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Abstract: We study conditions under which the Euclidean division can be imple-
mented using a floating-point division followed by a floor function. We show that
under reasonable assumptions, the rounding downward mode can always be used,
and the rounding to nearest mode can be used in most practical cases. These results
may be useful for any language, but there is a particular benefit for languages, like
ECMAScript, that do not have an integer division and that always round to nearest.
We also show that an intermediate extended precision can introduce errors and give
a condition under which an extended precision has no effect on the results.

Key-words: floating-point arithmetic, Euclidean division, integer division, correct
rounding, programming languages, ECMAScript, XPath



La division euclidienne implémentée avec

une division flottante et une partie entière

Résumé : Nous étudions des conditions sous lesquelles la division euclidienne peut
être implémentée à l’aide d’une division flottante suivie d’une fonction floor. Nous
montrons qu’avec des hypothèses raisonnables, le mode d’arrondi vers le bas peut
toujours être utilisé, et que le mode d’arrondi au plus près peut être utilisé dans
la plupart des cas usuels. Ces résultats peuvent être utiles pour n’importe quel
langage, mais surtout pour les langages, comme ECMAScript, qui n’ont pas de
division entière et qui arrondissent toujours au plus près. Nous montrons également
qu’une précision étendue intermédiaire peut introduire des erreurs et donnons une
condition sous laquelle une précision étendue n’a aucun effet sur les résultats.

Mots-clés : arithmétique virgule flottante, division euclidienne, division entière,
arrondi correct, langages de programmation, ECMAScript, XPath



The Euclidean Division Implemented with a FP Division and a Floor 3

1 Introduction

The Euclidean division of a nonnegative real number x by a positive real number
y is mathematically defined by bx/yc, i.e. the largest integer smaller or equal to
x/y. When both x and y are of integer type, the Euclidean division, also called the
integer division, is well supported by most programming languages; its implemen-
tation is straightforward, without any rounding problem such as those encountered
with floating-point arithmetic. The case where x and y are floating-point variables
is less common, but still interesting. First, floating-point variables may be used to
represent integers exactly, in particular when floating-point arithmetic allows to give
more precision than integer arithmetic (for instance, 53 bits on processors with 32-
bit integer registers) or when it leads to a faster implementation. But there are also
cases where x and y are not necessarily integers, as in the algorithm that computes
a lower bound between a segment and Z

2 [6, 7], though a scaling can be performed
to work on integers. Moreover the ECMAScript language does not have an integer
division [1, Section 11.5.2] (mainly because it does not have an integer type), so that
the programmer may wish to perform it using a division and the floor function
from the Math object1; other languages, like the ones based on XPath 1.0 [8], may
need the same trick.

A solution to implement a Euclidean division in floating-point arithmetic using
basic mathematical functions (available in programming languages) is to perform a
division x/y followed by the floor function (or equivalently, the trunc function, as
x/y is here nonnegative). But as the result of the division is rounded, one does not
necessarily obtain the wanted result bx/yc. This paper deals with conditions under
which the obtained result is guaranteed to be bx/yc.

In Section 2, we give some definitions and requirements on the floating-point
system. Section 3 explores the main cases that can occur, in short, what happens
depending on how the results are rounded. Amongst these cases, one is difficult
and the corresponding property is proved in Section 4. And as some platforms
(e.g., Linux/x86) may compute intermediate results with an extended precision, in
Section 5, we analyze the effect of such an intermediate precision on the final result.

1Indeed, this is the solution used in practice and recommended by many programmers, but

without any justification.
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4 Vincent Lefèvre

2 The Floating-Point System

We consider a floating-point system in base 2 (the main notions on floating-point
arithmetic can be found in [3]). Let n denote the mantissa size (n ≥ 2). We
assume that the division is correctly rounded in the target precision. An IEEE-754
[5] compliant system satisfies these properties as long as the system does not use
extended precision for intermediate results.

The exponent of a nonzero floating-point number x is defined as the exponent
of its most significant bit: ex = blog2(|x|)c. But equivalent definitions up to a given
constant2 are also valid in the following.

If the system has bounded exponents, we assume that the system and the ma-
nipulated values satisfy the following properties:

� the maximum exponent is large enough so that computing x/y does not gen-
erate an overflow, even after rounding;

� the minimum exponent allows to represent 1−2−n exactly. With this assump-
tion, the floating-point system may be either with or without subnormals.
Note that since 1−2−n has exactly n bits 1, any floating-point number greater
or equal to 1/2 is a normal number. As a consequence, any integer up to 2n is
either exactly representable or above the maximum representable number.

3 The Different Cases

Let k = bx/yc, where the division and the floor function are the mathematical
functions, i.e. without any rounding. If x/y > 2n, then k is not necessarily exactly
representable in the floating-point system. So, in the following, we assume that
x/y ≤ 2n. If this inequality does not hold (which should be very rare in practice),
then the problem depends on how the user wants k to be rounded; this very particular
case is out of the scope of this paper.

We are interested in the conditions under which Algorithm 1 returns a value
equal to k, i.e. b�(x/y)c = k, where � denotes the active rounding mode.

2Other common definitions choose the value e such that the floating-point number is written

m × 2e with 1/2 ≤ m < 1 or with 2n−1
≤ m < 2n.
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The Euclidean Division Implemented with a FP Division and a Floor 5

Algorithm 1 — Floating-point division and a floor.

d = x / y;

f = floor(d);

return f;

In the following sections, let us consider the various possible rounding modes:
rounding downward, rounding to nearest, rounding upward.

3.1 Rounding Downward

This rounding mode is defined on the nonnegative real numbers by:

�(u) is the largest floating-point number less or equal to u.

As u is nonnegative, this rounding mode covers the conventional rounding toward
−∞ and toward 0 modes.

Here we have �(x/y) ≤ x/y, and since k ≤ x/y and is exactly representable, then
k ≤ �(x/y). Moreover k + 1 > x/y ≥ �(x/y). Therefore b�(x/y)c = k.

Thus, in the rounding downward mode, the wanted equality b�(x/y)c = bx/yc
is always satisfied.

So, we could perform these operations always in this rounding mode. But if the
active rounding mode is dynamical, like on most current processors, then restricting
to this rounding mode could lead to a loss of performance. This is why we also need
to consider the other rounding modes.

3.2 Rounding to Nearest

This rounding mode is defined by:

�(u) is the floating-point number that is the nearest to u.

The general rule for halfway cases is to round to the floating-point number that has
an even mantissa, but we do not enforce any rule in the following for these cases.
This would not be necessary, as such cases can never occur with a division (except
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6 Vincent Lefèvre

in the subnormal zone, which can be ruled out as the floor function would give the
result 0 in any case). Indeed, if x/y = u where u is greater than the smallest normal
positive number and is the middle of two consecutive representable numbers, i.e. if
u has an n+1-bit odd mantissa, then the y.u cannot be representable with an n-bit
mantissa.

Taking this rounding mode into account is important since this is the default
rounding mode as required by the IEEE-754 standard [5, Section 4.1]. Moreover,
in some languages (Java [4], ECMAScript [1], XPath 1.0 [8], etc.), this is the only
rounding mode.

Contrary to the rounding downward mode, one can find examples for which
b�(x/y)c 6= k in the rounding to nearest mode. If n ≥ 2, then x = 3 × 2n−1 + 2
and y = 3 yield an example for which b�(x/y)c 6= k. Indeed, k = 2n−1, whereas
�(x/y) = 2n−1 + 1 (since x/y = 2n−1 + 2/3 and 2/3 > 1/2).

However, if both x and y are n-bit integers, possibly scaled by a same power of
two, then one can prove that b�(x/y)c = k. This condition is satisfied if floating-
point arithmetic is used as an implementation of a fixed-point arithmetic; in partic-
ular, it is satisfied by the values that occur in [6, 7]. One can even find a weaker
condition on x and y, and under this condition, the assumption x/y ≤ 2n is no
longer necessary:

Theorem 1 Consider a floating-point system in base 2, with or without subnormals,
such that 1/2 is a normal representable number. If u is a real number, let �(u)
denote the floating-point number that is the nearest to u (in halfway cases, any of
the enclosing floating-point numbers can be chosen). Let x and y be floating-point
numbers such that x ≥ 0, y > 0 and x − y is exactly representable in the floating-
point system. Assume that x/y does not overflow. Then b�(x/y)c = bx/yc, and this
value is exactly representable.

This theorem is proved in Section 4. Note that its conditions are rather strong.
Indeed, if we slightly weaken the condition on x − y, e.g. by just requiring x − y
to have n + 1 bits (for the mantissa), then one can find counter-examples. For
instance, if n ≥ 2, y = 2n − 1 and x = 3y − 1 = 3 × 2n − 4, then all the conditions
would be satisfied: y is representable, since it is an n-bit integer; x is representable,
since it is an integer less than 2n+2 and a multiple of 4 (its last two bits are zeros);
x−y = 2y−1 = 2n+1−3 is representable on n+1 bits. But x/y = 3−1/y > 3−21−n,
so that �(x/y) = 3, and bx/yc = 2 6= b�(x/y)c.

INRIA



The Euclidean Division Implemented with a FP Division and a Floor 7

3.3 Rounding Upward

This rounding mode is defined on the nonnegative real numbers by:

�(u) is the smallest floating-point number greater or equal to u.

As u is nonnegative, this rounding mode covers the conventional rounding toward
+∞ and away from 0 modes.

Contrary to the rounding to nearest mode, one can find examples for which both
x and y are n-bit integers (i.e. x, y < 2n) and b�(x/y)c 6= k in such a rounding mode.
For instance, if n = 4, x = 14 and y = 3, then 14/3 = 100.101010 . . . in binary, so
that �(14/3) = 101.02 = 5. Therefore b�(14/3)c = 5, whereas k = b14/3c = 4.

More generally, if n ≥ 4, then the n-bit integers x = 3×2n−2 +2 and y = 3 yield
an example for which b�(x/y)c 6= k.

To guarantee a correct result, stronger conditions on x and y are necessary. For
instance, if rounding to nearest is used in a system with a mantissa size of n−1 bits,
then the result is correct in our n-bit system with upward rounding. So, one can
reuse the conditions of Section 3.2 with a precision of n − 1 bits. In particular, if x
and y are positive integers less than 2n−1, then b�(x/y)c = bx/yc in any rounding
mode.

4 Proof of Theorem 1

First, let us prove that bx/yc is representable. If x = 0, then bx/yc = 0, which
is representable. Otherwise we can define the unit in the last place of x, denoted
ulp(x), as the weight of the n-th bit of the mantissa of x. We distinguish two cases:

� If y ≥ ulp(x), then x/y ≤ x/ulp(x) < 2n, and bx/yc is an n-bit integer, which
is representable.

� If y < ulp(x): Since x−y is representable, the difference between the exponent
of its most significant bit and the exponent of its least significant nonzero bit
is at most n − 1. Therefore its exponent is necessarily less than the exponent
of x; and since n ≥ 2, we have y < ulp(x) ≤ x/2n−1 ≤ x/2, thus x − y > x/2,
so that the exponent of x− y is the exponent of x minus 1. As a consequence,
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8 Vincent Lefèvre

x is a power of two and y = ulp(x)/2. It follows that bx/yc = 2n, which is
representable.

We now seek to prove that b�(x/y)c = bx/yc.

4.1 Case x < y

In this case, bx/yc = 0. So, we seek to prove that �(x/y) < 1.

Let y− denote the largest floating-point number less than y. Then we have:
x/y ≤ y−/y; therefore �(x/y) ≤ �(y−/y). This means that it is sufficient to do the
proof for x = y−.

The value of �(y−/y) does not change if y is scaled by a power of two. For
the sake of simplicity, we can assume that 1/2 < y ≤ 1. Then y− = y − 2−n,
and y−/y = 1 − 2−n/y ≤ 1 − 2−n, which is exactly representable (as assumed in
Section 2). Therefore �(y−/y) ≤ 1 − 2−n < 1.

As a summary, �(x/y) ≤ �(y−/y) < 1, hence b�(x/y)c = 0 = bx/yc.

4.2 Case x = y

This case is trivial: we have �(x/y) = x/y = 1, hence b�(x/y)c = bx/yc.

4.3 Case x > y

If �(x/y) ≤ x/y, then b�(x/y)c = k for the reason given in Section 3.1 (rounding
downward). Now let us assume that �(x/y) > x/y. We have b�(x/y)c ≥ bx/yc.
Then we just need to prove that b�(x/y)c ≤ bx/yc, i.e. �(x/y) < k + 1.

First note that �(x/y) cannot be a subnormal, since x/y > 1. We look for a
“good” integer E such that we can write:

� x = X · 2E , where X is an integer;

� y = Y · 2E , where Y is an integer;

INRIA



The Euclidean Division Implemented with a FP Division and a Floor 9

and we have X/Y = x/y.

If y or x − y has the same exponent as x, then we can take E = log2(ulp(x)).
Otherwise we take E = log2(ulp(x)) − 1. Explanations are given below.

Before analyzing these subcases separately, let us define d ≥ 0 as the differ-
ence between the exponents of x and y. Since x/y is rounded to nearest, we have:
�(x/y) − x/y ≤ ulp(x/y)/2, as in the closed binade of x/y, the difference between
two consecutive floating-point numbers is equal to ulp(x/y). If two floating-point
numbers have the same exponent, their quotient is less than 2; thus by definition of
d, we have: x/y < 2d+1, then ulp(x/y) ≤ ulp(2d) = 2d−n+1. Therefore

�(x/y) − x/y ≤ 2d−n.

4.3.1 Subcase E = log
2
(ulp(x))

First, let us prove that X and Y are integers. By definition of ulp, x is an integer
multiple of ulp(x), and X is this integer. If y has the same exponent as x, then
ulp(y) = ulp(x), and Y is also an integer. If x− y has the same exponent as x, then
ulp(x − y) = ulp(x), therefore X − Y is an integer, and so is X − (X − Y ), i.e. Y .

We recall that we have: �(x/y)−x/y ≤ 2d−n. Since X < 2n, we have Y < 2n−d,
and 2d−n < 1/Y . Therefore �(x/y) − x/y < 1/Y .

We have X/Y = x/y < k + 1, therefore (k + 1)Y − X > 0, and since it is an
integer, (k + 1)Y − X ≥ 1. Therefore 1/Y ≤ k + 1 − x/y, and as a consequence,
�(x/y) − x/y < k + 1 − x/y, i.e. �(x/y) < k + 1.

4.3.2 Subcase E = log
2
(ulp(x)) − 1

First, let us explain this choice for E. If neither y nor x− y has the same exponent
as x, choosing E = log2(ulp(x)) may yield a non-integer value for Y . Therefore we
need a smaller value for E. Let us show that log2(ulp(x)) − 1 is sufficient. First,
X is obviously an integer. Let us consider Y . Amongst y and x − y, at least one
of them has an exponent equal to the exponent of x minus 1, and its ulp is equal
to ulp(x)/2. Therefore, amongst Y and X − Y , at least one of them is an integer.
But this means that both are integers; indeed, since X is an integer, if X − Y is an
integer, then Y = X − (X − Y ) is also an integer.

RR n
�

5604



10 Vincent Lefèvre

Now, as in the subcase E = log2(ulp(x)), we can find similar bounds: Since
X < 2n+1, we have Y < 2n+1−d, and 2d−n < 2/Y . Therefore �(x/y) − x/y < 2/Y .
We have an upper bound that is twice as large as in the subcase E = log2(ulp(x)): it
is not possible to end the proof in the same way. And we cannot reduce this bound to
1/Y , as shown on the following example: n = 5, x = X = 44, y = Y = 19, for which
the binary expansion of x/y is 10.010100001 . . ., and �(44/19) = 10.0112 = 19/8;
but �(44/19) − 44/19 = 9/152 > 8/152 = 1/19 (our 1/Y ).

We can also consider r = (k + 1)Y − X, which is a positive integer. If r ≥ 2,
then we can end the proof as in the first subcase: 2/Y ≤ k + 1 − x/y, leading to
�(x/y) < k + 1.

The remaining case r = 1 can occur: n = 5, x = X = 32, y = Y = 11. But
we have x/y < 2d (here, d = 2). In such a case, ulp(x/y) ≤ ulp(2d−1) = 2d−n, and
�(x/y) − x/y ≤ ulp(x/y)/2 ≤ 2d−n−1 < 1/Y ≤ k + 1 − x/y, hence �(x/y) < k + 1.

The remaining case is now r = 1 and x/y ≥ 2d. We have: 2d ≤ x/y < k + 1,
therefore 2d ≤ k. Then 2dY ≤ kY = X − Y + 1 < 2n + 1, as 2n ≤ X < 2n+1 and
x − y does not have the same exponent as x. Therefore 2dY ≤ 2n. Moreover, by
definition of d, we have 2n−d ≤ Y < 2n−d+1, thus 2n ≤ 2dY . As a consequence,
Y is a power of two. Since X is even and r is odd, (k + 1)Y is odd, and the only
possibility is Y = 1 and X = 2n. So, we have: X/Y = 2n, which is representable,
and b�(x/y)c = bx/yc.

5 The Effect of an Intermediate Extended Precision

The IEEE-754 standard requires that the arithmetic operations shall be correctly
rounded to the destination, but does not specify what the destination is. For in-
stance, it may be a floating-point register with a full 64-bit mantissa (as on x86
processors in their default configuration under Linux). But the value could be later
stored into memory in double precision (i.e. with a 53-bit mantissa), causing a second
rounding.

For the (partial or complete) reproducibility of the results and platform indepen-
dence, some languages (e.g. Java, ECMAScript, XPath 1.0) forbid extended precision
(all results must be correctly rounded to the IEEE-754 double precision). But other
languages, like C [2, Section 5.2.4.2.2], allow computations to be performed in a
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The Euclidean Division Implemented with a FP Division and a Floor 11

precision larger than the one required by the floating-point type of the result. In
such a case, one can have two possible behaviors3 for Algorithm 1:

� The value of x/y in extended precision is directly used by the floor function.
This means that the expression is computed as if the only precision were the
extended one. As a consequence, the results of Section 3 can be applied, and
we will not consider this case any longer.

� The value of x/y in extended precision is converted to the target precision
before the floor function is applied: we have a double rounding.

Now, let us analyze the effect of the double rounding in each rounding mode.

5.1 Directed Rounding Modes

It is well known that the double rounding is equivalent to a single rounding in
directed rounding modes. This is due to the fact that the floating-point numbers of
the target system form a subset of the extended-precision floating-point numbers.
So, we always get bx/yc in the rounding downward mode; and if x and y are positive
integers less than 2n−1, then we also get bx/yc in any rounding mode.

5.2 Rounding to Nearest

It is also well known that the double rounding may have unwanted effects in the
rounding to nearest mode as the cumulated error of the two roundings may be
greater than 1

2 ulp (which is the maximum error when there is no extended preci-
sion). First, let us show that on a simple example. Assume that n = 5, p = 8,
x = 44 and y = 15, where p denotes the mantissa size in extended precision. In
binary, 44/15 is written 10.111 011 101110 . . ., so that the first rounding (to preci-
sion p) yields �p(44/15) = 10.111 1002 and the second rounding (to precision n)
yields �n(�p(44/15)) = 11.0002 = 3 if the rounding-to-even-mantissa rule (i.e. the
most common one, like in the IEEE-754 standard, in particular) has been chosen.
Therefore, one gets the result 3 instead of 2.

3We still assume that the result of the floor function is exactly representable in the target

precision, so that even if the floor function produces a value in extended precision, converting it to

the target precision does not lead to any rounding. And of course, the input numbers x and y are

assumed to be exactly representable in the target precision.
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12 Vincent Lefèvre

More generally, the counter-examples presented at the end of Section 3 can be
reused here, with one more bit for the target precision (as x − y must be exactly
representable): n ≥ 3, y = 2n−1 − 1 and x = 3y − 1. Then x/y = 3 − 1/y, where:

21−n < 1/y < 21−n + 23−2n

(proof: multiply the three terms by y). So, if p ≤ 2n − 2, then 1/y < 21−n + 21−p,
and �p(x/y) = 3 − 21−n; if moreover, the rounding-to-even-mantissa rule is chosen,
then �n(�p(x/y)) = 3, whereas bx/yc = 2.

In particular, on an x86 processor using the traditional floating-point unit (no
SSE2), the C expression floor(x/y) may give 3 instead of 2 for x = 3× 252 − 4 and
y = 252 − 1, both of type double; the result depends on the compiler optimizations.

We have given counter-examples for p ≤ 2n− 2, where n ≥ 3. Let us prove that
for any n ≥ 3 and p ≥ 2n−1, the equality b�n(�p(x/y))c = bx/yc is always satisfied.

In the case x < y, we have x/y ≤ 1 − 2−n, which is exactly representable
(see Section 4.1). Therefore �p(x/y) ≤ �p(1 − 2−n) = 1 − 2−n since p ≥ n, and
�n(�p(x/y)) ≤ �n(1 − 2−n) = 1 − 2−n < 1. Hence b�n(�p(x/y))c = 0 = bx/yc. In
the case x = y, we have b�n(�p(x/y))c = 1 = bx/yc. So, if x ≤ y, the equality is
satisfied (even if p < 2n − 1, but this is not really useful).

Now, let us assume that x ≥ y. The error after the double rounding is bounded
above by ε = ulp(x/y)

2 (1+2n−p). Indeed, the numbers x/y, �p(x/y) and �n(�p(x/y))
all belong to a same closed binade [2e, 2e+1], and when one rounds a value from
this binade to nearest in some given precision q, the error is bounded above by
2e−q = ulp(x/y)

2 × 2n−q. Let us improve the results of Section 4.3 in both subcases.

� Subcase E = log
2
(ulp(x)) (Section 4.3.1). We have Y ≤ 2n−d − 1, then

1/Y > 2d−n(1 + 2d−n), and 1/Y > ε if d − n ≥ n − p, i.e. p ≥ 2n − d.
Therefore, if d ≥ 1, then p ≥ 2n − d, and k + 1 − x/y ≥ 1/Y > ε; this means
that b�n(�p(x/y))c < k + 1, i.e. b�n(�p(x/y))c = k. If d = 0, then k = 1
and X/Y ≤ (2n − 1)/2n−1 = 2 − 21−n, which is exactly representable; hence
�n(�p(x/y)) ≤ 2 − 21−n, and b�n(�p(x/y))c = 1 = bx/yc.

� Subcase E = log
2
(ulp(x))−1 (Section 4.3.2). As in Section 4, we consider

r = (k+1)Y −X. If r ≥ 3, then k+1−x/y ≥ 3/Y > 3×2d−n−1 = 2d−n(1+2−1),
which is greater or equal to ε if n − p ≤ −1; since p ≥ n + 1, the inequalities
are satisfied.

INRIA



The Euclidean Division Implemented with a FP Division and a Floor 13

Now, let us assume that r < 3, i.e. r = 1 or r = 2. We recall that we have
Y ≤ 2n+1−d − 1. As a consequence, 1/Y > 2d−n−1(1 + 2d−n−1). If r = 2,

then k + 1 − x/y = 2/Y > ulp(x/y)
2 (1 + 2d−n−1). If r = 1 and x/y ≥ 2d, we

proved in Section 4.3.2 that in this case, y was a power of two, so that x/y
was exactly representable and b�n(�p(x/y))c = bx/yc; this case does not need
further discussion. So, if r = 1, we assume that x/y < 2d, from which we have

ulp(x/y) ≤ 2d−n; therefore k + 1 − x/y = 1/Y > ulp(x/y)
2 (1 + 2d−n−1).

So, in our remaining cases, k + 1 − x/y > ulp(x/y)
2 (1 + 2d−n−1). If d ≥ 2, then

d−n− 1 ≥ 1−n ≥ n− p, as p ≥ 2n− 1; therefore k + 1− x/y > ε. Otherwise
d = 1 (we recall that y does not have the same exponent as x).

– If x/y < 2, then k = 1, and as X is even, r is also even, i.e. r = 2. As a
consequence, k + 1 − x/y = 2/Y > 21−n ≥ ulp(x/y) ≥ ε.

– If x/y ≥ 2, then k ≥ 2 and r = 2. Therefore X − Y = kY − 2 ≥ 2Y − 2.
In this subcase, X − Y does not have the same exponent as X; since
d = 1, 2Y has the same exponent as X, and 2Y − 2 does not have the
same exponent as 2Y . As a consequence, Y is a power of two, and x/y is
exactly representable; hence b�n(�p(x/y))c = bx/yc.

So, we have the following theorem. Note that the considered exponent range is
the one of the target system (in precision n).

Theorem 2 Let n and p be two positive integers such that n ≥ 3 and p ≥ 2n − 1.
Consider a floating-point system in base 2 and internal precision p, with or without
subnormals, such that 1/2 is a normal representable number. If u is a real number,
let �n(u) and �p(u) denote the floating-point numbers, with n-bit and p-bit mantissas
respectively, that are the nearest to u (in halfway cases, any of the enclosing floating-
point numbers can be chosen). Let x and y be n-bit floating-point numbers such that
x ≥ 0, y > 0 and x− y is exactly representable with an n-bit mantissa. Assume that
x/y does not overflow. Then b�n(�p(x/y))c = b�n(x/y)c = bx/yc, and this value is
exactly representable.

6 Conclusion

We studied conditions under which the Euclidean division between two nonnegative
numbers of a binary floating-point system can be implemented with a floating-point
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division followed by a floor (or trunc) function. We had to assume a few properties
on the floating-point system:

� If the arithmetic has an intermediate extended precision p when rounding to
nearest is used, then p must be greater or equal to 2n − 1, when n is the
precision of the target system. Basically, this means that the processor rounds
the results to precision p, and a second rounding is performed whenever a
result is stored to memory. Unfortunately, the condition p ≥ 2n − 1 is not
satisfied for x86 processors configured to round in extended precision (64-bit
mantissas). But one should note that some languages (e.g. Java, ECMAScript,
XPath 1.0) forbid extended precision4, and when this is allowed (e.g., in ISO
C), one can generally change the rounding mode, and possibly the rounding
precision (however not in a portable way, unfortunately). One can also notice
that the double precision (53 bits) may be used as an extended precision for a
target in single precision (24 bits), and the quadruple precision (113 bits) may
be used as an extended precision for a target in double precision.

� The division must be correctly rounded. This is the case in any reasonable
floating-point implementation, in particular with IEEE-754 conforming imple-
mentations.

� The exponent range must be large enough. Again, this is the case in any
reasonable floating-point implementation, in particular with IEEE-754 con-
forming implementations.

The results are summarized here, depending on the rounding mode:

� Rounding to nearest: It is required by the IEEE-754 standard, where it
must be the default rounding mode; moreover it is even the only rounding mode
in some languages. Here an implementation using a floating-point division
followed by a floor function generally leads to the correct result in practical
cases, where floating-point is used to represent integers. There is special benefit
for languages without an integer division (e.g. ECMAScript, XPath 1.0), but
this is still interesting in any other language. Unfortunately, the result is not
necessarily correct in the very general case.

4However many implementations do not conform to the standards and work in extended precision

internally.
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� Rounding downward: The result is always correct. This is particularly
useful in the very general case.

� Rounding upward: The only interest is to avoid a change of the rounding
mode in some contexts, when rounding modes are dynamical. Unfortunately,
simple cases may fail to give the correct result, so that this rounding mode
should be avoided if possible.

When the numbers can be negative, the Euclidean division can have two possible
definitions, leading to different results: the floor function may be used so that the
remainder is nonnegative, or the trunc function may be used to get the smaller
integer in absolute value. In the latter case and rounding toward 0 or to nearest,
the above results still hold for symmetry reasons.
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