introduce standard notation for the Navier-Stokes equations and
briefly discuss the regularity assumptions. The stabilized finite element scheme, based on
an interior penalty formulation, is introduced in section 3. Some useful standard estimates
are stated in section 4. In section 5, we study the wellposedness of the discrete scheme and
its stability properties. The convergence analysis of the method is carried out in section 6.
First we prove convergence for the velocity and then for the pressure. The later requires an
estimation of the error in the approximate acceleration. Finally, some conclusions are given
in section 7.

2 The time-dependent Navier-Stokes equations

Let Q be a Lipschitz-continuous domain in R? (d = 2 or 3) with a polyhedral boundary
09 and outward pointing normal n. For 7" > 0 we consider the problem of solving, for
u:Qx(0,7) — Rand p: Q x (0,7) — R, the time-dependent incompressible Navier-
Stokes equations with homogeneous boundary conditions (for the sake of simplicity):

du+u-Vu—2vV-e(u)+Vp=£f in Qx(0,7),
V-u=0 in Qx(0,7T),
u=0 on 09Qx(0,7),
u(,0)=ug in Q.

(1)

These equations describe the motion of a viscous incompressible fluid confined in 2. In (),
v > 0 corresponds to the kinematic fluid viscosity coefficient, f : Q x (0,7) — R represents
a given source term, ug : {2 — R? stands for the initial velocity and

ef 1
e(u) 5 [Vu+ (Vu)")],
for the strain rate tensor.

In the following, we will consider the usual Sobolev spaces W™ (), with norm || - || ¢,0,
m >0 and ¢ > 1. In particular, we have L(Q2) = W%9(Q). We use the standard notation

H™(Q) def Wm™2(Q). The norm of H™(Q) is denoted by || - ||m.o and its semi-norm by
| - |m.o. The space of L?(2) divergence free functions is denoted by Hp(div;2). The scalar
product in L?(Q) is denoted by (-, ) and its norm by || - ||o.o. The closed subspaces H}(2),
consisting of functions in H'(Q) with zero trace on 99, and L3({2), consisting of function

in L?()) with zero mean in 2, will also be used.

INRIA



Edge oriented stabilization for the Navier-Stokes equations 5

Let us assume that the given functions f and ug have, at least, the following regularity
properties
fe L0, T; [L2(Q))Y), uo € [L*(Q)]%.

For sufficiently regular functions u and p, problem (Il) holds if and only if

f,v), ae in (0,7)
=0, ae.in (0,7

u(0) =ug, a.e. in €,
for all (v, q) € [HE(Q)]¢ x L3(£2), and where

c(wiu,v) E (w- Vu,v),

a(u,v) def 2(ve(u),e(v)), 3)

b(p,v) € —(p, V- V).

2.1 Regularity assumptions

For the analysis below to make sense, the solution and initial data must have the minimal
regularity

u € [L2(0,T; H31¢(Q)) N L=(0, T; W (Q)) N H' (0, T; L*(Q))]%,

) : (4)
p e L*(0,T; HP(Q), g € [H2T(Q) N H(Q)]" N Ho(div; Q).
In this paper we will for simplicity make the stronger regularity assumption
u € [L2(0, TsWH>(2)) N H'(0,T5 L*(Q)) N L*(0,T5 H"(2)))7, )

pe L%(0,T; H5(Q)), wg € [H"(Q) N H(Q)]? N Hy(div; Q).

with r, s > 2, in order to use approximability and get optimal order estimates for the velocity.
Our pressure error estimates are bounded by the L2-norm of the error in the approximate
acceleration 0;uy. The error estimate we provide for this quantity requires the following
additional regularity
uc [HY(0,T; H"(Q))]%,

pe L20,T; H(Q)) N HY(0,T; H'(Q)). (6)

3 Space semi-discretization

In this section we introduce a finite element discretization of problem (@) based on a strongly
consistent interior penalty formulation with equal-order interpolations.

RR n° 5630



6 E. Burman, M.A. Ferndndez

3.1 Preliminaries

Let {7}, }o<n<1 a family of triangulations of the domain § without hanging nodes. For each
triangulation 7y, the subscript h € (0, 1] refers to the level of refinement of the triangulation,

which is defined by
def

B max hk, hg = max he,
KeT, eCOK
with h. the diameter of the face e.
Moreover we will assume that the family of triangulation {7 }o<n<1 is quasi-uniform,

ie.,
h
X < Cr, hxg>Cuh, VKeT, Vhe(01], (7)
PK
where pg stands for the diameter of the largest inscribed ball in K and Cgr,Cy > 0 are
fixed constants.
In the sequel, the word faces refers to edges in 2D and faces in 3D, and the distinction
will not be made unless necessary. For a given piecewise continuous function ¢, the jump

[]e over a face e is defined by

lim ((p(x —tn.) —o(x + tne)), if ed¢ 09,

def
[ele(x) = ¢ =07
0, if ec o9,

where n. is a normal unit vector on e and x € e.
In this paper, we let V¥ denote the standard space of continuous piecewise polynomial
functions of degree k,

ViE L o e HY(Q) : vk € Pu(K), VK €Th},

and H?(7},) the space of piecewise H? functions,

def

H*(T;) = {v:Q—R:vyg € H}(K), VKeT,}. (8)

For the velocities we will use the space [V/%]¢ and for the pressure we will use QF %' V¥
L§(9).

3.2 An interior penalty finite element method

Denoting the product space W} def [ViE]1? x QF our space semi-discretized scheme reads: for

all t € (0,7), find (un(t),pn(t)) € W} such that

(Opun, vi) + (A +J) [up; (un, pn), (Vi qn)] = (£, va),
u,(0) = ugp,

(9)

INRIA



Edge oriented stabilization for the Navier-Stokes equations 7

for all (vi,,qn) € W} and with uoj, a suitable approximation of ug in [V;*]?. In (@) we used
the following notations:

ef
Alwn; (an,pn); (Vi an)] C an(un, vi) + cn (Wi up, va) (10)
+ bn(pn, vi) — ba(qn, un),

def 1
Ch(Wh; uy, Vh) = C(Wh; uh,vh) + §(V - WpUp, Vh)

(11)
1
~3 (Wp -0y, Vi) g0 s
ef
ap(up, vp) def a(up, vi) — Qre(up)n, vi) 5o — (un, 2ve(vi)n) 5, 12
14
+ <%Euh,vh>m + (up -m, vy, - n)afz )
br(pr, Vi) f b(Ph, Vi) + (Phy Vi - 1) g s (13)
def . .
J[wn: (an,pn), (Vi an)] = dw, (an, vi) +vj(an, vi) (14)
+ j(pha Qh)7
with
. ef
Jwn (an, vi) =D / K2 T wy, - 02 [Vun] : [Vva] ds,
Ker, Jox
jlanva) S / W2 [Vun] : [Vva] ds, (15)
KETh OK
. def
ionan) ™ 3 [ IVm - [Van ds.
KeTy, oK

Here, Z}w), denotes the interpolation of wy, onto the space [Vhl]d (continuous piecewise
linear) and ~, v, two positive constants to be fixed later on.

Some remarks are in order. We point out that the additional terms appearing in the
discrete bilinear form A, compared to the formulation (), are due to the non satisfaction
of the divergence free condition and to the weakly imposed boundary conditions of Nitsche
type. To counter effects of insufficient control of the divergence free condition, an artificial
term is added that ensures coercivity while remaining strongly consistent (since V-u = 0 for
the exact solution). The Nitsche type boundary conditions are inspired by those analyzed
in [T0] and [19]. In the stabilization term jw, (-,-) we use the P;-interpolant of the velocity
vector wy, as weight. This may be replaced by the function wy, itself or the max value of wy,
on the face depending on what is most convenient from implementation standpoint. The
analysis below carries over to these versions with minor modifications.

The discrete formulation (@) satisfies the following approximate Galerkin Orthogonality.

RR n° 5630



8 E. Burman, M.A. Ferndndez

Lemma 3.1 (Approximate Galerkin Orthogonality) Let (u,p) the solution of (),
(up,pn) € WE the solution of [{) and assume that (u,p) has the minimal regularity ().
Then,

(8:(u — up),vi) + Afw; (u,p), (i, qn)]
— (A4 J3)[upn, (un,pr), (Vi,qn)] =0, a.e. in (0,7),

for all (vi,qn) € WF.

Proof. This is an immediate consequence of the consistency of the standard Galerkin
method. [

4 Interpolation

In this section we shall state some standard estimates that will be useful for the convergence
analysis below. First, we recall the following local inverse estimate (see [I8, page 75|, for
instance): for all v, € V¥, and K € 7, 0 < h < 1, there holds

netra(3-)

lvnllip. e < Crhy (16)

lvnllm,q.5

with C a positive constant, independent of h, K, p and ¢, and where 0 < m < [ and
1<p,q<o0.

Let HE and I,’f be, respectively, the L2-projection and the Lagrange interpolant on th.
For w € H"(2), r > 2, we have the following standard error estimate (see [18], for instance),

|1Z5u = ullo.g + R V(Ziu — w)llo.e < Ch™ |l 0, (17)
where r, = min(r, k + 1). The following stability estimates for the L?-projection hold,

Tullo.e < Cllullo.e,

(18)

IThullie < Cllulle,

for all u € H'(2). Thus, from ([7), we then deduce that
lu — Wullo.e + 2V (u ~ Mu)lloe < CA™ ull, 0, (19)

for u € H"(Q). In addition, the following stability result holds where Cx > 0 is a constant
independent of A (but not of the polynomial order),

I ullo,00,0 < Crllullo,o,n, Y € L(Q), (20)
5 ull1,00,0 < Crllull1,00.0,  Vu € WH™(Q). (21)

INRIA
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The second estimate easily follows from the first noting that, from (I6l), we have
VI ullo,c0.0 = [ V(Iu — D)o o &
—1|77k
< Ch™H [ ju — Mgully o &

< Ch™1 (HHZU — 0,00, + |lu— H([)"(UHO,oo,f()
< Ot (IZhu — ullose + u = Mullg o 2 ) -

where K € 7;, stands for the element where the maximum value is taken, and H%u denotes
the L2-projection of u onto a piecewise constant on K. Applying now ) to the first term

of the right hand side we conclude
IV ulo.00.00 < O (1T = llo.ce.0 + 1w = M%ull o )
< ClIVullo,00,0-
It then follows that
T u — ullo.co.0 + Al u — ullico0 < Chllull1,00.0, (22)

for all u € W10 (Q).

The results (Z0) and ZII) have been proved in [I6], 6, 4] for low order elements. We
would like to point to the last reference, which readily extends this results to higher order
elements and which gives weighted estimates. Using these estimates, the assumption of mesh
quasi-uniformity in the present paper may be relaxed to local quasi-uniformity.

In order to handle the non-linear terms, we shall also need a discrete commutator prop-
erty, which is stated in the following lemma (for a proof, see [4]).

Lemma 4.1 Let SZ} : Wh*°(Q) — V¥ the Scott-Zhang interpolator [31]. There exists a
constant Cp > 0 independent of h, such that for all u € WH>(Q) and v, € V¥,

ISZ% (uvn) — wvnllo.o < Crhllull1.0c0.0llvnllo.0-

The following corollary is a direct consequence of the previous result.
Corollary 4.1 For all u € Wh*°(Q) and vy, € V}¥ there holds

11T (uvn) — wog|

IITT3 (uon ) — I woy,|

0,2 < hllull1,00.0llvnllo.0;

(23)

0,2 < hljull1,00,0llvnl0,0-

Proof. Using the stability of the L2-projection we may write
0.0 < [T} (uvp) — SZn(uvp)o.0
+||SZ1 (uvn) — uwvpllo.0
< |15 (uvp, — SZn(uvn)) o0
+ [|SZ1 (uvn) — uvpllo.0
< 2||SZp (uvp) — uvp||o.q-

11T (uvn) — wop|

RR n° 5630



10 E. Burman, M.A. Ferndndez

Thus, [3); holds from Lemma EJl Finally, for the second estimate we have

11T} (uvn) — M uvplo,e < [T (uvn) — wvpllo.o
+ [[(w — Tju) - vnllo.0

< |15 (uvp) — wop |

0,Q
+ lu = ullo.coellvnllo.g-

Thus, ([Z3))2 is obtained by combining £3); with ). O
For the error analysis, we shall also use the trace inequality

l0l3 oxc < € (h 1013 5 + hacl Vol i), W0 € HY(K), (24)

see [I3] for a proof. In particular, by combining the above estimate with a inverse inequality
(@8, it follows that
lonll§ ox < Crhicllonll§ > Von € Vi (25)

The uniform (in v) stability of the present method relies on the fact that the gradient
jumps in (@) can control some interpolation errors of the stream-line derivative, divergence
and pressure gradient. This is formalized, in the following lemma, by establishing some error
bounds for the Oswald quasi-interpolant 7} (see [28, B0)]).

Definition 4.1 For each node x;, let n; be the number of elements containing x; as a node.
We define a quasi-interpolant 7} of degree k by

of 1
() d:f; S ukl@), Yve HX(T))
¢ {K:z;€eK}

with H2(T,) given by @&).

Lemma 4.2 There exist three constants v; > 0, i = 1,2,3, depending on the local mesh
geometry, but not on the mesh size h, such that

||h? (Wh - Vv, = (Wh - Vi) 5.0 < v1dw, (Va, Vi), (26)
12 (9 v = (T vi) 3.0 < 72 (Vo Vi), 27)
183 (Vg — m(Van)) 3.0 < v35(an, an). (28)

for all (v, qn, wp) € [VF]? x VIF x [V1]4.

Proof. A proof of ([Z6)-(28) can be found in [9, 10]. O
We introduce now, for each wy, € [V;}¥]¢ given, the triple-norm

def
Ivasan) s, = I1Vall® + 3 [Whs (va, an)s (Vi an)], (29)

INRIA
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with
def 1 1 1. _1
Vil = w2 Vvall3 o + 182V - vall3 o + | (wr) 2 A7 2943 50

+Iva - nllg o

For the continuity of the Stokes system, with Nitsche boundary conditions, it is also conve-
. . . . 3 1
nient to introduce a norm valid for functions (v,q) € [H21¢(Q)]¢ x H21¢(Q),

2 def 1 1 _1
(v, )" = 2 Vvlga + 172V -vIga+ A 24l5 0

L L (30)
_1 1 2 2
+h7zvljo.a + [(vh) 2 V(5 a0 + ll4l5,00-
For these two norms we have the following approximation result.
Lemma 4.8 Assume that ([B) holds. Then we have
1 P
(0 = 5w, p — p)llg < C(v= + h2)h™ " ull, 0 (31)
+Ch 2 |pllr, 0,

and . .

[(u—15u,p—5p)] < C(w2 + hZ)h™ " ull,, 0 (32)

+Ch 2 pllr, 0,
with ry = min(r, k + 1) and r, = min(s, k + 1), C > 0 a constant depending only on v, ,7.
Proof. From ([[9) we have
V3V (u — Ifu)|3 o < Cvh*™—Y|u|? g,
and
[h2V - (= )5 < CR"Hjul?, o

We treat the boundary terms using the trace inequality (4] in combination with ([d) and
the quasi-uniformity of the triangulation [@), yielding

[u =Tl oo < C > (ki lu = TFul3 .
eCOoN

+hic IV (u = TR0 «,)

< CRHull?, o,

RR n° 5630



12 E. Burman, M.A. Ferndndez

where K, denotes the simplex such that e C K. N 9. The interior penalty terms are
treated in the same fashion as the boundary terms. We have

jlu—Tu,u—Ifu) = Z h3 /6K[[V(u—HZu)ﬂ2ds

KETh
<O Y il V(a—Tw)§ ox
KETh
<C Y (hxlIVa =T x + AV (u ~ Ew)l5 )
KeTy,

< C (WIV(a = TEw)|E o + h* [V (u — )5 o)
< Ch 7, o

Obviously, the pressure jump term is treated using the same argument, which completes the

proof of (&I)).
To prove B2) we simply note that by trace inequalities and the stability of the L2-
projection there holds

1 1
I(wh) 2V (= TEu)[If o0 < CllvzV(a - Ziu)|§

+CR? Y |lvE (u—ZFu)|f3 «
KeTy,

< Cvh*™?|ulf, o

To conclude, we apply the inequality (B3) to the term ||p — Hﬁp”& aq- O

Finally, we shall also make use of the following projection operator, based on a Stokes-like

problem. For each u € [H#+¢(Q)NHL(Q)]NH,y(div; Q), we denote by Sfu %' (PFu, RFu) €

W} the unique solution of
(PFu,vy) + an(PFu,vy) + bu (R, vy)
+ i (PFu, vy) = (u,vy) + an(u,vy), (34)
— bu(gn, Piu) + j(Ryu, 1) =0,
for all (vi,qn) € WE.
By assuming that u is also sufficiently regular in time, so that the projection makes

sense at each time ¢, we have the following approximation result, whose proof is based on
the results reported in [12].

Lemma 4.4 Letu € [L?(0,T; H"(Q) N H(Q)]4N Ho(div; Q). The following error estimate
for the projection P,f holds:

[u— Bfull oo r2()) < CWE +h2)R™ " |ul 20,11 (0))s (35)

with C > 0 independent of v and h.

INRIA
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By deriving B4 with respect to time, we obtain the similar result for the time derivative
of the projection.

Corollary 4.2 Letu € [L?(0,T; H"(Q)NH (Q)NHo(div; Q))]¢ with dpu € [L2(0, T; H™(Q))].
Then the following error estimate holds:

[0:(u — Piu)|| o (0,7512(2)) < C(ve +h2)hr=t l0sal| L2(0,7; e () - (36)

5 Stability

In this section we investigate the wellposedness and some stability properties of the discrete
scheme (@).

5.1 Existence and uniqueness of discrete solution
In the sequel, we shall make use of the following discrete pressure and velocity subspaces:

def

Cie = {an € Q + jlan an) = 0},

VA €ty € VY - ba(gn, vi) =0, Van € ClLy ).
In addition, Q}\C}, , will stand for the supplementary of C, , in Qy, i.e.,
QF = (QZ\Cﬁk) D Cl}b,k'
The following lemma ensures, in particular, that V,ﬁik" is not trivial (i.e. V,ﬂi,;’ # {0}).
Lemma 5.1 There exists a constant 3 > 0, independent of h, such that

. br(qn, vi)|
inf sup ——/—— >
0 €Ch . vpevi)d lanllo.allvallie

Proof. Let g5 € C}, . From [20, Corollary 2.4], there exists v, € [Hg (22)]? such that
Vevg=an |vqlre < Cllgnllo.q- (37)
Thus, using integration by parts and (), we have

lanlls.o = (gn, V- vg)
= (qn,V vy — V-1vy) + (g, V - I} v,)
= (Van, vq = jvg) — {an, (I;vy) - n)ag (38)
+ (qn, V - H’,ivq)
= (Vagn,vq — HZVq) — bn(qn, Hivq)'
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14 E. Burman, M.A. Ferndndez

In particular, using the orthogonality of the L2-projection, Cauchy-Schwartz and Lemma,
K2, and since j(qn,qn) = 0, we get

|(Van, vo = ive)l = [(Van — 5 (Van), vq — 11 v,)|
< IVan = 105(Van)lo.llvg = ivellos

1.
< v3h ™2 5(qn, qn)||ve — M velloe
=0.

Thus, from (BF), if follows that
[bn(an, 115, v)| = llanl3 o-
In addition, from (I®) and @), we have

ITEvgllie < Cllvgllie
< Clignllo.o;

which completes the proof. [J
We now state the main result of this paragraph.

Theorem 5.1 The discrete problem @) with ug ), € V,gik" has a unique solution.
Proof. Problem (@) can be written, in operator form, as
Moy, + A(uh)uh + BTph = Mf, in ([th]d)l s
Buy, = Jp,, in [QF], (39)
uy,(0) = ug,p,
with M € £ (V1 (VD) A € £V x VR (VEY)), B € £(V% (@))) and
JecL (QZ, (QZ)’) defined by
(Muy,vi) = (up, va),

def .
(A(wp)up, vp) = an(un, vi) + cn(Whsup, Vi) + Jw, (Un, Vi)
+vj(uan, vi),

def
(Bvh,qn) = blqn, va),

def .
(Jphsan) = F(Pn,an)-

We also introduce the operator B! € £ ([V,f]d, (C’,llk)’) defined by

(B, qn) of bi(qns Vi), Y(Vh,qn) € [ViF]4 x Ch >

INRIA
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in other words,
def
B'vi = (Bvi)icr Vi € [V]4

From Lemma BL it follows that B? is surjective and (B1)T is injective (see |20, page 58]).
We then deduce that Vi L Ker(BY) # {0}.

Let us consider the following reduced formulation (derived from ) with (vn,qn) €
V}g‘,;’ X (QQ\C,{,C)) find (up(t),pn(t)) € V}g‘,;’ X (QE\C}M) such that

Myuy, + A(up)uy, + BTy = ME, in (V)
Buy, = Jp, in  (QI\C},) (40)

uy, (0) = ug .

Since, by construction, C}. , = Ker(J), we conclude that .J is invertible in Q}\C}, ,. Hence,
from ({0, we have

Br=Jigicr  Bun. (41)

By plugging this expression into the first equation of @), we obtain that u(t) € VY
solves .,

Moy + A(ap)up + BT J oo Bup=Mf, in (V)

|Qh\ch,k ’
uy,(0) = ug,p,

which is a standard Cauchy problem for u,. Existence and uniqueness of u;, follows by
the Lipschitz continuity of A. We may then recover p, uniquely from {Il). Therefore, the
reduced problem (H0) has a unique solution. On the other hand, from the first equation of
ED), if follows that

0

3

Moyuy, + A(up)uy, + BT p, — Mf € (Ker(B'))

with (Ker(Bl))0 standing for the polar set of Ker(B!). From Lemma Bl it follows that

B' is an isomorphism from C} ; onto (Ker(Bl))O (see [20), page 58]). Thus, there exists a
unique p' € C}, ; such that

Moy, + A(wp)uy, + BTp, — Mt = (BH)Tp' in ([VF]9)'. (42)

Therefore, from {@2) and (@), and by noticing that (B!)Tpl = BTp! and Jp! = 0, if follows
that problem (@) has a unique solution, given by (un, pn def pn—pt). O

Remark 5.1 In order to ensure convergence, in the following we shall set ug, = Pfug €
vy,
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16 E. Burman, M.A. Ferndndez

5.2 Coercivity

The following Lemma provides control (uniform in v) of the divergence constraint through
the stabilization terms.

Lemma 5.2 (Divergence control) Assume (up,pn) € W} be a solution of @). There
exists a constant C > 0, depending only on the mesh geometry, such that

1
ClIn2V - anl§ o < I[0; (wn, pr), (wn, pr)] + s - 13 50
Proof. By testing @) with v, = 0 we get
(qn, V- un) — (g, un - n)sq + j(Pn, qn) = 0.
Thus, taking g, = 7} (hV - uy) yields
1 - unl§ o + (V- wn, 7 (hV - up) = AV - up)
= (mp(hV - up), up - m)oq — j(pn, 7 (RV - ap)).
It follows then, by the quasi-uniformity of the mesh, a Cauchy-Schwarz inequality, a trace
inequality and an inverse inequality, that
1 1 2 1 1 * 2
SIHEY wi g < SR (rh(V w) = - w) [
+C (Ihun - nllo.00 + 7% (ns ) ) 1103 75 (V - wn) o,

Therefore, using the triangle inequality, this yields

1 1 1.,
2V G < CIA? (mh (V- wn) = Vi) G
+ C (Ilup |3 oo + 7 (Phspr))
+C (Jlun - nllo.on + 5 (on,pn) ) 139 - il

We conclude using a Young’s inequality and the interpolation result 7). O
Using Lemma .2 we may now show that the bilinear form is coercive for the triple norm

Il

Lemma 5.3 (Coercivity) There ezits a constant Cx > 0, depending only on Q and ~,,
such that ,
(A + ‘]) [Wha (Vha qh)7 (Vha qh)} > C'A||| (Vha qh)mwha

for all (wp, (v, qn)) € [VF]? x WE.
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Proof. From (@) we have
(A + ) [Wis (Vi an) (Vi an)] = 2[lvEe(va)l2 g
1 1
+ I[Wis (Vi an)s (Vi an)] + 172 (2/B)? Va2 00 (43)
+ [[vh - n||3,as1 — (dve(vi)n, vih)Hq

where we used the fact that, after integration by parts,

1
(wp - Vv, vp) =

5 [ (Wh -1V, Vi) gq — (V- Wi, vh)].

The last term in ([@3) can be bounded using the Cauchy-Schwarz inequality followed by (2H)
and the quasi-uniformity of the mesh (@), to obtain

C
| (4ve(va)n, vi) g | < 8=~

1 1 1 /p %
o Ieemlba +5lhé (3) villion:
In the sequel we will assume that
C
v > 4=E >0, (44)
Cu
and therefore o
def T
( ) Cuw
From (E3), we then get

(A + ) [Wis (Vi an)s (Vi an)] = A llvEe(va)ll2.q

£ 3w (e ) (v )] + 5l /)% R
+ [[vi - 0§ o0,
and consequently
(A +J3)[Wn; (Vi qn), (Vi qn)]
> min {A(w), 17} (I e@nld .o+ 17Vl o)
43w (v ), (v )] + 78 /)% R
+[1va - 0l o

In particular, by choosing (accordingly with ()

and since 0 < h < 1, one obtains

Ay) <

We conclude the proof using Korn’s inequality (see [7]) and Lemma O
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6 Convergence

We now prove convergence first of the velocities and then of the pressures. Since the problem
decomposes into one linear part and one non-linear part it is convenient first to recall a
preliminary result regarding the continuity of the Stokes system from [I0].

Lemma 6.1 There exists a constant C > 0, independent of v and h, such that

an(v,vi) = br(q, va) + bn(gn, v) < CI(v, )l (vh, an)llos
for all (q,v) € [(VE): x ((VFI)] n[HA(Tn)])* and (qn, vi) € V)F x [VF]2.

Proof. Using Cauchy-Schwarz and the trace inequality 2H) and since 0 < h,v < 1, for the
first term one readily obtains

an(v,vi) < Cl(v, Ol (v, 0)llo-
For the second term we have, using the orthogonality of ¢ (to th) and the interpolation
estimate (&1),
bn(q,vi) = (¢, V- wp = m(V - Vi) + (¢, Vi - 1) g
< |Ih~ 2dllo@llh* (V- vi = 7 (V - vi) oo
+ llallo.o0llve - nljo,o0

< CNO; DU wr, 0)llo-

In a similar fashion, after integration by parts in the third term, one obtains
bh(QhaV) = —(qn, V- V) + <QhaV : n>asz

(Van,v)

= (Van — m,(Van),v)

< 112 (Van =, (Van)lloa |~ Vo

< ClI(v, 0[O, gn)llo-

Hence, the proof is complete. [

6.1 Velocity energy norm error estimate
The following theorem states the main result of this paragraph.

Theorem 6.1 Let (u,p) the solution of (@), (un,pr) € W) the solution of @), with ug ), =
PFug, and assume that (u,p) has the minimal regularity @). Then, the following optimal
approzimation estimates hold

T — Wl s 0,722 () < [MT00 — w0 plI3 0

T
2
+ Cexp / (c1 (- Hiu, O™ + c2J [O; (H’,ﬁu7 H’,ip), (H’ﬁu, HZp)}) de, (45)
0
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and
T 2
k k k 2
/0 N0 — wy T — o), df < Mg — uo pl2

T
2
Feo [ (el MO + 23[0: (Thu, W), (T 115 ), (19
0

with

2
Cexp def eCT<h”“”L°°<o,T;w1v°°<9>>+”“”L°°<0~T:W1’°°<ﬂ))) )

def 1
a=0 (1 A ||u||L°°(07T;W1’°°(m>) )

def
e 2 C (14 [l 07 () + 2 0, s ) )
with C' > 0 a positive constant independent of v and h.

We stress that the constants in the above theorem have no explicit dependence on v. Before
proving the main convergence theorem we state two immediate consequences in the form of
corollaries.

Corollary 6.1 Under the hypothesis of the previous theorem, assuming that the exact so-
lution (u,p) has the regularity given in @) and that v < h, the following error estimates
hold

I =l 0.7:22(0)) < Clexps 1, c2) (h‘QTu1||u||%2(0,T;HTu(Q))
+ Rt |p||%2(O,T;HTP(Q))) ’
and
T 2
/0 ||| (u — Up, P — ph)muh de < O(Cexpa C1, c?) <h2ru1|u”%2(0,T;H7«u Q)

+ h?rt ”pHQL?(O,T;HTP(Q))) )

with rq < min(r, k + 1), 7, def min(s, k + 1) and C(cexp,c1,¢2) > 0 a positive constant
independent of v and h.

Proof. Immediate by a triangle inequality, the result of Theorem Bl and approximation

(Lemmas B3 and E4). O
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Corollary 6.2 Under the hypothesis of the previous corollary, the following error estimate
holds:

o = n | Zoe 0700 ) < CR U (0 s oo )
+ C(Cexp €1, C2)h ™1 <h2’”“1IUI|2L2(o,T;Hm(Q)) + R ||p||2L2(0,T;H;(Q))) ’

with C > 0 a positive constant independent of v and h. In particular, there holds u; €
L>(0,T; L*°(Q)).

Proof. Immediate using approximation ([22), an inverse inequality and {&). O

6.2 Proof of Theorem

In the following, ¢; > 0 for ¢ = 1,2, ..., represents a free positive constant to be fixed later
on. We denote the discrete and projection errors as

g, = Mfu—uy,, 67 d:efufﬂflu, (47)
def T
yn = Uip—pu, y" =p—1fp,
which gives
Op=u—u,—-0", y,=p—p,—y" (48)

Note that, since u € H'(0,T; L?(Q2)), we may deduce that 8;, € H*(0,7T; L?(f2)). Using
coercivity (Lemma B3)) we then get

1d
55”‘9}1”(2),2 + Call(6n, yh)|||121h
< (8¢0n,0n) + (A +J)[un; (On,yn), (On,yn)]-
Hence, from {7)-E8) and the tri-linearity of A and J, we have
1d

S 1032 + CallOn, 512, < (0w = wa), 61) — (2467 61)

+ (A + J)[up; (IT5u, 15p) (O, yn)]
— (A + J)[un; (un, pn), (On, yn)]-

Thus, by testing the approximate Galerkin orthogonality (Lemma BI) with (vp,qn) =
(0r,yp) and since since (9;0™,0,) = 0, we obtain

1d

@ 1941152 + Call@n. yn)l, < (A + ) [wn; (u, IEp) (O, )]

_ A[u; (u,p), (O, yh)]
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Writing out all the terms of A and J, as given in (), we get

1d

S80I+ Call@n, )%, < —an(67,61) = bu(y™, 61) + bi(yn,07)

+ i (I, 6) + 5 (15, yn) + cn(up; Tju, 04) — c(u;u, 6))
+ Ju, (TT5 0, 05).
Now we may use the continuity of the Stokes system (Lemma 1)) to obtain,

1dH
2dt

<c, (mw’: v+ 3% [0; (Wsu, TI5p), (105w, 15p)] ) (6, 1)l

1
+ (up - VIIEu, 8;) + 5V u,lfu, 6,)

1
— §<uh . nHZu, 0h>6Q - (u . Vu, Bh)

+ Z / R\ Thup | [VITEu] : [VO,] ds.

KETh

+ Call0n yn) I,

Using (@), this leads to

1d
2dt

cl(|u<e“ g™l + 3% [0; (I, T5p), (105w, 115)] ) (O, )l

up - V0” 0h) - —(V uh0” 0h)

—11085.2 + Call@n yn)lz, <

—~

+ (uh . n0’7, 0h>6(2 + ((uh — 11) - Vu, Oh)

wl»—*I\DIH

(V-upu, 0) + Z/ h2|Thay, - n2[VIEu] : [V6,] ds,
KeTy,
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which, after integration by parts in the convective term, gives

1d
2dt

0161
L2 (6, )l

(167, y™)I” + 3 [0, (Wfu, I p), (15w, T15p)] )

2
104115.2 + Call(@n, yn)l, <
&
261

1 1
+ (077, uy - Veh) + §(V -up0", Oh) — §<uh -nl”, 0h>8ﬂ
NI

T T T

1
+ ((up —u) - Vu,0p) + §(V -upu, 0p,)
| —
T4 T5

+ ) / K| Zhay, - n*[VIEu] : [V6,]ds.
KeTy, oK

15

In the next paragraphs we analyze the terms 7}, i = 1,2,...,6. Using the orthogonality
of the L2-projection, approximation and Lemma B2 we have

T1 = (0”, (uh - I,lluh) . Vah)
T4
+ (0”,1}1uh . V@h - W;(I}luh . Veh)) .
T5 o

In the first term, we use the local interpolation property of the Pi-interpolant followed by
an inverse inequality showing that

0.5 < Coh¥|uplox
< Csllup — Zhulo k-

lap, — Zhuap|

Using this inequality, for the first term of 77 ; we have

Tia < Ci Y lun —Zhunlo.x [ [VOA] 07|05
KeTy,

<Cs Y llun = Zyullox[[VOR] 07 [lo,x-
KeT,

We now use the decomposition ), to obtain

Ti1<Cs Y ([6nllox + [Tfu—Zhullox) [[VO] 070 k-
KeTy,
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Thus, using inverse inequalities ([f) and the L>-stability of II} (22), one gets

Tia < Ceh™ Y 11070001015 5

KeTy,
+C7 Y T = Zhullo .o, k[ VO 0,5 107 10,5
KeT,
< Csh™!167lo,00,9[101 15 0

0.5 [h" 207|050

_1
+ Coh™ 2 [Ifu — Zjulloco Y 116n]
KeTy,

< C'loh*lH0F||0,oo,s1||0h||3,ﬂ

_1 _1
+OnhHu = Zhullo s (10430 + 1020730
which, in combination with 20) and approximation, leads to
Ty < o[ Vuloo (16030 + 1 0 07|R 0)

< Cus|Vullo.e0 (10n 3 + 1167, 0)]7)
Finally, using Cauchy-Schwarz and [@2)), we obtain

Tio < ||h"20%o.0llh? (Ziuy - VO, — 7} (Ziuy, - V6y)))|

1 1. €271 .

< 262Hh 20 Hg,(2+ 9 juh(ehaeh)v
1 2

< —1(07,0

< oo l@ 0 +

0,0

€271
161,05,

For the second term, we use approximation and that the divergence is included in the
triple norm,

1
To=5(0",(V-0n+V-07)0y))

< 3 h 107 o (105 - Onlloc + 105V - 07l ) [19nllo i
KeT,
< Craesh} [Vullocn (129 - 0030 + 112 - 673 o)

C'14 1
= [Vulo.0]043 0

2 1 T 2

< Cises|Vulloco (161, 0)lI5 + 1 1(67,0)1)

Cis, 1
= [Vullo 00430
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In this last inequality we used the fact that 0 < h < 1.
For the third term, using (E8), we have

1 s
Tg = §<(uh — u) . n0 ,0h>6Q
1 T us 1 T
= *§<0 -n0",0,)00 — §<0h -n0",01) 00
1, .
< 5”9 ll0,00,2101l0,00 (10" - nllo.00 + |04 - nllo.00) -

Therefore, using approximation and (Z8), we conclude that

Ty < Ci6h?||Vta]lo,c00ll0n 0.0 (167, 0)] + 1185, 0)ll,)

h n
< Cor [ Vul ol Onl130 + sz (167,001 + 161, 0l ) -

Using again ([@8) and approximation, for the fourth term we obtain

Ty = —((0“ + 0h) -Vu, Oh)
IVul|o,e0,2 (10702 + [[Onllo.2) [0n]l0.0

1 1., 1, -
SIullo.cc.0 (A3 3673 o + 31164113

IN

IN

IN

1 P
5IVullo.cc.o (A2 107,01 + 31643 0) -
By testing (@) with v, = 0 and g, = I (u - 63,), it follows that

(V- wp, T (u - 04)) — (wp - 0, I (u - 0o
+ j(pn, I} (u - 65)) = 0.

Thus, plugging this expression into 75, one gets
1
T5 = §(V sUp,0- Oh)
1 1
= 5(Vun, (- 0y — TG (w- 04)) + o (w0, 5 (u - 03)) e

1.
— ST 01))
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which, from #R) and the fact that u = 0 on 91, leads to

1
Ts = —§(V-0’T,u-0h—H’,§(u-0h))

T51

1
— 5(v O, -0, — 11 (u-6y))

T2

1
— 5((07T + Bh) -n,HZ(u . Oh) —u- 0h>aQ

Ts3

)

1.
~ (s T (- 61)).

T5.4

Each of these terms are treated separately. Using approximation and Corollary BTl we have

1o 1, s ,
T5,1 < —Hhév0 ||g,ﬂ+§”h é(U-G}L_l_lﬁ(uOh))”g,ﬂ

-2
< C1s (167, 01 + Allul o al10413.0) -

Using again Corollary ET], it follows that

1, 1 1 )
T52 < §Hh2V Onlloellh "z (a0, — 115 (u-65))]0.0

Cioh
[allf o o /104115 o

< Choes||(84, )] +
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For the next term, we have
Ts3 < 5 (107 - nllosa + [0n - nllosq) [T (- 0r) —u-Ohnllo.00

(167, 0)llo + 1(6r,0)llo)

IN

TN N RN

1
2

I} (u-65) —u- 6|

2
O,@Kﬂ@ﬂ)

Z [T} (u - 6;) — Tju - OhH(%,aKmasz
KeT,

S

20 (1(67, 0)]| + 11(€n, 0)ll)

IN
2

N

+ Z [(Iu — u) - 0h||(2),6K0652‘|
KeTy,

Thus, using the trace inequality (2H), we have

Ts,3 < Cor ([1(67, 0)]| + 11(61, 0)llo)

> b TE(u- 05) = TEu- 0,5 5
KeT,

NI

k —
+ ”(Hhuu)||g,m,KhKl||0h||%,K]
KeTy,

< Coah™% ([(67,0)] + [1(84,0)ll,)

(1T} (u - 0,) — IFu - Oxllo.0 + [|(ITfu — u)lo,c0.2/|0n]0.2) -

Now, using Corollary BTl and (22)), we conclude that
Ts,3 < Cos ([(67,0)] + 16, 0)llg) 22 [[u]|1,00,0l10nl0,0
- 024h

< Caaes (167,0)1 + (61, 0)113) +

€6

[l o o llOn5 -
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For T5 4 we first have,

Toa= Y / B3IVl - [VIIE (u - 6,)] ds

KETh

3 1
< C255(ph, pn)?

Z/ K2 [V(ITF (u- 0,) —TFu - 0,)]? ds

KETh

+ Z/ R [V(ITEu- 6,)]% ds

KT

1
2

< Casj(pnpn)? [Z hic | V(T (w- 0,) — Iu - 04)[15 o
KeTy,

+ > / R3-(106)2 [V (ITEw)]? + 118 u|2[[V0h]]2)ds] .
KET,

Thus, by combining the trace inequality (23)) with an inverse estimate ([Ifl), Corollary BTl
and the stability estimate for the L?-projection €)-(EI), we get

Ts.4 < Corj(pn, ph)? lz hi 110 (u - 0n) — T 053 x
KeTy,

2
+ ) VIl o ohxlOAll3 5 + IIHZullg,oo,gj(Ghﬁh)]
KeTh

. . Cog
< 02867(](1_[2]75 Hlﬁp) + 3y, yn)) + —h|\u||1 ,00, Q||0h|\o Q
Cc? )
+ 2_||u||3,oo,ﬂ.7(0h)0h)
€7
) Cog
< Caser (j(Iip, I15p) + 100, ya)llo) + ?hl\ullf,w,nl\ehl\g,n

CZ 2
+ By |5, 00,07 (O O1)-
€7
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Finally, for the last term in @), using (EX), we have

To= > / h%|Ziuy, - 02 [VIIEu] : [VO,] ds
KET}L

§2 / h% | Thay, | [VIIEu]? d
68KeT oK

Z/ h2|Ziay, - 02 [VO,]? ds

KeT,
C 2 2
2—[ > / W2\ Thay, — up, [VIIFu]? ds (50)
KeTy,
T6,1
+ Z/ h% (104 + IFuf?) [VITEu]? ds
KeTy,
Th,2
Z/ B2 |Z}ay, - n|2[V,]? ds.
KeTy,

In order to estimate T 1, we use approximation and an inverse inequality to obtain

1 Zhun — wnllg ox < Caolul3 ok
= Cso|ThITiu — wp |3

< C1|ZIT5 0 — up 1§ ok
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This estimate, combined with 1), the trace inequality (£5), approximation and an inverse
inequality (IH), leads to

/ h2|Zhay, — up P [VITFu]? ds
oK
< VI oo« / B3 Thw, — w,? ds
T Jok
< Col [Vl 2 00 / BT — uy ds
oK

< Caal [Vl 2 00 /@ I (T Tl 16, ) ds

< Coahe [IVIL ]2 e (IT3TTE 0 — T2 + (0112 1)

< Cashrc | [VIIEu] |2 e e (R 200 — TS w2 e e + 184112 1)
< Caohuc [IVIEI2 o e (BT 0 g+ [08]2 )

< Cyrhic NIV o h 20l oo 0 + i CarlVallf oo o100 113 k-

Therefore,
To,1 < Cssllullf oo (P%5 (5w, I u) + 1)|64]15 ) -

Using the trace inequality (28) and the stability of the L2-projection (I, we obtain
otk Tk
Ts,2 < hllullf .0l0n 13,0 + [0ll§ o 0i (T u, ).
Finally, by plugging these last two estimates into (B), we obtain

C3g
€8

€8
+ 5 101,01, -

Ts < — [hfull? w 0llOnll5 0 + ([ll§ o0 + %[0} o 0)d (5w, TTw)]

Based on ([#J) and the previous estimates, we chose ¢;, ¢ = 1,...,8, such that
aC € Ca
11 _2n €3C15]|VU)|0,00,0 = €4C17 = e5C19 = €Coy = —,
2 2 16
€8 CA
Cog = = = 24
€70L28 9 16 3

and v such as
2

C
1> 52 [l s

for instance )
def 8C%

Ca

[f§ o0 + 1.
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Then, from {Y) using the previous estimates, we get

S lenlE s+ O,
< Cio ([l 0+ 1l ) 1641
+ Cuol (07,017 (14 1 [ Vullo )
+ Ot [l e+ 2 )3 [0: (T, ), (1T}, 1)), (51)

a.e. in (0,7). Therefore, using Gronwall’s lemma we obtain

T
101117 o (0,72 (02 +/O |||(0h7yh)"|ih dt < 116,(0)]15
T 9 T
+ Co {cl / 167, 0)[2 dt + c» / 3[0; (1w, T1kp), (1w, 1T p)] dt],
0 0

with
def 407 (hHuHZoc w100 Hlull oo 0, 7w 1,00 (0 )
C e L (0, T;W (Q)) (0,7 Q) ,

def 1
¢ = Cao (1 +h2 Hullew,T;wm(sz))) )

def
e = Cyo (14 |7 0,T;L>(2)) T h? a7 0,T;Wteo(Q)) ) »
( ( ( )

which gives {@H). Finally, estimate (@) is obtained using (&I) and integration over (0,7).

6.3 Pressure estimates

Based on the previous convergence analysis for the velocity, in this paragraph, we provide
error estimates for the pressure. The optimal approach to follow here is not clear cut.
Depending on how much regularity one can expect for the pressure, different analysis should
be applied. Here we choose first to present two estimates for the pressure in the L?-norm
and, for regular pressures, in the H'-norm. The upper bounds consist of one part using the
previous convergence of the velocities, and a second part consisting of different norms of
the approximation error in the time derivative of the velocities. We will then show how to
get an estimate that is optimal for low-order elements if the pressure is in H*(0,T; H'((2)).
Other possible strategies will be briefly discussed in the conclusion.

Lemma 6.2 Let (u,p) the solution of @), (un,pr) € W) the solution of @), with ug ) =
P,’fuo, and assume that (u,p) has the regularity @) and that v < h. Then, the following
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error estimate holds
T
2 2(ra—1 2
/0 [F2 _Ph”o,ﬂ dt < ¢ [h* )||u||L2(0,T;Hru(Q))
+ p2re ) HPH%Z(O,T;HTP(Q))
+ [0 (u — uh)H%Z(O,T;V’(Q)) :

with V' standing for the dual of H*(Q)) and C > 0 a constant independent of v and h.

Proof. Following [20, Corollary 2.4], there exists v, € [Hg ()] such that

Vevp=p—pn |vpl1a <Clp—pulloa- (52)

In particular, we have

lp—prlldo = —pn V- vp)
={p-—pn,V-(vp— Hlli"p)) +@—pn V- (H’,ivp)).

After integration by parts and using (), we obtain

lp = pulls.0 = —(V(p = pr), v = Iivy) = (p = pr, (Iv) - o
+(p—pn, V- (II5vy))
= —(V(p—pn),vp — Ivp) = ba(p — pp, 5 vy).
Therefore, using the approximate Galerkin orthogonality (Lemma BIl) with (va,qn) =
(ITFv,,0), we get
Ip = pull.0 = = (V(p = pn), vy — T vp)
T
+ap(u—up, OFv,) —vi(up, OFv,)
T
+ en(w;w, I v,) — e (ups up, 5 vy)
T
= Jun (an, I vp) + (B (u — wp), I vy)
Ty T5

Terms 77 and T are treated using the arguments given in [I0), Proof of Theorem 4.4]. Thus,
for the first term, using the orthogonality of the L2-projection, Cauchy-Schwarz, (Z8), (T
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and since p € H*(Q), we get
T = (Vp =1} (Vp) = (Vpr — 7 (Vpr)), vp — T} vy)
< (IVp = (VP llog + b~ ¥ 1% (Tpn = mi(Vou)llo.a)
X vy = v, o
< C (I9p = 15(Fp) 0.0+ b~ j(on, pn)?) hllv,|

1
< C(Ch Ipllry + BE 10 = wasp = pa)ly, ) IVl

1,0

For the second term we have
Ty < Cll(u = up, 0) [l (TT5 v, 0)
—(2ve(u — up)n, IE v, ) o0 — (0 — uy, 2ve(TIfv,)n) o -

T4

The boundary terms are controlled in the following fashion
Taa < 2[(vh)Ze(u — i) ooallv2h 21T vyllo.on
+ 20| (vh) 2 e (11w [lo.00llv# A (= wp)[o,00
1
< 2| (vh)2e(u — up)llo,00ll (1T v,, 0)ll,
+2[[(vh)Ze(IT;v)llo.00ll (u — un, 0).

On the other hand, we have
I(vh)2e(u —un) 0,00 < | (vh)Te(u — TTju) 0,00
+ 1) (u = up) .00,
where the first term satisfies, using the trace inequality (24)), ([3) and that v < h,
I(vh)2e(u — i) o0 < Cr2h™ a0
< Ch™ a0,
and the second, using (23,

[(vh)* (i — up)[lo.00 < Cllv2e(Eu — uy)loo

< CI (5 u — up, 0)o-
In the same fashion we conclude that

1
[(vh)2 (1T vp) lo,00 < Cl(IT; vy, 0)lg-
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Thus, collecting terms, using the fact that
I0Tve, 0l < CIIEvp 10,

and the H!-stability of the L?-projection (I¥), we have

T, < C (1=, 0)llg + ™ * [ullr0) ¥yl
For the third term, we have
T3 =(u-V(u—u),I}v,) + (u—up) - Vug, I v,)

1
(wp, - nup, TFvy)ea — = (V- up,uy - TFvy).

* 2

N | —

Thus, integrating by parts and since V - u = 0 and ujpq = 0, we get

T3 =—((u—up)- VHZVP, u) — (up - VHZVP, u—uy)

T3,

1 1
— —(up, - nuy, Hva>aQ +§ (V- up,uy - Hflvp) .

2
T3 T33

Now, we treat each term separately. Using Cauchy-Schwarz on the first term followed by

(@), one gets

13,1 < C([[uffo,c0,0 + [[un] 0.0 VIIEv, o0

< C (JJullo,00,0 + [[un]

0,00,0) [0 — uy|

0,00,0) |1 — uy|

0.0l[vpllie.
For the second, using Cauchy-Schwarz and the argument followed in (B3]), we obtain

Ts2 < [[unllo,00.0lltn - 10,00l 115V, — vllo,00

1
< Ch?[[uplo,c0,0ll(@ = un, p = pu)lly, [1V5ll1.0.

Using Cauchy-Schwarz and the stability of the L2-projection, in the third term, we have

Tss < h™2[|h3V -y
< Ch™ |y

0,002l vpllo.0

0.0 lux| (55)

0,00,0ll(@ = an,p —pu)ll,, IVell1,0-
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For the jump term in (&), we use Cauchy-Schwarz, ([f), the H'-stability of the L?-
projection (I¥) and the regularity u € H"(Q), which yields

. 1., 1
Ty < ju, (Up,up)? ju, (H’,jvp, Hﬁ"p) 2

< Ju, (up, up)? ( > /a hic |y, - n|2[[VHZv,,]]2>
K

KeTy,

1
2

[

. 1
< Cju, (up, un)? [[unllo,00,0 ( > hK||VH§Vp||3,K>
KeTy,

1, 1
< Ch?2 ju, (un, up)? ||un 0,000l Vpll1,0,

1
< Ch2 |lunllo,c00ll(@ = an,p = pi)ll,, [[Vell1,0-
Finally by duality and the H!-stability of the L2-projection we have
Ts < [|0¢(u = un)[[v/[[vplli.o-

Therefore, from (B2) a Young’s inequality and by collecting the previous estimations, we
have

mpumgsc{ﬁwmmwz+ﬂmlmmi@
-1 2 2
LAt (ot )l e ] D00 — whp — g2,

amﬂﬂu—uua&.

+ ([[ullf o0 + llun|

We conclude the proof after integration over (0,7) and application of the results of Corol-
laries and O

Remark 6.1 From the optimal convergence estimate provided by Corollary 61, one would
expect a similar rate for the pressure. However, the fact that, at the discrete level, the
convective velocity is not divergence free, leads to a loss of half an order in the pressure
estimate, see equation (BH).

Unfortunately, it seems difficult to obtain an estimate of the time derivative in the dual
norm of H' (appearing in the previous Lemma). As pointed out in [25], one may obtain a
crude bound by using, instead, the L?-norm of the error in the time derivative. We therefore
propose to estimate the error in the gradients of the pressure, valid only if the pressure is
sufficiently regular, but leading to an estimate which is close to optimal.
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Lemma 6.3 Under the hypothesis of the previous corollary, the following error estimate
holds

T

MA|N@—pw%ﬂms[(Wm4+w%“*0hwé@ﬂmqm>
4 (hQTp—S + h2(7‘p—1)) HPH%Z(O,T;HTP ()

000w = w0y |
Proof. To estimate the error in the pressure gradient we start by noticing that

T T
| IVe=-pigaa<c [ 1vp- i@l
T
0 [ 11k~ I (Tm) 0 i

T
+0/|mﬂwm—v%mﬂm
0

Using approximation, (Z8), the fact that p € H*(Q2) and Corollary Bl we obtain

T T
tA HVplﬁprmag+lA 1T (V) — Vnl2.0
T
< CR* ™ D|p|1 3o o 0,170 (1)) + Ch_l/ J(pnspr) dt
. 0
= Oh2(rp71)Hp”%“’(O,T;HTP(Q)) +Cn7! /o J(® —pn,p —pp)dt
gc@%erﬁmmmmm

JrhQ(Tp_l)”pH%Q(O,T;HW(Q)) . (56)

Hence it is sufficient to study the second term. Note that, by the orthogonality of the
L%-projection and a partial integration, we have

1115 (Vp) — I (Vpn) 1.0 = (Vp = Vi, 10 (Vp) — 115 (Vpy))
= —(p—pn, V- (I;(Vp) — 11}(Vpn)))
+ (p — pn, (5 (Vp) — 15 (Vpr)) - mag

- bh(p — DPh, wl};p)v

with the notation vj; | CHIE (Vp — V).
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Therefore, using the approximate Galerkin orthogonality (Lemma Bl) with (vp,qn) =

TP = Va5 0 = an(a =, vii,) = 75w, vh,)
+ cp(u;u, szp) — cp(up;up, v,];p)

- jllh (U.h, Vllj,,p) + (at (U. - U.h), vllj,,p)'

Proceeding term by term, in a fashion similar to the previous lemma with v,’i’p instead of
I1}v, and using an inverse inequality, we obtain

11T (Vp) — T (V) [0 < cw{h%npna@
_ 2
R a2, g+ (U4 Bl )0 — wnp— o),
(1l + n ) [ — uhnag}

_ 2
+C (Wl el (0 = wnsp = 2, + 10(u = wi)lEq) -

Finally, we conclude the proof after integration over (0,7T), application of the results of
Corollaries [0 and and (BB). O

To close the problem of convergence of the pressure approximations we need an estimate
of the error in the time derivative of the error. This is the subject of the next paragraph.

6.4 An estimate for J;(u —uy)

The following theorem states the main result of this paragraph.

Theorem 6.2 Let (u,p) the solution of (M), (uy,pn) € W) the solution of @), with ug ), =
PFug, assume that (u,p) has the regularity @)-@) and that v < h. Then, the following
estimate holds

T
/ 180 (u — )2 dt < C (B 4 h22-1) (57)
0

with o % min{ry,rp,} and C > 0 with no explicit dependence of v and h.

Proof. We first decompose the error (u — up,p — pr) in two parts, using the projection

operator S, 2 (PF, RE) defined by ()

u7Uh:u7P}I:u+P}i€u7Uh:0F+0h,
—_——— —\—

o7 0
p—pr=p— Ryu+ Ryu—pp =y" + yn.
——  ——
yw Yn

INRIA



Edge oriented stabilization for the Navier-Stokes equations 37

Thus, using triangle inequality and from Corollary EE2, we only need to estimate

T
/0 10042 ¢ dt.

To this aim, we first test the modified Galerkin orthogonality (LemmaBl) with (vy, ¢n) =
(0101, 0), to obtain

(0 (u —un), 0:0n) +an(u —up, 8;0n) + b (p — pn, 9:65)
+ Ch(u; u, ateh) - Ch(uh; Up, 3t0h)
+ (0 —up, 3:04) + ju, (0 — up, 8,0) = 0.

Thus, using ([BF)), we get
H3t9h||379 + an(On, 0:01) + bi(yn, 0:01) + Vi (On, 0:61)

= —(0:0™,0,01) — an(0™,9,01) — bu(y™, 8:01) + vj(PFu, 9,04)
+ ch(uh; up, 8t0h) — ch(u; u, 8t0h) + juh (uh, 8t0h). (59)

Using the definition of aj, from ([[2), one readily obtains that

. 1 .
an(0n,0:0n) +7j(On,0:01) = 53:5 [an(On, On) + 77 (On, 01)]. (60)

We now test @) with v, = 0, and derive the remaining equation with respect to ¢, which
yields

0 = 0¢(br(qn,un) — j(Pn,qn))
= bu(qn, Ovup) — 5(0eph, qn) + bn(Oeqn, un) — j(ph, Oran)
= bp(gn, Orun) — j(Oeph, qn)-

The last inequality is obtained by noticing that d;q, € V;¥ and therefore
br(Orqn, an) — j(pn, Orqn) = 0.

We then have
bu(qn, Oran) — §(Ospn, qn) = 0, (61)

for all ¢5, € V,f. On the other hand, using the same argument, from (&) we obtain
br(an, O Piw) = j(O Ry, qn), (62)
for all g, € V;*. Thus, by taking g, = yp, in @I) and (2), we get
b (yn, 0:0n) = j(Oyn, yn)

1. .
= §8tj(yh,yh)-
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Therefore, by plugging () and (B3)) into (EJ), we have

1 ) .
[10:6113. + 5@ an(0n,0n) + j(yn,yn) +75(On, 0n)

= —(8,07,0:01,) — an(0™,0:01,) — br(y™, 9:04) + vi(PFu, 0:6),)

64
X (64)
+ cn(an;un, 010n) — cp(w;u, 010y) + ju, (n, 9:04) .
T Ty
Now we estimate the terms T; for ¢ = 1,...,3. In the following, ¢ > 0 stands for a constant
to be fixed later on. For the first term, we use ) to obtain,
T, = 7(8,507T7 8t0h) + (071—, 8t0h) — bh(p, ateh)
LI . ¢ (65)
< 52100715, + 167 [15.0) + 5119:0al1* = br(p, 9:64).

The second term is treated as in (&), with 9,0}, in the place of ITfv,,. Therefore, after using
an inverse inequality, we get

Ty < Ch™Hu = upllo.g (Juflo,co.0 + [[unl

0,00,0) [[VO:0nl0,0
_1
+ Ch™2 lunllo,co.l (@ = up,p = pr)lly, 110:61]0.0-

Finally, using Cauchy-Schwarz and an inverse inequality

T3 < ju, (g, uh)%juh (0:0h, ateh)%

< Cll(u—un,p = pu)lly, lanllo,co.0h™2[0:0n]0,0 (66)
hfl

< Cllunlg e 051

2 €
(u—up,p—pn)lly,, + C§||at0h”3,ﬂ-

Integrating over (0,T), using coercivity (Lemma B33) and by combining estimates (B5)-
(66l with Theorem Bl we obtain (for € > 0 sufficiently small)

T
/0 10004150 At < ClI(61(0), y(0))llg + Clu, p, TR mnrer) =3

T
+ / bh(p, 3t0h)dt
0
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First of all, we note that after partial integration first in space and then in time, we may
write (for the last term on the right hand side),

T T
/ br(p, 0:0n) dt = / (Vp, 0,0y) dt
0 0

=— /OT(ath, 0y)dt + (Vp(T),0,(T))
— (Vp(0),61(0)).
By applying a Cauchy-Schwarz inequality and the Sobolev embedding
VDl Lo (o,7;020) < ClIVPlE(0,7:L2(02))>5

in combination with Theorem we have

T
/ bh(pa ateh) dt < CHpHHl(O,T;Hl(Q))hmm(’"uﬂ”p)*%_
0

Clearly, we have a triple norm contribution from the unknown initial discrete error in the
pressure y,(0) in the right hand side of (@d). Indeed, the term we need to control is

3 (yn(0),yn(0)) = j(REuo, Riug — pr(0))

— j(pn(0), Rfag — pr(0)). (68)

Using the discrete incompressibility equations for uy(0) and Pfuy (and since V-ug = 0) we
have

bn(qn, un(0)) = j(pn(0), qn),
bi(qn, Piuo) = j(Ryuo, an).

Thus, taking ¢, = Rfug — px(0) and since uy,(0) = Pfug, from (E8) we have

0 = ba(Ryp(0) — pr(0), Pyug — u(0))
= j(R5u(0), Riug — pr(0)) — ji(pn(0), REug — pa(0))
= j(yn(0),yn(0)).

Hence we conclude that j(yx(0),y,(0)) = 0 and the theorem follows. [

7 Conclusion

We have derived a priori error estimates for finite element approximations of the incom-
pressible Navier-Stokes equations that are independent of the local Reynolds number and
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hence valid also for the incompressible Euler equations. The estimates are similar to those
obtained in [23] in the case of piecewise linear elements and quasi optimal for the velocities,
with the loss of h? with respect to approximation typical for stabilized methods.

For polynomial orders k& > 2 the estimates for time derivative of the velocity of Theorem
B2 is suboptimal in case the pressure is very regular due to the nonconsistency of the
projection ([B4)). The estimate can be improved if the analysis is performed in a time weighted
norm and assuming “sufficient” regularity of the pressure. It is questionable if these stronger
hypothesis can be justified (see the discussion in [25]). Convergence may also be proven
assuming less regularity on the pressure, however if dependence on the viscosity is to be
avoided it seems difficult to get away with less than p € H'(0,T; L*(Q)) N L?(0,T; H*()).
It is our hope that the present analysis sheds some light on the question of how to construct
reliable numerical methods for large eddy simulation, where the local Reynolds number must
always be assumed to be high. The fully discretized case and numerical examples will be
addressed in a forthcoming work.
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