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Abstract: We propose a type system to enforce the security property of noninterference in a core
reactive language, obtained by extending the imperative language of Volpano, Smith and Irvine with
reactive primitives manipulating broadcast signals and with a form of “scheduled” parallelism. Due
to the particular nature of reactive computations, the definition of noninterference has to be adapted.
We give a formulation of noninterference based on bisimulation. Our type system is inspired by that
introduced by Boudol and Castellani, and independently by Smith, to cope with timing leaks in a
language for parallel programs with scheduling. We establish the soundness of this type system with
respect to our notion of noninterference.
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Typage de la non-interférence pour les programmes réactifs

Résumé : Nous proposons un système de types garantissant la propriété de non-interférence pour
un langage réactif simple, obtenu par l’ajout au langage impératif de Volpano, Smith et Irvine de
primitives réactives pour la diffusion et la manipulation de signaux et d’une forme de parallélisme
ordonnancé. A cause de la nature particulière des calculs réactifs, la définition de noninterférence
doit être adaptée. Nous en donnons une formulation basée sur la notion de bisimulation. Notre
système de types s’inspire de celui introduit par Boudol et Castellani, et indépendamment par Smith,
pour traiter des “fuites temporelles” (timing leaks) dans un langage pour les programmes parallèles
ordonnancés. Nous établissons la correction du système de types par rapport à la notion de non-
interférence.

Mots-clés : Programmation réactive, non-interférence, bisimulation, types.
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1 Introduction

To be widely accepted and deployed, the mobile code technology has to provide formal guarantees
regarding the various security issues that it raises. For instance, foreign code should not be allowed
to corrupt, or even simply to get knowledge of secret data owned by its execution context. Similarly,
a supposedly trusted code should be checked for not disclosing private data to public knowledge. In
[5] we have introduced a core programming model for mobile code called ULM, advocating the use
of a locally synchronous programming style [3, 11] in a globally asynchronous computing context. It
is therefore natural to examine the security issues from the point of view of this programming model.
In this paper, we address some of these issues, and more specifically the non-disclosure property,
for a simplified version of the ULM language. We recall the main features of the synchronous
programming style, in its control-oriented incarnation:

Broadcast signals Program components react according to the presence or absence of signals, by
computing and emitting signals that are broadcast to all components of a given “synchronous
area”.

Suspension Program components may be in a suspended state, because they are waiting for a signal
which is absent at the moment where they get the control.

Preemption There are means to abort the execution of a program component, depending on the
presence or absence of a signal.

Instants Instants are successive periods of the execution of a program, where the signals are con-
sistently seen as present or absent by all components.

The so-called reactive variant of the synchronous programming style, designed by Boussinot, has
been implemented in a number of languages and used for various applications, see [9, 8]. This
differs from the synchronous language ESTEREL [4], for instance in the way absence of signals is
dealt with: in reactive programming, the absence of a signal can only be determined at the end of
the current instant, and reaction is postponed to the next instant. In this way, the causal paradoxes
that arise in some ESTEREL programs can be avoided, making reactive programming well suited
for systems where concurrent components may be dynamically added or removed, as it is the case
with mobile code.

We consider here a core reactive language, which is a subset of ULM that extends the sequential
language of [19] with reactive primitives and with an operator of alternating parallel composition
(incorporating a fixed form of scheduling). As expected, these new constructs add expressive power
to the language and induce new forms of security leaks. Moreover, the two-level nature of reactive
computations, which evolve both within instants and across instants, introduces new subtleties in the
definition of noninterference. We give a formulation of noninterference based on bisimulation, as is
now standard [16, 15, 17, 6]. We define a type system to enforce this property of noninterference,
along the lines of that proposed by Boudol and Castellani [7], and independently by Smith [17], for
a language for parallel programs with scheduling. In this approach, types impose constraints on the
relation between the security levels of tested variables and signals, on one side, and those of written
variables and emitted signals, on the other side.

RR n° 5594



4 A. Almeida Matos, G. Boudol and I. Castellani

Let us briefly recall the intuition about noninterference. The idea is that in a system with multiple
security levels, information should only be allowed to flow from lower to higher levels [10]. As
usual, we assume security levels to form a lattice. However, in most of our examples we shall
use only two security levels, low (public, L) and high (secret, H). Security levels are attributed to
variables and signals, and we will use subscripts to specify them (eg. xH is a variable of high level).
In a sequential imperative language, an insecure flow of information, or interference, occurs when
the initial values of high variables influence the final values of low variables. The simplest case of
insecure flow is the assignment of the value of a high variable to a low variable, as in yL := xH . This
is called explicit (insecure) flow. More subtle kinds of flow, called implicit flows, may be induced by
the flow of control. A typical example is the program (if xH = 0 then yL := 0 else nil), where
the value of yL may give information about xH .

Other programs may be considered as secure or not depending on the context in which they
appear. For instance, the program

(while xH 6= 0 do nil) ; yL := 0 (1)

is safe in a sequential setting (since whenever it terminates it produces the same value for yL),
whereas it becomes critical in the presence of asynchronous parallelism (as explained e.g. in [6, 7]).

When moving to a reactive setting we must reconsider the security of programs with respect to
the reactive contexts. In the ULM model there are two kinds of parallel composition:

1. The global asynchronous composition of “reactive machines”: this is similar to the parallel
composition usually considered in the literature (see for instance [16, 7, 17]), with the dif-
ference that no specific scheduling is assumed at this level. We do not consider this global
composition here, and we expect it could be dealt with in a standard compositional manner.

2. The local synchronous composition of threads, within each reactive machine (locally syn-
chronous area). Like in the implementation of reactive programming [8], we assume a de-
terministic cooperative scheduling discipline on threads. It is well known that scheduling
introduces new possibilities of flow (see e.g. [16, 15]), and this will indeed the case with the
scheduling that we adopt here. In fact, we shall see that loops with high conditions, followed
by low assignments (like program (1) above) can be dangerous also in a reactive setting.

Another issue we are faced with when addressing the security of reactive programs is their ability
to suspend while waiting for an absent signal, thus giving rise to a special event called instant change.
One of the effects of an instant change is to reset all signals to “absent”. With the constructs of the
language we are able to write (for any security level) a program pause, whose behaviour is to
suspend for the current instant, and terminate at the beginning of the next instant (see Section 2.2).
Then we may write the following program:

emit aL ; if xH = 0 then nil else pause (2)

This program starts by emitting signal aL. Then, depending on the value of xH , it may either
terminate within an instant, in which case aL remains present, or suspend and change instant, in
which case aL is erased. However, since instant changes are not statically predictable, we do not
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Typing Noninterference for Reactive Programs 5

consider as observable the withdrawal of low signals that occurs at instant change. Consequently, we
consider (2) as safe. More complex examples of reactive programs will be given in Section 3, once
the language has been introduced. The new phenomena occurring in reactive programming will lead
us to modify the usual definition of noninterference, as well as the type system used to ensure it.

The rest of the paper is organized as follows. In Section 2 we introduce the language and its
operational semantics. Section 3 presents the type system and some properties of typed programs,
including subject reduction. We then define noninterference by means of a bisimulation relation and
prove the soundness of our type system. This paper is the full version of [2], completed with proofs.

2 The language

2.1 Syntax

We consider two infinite and disjoint sets of variables and signals, V ar and Sig, ranged over by
x, y, z and a, b, c respectively. We then let Names be the union V ar ∪ Sig, ranged over by n, m.
The set Exp of expressions includes booleans and naturals with the usual operations, but no signals.
For convenience we have chosen to present the type system only in Section 3.1. However types, or
more precisely security levels, ranged over by δ, θ, σ, already appear in the syntax of the language.
Security levels constitute what we call simple types, and are used to type expressions and declared
signals. In Section 3 we will see how more complex types for variables, signals and programs may
be built from simple types.

The language of processes P, Q ∈ Proc is defined by:

P ::= nil | x := e | let x : δ = e in P | if e then P else Q | while e do P | P ; Q
emit a | local a : δ in P | do P watching a | when a do P | (P � Q)

Note the use of brackets to make explicit the precedence of � (which, as we shall see, is a non
associative operator). The construct let x : δ = e in Q binds free occurrences of variable x in Q,
whereas local a : δ in Q binds free occurrences of signal a in Q. The free variables and signals
of a program P , noted fv(P ) and fs(P ) respectively, are defined in the usual way.

2.2 Operational Semantics

The operational semantics is defined on configurations, which are quadruples C = 〈Γ, S, E, P 〉
composed of a type-environment Γ, a variable-store S, a signal-environment E and a program P .
The type-environment is a mapping from names to the appropriate types. Types for variables and
signals, formally introduced in Section 3.1, have the form δ var and δ sig respectively. We denote the
update of Γ by {x : δ var}Γ or {a : δ sig}Γ. A variable-store is a mapping from variables to values.
By abuse of language we denote by S(e) the atomic evaluation of the expression e under S, which
we assume to always terminate and to produce no side effects. We denote by {x 7→ S(e)}S the
update or extension of S with the value of e for the variable x, depending on whether the variable is
present or not in the domain of S. The signal-environment is the set of signals which are considered
to be present. We restrict our attention to well-formed configurations C = 〈Γ, S, E, P 〉, satisfying
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6 A. Almeida Matos, G. Boudol and I. Castellani

(WHEN-SUS1)
a /∈ E

(E,when a do P )‡
(WHEN-SUS2)

(E, P )‡

(E,when a do P )‡

(WATCH-SUS)
(E, P )‡

(E,do P watching a)‡

(SEQ-SUS)
(E, P )‡

(E, P ; Q)‡
(PAR-SUS)

(E, P )‡ (E, Q)‡

(E, P � Q)‡

Figure 1: Suspension predicate

the conditions fs(P ) ⊆ dom(Γ), fv(P ) ⊆ dom(S) and dom(S) ∪ E ⊆ dom(Γ). We shall see in
Section 2.2.3 that well-formedness is preserved by execution.

A distinguishing feature of reactive programs is their ability to suspend while waiting for a
signal. The suspension predicate is defined inductively on pairs (E, P ) by the rules in Figure 1.
Suspension is introduced by the construct when a do P , in case signal a is absent. The suspension
of a program P is propagated to certain contexts, namely P ; Q, do P watching a, when a do P
and P � Q, which we call suspendable processes. We extend suspension to configurations by letting
〈Γ, S, E, P 〉‡ if 〈E, P 〉‡.

There are two forms of transitions between configurations: simple moves, denoted by the arrow
C → C ′, and instant changes, denoted by C ↪→ C ′. These are collectively referred to as steps and
denoted by C 7−→ C ′. The reflexive and transitive closures of these transition relations are denoted
with a ‘∗’ as usual. An instant is a sequence of moves leading to termination or suspension.

2.2.1 Moves

The operational rules for imperative and reactive constructs are given in Figures 2 and 3 respectively.
The functions newv(N) and news(N) take a finite set of names N and return a fresh name not in
N , respectively a variable and a signal. They are used to preserve determinism in the language. The
notation {n/m}P stands for the (capture avoiding) substitution of m by n in P .

The rules for the imperative constructs are standard. Termination is dealt with by reduction to
nil. Some comments on the rules for the reactive constructs are in order. Signal emission adds a
signal to the signal-environment. The local signal declaration is standard. The watching construct
allows the execution of its body until an instant change occurs; the execution will then resume or not
at the next instant depending on the presence of the signal (as explained in more detail below). As
for the when construct, it executes its body if the tested signal is present, and suspends otherwise.

Alternating parallel composition � implements a co-routine mechanism. It executes its left com-
ponent until termination or suspension, and then gives control to its right component, provided this
one is not already suspended. Note that � incorporates a cooperative scheduling discipline. To workn
fairly, it requires each thread to “play the game” and yield the control after a finite number of steps :
in P � Q, if P does not terminate then Q will never get the control.

INRIA



Typing Noninterference for Reactive Programs 7

(ASSIGN-OP) 〈Γ, S, E, x := e〉 → 〈Γ, {x 7→ S(e)}S, E,nil〉

(SEQ-OP1) 〈Γ, S, E,nil ; Q〉 → 〈Γ, S, E, Q〉

(SEQ-OP2)
〈Γ, S, E, P 〉 → 〈Γ′, S′, E′, P ′〉

〈Γ, S, E, P ; Q〉 → 〈Γ′, S′, E′, P ′ ; Q〉

(LET-OP)
x′ /∈ dom(Γ)

〈Γ, S, E,let x : δ = e in P 〉 → 〈{x′ : δ var}Γ, {x′ 7→ S(e)}S, E, {x′/x}P 〉

(COND-OP1)
S(e) = true

〈Γ, S, E,if e then P else Q〉 → 〈Γ, S, E, P 〉

(COND-OP2)
S(e) = false

〈Γ, S, E,if e then P else Q〉 → 〈Γ, S, E, Q〉

(WHILE-OP1)
S(e) = true

〈Γ, S, E,while e do P 〉 → 〈Γ, S, E, P ; while e do P 〉

(WHILE-OP2)
S(e) = false

〈Γ, S, E,while e do P 〉 → 〈Γ, S, E,nil〉

Figure 2: Operational semantics of imperative constructs

RR n° 5594



8 A. Almeida Matos, G. Boudol and I. Castellani

(EMIT-OP) 〈Γ, S, E,emit a〉 → 〈Γ, S, {a} ∪ E,nil〉

(LOCAL-OP)
a′ /∈ dom(Γ)

〈Γ, S, E,local a : δ in P 〉 → 〈{a′ : δ sig}Γ, S, E, {a′/a}P 〉

(WATCH-OP1) 〈Γ, S, E,do nil watching a〉 → 〈Γ, S, E,nil〉

(WATCH-OP2)
〈Γ, S, E, P 〉 → 〈Γ′, S′, E′, P ′〉

〈Γ, S, E,do P watching a〉 → 〈Γ′, S′, E′,do P ′ watching a〉

(WHEN-OP1)
a ∈ E

〈Γ, S, E,when a do nil〉 → 〈Γ, S, E,nil〉

(WHEN-OP2)
a ∈ E 〈Γ, S, E, P 〉 → 〈Γ′, S′, E′, P ′〉

〈Γ, S, E,when a do P 〉 → 〈Γ′, S′, E′,when a do P ′〉

(PAR-OP1) 〈Γ, S, E,nil � Q〉 → 〈Γ, S, E, Q〉

(PAR-OP2)
〈Γ, S, E, P 〉 → 〈Γ′, S′, E′, P ′〉

〈Γ, S, E, P � Q〉 → 〈Γ′, S′, E′, P ′
� Q〉

(PAR-OP3)
〈E, P 〉‡ ¬〈E, Q〉‡

〈Γ, S, E, P � Q〉 → 〈Γ, S, E, Q � P 〉

Figure 3: Operational semantics of reactive constructs

INRIA



Typing Noninterference for Reactive Programs 9

Example 1 (Alternating parallel composition) In this example three threads are queuing for exe-
cution in an empty signal-environment (left column). Here and in the following underbraces indicate
suspension of the executing thread. The emission of signal a by the third process unblocks the first of
the suspended processes, enabling them to execute one after the nother and then reach termination.

{} ((when a do emit b) � (when b do emit c)
︸ ︷︷ ︸

) � emit a

→ {} emit a � ((when a do emit b) � (when b do emit c))
→? {a} (when a do emit b) � (when b do emit c)
→? {a, b} when b do emit c
→? {a, b, c} nil

The operator � is clearly non commutative with respect to execution traces. It is also non asso-
ciative, as can be seen by looking at the pair of programs

((when a do emit b) � emit a) � emit c and (when a do emit b) � (emit a � emit c)

Starting from an empty signal environment, the first program will emit the signals in the order a, b, c,
while the second will emit them in the order a, c, b.

We have seen that suspension of a thread may be lifted during an instant upon emission of the
signal by another thread in the pool. This is no longer possible in a program in which all threads are
suspended. When this situation is reached, an instant change occurs.

2.2.2 Instant changes

Suspension of a configuration marks the end of an instant. At this point, all suspended subprocesses
of the form do P watching a whose tested signal a is present are killed, and all signals are reset
to absent (that is, the new signal-environment is the empty set). Indeed, the watching construct
provides a mechanism to recover from suspension and from deadlock situations originated by when
commands (as will be illustrated by the causality cycle example below). The semantics of instant
changes is defined in Figure 4. The function bP cE is meant to be applied to suspended processes
(see Figure 1) and therefore is defined only for them.

Instant changes are programmable; we hinted in the Introduction at the possibility of encoding
a primitive that enforces suspension of a thread until instant change. This primitive, which we call
pause, is defined as follows.

Example 2 (pause) Here the local declaration of signal a ensures that the signal cannot be emitted
outside the scope of its declaration, and therefore that the program will suspend when reaching the
subprogram when a do nil. At this point, the presence of b (replaced upon creation by a fresh
signal b′) is checked, and since it has been emitted, the subprogram when a do nil (where a has
been replaced by a fresh signal a′) is aborted at the beginning of the next instant.

{} local a : δ in (local b : θ in (emit b ; do (when a do nil) watching b))
→? {} emit b′ ; do (when a′ do nil) watching b′

→? {b′} do (when a′ do nil
︸ ︷︷ ︸

) watching b′

︸ ︷︷ ︸

↪→ {} nil

RR n° 5594



10 A. Almeida Matos, G. Boudol and I. Castellani

In the following examples we shall assume programs to run in the empty signal environment if not
otherwise specified.

Note that the program pause does not suspend immediately but only after performing a few
“administrative moves”. This implies for instance that the program

(pause ; P ) � (pause ; Q)

evolves to the program Q � P after a change of instant, since the second component gets the control
before the suspension. On the other hand, no switch of control occurs in the program

(pause ; P ) � (when a do Q)

since in this case the second component suspends immediately. Hence this program will evolve to
P � (when a do Q) at instant change.

The following is an example where an instant change breaks a causality cycle:

emit a ; ((when b do emit c) � (do (when c do emit b) watching a) ; emit b)

Here the whole program suspends after the emission of a. Then, since a is present, the body of the
watching construct is killed and a new instant starts, during which b is emitted, thus unblocking
the other thread and allowing c to be emitted. This is an example of a deadlock situation which is
exited at the end of instant thanks to the watching construct.

2.2.3 Execution paths

A configuration C = 〈Γ, S, E, P 〉 is alive if it can perform a step, what we denote by C 7−→.
Otherwise it is terminated, what we denote by C 67−→. If C = 〈Γ, S, E, P 〉 is able to perform a step,
the form of this step depends on whether P is suspended or not in the environment E. A computation
has the general form:

〈Γ, S, E, P 〉 →? 〈Γ1, S1, E1, P1〉 ↪→ 〈Γ1, S1, ∅, bP1cE1
〉 →? 〈Γ2, S2, E2, P2〉 ↪→ . . .

We establish now a few properties of computations. Given a configuration 〈Γ, S, E, P 〉, we use the
term memory to refer to the pair (S, E). It is easy to see from the semantic rules that computations
may affect a memory only by updating it or by extending it with a fresh variable. Similarly, they
may affect a type-environment only by extending it with a fresh name. These facts are summed up
in the following proposition, which we state without proof.

Proposition 2.1 (Simple properties of computations)

1. If 〈Γ, S, E, P 〉 → 〈Γ′, S′, E′, P ′〉, then Γ′ = Γ or Γ′ = {n : δ name}Γ, where n /∈ dom(Γ).

2. If 〈Γ, S, E, P 〉 → 〈Γ′, S′, E′, P ′〉, then dom(S′) = dom(S) or dom(S′) = dom(S) ∪ {x},
for some x /∈ dom(S), and E ′ = E or E′ = E ∪ {a} for some a ∈ dom(Γ)\E.

INRIA



Typing Noninterference for Reactive Programs 11

We show now that computations preserve well-formedness of configurations. We recall that a
configuration C = 〈Γ, S, E, P 〉 is well-formed if fs(P ) ⊆ dom(Γ), fv(P ) ⊆ dom(S) and
dom(S) ∪ E ⊆ dom(Γ).

Proposition 2.2 (Well-formedness is preserved along execution)

If C is a well-formed configuration and C 7−→ C ′ then C ′ is also a well-formed configuration.

Proof Let C = 〈Γ, S, E, P 〉 and C ′ = 〈Γ′, S′, E′, P ′〉. We must show that C ′ satisfies the properties
fs(P ′) ⊆ dom(Γ′), fv(P ′) ⊆ dom(S′) and dom(S′) ∪ E′ ⊆ dom(Γ′). We distinguish the two
cases C ↪→ C ′ and C → C ′.

1. Instant change. If C ↪→ C ′ then Γ′ = Γ, S′ = S, E′ = ∅ and P ′ = bP cE . It is easy to see
that fv(bP cE) ⊆ fv(P ). Then the properties for C ′ follow immediately from those for C.

2. Simple move. Suppose now C → C ′. We prove the required properties by induction on
the proof of the transition. There are several base cases to consider. Indeed, the only cases
where induction is used are those of rules (SEQ-OP2), (WATCH-OP2), (WHEN-OP2) and
(PAR-OP2). Note that in all base cases apart from (LET-OP), we have fv(P ′) ⊆ fv(P ) and
dom(S′) = dom(S), so the property fv(P ′) ⊆ dom(S′) is trivial. Similarly, in all base cases
apart from (LET-OP) and (LOCAL-OP), we have fs(P ′) ⊆ fs(P ) and dom(Γ′) = dom(Γ),
so the property fs(P ′) ⊆ dom(Γ′) is trivial. As for the property dom(S ′) ∪ E′ ⊆ dom(Γ′),
it is trivial in all cases where Γ′ = Γ, S′ = S and E′ = E. We examine the remaining cases.

• (ASSIGN-OP) Here Γ′ = Γ,dom(S′) = dom(S) and E′ = E, hence the property
dom(S′) ∪ E′ ⊆ dom(Γ′) follows immediately from that for C.

• (SEQ-OP2) Here P = P1; P2, P ′ = P ′
1
; P2, and the transition C → C ′ is deduced from

〈Γ, S, E, P1〉 → 〈Γ′, S′, E′, P ′
1〉. By induction fs(P ′

1) ⊆ dom(Γ′), fv(P ′
1) ⊆ dom(S′)

and dom(S′) ∪ E′ ⊆ dom(Γ′). Hence the last property for C ′ is already given. Now,
since C is well-formed, we know that fs(P2) ⊆ dom(Γ) and fv(P2) ⊆ dom(S). By
Proposition 2.1 dom(Γ) ⊆ dom(Γ′) and dom(S) ⊆ dom(S′), whence fs(P ′

1; P2) =
fs(P ′

1
) ∪ fs(P ′

2
) ⊆ dom(Γ′) and fv(P ′

1
; P2) = fv(P ′

1
) ∪ fv(P ′

2
) ⊆ dom(S′).

• (LET-OP) Here P = let x : δ = e in P1 and P ′ = {x′/x}P1, for some x′ not in
dom(Γ) and thus not in dom(S) nor in fv(P ). We have Γ′ = {x′ : δ var}Γ, S′ =
{x′ 7→ S(e)}S, E′ = E. Since fs(P ′) = fs(P ) and fv(P ′) = fv(P ) ∪ {x′}, it
follows that fs(P ′) ⊆ dom(Γ) ⊆ dom(Γ′) and fv(P ′) ⊆ dom(S) ∪ {x′} = dom(S′).
Similarly, we have dom(S ′)∪E′ = dom(S)∪ {x′} ∪E ⊆ dom(Γ)∪ {x′} = dom(Γ′).

• (EMIT-OP) Here P = emit a and we have Γ′ = Γ, S′ = S and E′ = E ∪ {a}. Since
C is well-formed, we know that fs(P ) ⊆ dom(Γ), hence a ∈ dom(Γ). We can then
conclude that dom(S ′) ∪ E′ ⊆ dom(Γ′).

• (LOCAL-OP) Here P = local a : δ in P1 and P ′ = {a′/a}P1 for some a′ not
in dom(Γ). Since Γ′ = {a′ : δ sig}Γ, S′ = S and E′ = E, we have fs(P ′) =
fs(P ) ∪ {a′} ⊆ dom(Γ) ∪ {a′} = dom(Γ′) and dom(S′) ∪ E′ = dom(S) ∪ E ⊆
dom(Γ) ⊆ dom(Γ′).
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12 A. Almeida Matos, G. Boudol and I. Castellani

• (WATCH-OP2) Here P = do P1 watching a, P ′ = do P ′
1
watching a and the

transition C → C ′ is deduced from 〈Γ, S, E, P1〉 → 〈Γ′, S′, E′, P ′
1
〉. By induction we

have fs(P ′
1) ⊆ dom(Γ′), fv(P ′

1) ⊆ dom(S′) and dom(S′) ∪ E′ ⊆ dom(Γ′). Thus the
third property is given. Moreover fv(P ′) = fv(P ′

1
), so we only have to prove the first

property. By Proposition 2.1 dom(Γ) ⊆ dom(Γ′). Since C is well-formed, we know that
fs(P ) ⊆ dom(Γ), thus a ∈ dom(Γ) ⊆ dom(Γ′). Whence fs(P ′) = fs(P ′

1
) ∪ {a} ⊆

dom(Γ′) ∪ {a} = dom(Γ′).

• The cases of rules (WHEN-OP2) and (PAR-OP2) are similar.

�

By virtue of this result, we may always assume configurations to be well-formed. We shall generally
do so without explicitly mentioning it. As a first consequence of well-formedness, we will show
that a configuration is terminated if and only if the executing process is syntactically equal to nil.
To prove this fact we shall also need the following assumption about expression evaluation, already
mentioned in Section 2.2.

Assumption 2.3 For any S, e such that fv(e) ⊆ dom(S), the value S(e) is defined.

Proposition 2.4 A configuration C = 〈Γ, S, E, P 〉 is terminated if and only if P = nil.

Proof We prove that P 6= nil implies C 7−→, by induction on the structure of P . Recall that by
definition C ↪→ if and only if 〈E, P 〉‡. We examine some sample cases.

• P = x := e. Since C is well-formed, we have fv(e) ∈ dom(S) and thus by Assumption 2.3
the value S(e) is defined. Then C → 〈Γ, {x 7→ S(e)}S, E,nil〉 by (ASSIGN-OP).

• P = P1 ; P2. If P1 = nil, then C → 〈Γ, S, E, P2〉 by (SEQ-OP1). If P1 6= nil then
by induction either (E, P1)‡ or ∃Γ′, S′, E′, P ′

1 such that 〈Γ, S, E, P1〉 → 〈Γ′, S′, E′, P ′
1〉.

In the first case we have (E, P1; P2)‡ by (SEQ-SUS) and C ↪→ 〈Γ′, S′, E′, bP1cE ; P2〉 by
(INSTANT-OP), while in the latter we have C → 〈Γ′, S′, E′, P ′

1
; P2〉 by (SEQ-OP2).

• P = let x : δ = e in P1 . Since newv(N) is a total function, we have C → by (LET-OP).

• P = if e then P1 else P2. By well-formedness and Assumption 2.3 we know that S(e)
is defined (and we may assume it to be a boolean value, by some implicit typing). Then we
deduce C →, using rule (COND-OP1) or rule (COND-OP2) depending on the value S(e).

• P = while e do P1. Similar to P = if e then P1 else P2.

• P = do P1 watching a. Similar to P = P1; P2.

• P = when a do P1. If a /∈ E, then we have (E,when a do P1)‡ by (WHEN-SUS) and
C ↪→ 〈Γ′, S′, E′, bwhen a do P1cE〉 by (INSTANT-OP). Assume now a ∈ E. If P1 = nil,
then C → 〈Γ, S, E,nil〉 by rule (WHEN-OP1). If P1 6= nil, then we use induction exactly
as in the case P = P1 ; P2.
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Typing Noninterference for Reactive Programs 13

• P = P1 � P2. If P1 = nil, then C → 〈Γ, S, E, P2〉 by (PAR-OP1). If P1 6= nil then
by induction either (E, P1)‡ or ∃Γ′, S′, E′, P ′

1
such that 〈Γ, S, E, P1〉 → 〈Γ′, S′, E′, P ′

1
〉. In

the latter case C → 〈Γ′, S′, E′, P ′
1 � P2〉 by (PAR-OP2). In the first case either also (E, P2)‡

and thus (E, P1; P2)‡ by (PAR-SUS) and C ↪→ 〈Γ′, S′, E′, bP1cE ; P2〉 by (INSTANT-OP),
or ¬(E, P2)‡ and C → 〈Γ, S, E, P2 � P1〉 by (PAR-OP3).

�

We are now able to prove an important property of reactive programs, namely their deterministic
behaviour up to the choice of local names. If C is a configuration, let C{n/m} be the pointwise
substitution of name n for name m in all components of C.

Proposition 2.5 (Determinism) If a configuration C = 〈Γ, S, E, P 〉 is alive, it is either suspended,
if 〈E, P 〉‡, in which case ∃!C ′ : C ↪→ C ′, or active, in which case ∃C ′ = 〈Γ′, S′, E′, P ′〉 such
that C → C ′ and for any C ′′ = 〈Γ′′, S′′, E′′, P ′′〉 such that C → C ′′ either C ′′ = C ′, or
dom(Γ′′)\dom(Γ) = {n}, dom(Γ′)\dom(Γ) = {m} and C ′′ = C ′{n/m}.

Proof By Proposition 2.4 we know that P 6= nil. If 〈E, P 〉‡, the only rule that applies to C is
(INSTANT-OP), yielding the transition C ↪→ C ′ = 〈Γ, S, ∅, bP cE〉. If ¬〈E, P 〉‡, then it may be
easily checked, by inspection of the rules in Figures 2 and 3, that exactly one rule will be applicable
to C, yielding a unique transition C → C ′ if this rule is different from (LET-OP) or (LOCAL-OP).
If the rule is (LET-OP) or (LOCAL-OP), then C has an infinity of moves, one for each choice of the
new name, and clearly the resulting configurations are the same up to a renaming of this name.

�

3 Noninterference

In this section we introduce our type system and prove some of its properties. We then formalise
our security property as a form of self-bisimilarity, and prove that our type system guarantees this
property. Finally, we compare our notion of security with a more standard one, and show that our
notion is stronger in several respects (and thus closer to the notion of typability).

3.1 Type System

The role of the type system is to rule out insecure programs. Now, what should be the security
notion for our language? Should it be based on a termination sensitive semantics (as for sequen-
tial languages [19]), where only the final values of executions are observable? Or should it rather
rely on a termination insensitive semantics (as for the parallel languages of [16, 15, 7]), where all
intermediate values of possibly nonterminating executions are taken into account? The answer is
not immediately obvious, since in our language parallelism consists of a deterministic interleaving
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14 A. Almeida Matos, G. Boudol and I. Castellani

(INSTANT-OP)
〈E, P 〉‡

〈Γ, S, E, P 〉 ↪→ 〈Γ, S, ∅, bP cE〉
where

bdo P watching acE

def
=







nil if a ∈ E

do bP cE watching a otherwise

bwhen a do P cE

def
=







when a do bP cE if a ∈ E

when a do P otherwise

bP ; QcE

def
= bP cE ; Q

bP � QcE

def
= bP cE � bQcE

Figure 4: Operational semantics of instant changes

of cooperative threads, and thus some of the problems raised by input-output semantics in a parallel
setting disappear (like the non-reproducibility of results and the lack of compositionality).

However, it is well-known that in reactive programming, as well as in other kinds of parallel pro-
gramming, input-output semantics is not appropriate since many useful programs (like controllers,
schedulers, service providers and other programs reacting to environment requests) are explicitly
designed to be persistent. On the other hand, reactive programs execute across instants, and it is
generally agreed that an instantly diverging program (that is, a program which loops within an in-
stant, also called instantaneous loop) should be rejected. In other words, a “good” nonterminating
program should span over an infinity of instants. One could then envisage to adopt an intermediate
semantics, where values are observed only at the end of instants, where computations are guaranteed
to terminate if programs are well-behaved. We shall leave this question open for future investigation,
and adopt here a termination insensitive semantics as in previous work on concurrent languages.

In the Introduction we illustrated the notion of (insecure) implicit flow in sequential programs.
It is easy to see that similar implicit flows arise also with reactive constructs. Consider the program

emit cL ; (do (when aH do emit bL) watching cL) (3)

Whether aH is present or not this program always terminates (in one or two instants respectively),
but bL is emitted only if aH is present. Also the more subtle program (1) has its reactive counterpart

(when aH do nil) ; emit bL (4)

Indeed this program may be source of leaks when composed with other threads, since suspension
can be lifted by the emission of signal aH .

INRIA



Typing Noninterference for Reactive Programs 15

Consider for instance the program γ � (α � β) (which can be viewed as a reactive analogue of the
PIN example of [16, 7]), where

γ : if PINH = 0 then emit aH else nil
α : (when aH do nil) ; emit bL

β : emit cL ; emit aH

(5)

If PINH = 0, then α is completely executed before β gets the control, and bL is emitted before cL.
If PINH 6= 0, then α suspends and β executes, emitting cL and then aH , thus unblocking α. In this
case bL is emitted after cL. We should point out that thread γ is not essential here (it is included only
to highlight the similarity with the PIN example of [16, 7]).

Let us turn now to a more subtle kind of information leak, called nontermination leak, which
arises in standard multi-threaded languages. In a parallel language a nontermination leak may occur
when a loop on a high test is followed by a low memory change, since such a program may be
temporarily blocked and then unblocked by some other thread, which then controls the time at which
the low assignment is executed. Can this situation arise in a reactive setting? As already noticed, the
reactive parallel operator � implements a cooperative scheduling policy. This means that once it gets
the control, an instantly diverging thread will hold it forever, thus preventing the other threads from
executing. Consider the typical example

(while xH 6= 0 do nil) ; yL := 0 (6)

In a standard parallel setting the loop can be unblocked by a parallel thread, thus possibly giving
rise to an insecure flow between xH and yL. In contrast, in the reactive case the loop cannot be
unblocked by another thread, since the executing thread releases the control only by terminating or
suspending. However, reactive concurrency introduces new leaks which will force us to rule out
programs like (6), where loops on high tests are followed by low assignments or low emissions.
Consider for instance the program

((while xH 6= 0 do (pause ; xH := 0)) ; yL := 0) � (yL := 1 ; xH := 0) (7)

Here the first thread suspends if and only if xH 6= 0. If it suspends, the second thread takes over and
the low variable yL gets the value 1 before the value 0. If it does not suspend, the low variable yL

gets the value 0 before the value 1. Hence there is an insecure flow from xH to yL. This kind of leak
will be called suspension leak, conveying the idea that high tests may influence the suspension of
threads and thus their order of execution, possibly leading to insecure flows if these threads contain
low assignments or emissions.

To sum up, although the phenomena involved are slightly different, the rule of thumb for typing
reactive programs seems to be similar to that used for parallel programs in [17, 7], which prescribes
that high tests, i.e. tests on high variables or signals, should not be followed (whether in the same
construct or in sequence) by low writes, i.e. assignments to low variables or emissions of low signals.

However, there is a further element to consider. Let us look at a more elaborate example, which
obeys the above-mentioned condition of having “no low writes after high tests” and yet exhibits a
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16 A. Almeida Matos, G. Boudol and I. Castellani

suspension leak. Consider the program (γ ′
� α′) � β′, running in two different signal environments

E1 = {aH , bH} and E2 = {bH}:

γ′ : pause ; xL := 1
α′ : do (when aH do nil) watching bH � when cL do xL := 0

β′ : pause ; emit cL

(8)

Here threads γ′ and α′ contain different assignments to xL. Thread γ′ starts executing and sus-
pends after a few steps. Now thread α′ may either suspend immediately, in the environment E2

where signal aH is absent, or execute its left branch before suspending, in the environment E1

where signal aH is present. Therefore γ ′ and α′ will switch positions in the environment E1 but
not in the environment E2. In any case their composition will eventually suspend and thread β ′

will gain the control, suspending as well after a few moves. At this point a change of instant oc-
curs, after which the system is either in the state emit cL � (when cL do xL := 0 � xL := 1) or
in the state emit cL � (xL := 1 � (nil � when cL do xL := 0)), depending on whether the start-
ing environment was E1 or E2. In any case signal cL is now emitted and we are left with either
(when cL do xL := 0 � xL := 1) or (xL := 1 � (nil � when cL do xL := 0)). In the first case
the assignment xL := 0 will be executed first, while in the second it will be executed after xL := 1.

The last example shows that suspension leaks may be caused by the coexistence of a high test in
a thread with a low write in another thread. This will lead us to impose conditions in the typing rules
for reactive concurrency, which are similar to those required for sequential composition in [7, 17],
demanding that the level of tests in one component be lower or equal to the level of writes in the
other component. Moreover in the case of P � Q this will have to hold in both directions, since the
roles of P and Q may be interchanged during execution.

Let us now present our type system. As we mentioned in Section 2, expressions will be typed
with simple types, which are just security levels δ, θ, σ. As usual, these are assumed to form a lattice
(T ,≤), where the order relation ≤ stands for “less secret than” and ∧,∨ denote the meet and join
operations. Starting from simple types we build variable types of the form δ var and signal types of
the form δ sig. Program types will have the form (θ, σ) cmd, as in [7, 17]. Here the first component
θ represents a lower bound on the level of written variables and emitted signals, while the second
component σ is an upper bound on the level of tested variables and signals.

Our type system is presented in Figure 5. Concerning the imperative part of the language, it
is the same as that of [7, 17]. The rules for the reactive constructs have been mostly motivated by
the above examples. Let us just note that the rules for the when and watching commands are
similar to those for the while command. This is not surprising since all these commands consist
of the execution of a process under a guard. As concerns reactive parallel composition, we already
explained the reasons for introducing side conditions similar to those for sequential composition.

One may notice that these side conditions restrict the compositionality of the type system and
introduce some overhead (two comparisons of security levels) when adding new threads in the sys-
tem. This is the price to pay for allowing loops with high guards such as while xH = 0 do nil
(which are rejected by previous type systems, as [16, 15]) in the context of a co-routine mechanism.
However, it might be worth examining if this restriction could be lifted to some extent by means of
techniques proposed for other concurrent languages ([12, 13]).
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Typing Noninterference for Reactive Programs 17

(NIL) Γ ` nil : (θ, σ) cmd

(ASSIGN)
Γ ` e : θ Γ(x) = θ var

Γ ` x := e : (θ, σ) cmd

(LET)
Γ ` e : δ {x : δ var}Γ ` P : (θ, σ) cmd

Γ ` let x : δ = e in P : (θ, σ) cmd

(SEQ)
Γ ` P : (θ1, σ1) cmd Γ ` Q : (θ2, σ2) cmd σ1 ≤ θ2

Γ ` P ; Q : (θ1 ∧ θ2, σ1 ∨ σ2) cmd

(COND)
Γ ` e : δ Γ ` P : (θ, σ) cmd Γ ` Q : (θ, σ) cmd δ ≤ θ

Γ ` if e then P else Q : (θ, δ ∨ σ) cmd

(WHILE)
Γ ` e : δ Γ ` P : (θ, σ) cmd δ ∨ σ ≤ θ

Γ ` while e do P : (θ, δ ∨ σ) cmd

(EMIT)
Γ(a) = θ sig

Γ ` emit a : (θ, σ) cmd

(LOCAL)
{a : δ sig}Γ ` P : (θ, σ) cmd

Γ ` local a : δ in P : (θ, σ) cmd

(WATCH)
Γ(a) = δ sig Γ ` P : (θ, σ) cmd δ ≤ θ

Γ ` do P watching a : (θ, δ ∨ σ) cmd

(WHEN)
Γ(a) = δ sig Γ ` P : (θ, σ) cmd δ ≤ θ

Γ ` when a do P : (θ, δ ∨ σ) cmd

(PAR)
Γ ` P : (θ1, σ1) cmd Γ ` Q : (θ2, σ2) cmd σ1 ≤ θ2 σ2 ≤ θ1

Γ ` P � Q : (θ1 ∧ θ2, σ1 ∨ σ2) cmd

(SUB)
Γ ` P : (θ, σ) cmd θ ≥ θ′ σ ≤ σ′

Γ ` P : (θ′, σ′) cmd

(EXPR)
∀xi ∈ fv(e).δ ≥ θi where Γ(xi) = θi var

Γ ` e : δ

Figure 5: Typing Rules
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18 A. Almeida Matos, G. Boudol and I. Castellani

3.2 Properties of typed programs

It is easy to see that if a program is typable in a type-environment Γ, it is also typable with the same
type in any environment Γ′ extending Γ. This fact, together with a simple property of substitution,
is stated here without proof:

Proposition 3.1 (Simple properties of typed programs)

1. If Γ ` P : (θ, s) cmd and Γ′ ⊇ Γ, then Γ′ ` P : (θ, s) cmd.

2. If {n : δ name}Γ ` P : (θ, s) cmd and n′ /∈ dom(Γ), then {n′ : δ name}Γ ` {n′/n}P :
(θ, s) cmd.

In order to establish one of the main properties of our type system, subject reduction, we start by
showing that types are preserved by instant changes:

Lemma 3.2 If 〈E, P 〉‡ and Γ ` P : (θ, σ) cmd, then Γ ` bP cE : (θ, σ) cmd.

Proof By induction on the proof of Γ ` P : (θ, σ) cmd. We only have to consider the cases of
suspendable processes (see Figure 4), corresponding to the typing rules (WHEN), (WATCH), (SEQ),
(PAR) and to the subtyping rule (SUB).

• (WHEN) Here P = when a do P1 and Γ ` P : (θ, σ) cmd is deduced from Γ(a) =
δ sig, Γ ` P1 : (θ, σ1) cmd, δ ≤ θ and σ = δ ∨ σ1. If a /∈ E we conclude immediately
since bP cE = P . If a ∈ E then bP cE = when a do bP1cE . By induction Γ ` bP1cE :
(θ, σ1) cmd, hence, using rule (WHEN) again, we deduce Γ ` bP cE : (θ, σ) cmd.

• (WATCH) Here P = do P1 watching a and Γ ` P : (θ, σ) cmd is deduced again
from Γ(a) = δ sig, Γ ` P1 : (θ, σ1) cmd, δ ≤ θ and σ = δ ∨ σ1. If a ∈ E we have
bP cE = nil and we can conclude immediately by rule (NIL). If a /∈ E then bP cE =
do bP1cE watching a. By induction Γ ` bP1cE : (θ, σ1) cmd, hence Γ ` bP cE :
(θ, σ) cmd by rule (WATCH).

• (SEQ) Here P = P1 ; P2 and Γ ` P : (θ, σ) cmd is deduced from Γ ` P1 : (θ1, σ1) cmd,
Γ ` P2 : (θ2, σ2) cmd, θ = θ1 ∧ θ2, σ = σ1 ∨ σ2, σ1 ≤ θ2. We have bP1 ; P2cE =
bP1cE ; P2. By induction Γ ` bP1cE : (θ1, σ1) cmd, hence Γ ` bP cE : (θ, σ) cmd by rule
(SEQ).

• (PAR) Here P = P1 � P2 and Γ ` P : (θ, σ) cmd is deduced from Γ ` P1 : (θ1, σ1) cmd,
Γ ` P2 : (θ2, σ2) cmd, θ = θ1∧θ2, σ = σ1∨σ2, σ1 ≤ θ2, σ2 ≤ θ1. We have bP1 � P2cE =
bP1cE � bP2cE . By induction Γ ` bP1cE : (θ1, σ1) cmd and Γ ` bP2cE : (θ2, σ2) cmd,
hence Γ ` bP cE : (θ, σ) cmd by rule (PAR).

• (SUB) Here Γ ` P : (θ, σ) cmd is deduced from Γ ` P : (θ′, σ′) cmd for some θ′, σ′ such
that θ ≥ θ′ and σ ≤ σ′. By induction Γ ` bP cE : (θ′, σ′) cmd, hence, using rule (SUB)
again, we deduce Γ ` bP cE : (θ, σ) cmd.

�
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Theorem 3.3 (Subject Reduction)

If Γ ` P : (θ, σ) cmd and 〈Γ, S, E, P 〉 7−→ 〈Γ′, S′, E′, P ′〉 then Γ′ ` P ′ : (θ, σ) cmd.

Proof Let C = 〈Γ, S, E, P 〉 and C ′ = 〈Γ′, S′, E′, P ′〉. We want to show that Γ′ ` P ′ : (θ, σ) cmd.
We distinguish the two cases C ↪→ C ′ and C → C ′.

1. Instant change. If C ↪→ C ′ then Γ′ = Γ and P ′ = bP cE . We can then conclude immediately
using Lemma 3.2.

2. Simple move. Suppose now C → C ′. We show that Γ′ ` P ′ : (θ, σ) cmd by induction on the
proof of Γ ` P : (θ, σ) cmd. We examine the cases where P is not terminated nor suspended.
Note that in the cases (ASSIGN) and (EMIT) we have P ′ = nil and thus we can conclude
immediately using rule (NIL). We consider the other cases.

• (LET) Here P = let x : δ = e in P1 and Γ ` P : (θ, σ) cmd is deduced from
Γ ` e : δ and {x : δ var}Γ ` P1 : (θ, σ) cmd. Since C → C ′ is derived by (LET-OP),
we have Γ′ = {x′ : δ var}Γ and P ′ = {x′/x}P1 for some x′ /∈ dom(Γ). Then by
Proposition 3.1 we can conclude that {x′ : δ var}Γ ` {x′/x}P1 : (θ, σ) cmd.

• (SEQ) Here P = P1 ; P2 and Γ ` P : (θ, σ) cmd is deduced from the hypotheses
Γ ` P1 : (θ1, σ1) cmd, Γ ` P2 : (θ2, σ2) cmd, θ = θ1 ∧ θ2, σ = σ1 ∨ σ2, σ1 ≤ θ2.

– If P1 = nil, then C → C ′ is derived by (SEQ-OP1) and thus Γ′ = Γ and P ′ =
P2. Since θ1 ∧ θ2 ≤ θ2 and σ1 ∨ σ2 ≥ σ2, by rule (SUB) we have Γ′ ` P2 :
(θ1 ∧ θ2, σ1 ∨ σ2) cmd.

– If P1 6= nil then C → C ′ is derived using rule (SEQ-OP2) from the hypothesis
〈Γ, S, E, P1〉 → 〈Γ′, S′, E′, P ′

1〉. We then have P ′ = P ′
1 ; P2. By induction Γ′ `

P ′
1

: (θ1, σ1) cmd. By Proposition 2.1 dom(Γ) ⊆ dom(Γ′), hence we may use
Proposition 3.1 to get Γ′ ` P2 : (θ2, σ2) cmd. Then, using rule (SEQ) again, we
obtain Γ′ ` P ′

1
; P2 : (θ1 ∧ θ2, σ1 ∨ σ2) cmd.

• (COND) Here P = if e then P1 else P2 and Γ ` P : (θ, σ) cmd is deduced from
Γ ` e : δ, Γ ` P1 : (θ, σ′) cmd and Γ ` P2 : (θ, σ′) cmd where σ = δ ∨ σ′.

– If S(e) = true, then C → C ′ is derived using rule (COND-OP1) and we have
Γ′ = Γ and P ′ = P1. Since Γ′ ` P1 : (θ, σ′) cmd and σ ≥ σ′, by (SUB) we have
Γ′ ` P1 : (θ, σ) cmd.

– The case S(e) = false is symmetric.

• (WHILE) Here P = while e do P 1 and Γ ` P : (θ, σ) cmd is deduced from Γ ` e :
δ, Γ ` P1 : (θ, σ′) cmd and δ ∨ σ′ ≤ θ where σ = δ ∨ σ′.

– If S(e) = true, then C → C ′ is derived using rule (WHILE-OP1) and we have
Γ′ = Γ and P ′ = P1 ; while e do P 1. Since Γ ` P1 : (θ, σ′) cmd and σ ≥ σ′,
by (SUB) we have Γ ` P1 : (θ, σ) cmd. Since σ ≤ θ, we may then use (SEQ) to
deduce Γ′ ` P ′ : (θ, σ) cmd.
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– If S(e) = false, then C → C ′ is derived using rule (WHILE-OP2). Then Γ′ = Γ
and P ′ = nil, and we may conclude immediately by rule (NIL).

• (LOCAL) Here P = local a : δ in P1 and Γ ` P : (θ, σ) cmd is deduced from
{a : δ sig}Γ ` P1 : (θ, σ) cmd. The transition C → C ′ is derived by rule (LOCAL-OP),
thus Γ′ = {a′ : δ sig}Γ and P ′ = {a′/a}P1 for some a′ /∈ dom(Γ). Then we may use
Proposition 3.1 to deduce {a′ : δ sig}Γ ` {a′/a}P1 : (θ, σ) cmd.

• (WATCH) Here P = do P1 watching a and Γ ` P : (θ, σ) cmd is deduced from
Γ(a) = δ sig, Γ ` P1 : (θ, σ′) cmd and δ ≤ θ, where σ = δ ∨ σ′.

– If P1 = nil, then C → C ′ is derived using rule (WATCH-OP1). Then Γ′ = Γ and
P ′ = nil, and we conclude immediately by rule (NIL).

– If P1 6= nil, then C → C ′ is derived using rule (WATCH-OP2) from the hy-
pothesis 〈Γ, S, E, P1〉 → 〈Γ′, S′, E′, P ′

1
〉. In this case P ′ = do P ′

1
watching a.

By induction Γ′ ` P ′
1 : (θ, σ′) cmd, so using (WATCH) again we conclude that

Γ′ ` do P ′
1
watching a : (θ, σ) cmd.

• (WHEN) Here P = when a do P1 and Γ ` P : (θ, σ) cmd is deduced from Γ(a) =
δ sig, Γ ` P1 : (θ, σ′) cmd and δ ≤ θ, where σ = δ ∨ σ′.

– If P1 = nil, then C → C ′ is derived using rule (WHEN-OP1). Then Γ′ = Γ and
P ′ = nil, and we conclude immediately by rule (NIL).

– If P1 6= nil, then C → C ′ is derived using rule (WHEN-OP2) from the hypoth-
esis 〈Γ, S, E, P1〉 → 〈Γ′, S′, E′, P ′

1〉. In this case P ′ = when a do P ′
1. By in-

duction Γ′ ` P ′
1

: (θ, σ′) cmd, so using (WHEN) again we may conclude that
Γ′ ` when P ′

1
do a : (θ, σ) cmd.

• (PAR) Here P = P1 � P2 and Γ ` P : (θ, σ) cmd is deduced from Γ ` P1 :
(θ1, σ1) cmd, Γ ` P2 : (θ2, σ2) cmd, θ = θ1 ∧ θ2, σ = σ1 ∨ σ2, σ1 ≤ θ2, σ2 ≤ θ1.

– If P1 = nil, then C → C ′ is derived using rule (PAR-OP1). Then Γ′ = Γ and
P ′ = P2. Since θ1 ∧ θ2 ≤ θ2 and σ1 ∨ σ2 ≥ σ2, by rule (SUB) we have Γ′ ` P2 :
(θ1 ∧ θ2, σ1 ∨ σ2) cmd.

– If P1 6= nil and ¬〈E, P 〉
1
‡ then C → C ′ is derived using rule (PAR-OP2) from

the hypothesis 〈Γ, S, E, P1〉 → 〈Γ′, S′, E′, P ′
1
〉. We then have P ′ = P ′

1
� P2. By

induction Γ′ ` P ′
1 : (θ1, σ1) cmd. By Proposition 2.1 dom(Γ) ⊆ dom(Γ′), hence

we may use Proposition 3.1 to get Γ′ ` P2 : (θ2, σ2) cmd. Then, using rule (PAR)
again, we obtain Γ′ ` P ′

1
� P2 : (θ1 ∧ θ2, σ1 ∨ σ2) cmd.

– If P1 6= nil and 〈E, P 〉
1
‡ then C → C ′ is derived using rule (PAR-OP3) and

C ′ = 〈Γ, S, E, P2 � P1〉. In this case we can immediately conclude using rule
(PAR), since this is symmetric with respect to the two components P1 and P2.

• (SUB) Here Γ ` P : (θ, σ) cmd is deduced from Γ ` P : (θ′, σ′) cmd for some θ′, σ′

such that θ ≥ θ′ and σ ≤ σ′. By induction Γ′ ` P ′ : (θ′, σ′) cmd, hence, using rule
(SUB) again, we deduce Γ′ ` P ′ : (θ, σ) cmd.
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�

Our next result ensures that program types have the intended meaning. We introduce first some
terminology. The generic term “guard” will be used for any variable or signal appearing in a test.
For instance, x is a guard in the program (while x ≤ y do y := y − 1) and a is a guard in the
program (when a do x := 0). Moreover, if Γ ` P : (θ, σ) cmd, we say that a variable x (resp. a
signal a) of P has security level δ in Γ if we are in one of two cases:

i) x (resp. a) is free in P and Γ contains the pair (x, δ var) (resp. (a, δ sig)).

ii) x (resp. a) is bound in P by a declaration let x : δ = e in Q (resp. local a : δ in Q).

Note that for case ii) the environment Γ is actually immaterial, whereas we implicitly assume that
x /∈ bn(Q) (resp. a /∈ bn(Q)). This condition can always be met by renaming bound variables.

Lemma 3.4 (Guard Safety and Confinement)

1. If Γ ` P : (θ, σ) cmd then every guard in P has security level δ ≤ σ.

2. If Γ ` P : (θ, σ) cmd then every written variable or emitted signal in P has security level δ
such that θ ≤ δ.

Proof Proof of 1. By induction on the inference of Γ ` P : (θ, σ) cmd.

• (NIL), (ASSIGN), (SEQ), (COND), (WHILE), (SUB): All these cases correspond to impera-
tive constructs. The proof is the same as in [7] and is therefore omitted.

• (LET) Here P = let x : δ = e in Q, with {x : δ var}Γ ` Q : (θ, σ) cmd and Γ ` e : δ. By
induction every guard in Q has security level δ′ ≤ σ in the type environment {x : δ var}Γ.
Then every guard of P different from x has security level δ′ ≤ σ in the type environment Γ.
As for x, it has the security level δ given by its declaration, and if it appears as a guard in
P that’s because it appears as a (free) guard in Q, in which case we know by induction that
δ ≤ σ.

• (EMIT) Vacuous, since P = emit a contains no guard.

• (LOCAL) Analogous to (LET).

• (WATCH) Here P = do Q watching a, with Γ(a) = δ sig, Γ ` Q : (θ, σ′) cmd and σ =
δ∨σ′. By induction every guard in Q has security level δ′ ≤ σ′, and therefore δ′ ≤ δ∨σ′ = σ.
Hence the guard a introduced by the watch construct, which has security level δ, satisfies the
constraint δ ≤ σ.

• (WHEN) Analogous to (WATCH).

• (PAR) Here P = P1 � P2 with Γ ` P1 : (θ1, σ1) cmd, Γ ` P2 : (θ2, σ2) cmd and σ = σ1∨σ2.
By induction every guard in Pi has type δi ≤ σi. Since σi ≤ σ1 ∨ σ2 we can then conclude.
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Proof of 2. By induction on the inference of Γ ` P : (θ, σ) cmd.

• (NIL), (ASSIGN), (SEQ), (COND), (WHILE), (SUB) The proof is as in [7].

• (LET) Here P = let x : δ = e in Q, with {x : δ var}Γ ` Q : (θ, σ) cmd and Γ ` e : δ. By
induction every written variable or emitted signal in Q has security level δ ′ such that θ ≤ δ′

in the type environment {x : δ var}Γ. Then every written variable or emitted signal different
from x in P has security level δ′ such that θ ≤ δ′ in the type environment Γ. The bound
variable x has the security level δ given by its declaration. In case x is written in Q, we know
by induction that θ ≤ δ.

• (LOCAL) Analogous to (LET).

• (WATCH) Here P = do Q watching a, with Γ(a) = δ sig and Γ ` Q : (θ, σ′) cmd. By
induction every written variable or emitted signal in Q has security level δ ′ such that θ ≤ δ′.
Whence the conclusion, since P does not introduce any written variables nor emitted signals.

• (WHEN) Analogous to (WATCH).

• (EMIT) Here P = emit a, and Γ(a) = θ sig. This case is trivial since the only emitted
signal has security level θ.

• (PAR) Here P = P1 � P2 with Γ ` P1 : (θ1, σ1) cmd, Γ ` P2 : (θ2, σ2) cmd and θ = θ1∧θ2.
By induction every written variable or emitted signal in Pi has security level δi with θi ≤ δi.
Since θ1 ∧ θ2 ≤ θi we can then conclude.

�
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3.3 Security notion

In this section we introduce our security notion and formalise it as a kind of bisimulation, which we
call reactive bisimulation. We start by introducing some terminology that will be useful to define
our notion of indistinguishability. We use L to designate a downward-closed set of security levels,
that is a set L ⊆ T satisfying θ ∈ L & σ ≤ θ ⇒ σ ∈ L. The low memory is the portion of
the variable-store and signal-environment to which the type-environment associates “low security
levels” (i.e. security levels in L). Two memories are said to be low-equal if their low parts coincide:

Definition 3.1 (L, Γ-equality of Memories and Configurations) Let S1, S2 be variable stores, E1,
E2 be signal environments, Γ, Γ1, Γ2 be typing environments and P1, P2 be programs. Then low
equality =Γ

L on stores and signal environments is defined by:

S1=
Γ

LS2 if ∀x ∈ dom(Γ). (Γ(x) = θ var & θ ∈ L) ⇒ (x ∈ dom(S1) ⇔ x ∈ dom(S2)) and

if x ∈ dom(Si) then S1(x) = S2(x)

E1=
Γ

LE2 if ∀a ∈ dom(Γ). (Γ(a) = θ sig & θ ∈ L) ⇒ (a ∈ E1 ⇔ a ∈ E2)

Then =Γ

L is defined pointwise on memories: 〈S1, E1〉=Γ

L〈S2, E2〉 if S1=
Γ

LS2 and E1=
Γ

LE2

By extension, for configurations we let: 〈Γ1, S1, E1, P1〉=Γ

L〈Γ2, S2, E2, P2〉 if 〈S1, E1〉=Γ

L〈S2, E2〉.

There is a class of programs for which the security property is particularly easy to establish be-
cause of their inability to change the low store. We will refer to these as high programs. We shall
distinguish two classes of high programs, based respectively on a syntactic and a semantic analysis.

Definition 3.2 (High Programs)

1. Syntactically high programs HΓ,L
syn is inductively defined by: P ∈ HΓ,L

syn if:

• P = (x := e) and Γ(x) = θ var ⇒ θ /∈ L, or

• P = (emit a) and Γ(x) = θ sig ⇒ θ /∈ L, or

• P = let x : δ = e in Q and Q ∈ HΓ∪{x:δ var},L
syn , or

• P = local a : δ in Q and Q ∈ HΓ∪{a:δ sig},L
syn , or

• P = (while e do Q) or P = (when a do Q) or P = (do Q watching a), where
Q ∈ HΓ,L

syn , or

• P = (P1 ; P2) or P = (if e then P1 else P2) or P = (P1 � P2), where Pi ∈ HΓ,L
syn

for i = 1, 2.

2. Semantically high programs HΓ,L
sem is coinductively defined by: P ∈ HΓ,L

sem implies

• ∀S, E, 〈Γ, S, E, P 〉 → 〈Γ′, S′, E′, P ′〉 implies 〈S, E〉 =Γ

L 〈S′, E′〉 and P ′ ∈ HΓ
′,L

sem , and

• ∀S, E, 〈Γ, S, E, P 〉 ↪→ 〈Γ′, S′, E′, P ′〉 implies P ′ ∈ HΓ
′,L

sem
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Let us comment briefly on these definitions. The notion of syntactic highness is quite straightfor-
ward. Essentially, a program is syntactically high if it does not contain assignments to low variables
or emissions of low signals. Note that P = let x : δ = e in Q (as well as P = local a : δ in Q)
is considered syntactically high even if δ ∈ L, provided Q is syntactically high in the extended typ-
ing environment. The notion of semantic highness is a little more subtle. The first clause ensures that
the low memory is preserved by simple moves. Note that the comparison of memories is carried out
in the starting typing environment Γ. This means that in case Γ′ 6= Γ, the newly created variable or
signal will not be taken into account in the comparison; however, since its creation turns it into a free
variable or signal, it will then be considered in the following steps. For instance, assuming δ ∈ L,
the program P = local a : δ in nil is semantically high while Q = local a : δ in emit a is
not. The second clause of Definition 3.2.2 concerns instant changes. As argued in the Introduction,
we do not consider as observable the initialization of the low signal environment that is induced by
instant changes. This is reflected by the absence of the low equality condition in the second clause
of Definition 3.2.2 (recall that the variable-store S is not modified during an instant change). Thanks
to this weaker requirement at instant changes, it may be easily shown that syntactic highness implies
semantic highness:

Fact 3.5 For any Γ and for any downward-closed set L of security levels, HΓ,L
syn ⊆ HΓ,L

sem .

As may be expected, the converse is not true. An example of a semantically high program that is not
syntactically high is P = if true then nil else yL := 0.

Clearly, both properties of syntactic and semantic highness are preserved by execution. Moreover:

Fact 3.6 If ∃ θ /∈ L, ∃σ such that Γ ` P : (θ, σ) cmd, then P ∈ HΓ,L
syn .

Proof Immediate, by the Confinement lemma. �

We introduce now the notion of L-Guardedness, borrowed from [7]. This formalises the property
that a program contains no high guards.

Definition 3.3 (L-Guardedness)
A program P is L-guarded in Γ if ∃ θ, ∃σ ∈ L such that Γ ` P : (θ, σ) cmd.

Fact 3.7 If P is L-guarded in Γ then every guard in P has security level δ ∈ L in Γ.

Proof Immediate, by the Guard Safety lemma. �

We shall sometimes use the complementary notion of non-L-guardedness in Γ, for a program P
which is typable in Γ but for which there does not exist σ ∈ L and θ such that Γ ` P : (θ, σ) cmd.
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The following result says that L-guarded programs, when computing over low-equal memories,
produce at each step equal typing environments and programs, and low-equal memories.

Theorem 3.8 (Behaviour of L-Guarded Programs)

Let P be L-guarded in Γ and 〈S1, E1〉 =Γ

L 〈S2, E2〉. Then

1. (Instant change) 〈Γ, S1, E1, P 〉 ↪→〈Γ′, S′
1, E

′
1, P

′〉 implies 〈Γ, S2, E2, P 〉 ↪→〈Γ′, S′
2, E

′
2, P

′〉,
with 〈S′

1
, E′

1
〉 =Γ

′

L 〈S′
2
, E′

2
〉.

2. (Simple moves) 〈Γ, S1, E1, P 〉 → 〈Γ′, S′
1, E

′
1, P

′〉 implies 〈Γ, S2, E2, P 〉 → 〈Γ′, S′
2, E

′
2, P

′〉,
with 〈S′

1
, E′

1
〉 =Γ

′

L 〈S′
2
, E′

2
〉.

Proof Proof of 1. By induction on the inference of Γ ` P : (θ, σ) cmd where σ ∈ L, and then
by case analysis on the definition of 〈E1, P 〉‡ (Figure 1). We only have to consider suspendable
processes (Figure 4), corresponding to the typing rules (WHEN), (WATCH), (SEQ), (PAR) and
to the subtyping rule (SUB). Note that it is enough to show that 〈E1, P 〉‡ implies 〈E2, P 〉‡, be-
cause in this case rule (INSTANT-OP) yields the transitions 〈Γ, S1, E1, P 〉 ↪→ 〈Γ, S1, ∅, bP cE〉 and
〈Γ, S2, E2, P 〉 ↪→ 〈Γ, S2, ∅, bP cE〉, where 〈S1, ∅〉 =Γ

L 〈S2, ∅〉 follows from 〈S1, E1〉 =Γ

L 〈S2, E2〉.

• (WHEN) Here P = when a do Q and Γ ` P : (θ, σ) cmd is deduced from the hypotheses
Γ ` Q : (θ, σ′) cmd, Γ(a) = δ sig, δ ≤ θ and σ = δ ∨ σ′. There are two cases to consider for
〈E1, P 〉‡, depending on the last rule used to prove it:

1. 〈E1, P 〉‡ is deduced by rule (WHEN-SUS1): in this case a 6∈ E1. Note that δ ≤ σ
implies δ ∈ L and therefore, since E1 =Γ

L E2, a ∈ E1 ⇔ a ∈ E2. Then also a 6∈ E2

and we can apply rule (WHEN-SUS1) to deduce 〈E2, P 〉‡.

2. 〈E1, P 〉‡ is deduced by rule (WHEN-SUS2) from the hypothesis 〈E1, Q〉‡. Since σ′ ≤ σ
implies σ′ ∈ L, Q is L-guarded. Then we have 〈E2, Q〉‡ by induction, whence by rule
(WHEN-SUS2) we obtain 〈E2, P 〉‡.

• (WATCH), (SEQ), (PAR) By straightforward induction as in the second case of (WHEN).

• (SUB) Here Γ ` P : (θ, σ) cmd is deduced from Γ ` P : (θ′, σ′) cmd for some θ′, σ′ such
that θ′ ≥ θ and σ′ ≤ σ. Thus σ′ ∈ L and we can conclude using induction.

Proof of 2. By induction on the inference of Γ ` P : (θ, σ) cmd where σ ∈ L, and by case analysis
on the last rule used in this inference.

• (ASSIGN) Here P = x := e with Γ ` e : θ and Γ(x) = θ var. By rule (ASSIGN-OP) we
have 〈Γ, S1, E1, P 〉 → 〈Γ, S′

1, E1,nil〉 and 〈Γ, S2, E2, P 〉 → 〈Γ, S′
2, E2,nil〉, where S′

1 =
{x 7→ S1(e)}S1 and S′

2
= {x 7→ S2(e)}S2. It is easy to see that 〈S ′

1
, E1〉 =Γ

′

L 〈S′
2
, E2〉 since

Γ′ = Γ and thus E1 =Γ
′

L E2 is already known, while S ′
1 =Γ

′

L S′
2 follows from S1 =Γ

L S2 if
θ 6∈ L, and from the additional fact that S1(e) = S2(e) if θ ∈ L.
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• (LET) Here P = let x : δ = e in Q , and Γ ` P : (θ, σ) cmd is deduced from Γ ` e : δ
and {x : δ var}Γ ` Q : (θ, σ) cmd, where σ ∈ L. Then 〈Γ, S1, E1, P 〉 → 〈Γ′, S′

1
, E1, P

′〉
is deduced using rule (LET-OP), and for some x′ /∈ dom(Γ), we have Γ′ = {x′ : δ var}Γ,
S′

1
= {x′ 7→ S1(e)}S1 and P ′ = {x′/x}P . Then, using rule (LET-OP) again and choosing

the same x′ we obtain 〈Γ, S2, E2, P 〉 → 〈Γ′, S′
2, E2, P

′〉, where S′
2 = {x′ 7→ S2(e)}S2. Now

E1 =Γ
′

L E2 follows from E1 =Γ

L E2 and the fact that x′ 6∈ E1 and x′ 6∈ E2, while S′
1

=Γ
′

L S′
2

follows, as in the previous case, from the fact that S1 =Γ

L S2 if θ 6∈ L, and from the additional
fact that S1(e) = S2(e) if θ ∈ L.

• (SEQ) Here P = Q ; R and Γ ` P : (θ, σ) cmd is deduced from the hypotheses Γ ` Q :
(θ′, σ′) cmd, Γ ` R : (θ′′, σ′′) cmd, θ = θ′ ∧ θ′′, σ = σ′ ∨ σ′′, σ′ ≤ θ′′.

1. If Q = nil, then by rule (SEQ-OP1) we have both 〈Γ, S1, E1, Q; R〉 → 〈Γ, S1, E1, R〉
and 〈Γ, S2, E2, Q; R〉 → 〈Γ, S2, E2, R〉, so we can conclude immediately.

2. If Q 6= nil, then the transition 〈Γ, S1, E1, Q; R〉 → 〈Γ′, S′
1
, E′

1
, P ′〉 is derived by rule

(SEQ-OP2) from the hypothesis 〈Γ, S1, E1, Q〉 → 〈Γ′, S′
1
, E′

1
, Q′〉, and P ′ = Q′; R.

Since σ′ ≤ σ, Q is L-guarded. Hence by induction 〈Γ, S2, E2, Q〉 → 〈Γ′, S′
2, E

′
2, Q

′〉
with 〈S′

1
, E′

1
〉 =Γ

′

L 〈S′
2
, E′

2
〉. We then have 〈Γ, S2, E2, Q; R〉 → 〈Γ′, S′

2
, E′

2
, Q′; R〉 by

(SEQ-OP2) and we can conclude.

• (COND) Here P = if e then Q else R and Γ ` P : (θ, σ) cmd is deduced from the
hypotheses Γ ` e : δ, Γ ` Q : (θ, σ′) cmd, Γ ` R : (θ, σ′) cmd, where δ ≤ θ and
σ = δ ∨ σ′. Since P is L-guarded in Γ, σ ∈ L. Then also δ ∈ L and therefore, since by rule
(EXPR) each variable occurring in e has level less than or equal to δ, we have S1(e) = S2(e).
Now, if Si(e) = true, then by rule (COND-OP1) 〈Γ, S1, E1, P 〉 → 〈Γ, S1, E1, Q〉 and
〈Γ, S2, E2, P 〉 → 〈Γ, S2, E2, Q〉 and we can conclude immediately. The case where Si(e) =
false is symmetric.

• (WHILE) Similar to (COND).

• (EMIT) Here P = emit a, where Γ(a) = θ sig. By rule (EMIT-OP) we have for i = 1, 2 the
transition 〈Γ, Si, Ei,emit a〉 → 〈Γ, Si, E

′
i,nil〉, where E′

i = {a} ∪ Ei. Then all we have
to show is that E′

1 =Γ

L E′
2. If θ 6∈ L this follows immediately from E1 =Γ

L E2; if θ ∈ L, it
also uses the fact that a ∈ E ′

i for both i.

• (LOCAL) Analogous to (LET), using (LOCAL-OP) instead of (LET-OP) and considering
signal names and environments instead of variables and stores.

• (WATCH) Here P = do Q watching a, with Γ(a) = δ sig, Γ ` Q : (θ, σ′) cmd, δ ≤ θ
and σ = δ ∨ σ′.

1. Q = nil. In this case by rule (WATCH-OP1) we have 〈Γ, S1, E1, P 〉 → 〈Γ, S1, E1,nil〉
and 〈Γ, S2, E2, P 〉 → 〈Γ, S2, E2,nil〉, so we can conclude immediately.
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2. Q 6= nil. Then 〈Γ, S1, E1,do Q watching a〉 → 〈Γ′, S′
1
, E′

1
,do Q′ watching a〉

is derived by rule (WATCH-OP2) from 〈Γ, S1, E1, Q〉 → 〈Γ′, S′
1
, E′

1
, Q′〉. Note that

σ′ ≤ σ implies σ′ ∈ L, thus Q is also L-guarded. Then by induction we have a transition
〈Γ, S2, E2, Q〉 → 〈Γ′, S′

2
, E′

2
, Q′〉, with 〈S′

1
, E′

1
〉 =Γ

′

L 〈S′
2
, E′

2
〉. Whence by (WATCH-

OP2) we deduce 〈Γ, S2, E2,do Q watching a〉 → 〈Γ′, S′
2, E

′
2,do Q′ watching a〉,

which is the required matching transition.

• (WHEN) Here P = when a do Q, with Γ ` Q : (θ, σ′) cmd, Γ(a) = δ sig, δ ≤ θ and
σ = δ ∨ σ′. As in the previous case, there are two possibilities:

1. Q = nil. In this case by rule (WHEN-OP1) we have 〈Γ, S1, E1, P 〉 → 〈Γ, S1, E1,nil〉.
Note that δ ≤ σ implies δ ∈ L and therefore, since E1 =Γ

L E2, a ∈ E1 ⇔ a ∈ E2. We
know that a ∈ E1, thus also a ∈ E2. We can then apply rule (WHEN-OP1) again to get
〈Γ, S2, E2, P 〉 → 〈Γ, S2, E2,nil〉.

2. Q 6= nil. Then 〈Γ, S1, E1,when Q do a〉 → 〈Γ′, S′
1
, E′

1
,when Q′ do a〉 is derived

by rule (WHEN-OP2) from 〈Γ, S1, E1, Q〉 → 〈Γ′, S′
1, E

′
1, Q

′〉. Since σ′ ≤ σ implies
σ′ ∈ L, Q is L-guarded. Then by induction 〈Γ, S2, E2, Q〉 → 〈Γ′, S′

2
, E′

2
, Q′〉, with

〈S′
1
, E′

1
〉 =Γ

′

L 〈S′
2
, E′

2
〉. Then since a ∈ E2 we can apply rule (WHEN-OP2) to deduce

〈Γ, S2, E2,when Q do a〉 → 〈Γ′, S′
2, E

′
2,when Q′ do a〉, and we conclude.

• (PAR) Here P = Q � R with Γ ` Q : (θ′, σ′) cmd, Γ ` R : (θ′′, σ′′) cmd and σ = σ′ ∨ σ′′.
Since σ′ ≤ σ and σ′′ ≤ σ, Q and R are also L-guarded. There are three possibilities:

1. Q = nil. In this case by rule (PAR-OP1) we have 〈Γ, S1, E1, P 〉 → 〈Γ, S1, E1, R〉 and
〈Γ, S2, E2, P 〉 → 〈Γ, S2, E2, R〉, and we can conclude.

2. Q 6= nil and ¬〈E1, Q〉‡. Then 〈Γ, S1, E1, Q � R〉 → 〈Γ1, S
′
1
, E′

1
, Q′

� R〉 is derived
using rule (PAR-OP2) from 〈Γ, S1, E1, Q〉 → 〈Γ1, S

′
1, E

′
1, Q

′〉. By induction we have
〈Γ, S2, E2, Q〉 → 〈Γ2, S

′
2
, E′

2
, Q′〉 with 〈S′

1
, E′

1
〉 =Γ

′

L 〈S′
2
, E′

2
〉. Then we may use again

(PAR-OP2) to deduce 〈Γ, S2, E2, Q � R〉 → 〈Γ2, S
′
2, E

′
2, Q

′
� R〉.

3. 〈E1, Q〉‡ and¬〈E1, R〉‡. Then 〈Γ, S1, E1, Q � R〉 → 〈Γ, S1, E1, R � Q〉 by (PAR-OP3).
Since Q and R are also L-guarded, by Clause 1. of the theorem statement we have
〈E2, Q〉‡ and ¬〈E2, R〉‡. Then we may apply (PAR-OP3) again to deduce the transition
〈Γ, S2, E2, Q � R〉 → 〈Γ, S2, E2, R � Q〉 and we conclude.

• (SUB) Here Γ ` P : (θ, σ) cmd is deduced from Γ ` P : (θ′, σ′) cmd for some θ′, σ′ such
that θ′ ≥ θ and σ′ ≤ σ. Thus σ′ ∈ L and we can conclude using induction.

�

The key result for proving noninterference is the following theorem, which states that a typable
non L-guarded program preserves low-equality of memories as long as it encounters only low tests,
and becomes syntactically high as soon as it meets a high test. Note that while L-guardedness is
preserved by subterms (and by execution), the complementary property, non L-guardedness, is not.
Therefore the next theorem will make use of Theorem 3.8.
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Theorem 3.9 (Behaviour of non L-Guarded Programs)

Let P be typable and non L-Guarded in Γ and let 〈S1, E1〉 =Γ

L 〈S2, E2〉. Then either P ∈ HΓ,L
syn or

one of the following holds:

1. (Instant change) 〈Γ, S1, E1, P 〉 ↪→〈Γ′, S′
1, E

′
1, P

′〉 implies 〈Γ, S2, E2, P 〉 ↪→〈Γ′, S′
2, E

′
2, P

′〉,
with 〈S′

1
, E′

1
〉 =Γ

′

L 〈S′
2
, E′

2
〉.

2. (Simple moves) 〈Γ, S1, E1, P 〉 → 〈Γ′, S′
1
, E′

1
, P ′〉 implies 〈Γ, S2, E2, P 〉 → 〈Γ′, S′

2
, E′

2
, P ′〉,

with 〈S′
1, E

′
1〉 =Γ

′

L 〈S′
2, E

′
2〉.

Proof The proof amounts to trying to show the properties of Theorem 3.8 also for non low-guarded
programs and, in case they do not hold, to show that P is syntactically high. We prove the two
clauses separately, by induction on the inference of Γ ` P : (θ, σ) cmd.

Proof of 1. We start by showing that if 〈E1, P 〉‡ then either 〈E2, P 〉‡ (in which case the transi-
tion 〈Γ, S1, E1, P 〉 ↪→ 〈Γ, S1, ∅, bP cE〉 is matched by 〈Γ, S2, E2, P 〉 ↪→ 〈Γ, S2, ∅, bP cE〉 using rule
(INSTANT-OP), as in the proof of Theorem 3.8), or P ∈ HΓ,L

syn . Again, we only have to examine
suspendable processes, corresponding to the typing rules (WHEN), (WATCH), (SEQ), (PAR) and to
the subtyping rule (SUB).

• (WHEN) Here P = when a do Q and Γ ` P : (θ, σ) cmd is deduced from the hypotheses
Γ ` Q : (θ, σ′) cmd, Γ(a) = δ sig, δ ≤ θ and σ = δ ∨ σ′. There are two cases for 〈E1, P 〉‡:

1. 〈E1, P 〉‡ is deduced by rule (WHEN-SUS1): in this case a 6∈ E1. Then either a 6∈ E2

and we can conclude using rule (WHEN-SUS1), or a ∈ E2. In the latter case, since
E1 =Γ

L E2, it must be δ /∈ L. Whence, since δ ≤ θ, we deduce that also θ /∈ L. Then by
the Confinement Lemma 3.4 we conclude that P is syntactically high.

2. 〈E1, P 〉‡ is deduced by rule (WHEN-SUS2) from the hypothesis 〈E1, Q〉‡. By induction
either 〈E2, Q〉‡, in which case also 〈E2, P 〉‡ by rule (WHEN-SUS2), or Q is syntacti-
cally high. In the latter case by Definition 3.2 also P is syntactically high.

• (WATCH) Easy induction as in the second case of (WHEN).

• (SEQ) Here P = Q ; R and Γ ` P : (θ, σ) cmd is deduced from the hypotheses Γ ` Q :
(θ′, σ′) cmd, Γ ` R : (θ′′, σ′′) cmd, θ = θ′ ∧ θ′′, σ = σ′ ∨ σ′′, σ′ ≤ θ′′.

In this case 〈E1, P 〉‡ is deduced by rule (SEQ-SUS) from 〈E1, Q〉‡. By induction either
〈E2, Q〉‡, in which case 〈E2, P 〉‡ by rule (SEQ-SUS) again, or Q is syntactically high and,
by virtue of Theorem 3.8, not L-guarded. This means that σ′ /∈ L and thus, since σ′ ≤ θ′′,
also θ′′ /∈ L. Then by the Confinement Lemma 3.4 R is syntactically high and thus, by
Definition 3.2, also Q; R is syntactically high.

• (PAR) Here P = Q � R and Γ ` P : (θ, σ) cmd is deduced from the hypotheses Γ ` Q :
(θ′, σ′) cmd, Γ ` R : (θ′′, σ′′) cmd, θ = θ′ ∧ θ′′, σ = σ′ ∨ σ′′, σ′ ≤ θ′′ and σ′′ ≤ θ′.

There are three possibilities:
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1. both Q and R are non L-guarded. This means that both σ′ /∈ L and σ′′ /∈ L and thus,
since σ′ ≤ θ′′ and σ′′ ≤ θ′, also θ′′ /∈ L and θ′ /∈ L. Hence by the Confinement
Lemma 3.4 both Q and R are syntactically high and thus by Definition 3.2 also P =
Q � R is syntactically high.

2. one of Q and R is L-guarded and the other is not. Suppose Q is L-guarded and R is not
(the other case is symmetric). We know that 〈E1, P 〉‡ is deduced by rule (PAR-SUS)
from 〈E1, Q〉‡ and 〈E1, R〉‡. Since Q is L-guarded, by Theorem 3.8 we have 〈E2, Q〉‡.
Since R is not L-guarded we know by induction that either 〈E2, R〉‡ or R is syntactically
high. If 〈E2, R〉‡ we may apply rule (PAR-SUS) to get 〈E2, P 〉‡. Otherwise we use the
fact that σ′′ /∈ L (because R is not L-guarded) and thus, since σ′′ ≤ θ′, also θ′ /∈ L. Then
by the Confinement Lemma 3.4 Q is syntactically high and thus also the composition
P = Q � R is syntactically high.

3. both Q and R are L-guarded (note that this is possible although P is non L-guarded).
As in the previous case, we know that 〈E1, Q〉‡ and 〈E1, R〉‡. Then by Theorem 3.8 we
obtain 〈E2, Q〉‡ and 〈E2, R〉‡. Whence by (PAR-SUS) we may conclude that 〈E2, P 〉‡.

• (SUB) Here Γ ` P : (θ, σ) cmd is deduced from Γ ` P : (θ′, σ′) cmd for some θ′, σ′ such
that θ′ ≥ θ and σ′ ≤ σ. Then we may conclude immediately, using Theorem 3.8 if σ′ ∈ L,
and induction otherwise.

Proof of 2. We consider now the case where ¬〈E1, P 〉‡. For the rules (ASSIGN), (LET), (EMIT),
(LOCAL) the result is proved exactly as for Theorem 3.8, since in these cases it does not depend on
the hypothesis of L-guardedness. We examine the remaining cases.

• (SEQ) Here P = Q ; R and Γ ` P : (θ, σ) cmd is deduced from the hypotheses Γ ` Q :
(θ′, σ′) cmd, Γ ` R : (θ′′, σ′′) cmd, θ = θ′ ∧ θ′′, σ = σ′ ∨ σ′′, σ′ ≤ θ′′.

1. If Q = nil, then by rule (SEQ-OP1) we have both 〈Γ, S1, E1, Q; R〉 → 〈Γ, S1, E1, R〉
and 〈Γ, S2, E2, Q; R〉 → 〈Γ, S2, E2, R〉, so we can conclude immediately.

2. If Q 6= nil, then the transition 〈Γ, S1, E1, Q; R〉 → 〈Γ′, S′
1
, E′

1
, P ′〉 is derived by rule

(SEQ-OP2) from the hypothesis 〈Γ, S1, E1, Q〉 → 〈Γ′, S′
1
, E′

1
, Q′〉, and P ′ = Q′; R.

There are two possibilities:

– Q is L-guarded. Then by Theorem 3.8 we have 〈Γ, S2, E2, Q〉 → 〈Γ′, S′
2, E

′
2, Q

′〉
with 〈S′

1, E
′
1〉 =Γ

′

L 〈S′
2, E

′
2〉. Hence by (SEQ-OP2) we can conclude.

– Q is not L-guarded. By induction either 〈Γ, S2, E2, Q〉 → 〈Γ′, S′
2, E

′
2, Q

′〉 with
〈S′

1
, E′

1
〉 =Γ

′

L 〈S′
2
, E′

2
〉, and we conclude using (SEQ-OP2) as in the previous case,

or Q is syntactically high. In this case, we use the fact that σ′ 6∈ L (because Q is not
L-guarded) and therefore, since σ′ ≤ θ′′, also θ′′ 6∈ L. Then by the Confinement
Lemma 3.4 R is syntactically high, and thus by Definition 3.2 we conclude that
Q; R is syntactically high.
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• (COND) Here P = if e then Q else R and Γ ` P : (θ, σ) cmd is deduced from the
hypotheses Γ ` e : δ, Γ ` Q : (θ, σ′) cmd, Γ ` R : (θ, σ′) cmd, where δ ≤ θ and σ = δ ∨ σ′.

If δ ∈ L we have S1(e) = S2(e) and we can conclude easily as in the proof of Theorem 3.8.
Otherwise δ /∈ L. Then, since δ ≤ θ, also θ /∈ L and by the Confinement Lemma 3.4 both Q
and R are syntactically high. Hence by Definition 3.2 also P is syntactically high.

• (WHILE) Similar to (COND).

• (WATCH) Here P = do Q watching a, with Γ(a) = δ sig, Γ ` Q : (θ, σ′) cmd, δ ≤ θ
and σ = δ ∨ σ′. We distinguish two cases:

1. Q = nil. In this case by rule (WATCH-OP1) we have 〈Γ, S1, E1, P 〉 → 〈Γ, S1, E1,nil〉
and 〈Γ, S2, E2, P 〉 → 〈Γ, S2, E2,nil〉, so we can conclude immediately.

2. Q 6= nil. Then 〈Γ, S1, E1,do Q watching a〉 → 〈Γ′, S′
1, E

′
1,do Q′ watching a〉

is derived by rule (WATCH-OP2) from 〈Γ, S1, E1, Q〉 → 〈Γ′, S′
1
, E′

1
, Q′〉. There are two

subcases:

– Q is L-guarded. Then by Theorem 3.8 we have 〈Γ, S2, E2, Q〉 → 〈Γ′, S′
2
, E′

2
, Q′〉,

with 〈S′
1, E

′
1〉 =Γ

′

L 〈S′
2, E

′
2〉. Then by rule (WATCH-OP2) we get the matching

transition 〈Γ, S2, E2,do Q watching a〉 → 〈Γ′, S′
2
, E′

2
,do Q′ watching a〉.

– Q is not L-guarded. Then by induction either 〈Γ, S2, E2, Q〉 → 〈Γ′, S′
2, E

′
2, Q

′〉
with 〈S′

1
, E′

1
〉 =Γ

′

L 〈S′
2
, E′

2
〉 and we conclude as in the previous case, or Q is syn-

tactically high. In the latter case by Definition 3.2 also P is syntactically high.

• (WHEN) Here P = when a do Q, with Γ ` Q : (θ, σ′) cmd, Γ(a) = δ sig, δ ≤ θ and
σ = δ ∨ σ′. Assume a ∈ E1 (otherwise this case is vacuous). There are two possibilities:

1. Q = nil. Then by rule (WHEN-OP1) we have 〈Γ, S1, E1, P 〉 → 〈Γ, S1, E1,nil〉. If
δ ∈ L then a ∈ E1 ⇔ a ∈ E2 and we proceed as in the proof of Theorem 3.8. If δ /∈ L,
since δ ≤ θ, also θ /∈ L. Hence by the Confinement Lemma 3.4 Q is syntactically high
and thus by Definition 3.2 also P is syntactically high.

2. Q 6= nil. Then 〈Γ, S1, E1,when a do Q〉 → 〈Γ′, S′
1, E

′
1,when a do Q′〉 is derived

by rule (WHEN-OP2) from 〈Γ, S1, E1, Q〉 → 〈Γ′, S′
1
, E′

1
, Q′〉. There are two subcases:

– Q is L-guarded. Then by Theorem 3.8 we have 〈Γ, S2, E2, Q〉 → 〈Γ′, S′
2
, E′

2
, Q′〉,

with 〈S′
1
, E′

1
〉 =Γ

′

L 〈S′
2
, E′

2
〉. Since δ /∈ L then a ∈ E2 and we can apply rule

(WHEN-OP2) to deduce 〈Γ, S2, E2,when Q do a〉 → 〈Γ′, S′
2, E

′
2,whenQ′ do a〉.

– Q is not L-guarded. Then by induction either 〈Γ, S2, E2, Q〉 → 〈Γ′, S′
2, E

′
2, Q

′〉
with 〈S′

1
, E′

1
〉 =Γ

′

L 〈S′
2
, E′

2
〉, or Q is syntactically high. In the latter case we con-

clude immediately, by Definition 3.2, that P is syntactically high. In the former
case, there are two possibilities: if δ ∈ L then a ∈ E2 and we can apply rule
(WHEN-OP2) as in the case where Q is L-guarded; if δ /∈ L, since δ ≤ θ also
θ /∈ L. Then by Lemma 3.4 Q is syntactically high, hence P is syntactically high.

INRIA



Typing Noninterference for Reactive Programs 31

• (PAR) Here P = Q � R and Γ ` P : (θ, σ) cmd is deduced from the hypotheses Γ ` Q :
(θ′, σ′) cmd, Γ ` R : (θ′′, σ′′) cmd, θ = θ′ ∧ θ′′, σ = σ′ ∨ σ′′, σ′ ≤ θ′′ and σ′′ ≤ θ′.
We distinguish two cases, depending on whether 〈E1, Q〉‡ or ¬〈E1, Q〉‡. Assume first that
¬〈E1, Q〉‡. There are two possibilities :

1. Q = nil. In this case by rule (PAR-OP1) we have 〈Γ, S1, E1, P 〉 → 〈Γ, S1, E1, R〉 and
〈Γ, S2, E2, P 〉 → 〈Γ, S2, E2, R〉, and we can conclude.

2. Q 6= nil. Then 〈Γ, S1, E1, Q � R〉 → 〈Γ1, S
′
1
, E′

1
, Q′

� R〉 is derived by (PAR-OP2)
from 〈Γ, S1, E1, Q〉 → 〈Γ1, S

′
1, E

′
1, Q

′〉. There are two subcases:

– Q is L-guarded. Then by Theorem 3.8 we have 〈Γ, S2, E2, Q〉 → 〈Γ′, S′
2
, E′

2
, Q′〉

with 〈S′
1
, E′

1
〉 =Γ

′

L 〈S′
2
, E′

2
〉. Hence by (PAR-OP2) we can conclude immediately.

– Q is not L-guarded. By induction either 〈Γ, S2, E2, Q〉 → 〈Γ′, S′
2, E

′
2, Q

′〉 with
〈S′

1
, E′

1
〉 =Γ

′

L 〈S′
2
, E′

2
〉, and we conclude using (PAR-OP2) as in the previous case,

or Q is syntactically high. In the latter case, we use the fact that Q is not L-guarded
to deduce that σ′ 6∈ L and therefore, since σ′ ≤ θ′′, also θ′′ 6∈ L. Then by the
Confinement Lemma 3.4 R is syntactically high, and thus by Definition 3.2 also
Q; R is syntactically high.

Consider now the case where 〈E1, Q〉‡. In this case it must be ¬〈E1, R〉‡ and by (PAR-OP3)
〈Γ, S1, E1, Q � R〉 → 〈Γ, S1, E1, R � Q〉. Here there are four possibilities:

1. Q and R are both nonL-guarded. Then, as in the corresponding case of Part 1, we deduce
that both Q and R are syntactically high and thus also P = Q � R is syntactically high.

2. Q is L-guarded and R is not. In this case we may use Theorem 3.8 to obtain 〈E2, Q〉‡.
Since R is not L-guarded we know by induction that either ¬〈E2, R〉‡ or R is syntac-
tically high. If ¬〈E2, R〉‡ we may use rule (PAR-OP3) to conclude. Otherwise we use
the fact that σ′′ /∈ L (because R is not L-guarded) and thus, since σ′′ ≤ θ′, also θ′ /∈ L.
Then by the Confinement Lemma 3.4 Q is syntactically high and thus also P = Q � R
is syntactically high.

3. R is L-guarded and Q is not. By Theorem 3.8 we have that ¬〈E2, R〉‡. By induction we
know that either 〈E2, Q〉‡ or Q is syntactically high. If 〈E2, Q〉‡ we use rule (PAR-OP3)
to conclude. Otherwise we use the fact that σ′ /∈ L (because Q is not L-guarded) and
thus, since σ′ ≤ θ′′, also θ′′ /∈ L.Then by the Confinement Lemma 3.4 we know that R
is syntactically high and thus also P = Q � R is syntactically high.

4. Q and R are both L-guarded. In this case by Theorem 3.8 we have 〈E2, Q〉‡ and
¬〈E2, R〉‡, and we conclude immediately using rule (PAR-OP3).

• (SUB) Here Γ ` P : (θ, σ) cmd is deduced from Γ ` P : (θ′, σ′) cmd for some θ′, σ′ such
that θ′ ≥ θ and σ′ ≤ σ. We may then conclude immediately, using Theorem 3.8 if σ′ ∈ L,
and induction otherwise.

�
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We are now ready to define our notion of security for programs. This will be formalised as usual as
a kind of self-bisimulation: a program is secure if it behaves in the same way in all low-equivalent
memories. In fact our bisimulation is slightly non-standard, in that it factors out high programs
instead of requiring them to behave in the same way on low-equal memories. This can be explained
as follows. Recall that in reactive computations all signals are reset to absent at the beginning of
each instant. This means that the low signal environment is not preserved by instant changes unless
it is empty. As a consequence, two high programs resulting from a fork after a high test will not in
general have the same effect on the low signal environment, since one of them may jump to the next
instant while the other one does not. On the other hand we know that a semantically high program
preserves the low store (cf Def. 3.2). Indeed, in the next section we will show that our reactive
notion of security implies a more standard one, which only requires the low store to be preserved.

Definition 3.4 (Reactive L-Bisimulation) The partial equivalence ∼L is the largest symmetric
relation R on configurations such that C1 = 〈Γ1, S1, E1, P1〉 R 〈Γ2, S2, E2, P2〉 = C2 implies
〈S1, E1〉 =Γ1∩Γ2

L 〈S2, E2〉 and one of the following properties, where C ′
i = 〈Γ′

i, S
′
i, E

′
i, P

′
i 〉:

1. Pi ∈ HΓi,L
sem for i = 1, 2, or

2. C1 ↪→ C ′
1

implies C2 ↪→ C ′
2

with C ′
1
RC ′

2
, or

3. 〈Γ1, S1, E1, P1〉 → 〈Γ′
1, S

′
1, E

′
1, P

′
1〉 with1 n ∈ dom(Γ′

1 − Γ1) ⇒ n /∈ dom(Γ2) implies

〈Γ2, S2, E2, P2〉 → 〈Γ′
2, S

′
2, E

′
2, P

′
2〉 with1 n ∈ dom(Γ′

2 − Γ2) ⇒ n ∈ dom(Γ′
1 − Γ1)

and 〈Γ′
1
, S′

1
, E′

1
, P ′

1
〉 R 〈Γ′

2
, S′

2
, E′

2
, P ′

2
〉.

Some further comments will be helpful. As explained above, as soon as two programs become
semantically high in low-equal memories, they are immediately ∼L -related by Clause 1, without
further verification. Note that this separation between high and “low” programs allows us to use
strong bisimulation requirements in Clauses 2 and 3, which would have to be weakened if they had
to apply also to high programs. Moreover the two conditions on new names in Clause 3 ensure that,
when playing the bisimulation game on two programs, one does not fail to equate or distinguish
them for bad reasons, to do with the choice of new names. To this end, the first program should
choose new names which are not free in the second program, and the second program should mimic
the choice of new names of the first.

Let us illustrate more precisely the use of these conditions with a couple of examples. Consider
the program P = (let x : L = 0 in yL := x). Note that P is not semantically high. Then,
without the first condition of Clause 3 we would have C1 = 〈Γ1, S1, ∅, P 〉 6∼L 〈Γ2, S2, ∅, P 〉 =
C2, where Γ1 : yL 7→ L , Γ2 : x 7→ L, yL 7→ L and S1, S2 are the two low-equal stores
S1 : yL 7→ 0, S2 : x 7→ 1, yL 7→ 0 . Indeed, if C1 was allowed to choose x as its new name,
then C2 would not be able to respond by picking the same name because x ∈ dom(Γ2), and if C2

were allowed to pick a different name x′ (supposing the second condition was not there to forbid
it), then the resulting store S ′

2
would not be low-equal to S ′

1
since it would give a different value

1these two conditions on new names are not necessary for our soundness result, but make sense for arbitrary configurations
and render our security notion stronger, as will be explained below.
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to x. Note that the pair of configurations (C1, C2) is reachable2 by running the program Q =
if zH = 0 then (nil; P ) else (let x : L = 1 in P ) in the identical typing environments Γ̄i :
yL 7→ L, zH 7→ H and in any pair of low-equal stores S̄1, S̄2 such that S̄1(zH) = 0 and S̄2(zH) 6= 0.
Although Q is not typable, it seems reasonable to consider it secure since the two branches have the
same effect on the low memory. To sum up, the first condition ensures that local and global names
are not confused and that configurations are not distinguished by accident. This condition is always
satisfiable since the set of names is countable.

As for the second condition of Clause 3, it ensures that the security notion properly takes into
account local names. Consider for instance the programs P1 = (let x : L = 0 in x := x + 1)
and P2 = (let x : L = 1 in x := x + 1), which only differ for the initial value of the local name.
Without the second condition we would have C1 = 〈∅, ∅, ∅, P1〉 ∼L 〈∅, ∅, ∅, P2〉 = C2, because in
response to the choice of a local name x1 by C1, a different local name x2 could be chosen by C2

and the resulting memories would be trivially equivalent because their domains are disjoint. In other
words, without the second condition we could possibly elude the comparison of “local memories”.
On the contrary, we take here the stand that local memories should be part of what is observable by a
possibly malicious party. Then, the possibility that P1 and P2 act differently on the local store should
appear, and the way to enforce it is to require that the second process chooses exactly the same local
name as the first. Indeed, with the second condition we have C1 6∼L C2. Note that, as in the previous
example, the pair of configurations (C1, C2) is reachable2, by running the (not semantically high)
program Q = (if zH = 0 then P1 else P2) in the identical typing environments Γ̄i : zH 7→ H
and in any pair of low-equal stores S̄1, S̄2 such that S̄1(zH) = 0 and S̄2(zH) 6= 0. Symmetrically to
the first condition, the second condition ensures that configurations are not equated by accident.

The set of secure programs is now defined to be the reflexive kernel of ∼L , namely the set of
programs which are bisimilar to themselves in any two low-equivalent memories:

Definition 3.5 (Γ-Secure Programs) P is secure in Γ if for any downward-closed set L of security
levels and for any Si, Ei such that 〈S1, E1〉=Γ

L〈S2, E2〉 we have 〈Γ, S1, E1, P 〉 ∼L 〈Γ, S2, E2, P 〉.

As a matter of fact, since the environment Γ is part of our configurations and, in the comparison of
a program with itself in Definition 3.5, it is required to be the same in the two initial configurations,
it will turn out that the two conditions of Clause 3 are not necessary to prove our soundness result.
Indeed, for that purpose Clause 3 will only be applied to pairs of configurations C1, C2 such that
Γ1 = Γ2 and P1 = P2, which evolve by Theorems 3.8 and 3.9 to configurations C ′

1, C
′
2 such that

Γ′
1

= Γ′
2

and P ′
1

= P ′
2
, thus trivially satisfying the two conditions on new names. However these

conditions make sense when comparing arbitrary configurations, as shown by the examples above,
and the first one will be necessary for proving Theorem 3.11.

2up to the addition of the global variable zH to both the Γi’s and the Si’s
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3.4 Soundness of the type system

In this section we establish our soundness result, namely we prove that every typable program is se-
cure. This result rests heavily on the Theorems 3.8 and 3.9 proved in the previous section, which de-
scribe the one-step behaviour of typable programs (respectively low-guarded and non low-guarded).
We also introduce a more standard notion of bisimulation, and prove that it is strictly weaker than
reactive bisimulation, which can then be seen as a refinement of the usual notion.

Theorem 3.10 (Typability ⇒ Noninterference) If P is typable in Γ then P is Γ-secure.

Proof For any downward-closed L, define the relation SL on configurations as follows:

C1 = 〈Γ1, S1, E1, P1〉 SL 〈Γ2, S2, E2, P2〉 = C2 if and only if Pi is typable in Γi for i = 1, 2,
and

• 〈S1, E1〉 =Γ1∩Γ2

L 〈S2, E2〉

• and one of the following holds:

1. Pi ∈ HΓi,L
syn for i = 1, 2, or

2. 〈Γ1, P1〉 = 〈Γ2, P2〉.

Note first that if P is typable in Γ and 〈S1, E1〉 =Γ

L 〈S2, E2〉, then 〈Γ, S1, E1, P 〉 SL 〈Γ, S2, E2, P 〉
by Clause 2. We prove now that SL ⊆ ∼L by showing that SL is a ∼L -bisimulation. Suppose
C1 SL C2. Then 〈S1, E1〉 =Γ1∩Γ2

L 〈S2, E2〉 and we are in one of two cases:

1. Pi ∈ HΓi,L
syn for i = 1, 2, by Clause 1. Since HΓi,L

syn ⊆ HΓi,L
sem we have then Pi ∈ HΓi,L

sem and
therefore C1 ∼L C2 by Clause 1 of Def. 3.4.

2. 〈Γ1, P1〉 = 〈Γ2, P2〉, by Clause 2. We may assume Pi /∈ HΓi,L
syn , since otherwise we would

fall back in the previous case. Suppose C1 ↪→ C ′
1

(respectively, C1 → C ′
1
), where C ′

1
=

〈Γ′
1, S

′
1, E

′
1, P

′
1〉. Then, using Theorem 3.8 or Theorem 3.9 depending on whether P1 is

low-guarded or not (note that in the latter case we also use the fact that P1 /∈ HΓ1,L
syn ) we

may deduce C2 ↪→ C ′
2

(respectively, C2 → C ′
2
), for some C ′

2
= 〈Γ′

2
, S′

2
, E′

2
, P ′

2
〉 such that

〈Γ′
1
, P ′

1
〉 = 〈Γ′

2
, P ′

2
〉 and 〈S′

1
, E′

1
〉 =

Γ
′

1
∩Γ

′

2

L 〈S′
2
, E′

2
〉. Note that in the case where C1 → C ′

1
is

matched by C2 → C ′
2
, the condition n ∈ dom(Γ′

1
−Γ1) ⇒ n /∈ dom(Γ2) is satisfied because

Γ2 = Γ1, and the condition n ∈ dom(Γ′
2 − Γ2) ⇒ n ∈ dom(Γ′

1 − Γ1) is satisfied because
additionally Γ′

2
= Γ′

1
. In all cases we have C ′

1
SL C ′

2
and we may conclude.

�

To show that our approach “conservatively extends” previous ones, we shall now turn to a different
notion of security, based on a more usual kind of bisimulation where programs are only required to
preserve the low store and high programs are not distinguished from the others. As a counterpart,
some of the observation power on local names (including variables) will be lost.
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Definition 3.6 (Weak reactive L-Bisimulation) The partial equivalence 'L is the largest sym-
metric relation R on configurations such that 〈Γ1, S1, E1, P1〉 R 〈Γ2, S2, E2, P2〉 implies:

• S1 =Γ1∩Γ2

L S2 and

• 〈Γ1, S1, E1, P1〉 7−→ 〈Γ′
1, S

′
1, E

′
1, P

′
1〉 with n ∈ dom(Γ′

1 − Γ1) ⇒ n /∈ dom(Γ2) implies

〈Γ2, S2, E2, P2〉 7−→? 〈Γ′
2, S

′
2, E

′
2, P

′
2〉 with 〈Γ′

1, S
′
1, E

′
1, P

′
1〉 R 〈Γ′

2, S
′
2, E

′
2, P

′
2〉.

Note that the second condition on new names of Definition 3.4 does not appear here. Indeed, the
requirement that new names should be chosen in the same way on both sides would be neutralized in
Definition 3.6 by the possibility that a move be simulated by the empty move. To see this, let us look
back at the programs P1 and P2 defined at page 33. Clearly, the second condition of Definition 3.4
would not help us distinguish the two configurations C1 = 〈∅, ∅, ∅, P1〉 and C2 = 〈∅, ∅, ∅, P2〉.
Indeed, in response to the choice of a local name x1 by C1, C2 could idle for one turn and then
choose a different local name x2 at the next step. Thus C1 'L C2, with or without the condition.
This example suggests that 'L is weaker than ∼L not only because it ignores signals, but also
because, by treating in a uniform way high and “low” programs, it is less constraining on the latter.

As for the first condition, it may be justified by the same example (C1, C2) used for ∼L at
page 32, since without this condition C1 could choose x as its new name and C2 would not be able to
respond, neither by picking the same name, since x ∈ dom(Γ2), nor by idling since S ′

1
(x) 6= S2(x).

Associated with 'L we have a new notion of security:

Definition 3.7 (Γ- Weakly Secure Programs) P is weakly secure in Γ if for any downward-closed
L and for any Si, Ei such that 〈S1, E1〉=Γ

L〈S2, E2〉 we have 〈Γ, S1, E1, P 〉 'L 〈Γ, S2, E2, P 〉.

We show now that reactive bisimulation ∼L is strictly included into weak reactive bisimulation 'L .
To see that 'L 6⊆ ∼L consider the program P = (if xH = 0 then emit aL else emit bL).
Clearly, if Γ is the typing environment specified by the subscripts and S1, S2 are stores such that
S1(xH ) = 0 and S2(xH) 6= 0, then 〈Γ, S1, ∅, P 〉 'L 〈Γ, S2, ∅, P 〉 but 〈Γ, S1, ∅, P 〉 6∼L 〈Γ, S2, ∅, P 〉.

Theorem 3.11 ( ∼L is a refinement of 'L )

Let L be a downward-closed set of security levels. Then ∼L ⊆ 'L .

Proof Define the relation RH as follows:

RH = {(C1, C2) | Ci = 〈Γi, Si, Ei, Pi〉, Pi ∈ HΓi,L
sem , S1 =Γ1∩Γ2

L S2}

We show that R = ∼L ∪ RH is a 'L -bisimulation. Let Ci = 〈Γi, Si, Ei, Pi〉 and assume first
that C1 ∼L C2. Then 〈S1, E1〉 =Γ1∩Γ2

L 〈S2, E2〉, and thus the condition S1 =Γ1∩Γ2

L S2 is satisfied.
Suppose now C1 7−→ C ′

1 = 〈Γ′
1, S

′
1, E

′
1, P

′
1〉, with n ∈ dom(Γ′

1 − Γ1) ⇒ n /∈ dom(Γ2). There are
two cases to consider:
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1. Pi ∈ HΓi,L
sem for i = 1, 2. We distinguish two subcases, depending on whether the transition is

a simple move or an instant change:

• C1 → C ′
1. Then by Definition 3.2 we have P ′

1 ∈ HΓ
′

1
,L

sem , with 〈S1, E1〉 =Γ1

L 〈S′
1, E

′
1〉.

Correspondingly we can choose C2 →? C ′
2

= 〈Γ′
2
, S′

2
, E′

2
, P ′

2
〉, with C ′

2
= C2 and thus

Γ′
2 = Γ2, S′

2 = S2, E′
2 = E2 and P ′

2 = P2. Then P ′
2 ∈ HΓ2,L

sem and what is left to

show is that S′
1 =

Γ
′

1
∩Γ2

L S2. Since n ∈ dom(Γ′
1 − Γ1) ⇒ n /∈ dom(Γ2), we have

Γ′
1
∩Γ2 = Γ1 ∩ Γ2. Moreover, since x ∈ dom(S ′

1
−S1) implies x /∈ dom(Γ1) (because

of the condition in the operational rule (LET)) and a fortiori x /∈ dom(Γ1 ∩ Γ2), the
property S′

1 =Γ1∩Γ2

L S2 follows from S1 =Γ1∩Γ2

L S2. We conclude that C ′
1 RH C ′

2.

• C1 ↪→ C ′
1. Again, by Definition 3.2 we have P ′

1 ∈ HΓ
′

1
,L

sem . Moreover, since the transition
is deduced by rule (INSTANT-OP), we know that Γ′

1
= Γ1, S′

1
= S1 and E′

1
= ∅.

Correspondingly we choose again the transition C2 7−→? C2. Then, as in the previous

case, P ′
2 ∈ HΓ2,L

sem and what is left to show is that S ′
1 =

Γ
′

1
∩Γ2

L S2. But this follows
immediately from S1 =Γ1∩Γ2

L S2, since S′
1

= S1 and Γ′
1

= Γ1. Hence C ′
1
RH C ′

2
.

2. Pi /∈ HΓi,L
sem for i = 1, 2. Then, if the transition is of the form C1 ↪→ C ′

1 we know by Clause
2 of Definition 3.4 that there is a matching transition C2 ↪→ C ′

2
with C ′

1
∼L C ′

2
. Similarly, if

the transition is of the form C1 → C ′
1
, with n ∈ dom(Γ′

1
− Γ1) ⇒ n /∈ dom(Γ2), we know

by Clause 3 of Def. 3.4 that C2 → C ′
2, with C ′

1 ∼L C ′
2.

Assume now that C1 RH C2. This case is handled in exactly the same way as Case 1 above, since
the additional hypothesis of Case 1, namely E1 =Γ1∩Γ2

L E2, is not used in its proof.
�

A natural question to ask now is whether the two partial equivalence relations (and therefore the two
security notions) coincide on the subset of imperative programs. It turns out that this is not the case.
Consider P = if xH = 0 then (let u : L = 0 in u := 0) else (let v : L = 1 in v := 1).
This program is not secure (note that it is not semantically high) but it is weakly secure because
if one branch picks a new name, the other can idle for one turn and then choose a different name. In-
stead, Q = if xH = 0 then (let u : L = 0 in zL := u) else (let v : L = 1 in zL := v) is
neither secure nor weakly secure, since it may assign different values to the low global variable zL.

Indeed, there are three reasons why ∼L is stronger than 'L . The first is that ∼L looks at
the signal environment while 'L does not. This difference of course disappears on the subset of
imperative programs. The second reason is that 'L allows a move to be simulated by the empty
move, thus relaxing the matching requirement on new names, as illustrated by the example at page 35
or by the above one. The third reason is that the definition of ∼L refers to a quite strong notion
of semantic highness, requiring a high program to be tested in all pairs of low-equal memories at
each step of its execution. Instead, in the definition of 'L the quantification on memories is
made once and for all at the beginning of the execution, for all programs. Consider the program
R = let y : L = 0 in (if xH = 0 then y := 0 else nil). We let the reader verify that R is
not secure while it is weakly secure (in the environment Γ giving type H to xH ).
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4 Conclusion and related work

In this paper we have addressed the question of noninterference for reactive programs. We have
presented a type system guaranteeing noninterference in a core imperative reactive language. We are
currently studying a call-by-value language for mobility built around a reactive core, called ULM [5].
For this purpose, we intend to put together the techniques developed here with the work of [1] on the
non-disclosure policy. We are working on a generalization of non-disclosure to the imperative core
of ULM that should be suitable to account for the mobility fragment of the language.

As has been observed, reactive programs obey a fixed scheduling policy, which is enforced here
in a syntactic way by means of the parallel construct �. Other approaches to noninterference in
the presence of scheduling include the probabilistic one, proposed for instance in [18] and [15]. In
these papers scheduling is introduced at the semantic level (adding probabilities to the transitions),
and security is formalized through a notion of probabilistic noninterference. It should be noted that,
unlike [7], which allows to express different scheduling policies, and [15] which accounts for an
arbitrary scheduler (satisfying some reasonable properties), here the scheduling is fixed. Indeed,
the novelty of our work resides mainly in addressing the question of noninterference in a reactive
scenario. The work [14] examines the impact of synchronization on information flow, and uses it as a
means to study time leaks without explicitly introducing a scheduler. However the analogy between
[14] and our work cannot be pushed very far since [14] has no notion of instant (and thus no way of
recovering from deadlocks) and uses asynchronous parallel composition.
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