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Abstract: This report describes the calculation of local errors in Chamfer masks both in
two- and in three-dimensional anisotropic spaces. For these errors, closed forms are given
that can be related to the Chamfer mask geometry. Thanks to these calculation, it can
be obsrved that the usual Chamfer masks (i.e. 3x3x3 or 5x5x5) have an inhomogeneously
distributed error. Moreover, it allows us to design dedicated Chamfer masks by controlling
either the complexity of the computation of the distance map (or equivalently the number of
vectors in the mask), or the error of the mask in Z?2 or in Z3. Last, since Chamfer distances
are usually computed with integer weights (and approximate the Euclidean distance up to
a multiplicative factor), we demonstrate that the knowledge of the local errors allows a very
efficient computation of these weights.
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Calcul de coefficients et de masques du chanfrein
optimaux

Résumé : Ce rapport décrit le calcul d’erreurs locales dans des masques de distance du
chanfrein en dimensions 2 et 3 dans des espaces anisotropes. Ces erreurs sont données par
des formules analytiques simples qui peuvent étre reliées 3 la géométrie du masque. Gréace &
ces calculs, on puet se rendre compte que les masques usuels (i.e. 3x3x3 or 5x5x5) ont une
erreur locale inhomogeéne. Cela nous permet de plus de construire des masques de distances
du chanfrein dédiés, soit en controlant la complexité calculatoire de la carte de distance
(plus exactement, le nombre de vecteurs du masque), ou I’erreur du masques dans Z? ou
Z3. Finalement, comme les distance du chanfrein sont habituellement calculées avec des
poids entiers (et approximent la distance euclidienne & une constante multiplicative prés),
we montrons que la connaissance de ces erreurs locales permet un calcul trés efficaces de
jeux de coefficients optimaux.

Mots-clés : Distance du chanfrein, grille anisotrope, triangulation de Farey
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1 Introduction

Distance maps are a powerful tool for many image processing operations. Among others,
they allow to perform mathematical morphology [1, 2] operations with large structuring
elements, to guide skeletonization [3, 4], to interpolate [5, 6] or to morph images [7], to
register images [8, 9], or to extract morphometric attributes from binary shapes [10].

Basically, a distance map is a grey-level image where the pixel or voxel value gives
the distance towards a binary shape. A number of approaches have been proposed in the
literature. Although some of them allow to compute the Euclidean Distance [11, 12, 13, 14,
15,16, 17, 18, 19], the Chamfer Distance, that only yields an approximation of the Euclidean
one, is still an appealing technique because of its advantages: a fast computation and an
implementation simplicity even in extreme situation [20].

Chamfer distances have been introduced early in image processing [21, 22] and have
been made popular by Borgefors [23, 24, 25]. It consists in approximating the path of any
background point to the nearest foreground point by elementary displacements, given by
the Chamfer mask, each of them being associated with an elementary cost, the Chamfer
coefficients: the sum of the costs associated to the path gives a distance estimation from the
background point to the nearest foreground point.

Given a Chamfer magk, the difficulty is then to estimate the associated optimal Chamfer
coefficients, that are usually chosen integer for computational considerations. Optimality is
achieved by minimizing the error with respect to the Euclidean distance. For isotropic cubic
grids, in 2-D or in 3-D, these coefficients can be found in the literature. Their calculation
for anisotropic grids have also been described [26, 27, 28]. This is important for biomedical
applications (e.g. [29, 20]), where the 3-D acquisition devices (CT-scan, MRI, confocal
microscope) usually provide a set of 2-D slices whose thickness is larger than the pixel size.

Since the anisotropy factor may vary from one acquisition to the next, it is mandatory to
enable an on-line computation of the optimal Chamfer coefficients. This has been proposed
in [30] for a relative error computed on a plane. However, the calculation of a set of optimal
coefficients with large values, although automated, may still require a large computational
time.

In this article, we provide the calculations of the optimal real Chamfer coefficients for
an error calculated on a sphere, both in 2-D and in 3-D (sections 3 and 4). It not only
yields simple closed forms but also a characterization of the sector where the maximal error
occur. These results allow to design optimal Chamfer masks in Z2 and Z3, and a much more
efficient computation of optimal integer Chamfer coefficients for any Chamfer mask in any
kind of 2-D or 3-D lattice.
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4 Malandain € Fouard

2 Recalls

2.1 Definition and notations

Chamfer distances are usually defined (and used) in a discrete space or lattice denoted by S:
it may be chosen among the usual ones (e.g. Z?2, Z3), or it can more exotic (e.g. hexagonal
grid).

Such discrete spaces are embedded into real spaces R? or R®, in which an orthogonal
coordinates system can be defined by the frames (O, x,y) and (O, x,y,z) respectively.

We also define a size factor along each of the frame axis, to introduce some space
anisotropy. Typically, for S = Z? the couple (s, s,) defines the pixel sizes in world units,
while, for S = Z3, the triplet (s, s,,s.) defines the voxel sizes.

In a discrete space S, the chamfer distance is uniquely defined by its chamfer mask.

Definition 1 (Chamfer Mask) A chamfer mask is a set of p couples M = {(w;,n;)} C
R, X S. that has some properties:

e it contains at least one basis of S

e it is central-symmetric: Y(w;,n;) € M, (w;,—n;) € M

e it has positive weights: ¥(w;,n;) € M,w; >0 and n; #0
e it only contains visible points [30].

In the following, we will denote by v the vector n expressed in world units (i.e., if
n = (z,y), then v = (s,, s,¥)), and by u, the unit vector associated to v, i.e. u=v/|[|v].
The angle between two vectors v; and v;, or equivalently u; and u;, is denoted by 8;; We
will also define the normalized weights w; by w; = w;/||v;]|-

Since M contains at least one basis of S, for any two points P and @ of S, we can build
a path from P to @ as a linear combination (with integer weights) of the vectors n;. The
set of paths from P to @, denoted P(PQ) is defined by

P(PQ) = {(ai) € N such that PQ = Zaini}

The cost of a path is now defined as the linear combination of the weights w;, i.e. ). a;w;.

Definition 2 (Chamfer distance) The chamfer distance between P and Q, denoted D(PQ)
is the cost of the path of minimal cost from P to Q. Let

(a;) = arg min ZcmuZ then D (PQ) = Z a;w;

(az)EP(PQ

INRIA



On optimal chamfer masks and coefficients 5

Figure 1: The 8 sectors of the 3x3x3 Chamfer mask in the first 1/8th of the space. Because
of symmetries, only one of them (the darkest one) has to be considered in isotropic lattices.

2.2 Optimal coefficient calculation

The Chamfer distance is usually used as an approximation of the Euclidean one. The
Chamfer coefficients have then to be chosen so as to minimize the error with respect to the
Euclidean distance: it may be a relative or an absolute error, computed either on a plane
or a sphere. We propose here to compute an absolute error on a sphere. For the error
calculation, we will consider the chamfer distance from a point M to the coordinates origin
O (since Chamfer distance are translation invariant [31]), that we denote by D(M).

Generally, the calculation is reduced to the computation of local errors, which requires
the decomposition of the Chamfer mask.

e In 2-D, it can be decomposed in doublets (n;, n;) such that the angular sectors defined
by those doublets do not overlap (we can not find a mask vector n; between n; and n;).
The vectors in these doublets are ordered in direct order, hence the vectorial product
n, X n; = x;y; — &;y; (considered as a scalar value in 2-D) is strictly positive. In 2-D,
such a decomposition is straightforward.

e In 3-D, it can be decomposed in triplets (n;,n;,n;) such that the (solid) angular
sectors defined by those triplets do not overlap (we can not find a mask vector n;
between n;, n; and ny): see figure 1. The vectors in these triplets are ordered in direct
order, hence the scalar triple product [n;,nj,ny] is strictly positive. In 3-D, such a
decomposition is not unique: there exists several triangulations (or decompositions)
of the same mask.

RR n° 5566



6 Malandain & Fouard

The computation is reduced to an error computation within each sector (O, n;,n;(,ng)).
Given a Chamfer mask decomposition, every point M can be expressed as an unique com-
bination of the vectors n;

M =an; + bnj(+cn,) with  {a,b(,¢)} C Ry

the cone (O,n;,n;(,ng)) being a sector that contains M (except for points on the sector
borders, this sector is unique).

The local error computations are conducted in the real space (R? or R®). They are valid
in the discrete space S, if the chamfer mask M and its decomposition satisfy an additional
assumption [32].

Assumption 1 (Chamfer mask) For any doublet (n;,n;) (resp. triplet (n;,n;,ng)), any
point M of the discrete space S lying in the sector (O,n;,n;) (resp. (O,n;,n;,ng)), the
vector OM can be expressed as a linear combination of vectors n, and n; (resp. n;, n;, and
ny ) with positive integer coefficients.

One has then to pay a great attention to the design of the Chamfer masks, especially in
3-D. For that reason, additional constraints on the Chamfer coefficients are introduced. For
instance, Borgefors and colleagues usually use semi-regularity constraints [31].

In Z? and Z3, this assumption is also met if the Chamfer mask can be decomposed in
regular sectors [22, 30]. Rémy and Thiel [33, 34, 35, 30] have shown that Farey sets are an
adequate tool to build Chamfer masks made of regular sectors in Z? and Z3. In addition,
they have shown that Chamfer distance may also induce norms, according that additional
constraints, namely the convezity constraints (equations (17) and (19)), are verified.

In the following, we assume that the Chamfer mask used for the error computation satisfy
all the above required properties for a local error computation.

3 Error calculation: the 2-D case

Let M = (z,y), and (n;,n;) be the sector that contains M. We have

1
(xyj - mjy) and b = (wiy — zy5) (1)

M =an; +bn; witha=
n; Xn; n; Xn;

The chamfer distance of M can be also expressed as a linear combination of its coordinates:

D(M) = aw; + bw; = ax + By

with

1
(yjw; — ysw;) and B = (—zjw; + zw;)

n; X nj n; X ny

o=

INRIA



On optimal chamfer masks and coefficients 7

3.1 Calculation of the error extrema in a sector

Let us consider the absolute error between the chamfer distance and the Euclidean one
(expressed in world units).

E(M) = D(M) — D(M) = az + By — /s2a? + s3y?

We will study this error on a circle of radius R > 0, and we restrict this study, without loss
of generality to the first space quadrant (x,y > 0). On this circle, the error can be expressed

as a function of y
/B2 — s2y?
E(M):asi +/y—R

We are looking for the error maximum, i.e. for M,,; = argmaxy; E(M). The derivative of
the error function is

B _, 5y
dy Sz [R2 — s2y2
that is zero for y = Yz, with
Sz
yezt = _#R

Sy /252 + a2s?

The error E(M) is then maximal at M,,; defined by

Sy e R,z B R 2)

Mezt = (wemtayemt) = S 73_
2 o2 262 2 o2 202
® 4 /B%s% + a?s v 4/B%s% + a?s

yielding the three possible error extrema in a sector
EM,) = w,R-R
E(Mb) = ij - R

lwiu; — wju|

E(M.y) R—R 3)

u; X uy

The calculation details can be found in section A.1.
In this computation, we do not pay attention whether the maximum M., is effectively
reached, i.e. whether M., is effectively within the sector (O,n;,n;).

Proposition 1 The mazimum M. of the error function E(M) lies within the sector
(O,n;,n;) if and only if the two following conditions are verified.

vl o w; Lo

> = > (4a)
V;.Vj w; u;.uy Wy
w; V.V Wj
— <= — >u;.u; 4b
w, % TP o 2 (#0)

RR n° 5566



8 Malandain & Fouard

The calculation details can be found in section A.2.

If the conditions (4) are verified, the extrema of the error function on a circle of radius
R are located at the three points M,, My, and M.,:. M, and M}, being respectively defined
by M, = an; and M, = bn; (see eq. (1)) while M., is defined in eq. (2).

This allows to determine both the maximum and minimum values of the error within a
sector:

1 . ) — lwivj—wjuill p

if > Yi and Yi >uu; = Ermaa Xy R-R (5a)
u,u;  ow; Wi E,in = min (w;R — R,w;R — R)

1 wj wj E =w;R—R
if > and 2 pu, = maer ! 5b
! u;.uy oWy an Ws <u i Emin = ij - R ( )
. 1 wj wj Enez =w;R—R
if w < w—l and w—z > u;.u; — { E,. =wR—R (5C)

3.2 The best possible error in a 2-D sector

Since the pioneering publications of Borgefors [23, 24, 25] that have popularized the chamfer
distance, minimizing the error within a sector (O,n;,n;) is a well known procedure. It
comes to set the same error (in absolute value) at the three extrema, two of them, E(M,)
and E(My), being negative while the last one, E(M..:), is positive. We then have to solve
the following equalities
—E(Ma) = _E(Mb) = E(Mezt)

From E(M,) = E(M,), it comes that w; = w;. By substituting w; by w; in E(M..:) =

—E(M,), it comes

2 2H,;; . u; X uj ||ui+uj||
W; = W; = Wopt = - - = with H.. = — (6)
T g 14 Hy T Ty =] 2

H;; being the height of the triangle OU;U; that is associated to the sector (O, u;,u;), by
U; = O + u; and U; = O + u; (see figure 2). Since the u’s are unit vectors, (u; + u;) is
orthogonal to (u; — u;), it comes then that

u; +Uj
u; —w = || (u; — ;) x ————L-
=l = o )
By developing, we get ||(u; — u;) % (u; + u;)|| = 2|lu; x u,|| hence szft'f” = lwituyll

It has to be pointed out that, by choosing w; = wj, the conditions (4) are always verified
(the maximum M, lies within the sector (O,n;,n;)). We obtain then the value E,,; of
the best possible error within this sector (O, n;,n,)

[[u; —uil|
u; Xu; - 1—H
Eopt = ol R = R 7
R =TT IR R Y ™
i J

INRIA



On optimal chamfer masks and coefficients 9

Figure 2: Notations for proposition 2.

Proposition 2 The triangle OU,U; that has the smallest height (associated to the edge
opposed to O) is associated to the sector (O,u;,u;) of mazrimal best possible error.

This is straightforward since the best possible error is given by equation (7), and since
H;; = ”“"2'7"’” is the height (associated to the edge opposed to O) of the triangle OU,;U;.

Proposition 3 The sector (O, u;, u;) with the largest angle 6;; between the vectors u; and
u; is the one of mazimal best possible error.

This is straightforward since ||u; + u;|| = 2cos 95’ , and then H;; = cos 9;'3' . We can also
express the above minimum error by
0. .
1—cos =
E(Mezt) = 702” R (8)
1+ cos 3

3.3 The best possible error of a mask

Proposition 4 The best possible error of a chamfer mask M is the maximum of the best
possible errors of all sectors (O, u;,u;), i.e.

Eopt({n1,...n,}) = max FEop (O, ug,u;)
(O,ug,ur)

Let (O, u;,u;) be the sector that yield the maximum of the best possible errors over all
sectors, i.e. H;j < Hy, V sector (O, ur,u;) and let wopr = iLI_}“” (see eq. (6)).

RR n° 5566



10 Malandain & Fouard

Let us make equal all the normalized weights wy, ¢.e. wp = wope, Vk. It can easily be
verified that eq. (4) are verified for every sector (O, ug, u;).
The minimum error over the chamfer mask is then

Epin({n1,...n,}) = mkin wkR — R = woptR — R = Eopt(0,u;,u;)  since wy = wopt, Vk

The maximum error over the chamfer mask is then (case (5a))

lorw — wiug|

Emaz PRI = —R _ R
({nl nP}) (Orallllg?ilt) u;p X

= max P R_R=YP'R_R=F,,(0,u,u,)

(0,ug,uy) H]cl Hz op s Uiy, Uy

We have then exhibit a set of normalized weights so that the error of the chamfer mask
is the best possible error of the sector of minimal height. Let us remark that, in the general
case, this set is not unique and there may exist other weight sets in RP that yield the same
error.

Moreover, the best possible error of a chamfer mask is given by

1 -,
JR  with Hij = min Hy (9)

Eopt({nlv"‘np}) = 1+ H;: (0O,ug,u;)

4 Error calculation: the 3-D case
Let M = (z,y, #), and (n;,n;,n;) be the sector that contains M. We have
(= W52k = yezi)e + (@rz; — 2520)Y + (@596 = 21Y;)2
TiYiZk + TjYkZi + TkYiZj — TiYk2Z5 — TjYiZk — TpYj24
(Yrzi — Yizi)® + (Tizk — Thzi)y + (Teyi — TiYr)z
ZiYj2k + TjYkzi + TrYiZj — TiYkRj — TjYilk — TkYj2i

(yizj — y;2:)7 + (T2 — 2i25)y + (T3y; — 259i)%

M =an;+bn;+cn; with <

\ TiYiZk + TjYk2i + TkYiZj — TiYk25 — TjYiZk — TpY;2i
(10)
o M M M
i X . X 1n;). ; X 1j).
a= (8 x 8,). M and b= (1 X 0:).M and c¢= (i x n;).M (11)
[nivnjank] [nivnjvnk] [n’ivnjank]

The chamfer distance of M can be also expressed as a linear combination of its coordi-
nates:

D(M) = aw; + bw; + cwy, = ax + By + vz

INRIA



On optimal chamfer masks and coefficients 11

with
1
= in,, 0 ((y52k = yrzj)ws + (yrzi — ysze)ws + (yizj — y;2)we)
7, 1j,
1
8= m ((xrz; — xj20)ws + (izk — Tpzi)w; + (X525 — Ti25)wk) (12)
1
Ll e (@59 — 2y )wi + (@rys — Tay)w; + (2395 — 2593w )
or
p 1
B ] = fan g (X mowe + (o X niJw; + (0: X 0y)u) (13)
,7 19 7

4.1 Calculation of the error extrema in a sector

Let us consider the absolute error between the chamfer distance and the Euclidean one
(expressed in world units).

E(M)=D(M) - D(M) = az + fy +7z - \/33962 + s2y2 + 5222

We will study this error on a sphere of radius R > 0, and we restrict this study, without
loss of generality to the first space quadrant (x,y,z > 0). On this sphere, the error can be
expressed as a function of y and z

E(M) = oz\/(R2 —s2y? —s222)[s2 + By +vz— R

We are looking for the error maximum, i.e. for M.,; = argmaxy; E(M). The derivatives of
the error function are

dE s dE 2
— =pB-at Y and - =f—a2 z
dy Sa \/Rz —s2y? — 5222 dz So \/R2 — s2y? — 5222

2 R2,s§ 22

% =0 yields s2y* = ﬂ%zW. Reporting this expression into $£ = 0 gives

828y ¥

R
Sz \/azsgsz + 325252 + 725335

Zext =

Finally, we obtain that the error E(M) is then maximal at M.,; defined by

SyS82 o

R
Sz \/a2s§s§ + 325252 + 725252
Tezt SrSz ﬂ R
Mezt = Yext = Sy (14)

24262 1 32622 4 ~242 g2
a?s?s? + B2s5s2 + y?sisy
538y 07

Sz \/a2s§s§ + (28252 + 725355

Zext

R

RR n° 5566



12 Malandain & Fouard

yielding
E(M,) = wR—-R
E(My) = w,R—R
E(Mc) = ka—R
E(M,..,) = llowi (y x ue) + w;(up x w) + we(ue < i)l 5 5

[u;, u;, ug]

The calculation details can be found in section B.1.
In this computation, we do not pay attention whether this maximum is effectively
reached, i.e. whether M., is effectively within the sector (O,n;,n;, ng).

Proposition 5 The mazimum M. of the error function E(M) lies within the sector
(O,n4,n;,n;) if and only if the three following conditions are verified.

(wilu; x ug) + wj(ue x w;) + we(u; x uj)).(u; x ug) >0 (15a)
(wi(u; x ug) + wj(ur x w;) + wr(u; x w;)) (uk xw;) >0 (15b)
(wi(uj X llk) + (,()j(ll;c X ui) + wk(ui X Uj)) .(lli X llj) >0 (15(2)

The calculation details can be found in section B.2.

If the conditions (15) are verified, the extrema of the error function on a sphere of radius
R are located at the three points M,, My, M., and M. M,, M, and M, being respectively
defined by M, = an;, M, = bn; and M. = cn;, (see eq. (10)) while M., is defined in eq.
(14).

This allows to determine both the maximum and minimum values of the error within a
sector. Depending of the number of positive inequalities in eq. (15), there are three types
of relative position of vector Usjx = wi(u; X ug) + wj(ug X u;) + w(u; X u;) with respect
to the sector (O, n;, n;,ny) (see figure 3).

1. The three scalar products are positive. The maximum of error, E,,,, is reached at
M., (figure 3(a)).

2. Two scalar products are positive. The maximum of error is reached along an edge.
Figure 3(b) depicts the case where U,jx.(u; X ug) < 0: the maximum of error is then

reached within the 2-D sector (O, u;,u;) and is equal to Eqr = ”wlflzj;iﬁﬁ"”]% - R
(cf eq. (3)).

3. Only one scalar product is positive. The maximum of error is reached at a vertex.
Figure 3(c) depicts the case where U,jx.(u; X ug) < 0 and Uyjk.(ur X u;) < 0: the
maximum of error is then reached along vector u; and is equal to Ep,q = w;R — R.

In the three cases, one may consider that the minimum of error is E,,;, = min (w;R — R,w;R — R,wrR — R).

INRIA



On optimal chamfer masks and coefficients 13

Figure 3: The different possible configuration with respect to the number of positive in-
equalities. (a) the 3 inequalities are positive; (b) two of them are positive; (c) only one of
them is positive.

4.2 The best possible error in a 3-D sector

To minimize the maximal absolute error in a sector (O,n;,n;,n;), we have to solve the
following equalities
—E(M,) = —E(My) = —E(M,) = E(M_z)

From E(M,) = E(M,) = E(M.,), it comes that w; = w; = wy. By substituting both w;,
and wy by w; in E(My:) = —E(M,), it comes

o _ 2 _ 2H;;p,
W; =Wj; =W = H(ujxuk)-l[—(u,C xui)]—{—(uixuj)H +1 1 4 Hijk
u;,uj,ug
with
Hip = [wi, u;, uy]
P (uy X ug) + (ug X wg) + (ug X uy))|
and we obtain then
Il Cuy X e )+ (u X ) (i xug)||
_ [ui,uy,ui] o 1—Hiy
E(Mezt) = [I[(u; XUkH[l(lu’:;Xltz]Hm xuj)| + 1R 14 H;ji R (16)

Let us demonstrate that H;ji, is the height of the tetrahedron OU;U;Uy, built from the
sector (O, u;, u;,ug) with U; = O + u;, U; = O + u;, and U, = O + uy, (see figure 3).

First, it can be noticed that the vector U r = (u; x wi) + (ur X u;) + (u; x uy) is
orthogonal to the plane that contains the points U;, U;, and Uy: indeed the scalar vector of
U;;, with each of the three vectors u; — u;, uy — u;, and u; — uy, is zero.

We can then write the equation of this plane as U;;u M — Ujjp.u; = 0. The last
term U,jx.u; being equal to [u;,u;,uy], it comes out that this plane equation is then

RR n° 5566



14 Malandain & Fouard

UijxM — [u;,uj,ur] = 0. The distance of any point to this plane can be computed by
|U”’°Aﬁa£?’:’|luj’"’°”. It comes out that W is nothing but the distance of O to the plane
U;U;Uy, i.e. the height of the tetrahedron.

However, unlike the 2-D case, setting w; = w; = wy does not ensure that the conditions
(15) are verified. In this particular case, these conditions depend on the sign of the three
scalar products of vector U,j; with vectors (u; x ug), (ur x u;), and (u; x u;). There are

only two possible cases.

1. The three scalar products are positive. The height is effectively within the sector
(O,n;,n;,n;) and the theoretical minimal error of the sector is given by equation
(16). This case is depicted by figure 3(a).

2. Two scalar products are positive, while the third is strictly negative. The height
is located on the other side of an edge. Let us consider the case Ujji.(u; X u) < 0
depicted by figure 3(b). The error will then be maximal along U;U;,. The best possible
error is then given by the 2-D formula (7) applied to the 2-D sector (O, u;, ux), i.e.

2ij ]-_ij

——— and FE,;=—"
14+ Hjy Pt 14+ Hjy,

w] = WL = wopt =
It can be shown that Ujjk.(u; x ug) < 0 implies both Hj, < H;; and Hj, < Hy; (see
section B.3): this imply that the errors inside the 2-D sectors (O, u;, u;) and (O, ug, u;)
and the 3-D sector (O, u;, uj, uy) are strictly inferior to E,p;. As a consequence, this
allows a certain freedom in the choice of w;.

3. Having two strictly negative scalar products (the case depicted in figure 3(c)) is not
possible. Indeed, if one assumes that Uj;,.(u; x ug) < 0 and Ujj.(u X u;) < 0, it
implies both Hjr < Hy; (from the first inequality) and Hy, < Hji (from the second
one) which is contradictory.

Proposition 6 The tetrahedron OU;U;Uy that has the smallest H, with

H,'jk Zf Uijk.(llj X llk) 2 0 y Uijk.(llk X 11,') 2 0 s and Ui]'k.(lli X 11]') 2 0
H= Hj Zf Uijk.(llj X llk) <0 R Uijk.(uk X 11,) >0 s and Ui]'k.(lli X Uj) >0
Hl' Zf Uijk.(uj X uk) 2 0 y Uijk.(uk X ul) <0 s and Uijk.(ui X u]) Z 0
Hl" Zf Uijk.(uj X uk) 2 0 y Uijk.(uk X ul) 2 0 s and U'ijk.(u1 X 11]) <0

is associated to the sector (O,u;,u;,ux) of mazimal minimum error.

4.3 The best possible error of a mask

Proposition 7 The best possible error of a chamfer mask M is the maximum of the best
possible errors of all sectors (O, u;,u;,uy), i.e.

Eopi({ny,...np}) = max  Fop (O, u;,up,,u,)

sUL Wy Up

INRIA
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The proof is strictly similar to the one of the 2-D case.
As in 2-D, we can exhibit a weight set in R? that realize this error, and this set is not
unique in the general case.

5 Convexity criteria

Convexity criteria have been introduced by [33]. They allow to ensure that a chamfer
distance is also a norm. Surprisingly, one can demonstrate that the conditions of existence
of the maximum M.,; within a sector (eq. (4) and (15)) do imply the convexity criterium.
Unfortunately, since the equivalence is false (counter-examples can be exhibited), this is
useless in practice (for the calculation of optimal integer weights, see below).

5.1 The 2-D case
Proposition 8 The conditions (4) imply the convezity of the chamfer mask.

The 2D convexity criterium has to be evaluated on two adjacent sectors (O, u;,u;) and
(O,u;,u;) and is defined by

X Zj Tk
Ciyr=1| ¥ ¥ Y |=>0 (17)

w; w; Wk

it expresses the fact that the triangle defined by the extremities of the vectors v,, /w, (the
above expression have to be multiplied by s,s,) must have a positive area. This criterium
can be rewritten into

wr(z:y; — T59:) + wi(Teys — Tiyr) + wi(zjyr — Try;) > 0

The conditions (4) for the sector (O, u;, u) are

vil? _w 1 w

V.V w; u;.ug Wy
% = Vj-VI; == & 2 llj.llk (18]:))
w; vl wj

From inequalities (4a) and (18b), it comes

Wi (T3y; — T59:) + i (Teys — Tayx) + wi(T;Ye — TRY;)
w.
I ((vivi) @iy — 259) + V512 (@kys — 2ayr) + (vivy) @y, — 1Y)

v,

After developing the last term, it comes out that it is equal to zero, which proves proposition
8.

RR n° 5566



16 Malandain & Fouard

Uk

Figure 4: Notations for proposition 9.

5.2 The 3-D case
Proposition 9 The conditions (15) imply the convexity of the chamfer mask.

The 3D convexity criterium has to be evaluated on two adjacent sectors (O, u;,u;, uy)
and (O,u;,u;,u;) (so we have [u;,u;, u,] > 0, see figure 4) and is defined by
T Z 5 Tk Xy
oYY Y U S 1
Cijri SO 0 (19)
w; w; W wp

it expresses the fact that the tetrahedra defined by the extremities of the vectors v, /ws,
(the above expression has to be multiplied by s;sy,s,) must have a positive area. This
criterium can be rewritten into

Cijkl = wl[ni, Il]', Ilk] — wk[ni, Ilj, l’ll] =+ wj [Ili, ng, Ill] — wi[nj, ng, nl]
After multiplication by s,s,s. and division by ||v;|| ||v;]| [|Vk|l || vill, we get

Cijr >0
= wilug, uy, ug] — weug, ug,ug] + wjfug, ug, W) — w;[ug, ug, w] >0

= wiu;, uj, ug] — wew;, uy, W] + wjifug, ue, W) + wiluy, w,ug] >0

The conditions (15) for the sector (O, u;,u;, uy) are

(wi(w x ug) +wi(ug x wj) +we(u; x w)) .(w xuE) >0 (20a)
(wj(w x ug) + wi(ug x uy) + wp(u; x wg)) .(up x u;) >0 (20b)
(wi(w x ug) + wi(ur X uj) + wr(u; X w)) .(u; xw;) >0 (20c)

INRIA



On optimal chamfer masks and coefficients 17

From inequality (15a), we get
wi(uy x ug)? > —w;(ug x w).(u; x ug) — wi(u; X uj).(u; x ug)
and from inequality (20b), we get
wi(uy x ug)? > —wi(ug x wp).(uj x ug) — w(w x uj).(uj x u)
From these, we get
(u; x uk)2(wl[ui,uj,uk] — wi[u, uy, w] + wjug, ug, W] + wiluj, ug, ugl)
> wj ([ui,uk,ul](uj x ug)? — [y, uy, wg)(ue x wg).(wy x wg) — [wi, vy, wg](ug x wp).(u; x uk))
— Wk ([ui,uj,ul](uj X ug)? + [uy, u, wg](u; x uj).(u; x wg) + [wg, uj, ug](w x ujy).(u; x uk))

This last term is equal to zero (see section B.4 for calculation details), which proves propo-
sition 9.

6 Applications

6.1 Designing Chamfer masks
6.1.1 Building masks with Farey sets

Since the construction of Chamfer masks with Farey sets has been detailed in other publi-
cations (e.g. [35, 30]), we only recall here some necessary notions in 3-D (the restriction to
the 2-D case is straightforward). A Farey set F,, of order n correspond to the vectors of the
Chamfer mask n x n x n in the 1/48th of the space (the dark sector in figure 1).

1 1 1
The Farey set F; of order 1, depicted in figure 1, is made of the 3 vectors [ ( 0 ]( 1 ]( 1 ] }
0 0 1

1 1 1
and the corresponding triangulation, 77 consists in a single sector [<( 0 J( 1 ]( 1 ]>}
0 0 1
Large Chamfer masks, together with their triangulations, can be recursively build from
a smaller one:

a: ! z z
Frt1 = Fn U{( y )Jr( ! ) with max(z +z',y+y',z+2)<n+1, and ( Yy ]( y ]6.7:”}
z

z V4
(21)
More precisely, we sequentially consider the sectors (n;,n;,ng) of 7,, and together with
adding n; + ny to F,41, we replace the sector (n;,n;,ng) in 7, with the two sectors
(n;,n; +ng,ng) and (n;,n;,n; + ng), and, if there also exists a sector (n;,ng,n;) (as de-
picted in figure 4) in 7, it is splitted the same way. It can be proved that, if the sector
(n;,n;,ng) is regular, then the newly built sectors are also regular [30].

N8
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5x5xb
error = 2.4113 %

XTX7
error = 1.2234 %

XTx7
error = 1.2234 %

Figure 5: Errors (given in percentage) associated with the sectors of triangulated isotropic
3D chamfer masks (only 1/48th of the sphere built from the n/||n|| is depicted). From left
to right, the triangulation of the 5x5x5 mask, the triangulation of the 7x7x7 mask as built
in [30], and the triangulation of the 7x7x7 mask built by explicitly minimizing the error.

6.1.2 Optimal triangulations

When designing 3D Chamfer masks, it comes out that different triangulations can be built
from the same set of vectors. Indeed, when a sector (n;,n;,n;) € 7, has to be splitted, we
have to consider either the vector n; + n;, or n; + ng, or n; + n;, and more than one of
them may belong to F,4+1 (see Eq. (21)), say for instance the first two.

If we consider n; + n; as the vector to be added, then we create the two sectors
(n; +n;,n;,ng) and (n;,n; +n;,n;). Conversely, if we consider n; + n, as the vector
to be added, then we create the two sectors (n;,n; + ng,ng) and (n;,n;,n; + ng). Thus,
depending on the order we add the vectors to F, 41, we may end up with different triangu-
lations.

To decide between different possible choices, a heuristic geometric rule was proposed in
[30], and this yield the 7x7x7 triangulation depicted in the middle of figure 5 (or 73 in figure
13 in [30]).

We propose here a more rigorous rule to choose between different vectors. We compute
the best possible errors of the two sectors (n; + n;,n;,ng) and (n,;,n; + n;,ng), that are
related to the creation of n; +n;, and associated the maximum of the two of them to n; +n;.
We do the same with n; + n.

After these computations have been conducted for the different possible choices, we can
explicitly choose to add the vector that will minimize the maximum of the (best possible)
errors of the two generated sectors. We observe that it yield a more homogeneous distributed
error: compare the upper right part of the 7x7x7 triangulation at right of figure 5 with the
one at the middle.

INRIA



On optimal chamfer masks and coefficients 19

6.1.3 Optimal Chamfer masks

Classically, Chamfer masks are built with respect to a neighborhood size (i.e. 3x3x3, 5x5x5
or 7x7x7). By increasing the number of vectors, one will decrease the error with respect to
the Euclidean distance but increases the algorithmic complexity (hence the computational
time of the Chamfer distance map).

It may be then interesting either to build mask with respect to a given error, or with
respect to the algorithmic complexity (more precisely with respect to the number of vectors
in the mask. In both cases, starting from the simplest mask (the 3x3x3 one), one only have
to iteratively split the sector of maximal error until the desired mask error or number of
vectors is reached.

Figure 6 depicts the errors associated with anisotropic chamfer masks of different size,
ranging from 3x3x3 to 5x5x5 (from [30]). A certain error discrepancy can be observed for
each mask.

” 252
w
" 1.31
oz o [lo.68
o
5 e 08
o

3x3x3 3x3x5 3x5x5 5x5xd
error = 9.3879 % error = 8.0701 % error = 5.3320 % error = 4.8370 %

Figure 6: Errors (given in percentage) associated with the sectors of triangulated anisotropic
3D chamfer masks (s, = 1, s, = 1.2, s, = 2). 1/8th of the sphere built from the n/||n|| is
depicted.

The 3x3x5 (left of figure 6) mask has 10 vectors in the 1/8th of the space. As proposed
above, a 10 vectors mask can also be built by iteratively splitting the sector of maximal

2 1
error (left of figure 7). It can be then observed that using vector ( 0 ] instead of ( 1 ]
1 2

yields a better error for the same computational cost of the associated distance map.
The same still holds for mask of larger size. The 3x5x5 mask has 16 vectors. A mask
built with the same number of vectors within the 5x5x5 neighborhood will have a smaller

2 1
error if the vector ( 2 ] is prefered to vector ( 0 ] Moreover, this mask has the same
1 2

maximal error than the 5x5x5 mask, but with a smaller computational cost.
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10 vectors 16 vectors in 5x5x5 16 vectors 19 vectors
error = 6.9404 % error = 4.8370 % error = 3.8297 % error = 3.2072 %

Figure 7: Errors (given in percentage) associated with the sectors of triangulated anisotropic
3D chamfer masks (s, =1, s, = 1.2, s, = 2). The mask vectors are chosen so that the mask
error always decreases.

An even smaller error can be reached if the vectors are not constrained to belong to the

2 3 1 3
5x5x5 neighborhood. In this case, it can be observed that vectors {( 2 ]( 1 ]( 3 ]( 0 ]]

1 1 1 1
1 1 1 0
are prefered to vectors ol 1fl2]|1];
)G )

Finally, an optimal mask of 19 vectors (same complexity than the 5x5x5 mask) will use

3 1 3 3 2
the vectors {( 1 ]( 3 )( 0 ]( 2 )( 3 ]} and will achieve the same maximal error than

1 1 1 1 1
the 7x7x7 mask (49 vectors in the 1/8th of the space).
Moreover, it can be observed that the error range is less extended for the masks of figure
7 than of figure 6.

6.2 Computing optimal integer weights

In previous section, we discussed the design of Chamfer masks. As already mentioned, we
are able to exhibit a set of real-valued weights that realizes the best possible error for a
given mask.

However, we may be interested not in real-valued weights, but in integer-valued ones
that we denote by w,. For a given set of integer weights, one compute both the minimum
and the maximum values, D,in and D,us (see sections 3.1 and 4.1), of the Chamfer map,
and we retrieve a set of real-valued weights by w; = @;/¢ with ¢ = (Dyin + Daz) /2-

The point is now to calculate sets of optimal integer weights. We will consider a sorted
list of couple (w;,n;). The first (2 or 3, depending on the space dimension) couples are the
ones that define the sector of maximal error. The rest of the list is built by adding the vector
that allow to build a sector adjacent to the ones already defined by the vectors in the list
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0 : 1 : : 2 | error | % / opt € time
0 0 1 0 1 1

1 1 1 2 2 2 | 26.79 1111.2 0.789 0 ms
1 2 2 3 3 4 | 17.16 711.5 1.207 | 10 ms
2 3 3 5 5 6 | 12.70 526.8 1.984 | 10 ms
2 3 4 5 6 7 | 10.10 418.9 2.225 | 10 ms
3 4 b) 7 7 9 5.57 231.1 2.995 | 10 ms
4 6 7 9 | 10 | 13 | 4.29 178.1 4.179 | 10 ms
5 7 9 |11 | 12 | 15 | 2.94 122.1 5.048 | 20 ms
9 | 13116 |20 | 22| 28 | 2.66 110.5 9.189 | 30 ms
11 | 16 | 20 | 25 | 27 | 34 | 2.55 105.8 11.288 | 30 ms
20 1 29 | 35 | 45 | 49 | 62 | 2.44 101.2 20.500 | 50 ms

Table 1: 5x5x5 Chamfer mask coefficients (isotropic case). The best possible error is 2.4113
%. The four last columns indicates the actual error, the percentage w.r.t. the best possible
error, the multiplicative constant, and the computational time.

(so that additional convexity constraints can be test as soon as a weight is defined for this
vector).

Assume that we are looking for the weight sets that verify @Wx € [@Wmin,Wmaz]- The
weights w; of the 2 or 3 first vectors of the list are allowed to vary in [| Wmin||Villco | s | @maz||Vill1]]-

For any doublet (or triplet) of weights, the minimum and maximum values, D, and
Dmaz, as well as £ are calculated. This allows to compute the error E = Do /€ — 1 of this
sector. If this error is better than a previously computed error E,,, the other vectors are
considered.

The range of variation of the weights wj, of these vectors could be constrained by the
estimated error E. It appears that it is too strict, since the minimum and maximum values of
the distance map may not occur in the first cone, and we prefer to constrain it by previously

computed error E,, yielding the range a variation [|_é(1 — E)Ivill), [6Q + E) || ||]] . This

drastically reduces the depth-first search in the sets of possible integer weights. As in [30],
alpha pruning is performed that consists in checking convexity criteria for each newly tested
weight.

Once a complete set of integer weights have been identified, its error as well as its
multiplicative constant ¢ are re-estimated. In addition, the percentage of error with respect
to the best possible error (i.e. the error limit) can also computed: this may offer a mean to
control and stop the coefficient computation.

Tables 1 and 2 give the optimal Chamfer coefficients for respectively the 5x5x5 and the
7x7x7 Chamfer masks (isotropic case). The estimated errors can not be directly compared
to [30], since the error definition is different, but it can be noticed that they are comparable.
A drastic reduction of the computational time can be observed.

Tables 3, 4, and 5, as well as tables 6, 7, and 8 give the optimal integer coefficients for
the three first masks depicted in respectively figures 6 and 7.
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0 : : : : 2 H > H > 3 2 s | error | % / opt € time
0 0 1 0 1 1 0 0 1 1 1 2 2

1 1 1 2 2 2 3 3 3 3 3 3 3 26.79 2190.1 0.789 0 ms
1 2 2 3 3 4 4 5 4 5 6 5 6 17.16 1402.4 1.207 0 ms
2 3 3 5 5 6 7 8 7 8 9 8 9 12.70 1038.2 1.984 0 ms
2 3 4 5 6 7 7 8 8 9 10 | 10 | 11 | 10.10 825.7 2.225 0 ms
3 4 5 6 7 9 9 10 9 11 | 13 |12 | 14 5.57 455.5 2.842 10 ms
4 6 7 9 10 [ 13 |13 |15 | 13 |16 | 19 | 17 | 20 5.31 433.7 4.139 10 ms
4 6 7 9 10 (12 |13 | 15 | 14 | 15 | 18 | 17 | 19 2.94 240.6 4,121 20 ms
7 10 | 12 | 16 | 17 | 21 | 22 | 26 | 23 | 27 | 31 | 29 | 33 2.48 202.4 7.104 30 ms
8 11 | 14 | 18 | 19 | 24 | 25 [ 29 | 26 | 30 | 35 | 33 | 38 2.31 189.1 7.940 40 ms
9 13 |16 | 20 | 22 | 27 | 29 | 33 | 30 | 34 | 40 | 38 | 43 1.81 147.8 9.109 50 ms
14 | 20 | 24 | 31 | 34 | 42 | 44 | 51 | 46 | B3 | 62 | B8 | 66 1.76 143.8 14.105 90 ms
17 [ 24 | 30 | 38 | 42 | 52 | b4 | 61 | b7 | 65 | 76 | 71 | 81 1.75 143.1 17.220 | 150 ms
17 [ 24 | 30 | 38 | 42 | 51 | b4 | 62 | b7 | 65 | 75 | 70 | 80 1.60 130.5 17.246 | 150 ms

Table 2: 7x7x7 Chamfer mask coefficients (isotropic case). The best possible error is 1.2234
%. The four last columns indicates the actual error, the percentage w.r.t. the best possible
error, the multiplicative constant, and the computational time.

7 Conclusion

We have described and calculated the error between the Chamfer distance and the Euclidean
one within a sector (defined respectively by two and three vectors in 2-D and in 3-D),
estimated on a circle (or on a sphere). We have also provided closed forms for this error
(sections 3.1 and 4.1).

This allowed us to compute the best possible error for each sector, and hence for the
Chamfer mask, and to exhibit a set of optimal real-valued weights. These calculations are
valid for any 2-D or 3-D lattice. This best possible error is then the lower limit of the errors
induced by integer valued weights.

Having an error estimation defined locally allowed us to study the usual Chamfer masks
(in Z3) that are built symmetrically with geometric considerations. It appeared that the
error is inhomogeneously distributed on these masks.

We then proposed a new Chamfer mask construction method that iteratively add vectors
to subdivide the sector of highest error. It allowed to build mask of given complexity (i.e.
number of vectors) or given error (with the lowest complexity), with a more homogeneously
distributed error.

Finally, by assuming that the error computed in the sector of highest error in a mask
is a good estimate of the mask error itself, we proposed a new method to compute sets of
optimal integer weights®, that clearly outperform a previously proposed method [30].

IThe code used to build masks and to compute integer weights is available at http://www-sop.inria.
fr/epidaure/personnel/Gregoire.Malandain/codes/chamfer-coefficients.html
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Table 3:

multiplicative constant, and the computational time.

RR n° 5566

1 0 0 1 1 0 1

0 1 0 1 0 1 1 error | % / opt € time
0 0 1 0 1 1 1

1 1 1 1 2 2 2 | 38.20 406.9 0.809 0 ms
1 1 2 1 2 2 2 27.18 289.5 0.879 0 ms
1 1 2 2 2 2 2 24.58 261.8 1.045 0 ms
2 2 3 3 4 4 4 19.70 209.9 1.868 10 ms
2 2 4 3 4 4 4 17.31 184.4 1.906 10 ms
2 3 4 3 5 5 5 16.74 178.3 2.307 10 ms
2 3 4 4 5 5 5 16.32 173.8 2.354 10 ms
3 3 5 4 6 6 7 16.05 171.0 2.978 10 ms
3 4 6 5 6 7 7 15.33 163.3 3.169 10 ms
3 4 6 5 7 7 7 13.98 149.0 3.207 10 ms
3 4 6 5 7 7 8 11.63 123.9 3.395 10 ms
4 5 8 6 9 9 10 | 10.99 117.1 4.316 20 ms
5 6 10 8 11 | 12 | 13 | 10.91 116.2 5.522 20 ms
5 6 10 8 12 | 12 | 13 | 10.39 110.7 5.580 20 ms
7 9 14 | 11 | 16 | 17 | 18 | 10.02 106.7 7.779 30 ms
9 11 | 18 | 14 | 20 | 21 | 23 9.81 104.5 9.918 30 ms
13 |16 |26 |21 |30 | 31| 33 9.70 103.4 14.397 | 50 ms
15 | 18 | 30 | 24 | 34 | 35 | 38 | 9.65 102.8 16.573 | 60 ms
16 | 20 | 32 | 25 | 36 | 38 | 41 9.60 102.2 17.699 | 70 ms

3x3x3 Chamfer mask coefficients (anisotropic case, s, = 1, s, = 1.2, s, = 2)
that correspond to the first mask of figure 6. The best possible error is 9.3879 %. The four
last columns indicates the actual error, the percentage w.r.t. the best possible error, the
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0 H 0 H 0 H H H > 1| error | % / opt € time
0 0 1 0 1 1 1 1 1 2

1 1 1 1 2 1 2 3 2 3 44.56 552.2 0.773 0 ms
1 1 1 1 2 2 2 3 3 3 38.20 473.3 0.809 0 ms
1 1 2 1 2 2 2 3 3 4 27.18 336.8 0.879 0 ms
1 1 2 2 2 2 2 3 3 4 24.58 304.5 1.045 0 ms
2 2 3 2 3 3 4 5 5 6 23.38 289.7 1.671 10 ms
2 2 3 3 4 4 4 6 6 7 19.70 244.1 1.868 10 ms
2 2 4 3 4 4 4 6 6 8 17.31 214.5 1.906 10 ms
2 2 4 3 4 4 5 6 7 8 14.59 180.8 1.951 10 ms
3 4 6 5 7 7 7 10 | 11 | 13 | 13.98 173.3 3.207 20 ms
3 4 6 5 7 7 8 10 | 11 | 13 9.85 122.0 3.328 20 ms
5 6 10 8 11 |12 | 13 | 16 | 18 | 22 8.48 105.1 5.375 40 ms
8 10 |16 | 13 | 18 | 19 | 21 | 26 | 29 | 35 8.42 104.3 8.735 70 ms
9 11 | 18 | 14 | 20 | 21 | 23 | 29 | 32 | 39 8.23 101.9 9.746 100 ms
17 | 21 | 34 | 27 | 38 | 40 | 43 | B5 | 61 | 74 8.22 101.9 18.463 | 390 ms
17 | 21 | 34 | 27 | 38 | 40 | 44 | 55 | 61 | 74 8.08 100.1 18.488 | 440 ms

Table 4: 3x3x5 Chamfer mask coefficients (anisotropic case, s = 1, sy = 1.2, s, = 2) that
correspond to the second mask of figure 6. The best possible error is 8.0701 %. The four
last columns indicates the actual error, the percentage w.r.t. the best possible error, the
multiplicative constant, and the computational time.
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1 0 0 1 1 0 1 2 2 1 1 0 0 2 1 1
0 1 0 1 0 1 1 1 0 2 0 2 1 1 2 1 error % / opt € time
0 0 1 0 1 1 1 0 1 0 2 1 2 1 1 2
1 1 1 1 1 2 2 2 2 2 2 3 3 2 3 3 38.20 716.4 0.724 0 ms
1 1 2 1 2 2 2 2 2 2 4 3 4 2 3 4 21.94 411.4 0.820 0 ms
2 2 3 3 3 4 4 4 5 5 6 6 6 5 6 6 21.15 396.7 1.702 20 ms
2 2 3 3 4 4 4 4 5 5 7 6 7 5 6 7 15.77 295.7 1.781 20 ms
2 2 4 3 4 4 4 4 5 5 8 6 8 5 6 8 13.34 250.2 1.819 20 ms
3 3 5 4 6 6 7 7 7 7 11 9 11 8 10 12 12.06 226.1 2.814 40 ms
3 3 5 4 6 6 7 6 8 7 11 9 11 8 10 12 11.70 219.4 2.831 40 ms
3 4 6 5 7 7 7 7 9 8 12 10 12 9 10 12 11.57 217.0 3.119 60 ms
3 4 6 5 7 7 8 7 9 9 12 10 13 10 11 13 10.88 204.0 3.266 70 ms
3 4 6 5 7 7 8 7 9 9 13 10 13 10 11 13 9.38 175.9 3.310 70 ms
4 5 8 6 9 9 10 9 11 11 16 13 17 12 14 17 8.34 156.4 4.191 130 ms
5 6 10 8 11 11 12 11 14 13 20 16 21 15 17 21 7.76 145.6 5.113 450 ms
5 6 10 8 11 12 13 12 14 13 21 17 21 16 18 21 7.74 145.1 5.300 500 ms
5 6 10 8 11 12 13 12 14 13 21 17 21 16 18 22 7.44 139.6 5.315 520 ms
5 6 10 8 12 12 13 12 15 13 21 17 21 16 18 22 6.63 124.4 5.355 540 ms
9 11 18 14 20 21 23 21 26 24 37 30 38 28 32 39 6.56 123.0 9.572 23.43 s
9 11 18 14 21 21 23 21 26 24 37 30 38 28 32 39 6.45 121.1 9.581 24.10 s
9 11 18 14 20 21 23 21 26 24 37 29 38 29 31 39 6.37 119.5 9.553 27.24 s
12 15 24 19 27 28 31 28 35 33 50 39 51 39 42 52 6.32 118.6 12.810 7 min 40 s
12 15 24 19 27 28 31 28 35 32 50 40 51 39 42 52 6.30 118.2 12.807 7 min 40 s
13 16 26 21 30 31 33 31 39 34 54 43 55 42 45 56 6.30 118.1 13.874 17 min
14 17 28 22 31 33 35 33 40 36 57 46 59 44 48 60 6.18 115.9 14.700 31 min
14 17 28 22 32 33 36 33 41 37 58 46 59 45 49 60 6.11 114.6 14.882 37 min
14 17 28 22 32 33 36 33 41 37 58 46 59 45 49 61 6.01 112.8 14.896 37 min
15 18 30 24 34 35 38 35 44 39 62 49 63 48 52 65 6.00 112.5 15.930 1 h 2 min
17 21 34 27 38 40 43 40 49 45 70 56 71 54 59 73 5.94 111.4 18.015 3 h 17 min
19 23 38 30 43 44 48 44 55 50 78 62 79 60 66 81 5.90 110.6 20.045 6 h 46 min
19 23 38 30 43 44 48 44 55 50 78 62 80 60 66 82 5.89 110.5 20.046 6 h 46 min
19 23 38 30 43 45 48 45 55 50 78 63 80 60 66 82 5.80 108.8 20.079 6 h 46 min

Table 5:

3x5x5 Chamfer mask coefficients (anisotropic case, s, = 1, s, = 1.2, s, = 2) that

correspond to the third mask of figure 6. The best possible error is 5.3320 %. The four
last columns indicates the actual error, the percentage w.r.t. the best possible error, the

multiplicative constant, and the computational time.
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1 o 0 1 1 0 T 3 3 T
0 1 0 1 o 1 1 0 1 2 error | % / opt € time
0 0 1 0 1 1 1 1 1 1

1 1 1 1 1 2 2 2 2 3 | 38.20 550.3 0.724 0 ms
1 1 2 1 2 2 2 2 2 3 | 21.94 316.1 0.820 0 ms
2 2 3 3 4 4 4 5 5 6 | 18.18 262.0 1.833 10 ms
2 2 4 3 4 4 4 5 5 6 | 15.78 227.3 1.871 10 ms
2 2 4 3 5 4 5 6 6 7 | 14.59 210.2 1.951 10 ms
3 3 5 4 6 6 6 8 8 9 | 14.44 208.0 2.763 10 ms
3 3 5 4 6 6 7 8 9 9 | 13.35 192.3 2.885 10 ms
3 3 5 4 6 6 7 7 8 | 10 | 12.06 173.7 2.814 20 ms
3 3 5 4 6 6 7 8 8 | 10 | 11.70 168.5 2.831 20 ms
3 4 6 5 7 7 8 9 | 10 | 11 | 9.85 141.9 3.328 20 ms
4 5 8 6 9 9 |10 | 11 | 12 | 14 | 9.22 132.9 4.231 30 ms
5 6 |10 | 8 |11 |12 |13 |14 | 16 | 18 | 8.48 122.2 5.375 50 ms
5 6 (10| 8 |12 |12 |13 |15 | 16 | 18 | 7.67 110.5 5.415 50 ms
9 |11 | 18 | 14 | 21 | 21 | 23 | 26 | 28 | 32 | 7.62 109.8 9.702 | 130 ms
10 |12 | 20 | 16 | 22 | 23 | 25 | 28 | 31 | 35 | 7.60 109.5 10.648 | 170 ms
10 [ 12 | 20 | 16 | 23 [ 23 | 25 |29 | 31 | 35| 7.53 108.5 10.654 | 170 ms
11 |13 | 22 | 17 | 25 | 25 | 28 | 31 | 34 | 39 | 7.47 107.7 11.584 | 270 ms
15 | 18 | 30 | 24 | 34 | 35 | 38 | 43 | 47 | B3 | 7.04 101.4 16.108 1.11s

Table 6: 10 vectors Chamfer mask coefficients (anisotropic case, s, =1, sy, = 1.2, 5, = 2)
that correspond to the first mask of figure 7. The best possible error is 6.9404 %. The four
last columns indicates the actual error, the percentage w.r.t. the best possible error, the
multiplicative constant, and the computational time.
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1 0 0 1 1 0 1 2 2 1 0 0 2 1 1 2
0 1 0 1 0 1 1 1 0 2 2 1 1 2 1 2 error % / opt I3 time
0 0 1 0 1 1 1 0 1 0 1 2 1 1 2 1
1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 43.47 898.6 0.697 0 ms
1 1 2 1 2 2 2 2 2 2 2 4 2 2 4 2 29.94 619.0 0.770 0 ms
1 1 2 1 2 2 2 2 2 2 3 4 2 3 4 3 21.94 453.5 0.820 0 ms
2 2 3 3 3 4 4 4 5 5 6 6 5 6 6 7 21.15 437.3 1.702 20 ms
2 2 3 3 4 4 4 4 5 5 6 7 5 6 7 7 15.77 326.0 1.781 20 ms
2 2 4 3 4 4 4 4 5 5 6 8 5 6 8 7 13.34 275.8 1.819 20 ms
3 3 5 4 6 6 7 6 8 7 8 11 8 9 12 10 11.70 241.8 2.831 30 ms
3 4 6 5 7 7 7 7 9 8 10 13 9 10 13 12 11.57 239.2 3.119 60 ms
3 4 6 5 7 7 8 7 9 9 10 13 9 11 14 12 10.56 218.3 3.275 60 ms
3 4 6 5 7 7 8 7 9 9 10 13 10 11 13 13 9.38 193.9 3.310 70 ms
3 4 6 5 7 7 8 8 9 9 10 13 9 10 14 11 9.10 188.2 3.223 70 ms
3 4 6 5 7 7 8 8 9 8 10 13 10 10 13 12 8.74 180.7 3.287 80 ms
4 5 8 6 9 9 10 9 11 11 12 16 12 13 17 15 6.91 142.9 4.116 140 ms
4 5 8 6 9 9 10 9 11 11 12 17 12 13 17 15 6.78 140.2 4.121 140 ms
5 6 10 8 11 12 13 12 14 14 16 21 15 17 22 19 6.76 139.8 5.236 240 ms
5 6 10 8 12 12 13 12 15 13 16 21 16 17 22 20 6.12 126.5 5.326 360 ms
7 9 14 11 16 17 18 17 20 19 22 29 22 23 30 27 6.07 125.5 7.393 2.01 s
7 9 14 11 16 17 18 17 20 19 22 30 22 23 30 27 5.77 119.3 7.414 2.01 s
7 9 14 11 16 17 18 17 20 19 22 30 22 23 31 27 5.67 117.3 7.421 2.01 s
9 11 18 14 20 21 23 21 26 24 28 38 28 30 39 35 5.52 114.1 9.467 7.91 s
9 11 18 14 21 21 23 21 26 24 28 38 28 30 39 35 5.42 112.0 9.476 7.91 s
10 12 20 16 23 24 26 24 29 27 32 42 31 34 44 39 5.24 108.4 10.553 12.48 s
12 15 24 19 27 28 31 29 34 32 38 51 37 40 52 46 5.20 107.6 12.659 46.69 s
13 16 26 21 29 31 33 31 37 35 42 55 40 44 56 51 5.19 107.3 13.679 1 min 7 s
13 16 26 21 30 31 33 31 37 35 42 55 40 44 56 51 5.07 104.8 13.694 1 min 7 s
14 17 28 22 32 33 36 33 40 37 44 59 43 47 61 54 4.90 101.4 14.717 1 min 41 s
Table 7: 16 vectors (constrained in the 5x5x5 neighborhood) Chamfer mask coeflicients
(anisotropic case, s; =1, sy, = 1.2, s, = 2) that correspond to the second mask of figure 7.
The best possible error is 4.8370 %. The four last columns indicates the actual error, the
percentage w.r.t. the best possible error, the multiplicative constant, and the computational
time.
1 0 0 1 1 0 1 2 2 0 2 1 2 3 3 1
0 1 0 1 0 1 1 1 0 2 1 2 2 0 1 3 error % / opt € time
0 0 1 0 1 1 1 0 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 43.47 1135.0 0.697 0 ms
1 1 1 1 1 2 2 2 2 3 2 3 3 3 3 4 38.20 997.4 0.724 0 ms
1 1 2 1 2 2 2 2 2 2 2 2 2 3 3 3 29.94 781.8 0.770 0 ms
1 1 2 1 2 2 2 2 2 3 2 3 3 3 3 4 21.94 572.8 0.820 0 ms
2 2 3 3 3 4 4 4 4 6 5 6 7 6 6 8 19.87 518.8 1.674 20 ms
2 2 3 3 4 4 4 4 5 6 5 6 7 6 6 8 14.46 377.5 1.753 20 ms
2 2 4 3 4 4 4 4 5 6 5 6 7 6 6 8 12.02 313.9 1.792 20 ms
3 3 5 4 6 6 7 6 7 8 8 9 10 10 10 12 10.27 268.2 2.758 40 ms
3 3 5 4 6 6 7 6 8 8 8 9 10 10 10 12 9.77 255.1 2.771 40 ms
3 4 6 5 7 7 8 7 9 10 10 11 13 11 12 14 8.19 214.0 3.268 70 ms
4 5 8 6 9 9 10 9 11 12 12 13 15 14 15 17 5.80 151.4 4.078 120 ms
5 6 10 8 12 12 13 12 15 16 16 17 20 19 20 22 5.46 142.6 5.289 250 ms
6 7 12 9 13 14 15 14 17 18 18 19 22 22 23 25 5.29 138.1 6.083 370 ms
8 9 15 12 17 18 19 18 22 24 23 25 29 28 29 33 5.21 136.0 7.897 1.46 s
9 11 18 14 20 21 23 21 25 28 28 30 35 32 35 39 4.96 129.5 9.300 4.73 s
9 11 18 14 20 21 23 21 26 28 28 30 35 33 35 39 4.37 114.0 9.353 4.83 s
9 11 18 14 21 21 23 21 26 28 28 30 35 33 35 39 4.26 111.4 9.362 4.84 s
17 20 33 26 37 39 42 39 47 52 51 55 64 60 64 72 4.25 111.1 17.233 2 min 27 s
17 20 34 26 37 39 42 39 47 52 51 55 64 60 64 72 4.11 107.4 17.256 2 min 27 s
17 20 34 26 38 39 42 39 47 52 51 55 64 60 64 72 4.10 107.1 17.258 2 min 27 s
Table 8: 16 vectors Chamfer mask coefficients (anisotropic case, s, =1, sy, = 1.2, 5, = 2)

that correspond to the third mask of figure 7. The best possible error is 3.8297 %. The four
last columns indicates the actual error, the percentage w.r.t. the best possible error, the

multiplicative constant, and the computational time.
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A The 2-D case

A.1 Error extrema

The coordinates of the points M, and M, are respectively M, = (4, yo) = (x: R/||Vsll, v: R/||V:l|)
and My = (2, y) = (x;R/||v;ll,y;R/||V;]]). We obtain for the error values at these points

E(M,) = az,+By.—R
_ Zilywi — yawy) + yi—ziws + zows)
(i X ny)||vi
_ T Y% Wi p oo g

(i x mj) |[vil

and

E(My) = oaxy+ By —R
_ ziggw — giwy) +yi(caiwi Hziwg) p g
(n; x nj)|lv;l|
TiY; — T5Yi W R—R:ij—R
(i x ny) ||y

E(Memt> = AT ezt + /Byezt - R
82 2 2 2
= v a R+ = b R-R

528y \ [B2s2 + a2s? 525y \ [B2s2 + a2s?
1
- /3242 1+ o242
= B*s; +a’*s;R— R
S8y

_ lwivi—w;vil?
(nixn;)?

It can be noticed that (3?s2 +a®s’ . Since s;8y(n; X n;) = v; X v;, we obtain

WiV — W, V;
E(Mezt):” v J 1”R_R
Vi X V;j
and after dividing both the numerator and the denominator of the fraction by ||v;|| ||v;||, we

finally obtain
E(Me:z:t) — ”wlu] — w]u1||R _ R
u; X uy

A.2 Proof of proposition 1

M., lies within the sector (O, u;, u;) iff we have aez¢ > 0 and beze > 0, with @ers and begy
defined by replacing x and y in the expressions of both a and b (Eq. (1)) by Zez: and yeg:-
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It comes
2 2
Uzt 20 = Tertyj — TjlYext 20 < s,ay; — 8. 8x; >0
= sayw; — Soyyjw; + sariw; — saziz;w; > 0 recall that ng X nj >0
2,2 1 .2,2 2
s22 sy vill® 1 (vl o wy
= 3 2 = = i
$2%iT; + Syyiyj V.V u;.uy ||V1|| w;
1 w;
= > 2
u;.u; Wy
and

bezt Z 0 = TilYext — YiText Z 0 — Siﬂxi - 532,05?/1' Z 0

— —sﬁxixjwi + sﬁxfwj - sf,yiiji + snywj >0
2 2

w; _ S$axiT; + Sy, YiY; V;.V; V;
_j_ zzz ; gy;yj _ 12: ;1 “ J“
w; 83TF + 833 [lvll (vl
Wj

= — 2> u;.u;
Wi

B The 3-D case

B.1 Error extrema

The coordinates of the points M,, M;, and M, are respectively M, = (Za,Ya,2.) =
(@i R/||vill, yiR/|Ivill, z R/ |[vill), Mo = (2,96, 26) = (z;R/|[Vsll, 9 R/l v;ll. 23R/ || v]]), and
M. = (e, Ye, 2¢c) = (€ R/Vell, yeR/ ||Vl 26 R/||VE]]). We obtain for the error values at
these points

E(M,) = axq+fya+72.—R
S ——— i+ ( ;i + )
= [nhnj,nk:] ”Vz” TiYjRk — TilYk2j )W, TiYkzi — TilYikk )Wj TiYiz; — TilYj2i )Wk
+ (xkyizj - xjy,-zk)wi + (xiyizk - xkyiz,-)wj + (:cjyizi - xiyizj)wk
+ (a:jykzi - xkyjz,-)wi + (xky,-zi - xiykz,-)wj + (:ciyjz,- - xjy,-zi)wk) R—R
- Y p_nRr
[Ivill

We obtain similar results for both E(M,;) and E(M,). Let us examine now E(Mey:).

E(Mezt) = AT ezt + /Byezt + 'Yzext - R
1
= \/a2s§s§ + 325252 +v2s2s2R — R
Sz8ySz

We have
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(v X vi)wi + (Vi X Vi)w; + (vi X v;)wg|
[nivnjvnk]

26262 1 32622 1 ~262 g2
\/a 8252 + [2s5s2 +2s3sy

(uj X up)wi + (up X i)w; + (w0 X u; o]

|
[[vall 1l vl

[Hi,nj7nk]
N — v v Ivillllvillllvell 1
Moreover, we have s;$,5.[n;,n;,ng] = [v;,v;,vy], and then ses sxmonyar] = Tara o

From above, it comes

1 «
B(Met) = ———y/a’s}s? +B22s2 + *s2s3R— R
zSySz

[[villllvslllvell
- styzsz[l’l:al’ljank] 1G> wi)es + (u X wi)w; + (u X )| B = R
0w (uy x ug) 4+ wj(ug X w;) + wi(u; X uj)||R _R
[uivujauk]

B.2 Proof of proposition 5

M.+ lies within the sector (O, u;, u;, ur) iff we have aezt > 0, bezr > 0, and cezt > 0, with
Gexts bext, and cer+ defined by replacing x, y, and z in the expressions of a, b, and ¢ (Eq.
(10)) by Zewt, Yert and zez:- We will just detail here the calculations for ae,: > 0, the ones
for beyt > 0 and cez: > 0 being very similar (they are identical up to a permutations of the
indices).

Qext Z 0
1
= Y52k — Yr2j)Text + (Tk2j — Tj2k)Yext + (TjYk — TYj)2ext) > 0
[nnnjank]
= (yjzr — ykzj)szsza + (zre2; — xj21)5582 8 + (Ty — xkyj)sisfﬁ >0
1
= —— (wi((yjze — ykzj)28§5§ + (zhz; — mj21) 28087 + (296 — xkyj)QSisz)
[n;,n;, 0]

+w; (20 — ynz;)Wnzi — yize)sass + (Tez; — T52k) (Tizk — Trzi)Sa55
+ (zyk — ThY;) (TkYs — TiYe)S2sy)
+wr (Yj20 — ye2i) (Yiz5 — Y2555 + (Tezj — j26) (T2 — Tiz5)s

+ (zjye — wry;) (2iy; — $jyi)sisz )) >0

2.2
5z

The z,, y, and z, are the coordinates of the vectors n,,. After multiplication by (respectively)
8z, 8y, OF 8, We get $;Zp, SyYp and 8.z, that are the coordinates of the vectors v,. For
the sake of simplicity of the calculations here, we will from now omit the s, s, and s., and
consider that the z,, y, and 2, are the coordinates of the vectors v,.
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From the above expression, we retrieve the factor of w; and we get

2.2 2 2 2,2 2.2 2. 2 2.2
Y52k T Yie?; — 2Y5Ykzize + Tz + 352 — 225362528 + Ty + TRY; — 222k 5Yk

= |Iv;IPIvell® — 252% — ylui — 2528 — 2y59n2i 2k — 225382520 — 2T;TkY; Yk
= [IVilPIvell® = (vjve)?

= |vj x vil]?
After simplification, the factor of w; becomes
YiYk2iZk — yiyjzﬁ - yizizj + YiYk 22k + TiTp 22k — $izizj — Cvisz;f + T2 2k
+ TiTRYiYk — TiT;Yf — TRYals + TiTkY5Yk
= —[IVill?(vi-vy) + ziz;ai + yayvi + 22570
+ YjYkZiZk + YiYkZiZk + TiTkZj2k + TijTR2i2k + TjTrYilYk + TiTeY;Yk
= (vive)(vj.vi) = [[vi]* (vivy)

= (Vi x vi).(vj X vi)
Similarly, we get for the factor of wy
(vivy) (vivie) = V517 (vievi) = (vi x v5)-(vj X V)
Finally, we have

Aegt Z 0
= wilv; x v;c||2 +wi(vie X Vi)V X Vi) +wi(vi X v;).(v; x Vi) >0

= (vl Ivil* lIvell®) (

(uk X 111') + —“(ui X llj>) .(llj X llk> >0

W;
u; X ug) +
V. ( J k?) ”vk

[[vill

Wy
(gl
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B.3 The best possible error in a 3-D sector

Let us examinate the scalar product Ujx.(u; x ug). We have

Uijk.(uj X uk) = ((Uj X llk) + (llk X ui) + (111' X llj)) .(llj X uk)

= 11— (wjup)? + (up.uy)(wiug) — (wiu;) + (wuy)(uj.u;) — (;.u)
= (1= (ujue))(1 + (uj.up) — (wpu5) — (ug.us))

Hence (recall that the u,, are unit vectors)

U,‘jk.(uj‘ X uk) <0 <= 1+ (u]-.uk) — (u,‘.llj) — (uk.ui) <0
= (ujug) < (w.u;) + (upu;) —1

(uj.ug) < (u;.uy)
= { (uj.ug) < (ug.uy)

On the other hand, we have

Hjw <Hy <= oy +wel” < [lu; + uy]f?
= (w4 ) (0 + ) < (w; + uy).(u; + uy)
= (uj.ug) < (u;.uy)

It comes then

ij < Hij

U,-jk.(uj X llk) <0= { ij < Hy;

B.4 Convexity criterium: proof of proposition 9

Let us examinate

wj ([ui7uk7ul](uj X ug) — [uj, ug, wg)(we X u;) — [ug, uy, wge](ue x ul)) (u; x uy)

— Wk ([u,-,uj,ul](uj X llk) =+ [llj,lll,llk](lli X 11]') =+ [lli,llj,llk](lll X llj)) .(llj X llk)

It can be noticed that the factor of wy, is identical to the one of w;, up to a permutation of
the indices j and k, so we will just examinate the vector

[ui,uk,ul](uj X uk) — [u]-,ul,uk](uk X ui) — [ui,uj,uk](uk X ul)

Each of its coordinates can be calculated as follows (with (A, B) denoting one of the couples
(¥, 2), (2,2), or (z,y))

(Tayk2i + TiYizk + TuYiZi — TiYize — TkYizi — TiYezi) (A By — AkBj)
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+ (Y 26 + ThYizs + T;YR2Zi — TiYrZ5 — TiYize — TrY;2:) (AiBr — ApBy)
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= zpAp(—yi2iB; + yiz1B; — y;z1Bi +y12;B;
YiziAi + yizj A

+ 2xBr(yiziA; — izt Ay + yjaA; —

+ ypAr (=22 B; + 212, B;
+ yi Br(x; ZlA

+ 2, Bi(z1y:A

It can be remarked that
e the factor of z; Ay becomes zero for B € {y, 2},
e the factor of zy Bj, becomes zero for A € {y, z},
e the factor of yr Ay becomes zero for B € {z, z},
e the factor of y, By becomes zero for A € {z, 2},
e the factor of z; A becomes zero for B € {z,y},
e the factor of z,Bj becomes zero for A € {z,y}.

For (A, B) denoting respectively (y, z), (

(— — 212 B; + 2 B;

( — iz Aj + 3124 — v A+ 224
+ ZkAk(—xzyzB +zyiB; — x;yiBi + 21y Bi —

( — Ay + 2y A — 1y A+ iy A

z,x), and (x,y

—v:2;B1 +y,2B)

—y;2iAr)

— ;2B + x;2;B))
— 22 4))
x:y; B + z;y:B1)
— x5y Ar)

), we have still the factors of respec-

tively yx Br = yr2r and 2pAg = 2kYk, Ak = 212k and 2x By = 2,2k, and x By = z1y, and
YrAr = YrTr to evaluate. In each of these cases, we can factorize respectively yr 2k, Tr 2k Or
TrpYk, and it can be verified that the sum of the two factors is zero.

Thus we have

[u;, ug, wl(u; x ug) —

[ujaulauk](uk X lli) -

[u;, uj, ug](ur x ;) =0
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