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Abstract: The double ionization of an atom or a molecule is strongly dependent of the
quality of the description of the initial state of the target. Recently, absolute measurements
have been reported for the double ionization of helium by 5.6 keV electron-impact. Since
the incident (and scattered) electron is very fast, one may apply the usual first Born ap-
proximation. Calculations with the first Born approximation lead to an overall magnitude
that is about 50% larger than experiment when a simple (one term) Hylleraas wavefunction
describes the initial state. Two numerical approaches are available to tackle an accurate (18
terms) Hylleraas wavefunction: a 6-dimensional numerical quadrature (expensive in com-
puter time), or a 2-dimensional quadrature applied to high order cross derivatives (up to
the order 9). Automatic differentiation tecnhiques allow for high order derivative computa-
tions. Nevertheless existing differentiation tools do not deal with codes written in complex
arithmetics and explicit cross derivative computations.

This paper first describes the high order differentiation (based on recursive rules) and
the extraction of cross derivatives. An operator oveloading library is constructed for the
differentiation work. Numerical results, obtained at a lower cost than the sextuple integral,
show the pertinence of our approach.

Key-words: cross derivatives, automatic differentiation, operator overloading, double
ionization
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Application de la differentiation automatique pour le
calcul de la section efficace differentielle de la double
ionisation de I’hélium par impact électronique

Résumé : La double ionisation d’un atome ou d’une molécule est fortement dépendante
de la qualité de la description de I’état initial de la cible. Récemment, des mesures absolues
ont été présentées pour la double ionisation de I’helium par des électrons de 5.6 keV. Comme
I’électron incident est trés rapide, ’approximation de Born au premier ordre peut étre appli-
quée. Des calculs sous I'approximation de Born au premier ordre conduisent & une section
efficace supérieure de 50% a celle donnée par I’expérience lorsqu’une fonction d’onde simple
de type Hylleraas (avec un terme) décrit ’état initial. Deux approches numériques sont
disponibles pour prendre en compte une fonction d’onde de Hylleraas précise (18 termes) :
une intégration sextuple (cotteuse en temps de calcul), ou une double intégration appliquée
a une expression contenant des dérivées d’ordre élevé (jusqu’a lordre 9). Les techniques de
différentiation automatique permettent la dérivation de haut degré. Néanmoins les outils de
différentiation ne traitent ni les codes écrits en arithmétique complexe, ni le calcul explicite
des dérivées croisées.

Ce rapport décrit la différentiation de haut degré (basée sur des relations de récurrence) et
I’extraction de dérivées croisées. Une bibliothéque surchargant les opérateurs est construite
pour le travail de différentiation. Des résultats numériques, obtenus avec un coit moindre
que celui de l'intégration sextuple, montre la pertinence de notre approche.

Mots-clés : dérivées croisées, différentiation automatique, surcharge d’opérateurs, double
ionisation



High order cross derivative computation 3

1 Setting of the problems

Double ionisation of atoms or molecules by electron impact is of considerable interest in many
fields of Physics such as plasma physics and astrophysics. Recently,
[Lahmam-Bennani et al.(1999)] have performed measurements of fully differential cross sec-
tion on helium. Their delicate experiment consists of detecting in coincidence the three
electrons of the final state (one scattered and two ejected) by using three detectors. In these
so-called (e, 3e) experiments the directions and energies of all three electrons are completely
determined, yielding the most detailed information possible about the double ionisation pro-
cess (see the recent review paper [Berakdar et al.(2003)]). For a particular impact energy,
the measurements give a fivefold differential cross section (FDCS) which depends upon the
solid angles Q, €2, and € for the scattered and the two ejected electrons, and on the ener-
gies F7 and E» of ejected electrons. The incident (and scattered) electron is very fast and
we use plane waves to describe it in the standard first Born formulation. Assuming that the
mechanism of the double ionisation is limited to the shake-off (a unique interaction between
the target and the incoming electron), this FDCS is computed as (atomic units are used
throughout):

d50' kl kas

= M? 1
dQ,dQ, dQsdErdE> k; M7, (1)

where k_;-, kz, k1 and k> denote, respectively, the momenta of incident, scattered, first ejected
and second ejected electrons. The matrix element M is 9-dimensional integral such as:

1 N 1 I N 1 730 oY TS
M = %/’t/}f(Tl,Tg)e ks- OV’lﬁi(Tl,Tg)e ki- Odrodridrs, (2)

where V = —2ry! 4 |5 — 71| ! + |77 — 73| is the Coulomb interaction between the projectile
and the helium atom, rq is the distance between the incident electron and the nucleus, r; and
ro are the distances between one of the helium electron and its nucleus. The wavefunctions
1; and 1 are the solutions of the Schrédinger equation for the helium atom. No exact
formulas exist for 1; and 1¢.

The well-known Bethe transformation, e'*@k=2 = 471 [ 7|7 — G| 1df’, allows for the
integration on 5. Thus the computation of (B needs a 6-dimensional integral only. The
method of [Brauner et al.(1989)| proves that the latter may be reduced to a double inte-
gral when the bound state wavefunction ; is approximated by means of a Hylleraas-type

wavefunction:
0,00

Gil1,73) = e RN T s T, (3)

l,m,n; n even
where s =71 + 19, u = 112 = |71 — 72| and t = —ry 4+ r5. The initial state of an helium atom
can be described with an accuracy of 5.1075% by a wavefunction [Kinoshita(1957)] with 39
parameters (it is not the case for its double continuum). The best approximation for the
final state vy is those of [Brauner et al.(1989)] which satisfies exact asymptotic boundary
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collisions. One has:

2 zk T iz iz )2k, iz ) -
7(11,73) H 3/2 kj>e 7 1F1(k—j,1,—l(kj7"j + k;.75)) )
le p p
F(l — ’LOLg) @3 1F1 (iOLg, 1, —i(k3T12 + kg.’l’fg))
-
where a3 = |ki — ko] . Wave functions involving 6 parameters were used in

[Brauner et al.(1989)}, Moulakian et al.(1992)], but as noticed in [Kheifets et al.(2002)] they
are not accurate enough to conclude on the convergence of the calculations. Very recently,
Jones and Madison [Jones & Madison(2003)| have performed such a calculation with a 20-
parameter Hylleraas wavefunction with an expensive sextuple numerical integration.

The first aim of this paper is to show the feasibility of Brauner’s method for more accurate
wavefunctions as initial state. This will numerically prove its convergence, results being
obtained at a lower cost than the sextuple integral.

Nevertheless, the gain in number of integrals has to be paid. In brief, Brauner’s method is
based on the computation of a term D corresponding to the simple wavefunction v; (r7,73) =
e~ %1~ 207A12 gnd that involves a 3-order derivative with respect to parameters a, b and \.
The latter were introduced in ; to enable the writing of terms
phmm e Ty e m e e b2 0= A2 gppearing when using Brauner’s method as derivatives (&)
of Dwhenl—m>0,m—n>0,and n > 0:

8l7m gm—n oD
(5= (50 ) 0

For instance, the 18-parameter Hylleraas-type of [Kinoshita(1957)| requires a 9-order deriva-
tive.

Theoretically, differentiating the program that computes D is no more difficult than
differentiating the related mathematical function. Each assignment statement of the code
may be seen as a composition of small functions (containing one operator or one elementary
function) and differentiated using the chain rule. In many areas of Science, first differenti-
ated codes were hand coded. The work is not difficult since one uses well-known rules as:
“the derivative of a sum is the sum of the derivatives". Even based on trivial rules, the
manual differentiation becomes a fastidious and error prone task implying important costs
of development when applied to large codes. This is especially true when implementing a
high order differentiation where the number of lines of code increases exponentially with
respect to the order of differentiation.

Nowadays, powerful automatic differentiation (AD) softwares are available for the differenti-
ation of computer code, the reader is invited to visit Internet site http://www.autodiff.com/
for a review. Given an user code, the AD tool will be choose with respect to three elements.

1. The scientific goals of the user. Derivative computations give access to several
kinds of application such as sensitivity analyses, optimisation, Hessian computations
or, as discussed here, high order derivatives.

INRIA



High order cross derivative computation 5

2. The mode of differentiation. The basic “tangent linear mode” is generally con-
sidered for sensitivity analyses giving an exact alternative to usual finite difference
schemes. The so-called “adjoint mode” proposed by ODYSSEE [Faure & Papegay(1998)],
TAMC [Giering(1999)|, and ADOL-C |Griewank et al.(1996)| is devoted to gradient
computation involved in large-scale optimisation problems. The “high order deriva-
tive mode” constitutes an extension of the tangent linear mode. It was used in
[Masmoudi & Guillaume(1996)] for the design of an optimisation process of a few
parameters. Higher derivative tensors, for the evaluation of all pure and mixed partial
derivatives, are discussed in [Griewank et al.(2000)].

3. The language of programming of the user code. The language often imposes the
kind of “differentiated” code. One the one hand, the differentiation of FORTRAN codes
may be tackled by “source-to-source” tools like ADIFOR [Bischof et al.(1994)], ODYSSEE
or TAMC: they analyze the source of the user code and generate the source of the
differentiated code. On the other hand, the differentiation of C, C++ or FORTRAN 90
codes is generally performed at compile time by means of operator overloading (00)
libraries like ADOL-C. These libraries sometimes include the high order derivative
mode of differentiation.

Existing tools propose different combinations and the user will generally encounter the one
adapted to its application. Nevertheless, it remains applications, involving complex arith-
metics or cross derivatives, for which no tool exists. Thus the second purpose of the paper
is to provide information on the construction of an OO library allowing for the computation
of high order cross derivatives of codes involving complex variables.

The outline of the paper is as follows. Section [ presents the basis of AD as well as math-
ematical arguments devoted to high order cross derivative computations. OO techniques are
discussed in Section Bl Sections @l and Bl propose a set of numerical results including differ-
entiation ones and physical ones.

RR n° 5546
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2 High order cross derivative computation

Differential Calculus is one of the great achievement of Mathematics over the last centuries.
It now occupies a large place in the education of many young students in Science. Some
of the arguments presented here may be found in classical learning books, see for instance
[Lelong-Ferrand & Arnaudies(1997)].

2.1 Basics of automatic differentiation

Given a mathematical function f, the corresponding computer code is often constructed
through a decomposition of f into different parts. These are user-defined parts, specific to
the problem of interest, or predefined routines devoted to integration processes, Fast Fourier
Transforms or solutions of linear systems for example. From the AD point of view, the
decomposition is performed up to assignment statements f; containing one operator or one
elementary function only, and control statements c¢; (do-loops or conditional statements, ...).
The first ones have to be differentiated, meanwhile the second ones are kept unchanged.

Differentiation of both mathematical functions and numerical codes is based on the chain
rule. Nevertheless, manual differentiation often computes partial derivatives whereas AD
computes Jacobians and evaluates them in directions of perturbation. This difference may
be illustrated using function f(x,vy,z,w) = (z,y, xy, (xy)?) which is clearly differentiable in
its two variables x and y. Its main two partial derivatives evaluated at point (zo, yo, 20, Wo)

are: of
g_(IanOVZOawO) = (1,0,y0,2(xoy0)y0), ©)

== (%0, Yo, 20, wo) = (0, 1, 20, 2(z0Y0)Z0)-

Ay

In the terminology of AD, input variables = and y are said “independent” whereas output
variables z and w are “dependent” ones. A variable is said to be “active” when it has a role
in the differentiation. In the present case, all the variables are active ones: x and y because
we differentiate f with respect to them, z and w because they depend on the first two.
Automating the differentiation, function f is first written as the compound function hog
where g(x,y,2,w) = (z,y,2y,w) and h(z,y,z,w) = (x,9,2,2%). The differentiation is
performed evaluating the Jacobian V; of f as the product of Jacobians V4, and V}, of g and
h in the direction A = (8, 6,,8,0,) 7

V¢ (0, Y0, 20, w0).A = Vhog(Z0, Yo, 20, wo).A, ™)
= Vh(g(‘TOa Yo, <o, U’O))-Vg (IOa Yo, <o, ’LU())A

Square matrices are required to perform such a computation, that is the reason why functions
f, g and h were artificially written using the four variables. Choosing directions (1,0, 0,0)
and (0,1,0,0) one obtains equations (). This may appear trivial, nevertheless the spirit is
completely different in terms of coding. Table [l presents the resulting derived statements
written in terms of perturbations dx, dy, dz and dw that stand for perturbations d,, dy, J.
and d,,. In practice, the derived code also contains original statements, such as z = x*y, to

INRIA



High order cross derivative computation 7

Table 1: Differentiated statements: f_x and f_y related to manual coding, f_xy related to

AD.

f x fy f_xy
dz =y xdx dz = x xdy dz =y*dx +x*dy
dw =2z *xdz dw = 2*xz*xdz dw =2x*z*dz

Table 2: Recurrence relationships for the differentiation of the main operators and elemen-
tary functions. Here, terms x(;) and 7, respectively stand for the k-order derivative z®) k!
and kx® /E!.

operation  recurrence (n > 1) operation recurrence (n > 1)
n—1
1
FETHAY En) T Tn) T W) e=afy Ay = T~ D A0 Yk
Y(0) =0

n n—1
1
z=umy ) = D TmYnk)  F=VE )= e l%) - :Z<n>Z<n—k>1
k=0 k=1

n n—1
~ ~ ~ 1 |- ~
z=¢e’ ) =D 2Ty z=I(n)  Emy=— l%) - x(nk>2<k>]
k=1 ©) k=1

enable a correct evaluation.

Generalizing the purpose to a large code C, the manual method requires the writing of
two derived codes C_x and C_y evaluated implicitly using canonical directions, whereas the
second one leads to the writing of a unique code C_x_y evaluated in directions specified by
the user. Although numerical results are identical, the second method was retained by AD
developers and most of scientists that hand coded the differentiation of their codes. On
the contrary, the first approach applied to high order cross derivative computations, will
multiply the parts of derived code.

2.2 High order differentiation

Optimised recurrence relationships were deduced from the Differential Calculus theory. For
example the Leibniz formula (§) enables the n-order differentiation of the multiplication:
(TY)(n) = ch(k)y(n—k), (8)

k=0

where z(;) denotes here the k-order derivative x®) /k! of 2. Written in such a manner
they are of easy implementation, especially when developing an AD tool based on the OO
technique. These relationships do not depend on the kind of arithmetics, they still applies
on complex variables.

RR n° 5546
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Unfortunately, there does not exist a simplified optimised recurrence formula for the
hypergeometric Gauss series. Brauner’s method makes use the hypergeometric function
oF) instead of the 1 F; function appearing in ). This oF; function is evaluated on the
convergence circle as:

> (a n(aa), 2"
2F1(a1,a2;a3;z)—;%.m, z€C, |z| <1, 9)

where the parameters «; (i =1, ..,3) are computed by a recurrence formula as:

I'(a; +n)

(i)o =1, and (a;)p = ai(; +1)..(a; +n—1) = (o)

, Vn > 1. (10)
A fair implementation of 5 F has to take the convergence properties into account. When
series (@) is a convergent one, a recurrence formula allows for its differentiation with respect

to z: P (c)n(02)
a1 )n\Q2)n

— (o Fy (a1, 0535 2)) = ————

dz”(2 1(a1, ag; as; 2)) (@3)n
Consequently, function 2F; does not need to be differentiated explicitly: recursive calls
are sufficient. As explained before, formula (Il is incomplete from an AD point of view
because variable z represents much more than a mathematical variable. It has to be seen as
a function z(xz), depending on some active variable z of the code, to enable a correct use of
the chain rule. Thus the first order differentiation formula writes as follows:

2F1 (a1 +n, a0 + nyas + n; 2). (11)

a1 dz(x)

d
%(2Fl(a1,a2;a3;z(w))): - oF (a1 + 1,00 + 1; a3 + 1; 2(2)). T (12)

Since (@) involves o F; functions evaluated with different parameters, no cheap recurrence
formula exists. High order derivatives of compound hypergeometric function 5 F; (a, b; ¢; z(z))
are calculated from the formula proposed by [Fa4 di Bruno (1857)|:

0" Fi(a,byc; z(x) n! (@a+)nb+Yn 1 Yn
Dzn 2 Smad @),
Y15+ In (13)

st.B=n

2Fi(a+7,b+vic+7y;2(z)),

where v = Z v, and B = Z jvj- The latter represents the sum over all the integer
j=1,..,n j=1,..,n

partitions of n and grows exponentially with n: there exist 11 partitions for n = 6 and 30

partitions for n = 9.

INRIA



High order cross derivative computation 9

2.3 High order cross derivative computation

The n-order derivative V% of a n-differentiable function f(x,y) with respect to = and y
evaluated in direction (d,,d,) may be written as:

V" (02, 0y) Y 0 o ' of 14
(ZE y T kgk_ ' azkﬁy" k( 7y) ( )

AD philosophy designs the high order differentiation as a process devoted to the computation
of V' without considering formula ([@). When implementing relationships presented in Ta-
o"f
Oxkdyn—k
are not calculated individually as in a manual differentiation. However, the knowledge of
such cross derivatives are required when using Brauner’s method for the study of the ioni-
sation. These are not computable in a straightforward manner from AD point of view. But

one may exploit the linearity property of the differentiation in order to extract the cross
2

derivatives of interest. For instance derivative % may be deduced using formula ([I4)
roYy

(with n = 2) as (v;.(l, 1)2 - V2.(1,0)2 - V2.(0, 1)2) /2 or as (vfc.(L 1)2 - V2.(1, —1)2) /2.
As proved below, any n-order cross derivative of f depending on two variables may be de-

duced from a linear combination of n + 1 terms V}L evaluated in well-chosen directions of
perturbation.

ble 2, the computation of V}.(d,,,)" is done recursively: right hand side terms

o"f
oxrk ayn—k ’
using at most n + 1 non-collinear directions of perturbation.

Proposition: Any n-order cross derivative 0 < k < n, may be computed

Proof: Although the proof is trivial (one uses the linearity property of the differenti-
ation), we present it to point out the need of an exact solution for the underlying linear
system.

For the sake of simplicity in the writing of theoretical developments, we decided to replace
(@@ by the polynomial formula:

1 n n §n 55 6Z_k k,n—k
=0

n—Fk

identifying formally %(ay) to zFy One obtains the binomial formula when
oy

choosing the direction of perturbation (6,,d,) = (1,1).
Let {Ap}tp=o,...n. = {(1,9p)}p=0,...n be a set of n + 1 non-collinear directions of pertur-
bation. Writing formula (I3) for each direction 6, one obtains a linear system of n + 1

RR n° 5546
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equations depending on n + 1 unknowns. Written under a matrix form, one has:

(x +Y)n-(1,80)" 1 . 6" Lo ToYn
(T +Y)n-(L,onp)" | =1 1 . 5Z:£ o0 || T | (16)
(4 y)n-(1,0,)" 1 .. &P = 6 TnYn—n

where the condensed notation x;, stands for z*/k! to get rid of factorial coefficients. One
recognizes a Van der Monde matrix V which determinant is positive since A; and A; (j # 1)
are non-collinear. on an

In practice, monomials ™ and y™, that stand for partial derivatives o and 8—y”’ are

obtained using directions of perturbation (1,0) and (0,1). Terms z*y"* (k = 1,...,n —
1) cannot be computed in a straightforward manner. These may be deduced as linear
combinations of polynomials (z + y)".(1,9,)" (p = 0,..,n) that represent AD-computable
derivatives V" (f).(1,d,)"™. One solves problems such as:

Find Ty = (€0, ..,€n) S-t. Zap(:c + )" (1,0,)" = 2Fy"TF Va,y. (17)
p=0

Choosing = y = 1, one deduces that Y} is solution of a linear system involving Van der
Monde matrix V, and which right hand side term is chosen as the k + 1" vector of the
canonical basis of R"*+1,

end of the proof

Problem ([[7) has to be solved exactly to get exact derivatives because the use of an
iterative scheme with a precision of 107 for example will limit derivative calculations to
the same precision. This is not enough when studying electron-atom collision. In practice,
a convenient set of directions of perturbation is S = {(1,0),(1,1),(1,-1),(1,2), (1,-2), ...}
since it eases manual solutions of ([IT).

Table Bl presents the set of directions of perturbation we use for the computation of cross
derivatives appearing the Kinoshita wavefunction ¢k involving 18 parameters:

Y (s,u,t) =[ 00,0+ c1,008+cii0u+ 02,0,082 + c21,05U + 02,2,0U2+
+627212t2 + 03107083 + 63731011,3 + 0312725152 + 031372ut2+
tca,0,08" + caaout + ca028%% + caa2uPt? + 055 0us+
+C575)2u3t2 + 0676,2u4t2]e_k5/2.

(18)

It was chosen because it has no negative-power terms. Wave function 1 depends on vari-
ables s, t, and u, but each monomial depends on a couple of variables only. The theoretical
results may be applied. The directions of perturbations are triplets: J, = (1, 1,0) is equal to
the sum of é, = (1,0,0) and 6, = (0,1,0), §; = (1,—1,0) = d, — d, and &, = §x = (0,0, 1).

INRIA



High order cross derivative computation 11

one will choose the more convenient set of variables — {a,b, A} or {s,¢,u} — for the compu-
tation with a given wavefunction.

96
From Table Blit can be seen that the partial derivative R may be computed as:
0D 1
— = — 96V5,.6% — 30VY,.68 + 16VY,.68
ot20ut 360 [ Dt DOu T HOVD Orut (19)

+16V9,.08 , — V9 .08, . — v%.(sgt_u]

The Kinoshita wavefunction is computable using 10 directions only. One observes that any
k-order partial derivatives (k = 1 and k > 3) are calculable using & directions of pertur-
bation, that is k evaluations of the overloaded code. This remains true for k¥ = 2 when
choosing directions 05y, and 05—, but this choice implies one direction more (ds—,) and
consequently a loss of 10% in the efficiency of the code.

Cross derivative involving m variables may also be tackled. One uses the general multi-
nomial formula:

ot ot Gomtm) = 3 ()™ ™ (20)
z1T1 T .. amTm) = | 1021+ 92m )T1 " Tm
N1+t T =T ni...Mm-

that stands for the generalized n-order derivative of f(z1,..,2,,) evaluated with direction
(61317 23 6mm)

n! s
V@1, oo ) -(Ba1s s o) = Y e (O RUSOR
ni+.+nm=n L5eToms (21)
o f
e o (@1, s Tm)-
"0z

The number of non-collinear directions of perturbation required to identify each partial
derivative is equal to the number A (m,n) of combinations (n1, .., n,,) of integers such that
n1+ ..+ 1, =n (0 <n; <n). A small program suffices to evaluate . One observes that
the complexity of A'(m,n) is of O(n™~!. Sequences are given in [Sloane(2003)].
In the particular case of three variables, one has N'(3,n) = (n + 1)(n + 2)/2 for n > 3
(triangular number sequence), that is A'(3,3) = 10, V(3,6) = 28, N'(3,9) = 55, ... Choosing
3

0
following non-collinear directions, one may compute / from derivatives V3 as:
0adbo
6 O _ V3.(1,1,1)3 =V3.(1,1,0)3 = V3.(1,0,1)3 = V3.(0, 1,1)3+
8&8[)8)\ it it iy AU (22)

+V.(1,0,0)? + V4.(0,1,0)% + V4.(0,0,1)%.

RR n° 5546



12

Charpentier € Dal Cappello

Table 3: Directions of perturbation for Kinoshita wavefunction.

62t—u

52t+u

§t—u

§t+u

coef

monom.

o

S'33 33

t2

1/2
1/6
1/12

su
st?
522
t?u

-2
-2
0
0
0
0

1/6
1/12

22
t2u3
t2ut

-16
16

16
16

-30

1/240
1/360

-30

96
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3 Operator overloading library

AD proposes two kinds of software for the differentiation of a code. On the one hand, the
source-to-source transformation may be seen as a mimic of manual differentiation. A second
order code is still writable [Charpentier et al.(2002)] but AD source-to-source softwares were
not designed for this. The higher the order of differentiation, the larger the number of
derived statements. This also explains why hand-coding was limited to the 5" order in
[Ancarani et al.(2004)]. On the other hand, OO is part of the abilities of oriented-objected
languages such C++ or FORTRAN 90. Basically it consists in the definition of new data
structures. Operations are associated to these structures redefining the usual operators of
the programming language. OO keeps unchanged the assignment and control statements of
the code, the differentiation being implemented through the recurrence formulas of Table
in an external library. A C-implementation of an OO library for the tangent linear mode of
differentiation is presented with details in [Griewank(2000)|.

The AD tool we need has to satisfy several constraints.

1. Complex arithmetics. None of the existing AD tools deals with this kind of code
even usual rules still apply.

2. High order derivatives. This strongly suggests the use of OO techniques that
are well adapted to the implementation of recurrence relationships, hiding details of
programmation in a library constructed once for all. Basics of OO are presented below.

3. Differentiation of the hypergeometric function. A recurrence formula ([3)) ex-
ists. This justifies OO again.

4. Crossed derivatives. None of existing AD tools propose this kind of differentiation.
5. FORTRAN 90 library. The user code is written in FORTRAN 77.

When working with a FORTRAN code written in complex arithmetics, variables that may
have a role in the differentiation are of type REAL*8 and COMPLEX*16 (or eventually REAL*4
and COMPLEX*8). Thus, our library defines two new types in a module, namely dr8 and dc16,
that include differentiation fields up to the required order n. Given a variable a of type dr8,
the library (for n = 2) considers that a%d0, a%d1 and a%d2 respectively host the REAL*8
value of variable a computed as in the original code, and the REAL*8 values of first and
second order derivatives. By means of a set of modules, the library overloads the classical
operators (+, -, *, / and **) and the elementary functions (trigonometric, exponential
and logarithmic ones) for both types dr8 and dc16. Codes may also contain user-defined
mathematical functions that need to be “overloaded” as well.

The differentiation of any FORTRAN code through the QO library is performed introducing
the modules names at the top of the routines and defining the independent variables chang-
ing their type to dr8 for real variables and dc16 for complex variables. The code being
differentiated with respect to them, the user has to provide their first order fields %d1 with
the directions of perturbation he chooses. According to the chain rule, the active dependent
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variables need to change their type. One detects them at compile time since the assignment
symbol = is not overloaded: the left hand side term of any assignment statement has to be
of compatible type with the types of variables appearing in the right hand side. What could
be seen as a lack of the library allows for the follow-up of the active variables into the code.
Once the propagation of the differentiation is correct, the code enables the computation of
high order derivatives, high order cross derivatives being obtained from linear combinations
computed once for all.

INRIA
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Table 4: Taylor test on D in the direction §,. Only the first 12 digits are printed.

107« ylte vIm 107« ylte ylIm
0 0.7222726554 0.5201929826 8 1.0000000361 1.0000000067
1 0.9637322971 0.9309441517 9 1.0000001374 1.0000046761
2 0.9962602546 0.9928022931 10 1.0000072285 1.0000406879
3 0.9996248591 0.9992772003 11 1.0000781393 1.0000880718
4 0.9999624746 0.9999276900 12 1.0001794404 1.0028736725
5 0.9999962477 0.9999927693 13 1.0028808028 1.0223441596
6 0.9999996262 0.9999992764 14 1.0467779423 1.1975211083
7 0.9999999618 0.9999999665 15 1.0130109119 2.9866233877

4 Numerical results

The differentiation proposed by the library may be verified in two steps:
a recursive validation of successive derivatives.

The usual “Taylor test” consists in a first order comparison of the derivatives obtained by
differentiation with a finite difference computation. In the case of a complex function f(z),
the following two ratios may be computed:

e IBelf(a 08— J@)| Il wi) — (@)
“ w|Re(Vy(x).05)] ’ “ w|lIm(V ¢(x).0)| ’

a “Taylor test” and

(23)

where x is the active variable (real or complex) of differentiation, ¢, is a real direction of
perturbation, w is the step of discretisation of the finite difference method, and V; is the
differentiated function. The differentiation is correct when ratios ([3) tend linearly towards
1 as w tends linearly to 0. As observed numerically in Table Bl small steps w are necessary
to minimize errors coming from the truncation of the Taylor expansion, w = 108 being
the optimal value. Then, the subtraction of too close floating-point numbers leads to a
cancellation error large enough to dominate the truncation error. It is well-known that such
verifications loose their accuracy for higher order derivatives.

Fortunately, high order derivatives may be verified recursively. The library is applied to the

computations D and its manual derivative D,. As a consequence, one compares derivatives
o"D o~ 1D

with derivatives

for increasing n > 1. Real parts of these two terms are shown

a
in Table Bl they are s1m11ar up to 14 digits, that corresponds to the numerical precision of
the computer. Imaginary parts are also computed and similar results could be reported.

Performances are evaluated according to the computational methods involved in this
study.

1. Number of operations. Whatever is the direction of perturbation, a n-order dif-
ferentiation performed through recurrence relationships (Table B) have a complexity

RR n° 5546



16

Charpentier € Dal Cappello

oD 9D,
Table 5: Real parts of successive derivatives of D = —— and D, = .
Oal Oal

() (52

=]

€ da™ Oa™—1

0 1.3560574723339032E-3

1 -6.421661364219621E-4 -6.42166136421962E-4
2 4.8197314270524656E-4  4.819731427052466E-4
3 -5.013083275497681E-4 -5.013083275497683E-4
4 6.622768551827872E-4 6.622768551827877E-4
5 -1.047620568979999E-3 -1.0476205689799995E-3
6 1.9070566076086795E-3 1.907056607608683E-3

in n? [Griewank(2000)]. But, the collision code includes hypergeometric functions for
which no cheap recurrence formula exists. Although the exponential growth of the
number of partitions is slow, the complexity is stronger than a quadratic one.

When dealing with wavefunction ([[§), a 6-order differentiation of D involves 11 parti-
tions, where as a 9-order differentiation of the start C code would involve 30 partitions.
Managing computations from D reduces in a important manner the cost of computa-
tion of the derivatives of o F7.

. Number of directions of perturbation. The complexity is linear (resp. quadratic)

when a code is differentiated with respect to two (resp. three) variables.

Working with D, wavefunction ([I¥) requires 10 directions (Table B)) because the differ-
entiation is performed with respect to 3 couples of independent variables. One notices
that cross derivatives of the start code C involves 3 independent variables. Such cal-
culation has a complexity in n?: extracting a 9-order derivative requires more or less
N (3,9) = 55 directions.

. Number of integrals. Brauner’s method involves a double integral, the o F} func-

tion and a certain number of derivative computation whereas the method used in
[Jones & Madison(2003)] needs a 6-dimensional quadrature with 3 calls to the 1 F}
function. This 6-dimensional integral was studied in [Rasch et al.(1998)]. The CPU
time was around 3360 seconds on 64 nodes of the Hitachi supercomputer SR2201 at
Cambridge (256 nodes, 150MHz/node) while Brauner’s method (with a 6-order deriva-
tive of D and a 2-dimensional integral) needs less than 3 hours on one node of the
IBM POWER 3 of CINES (16 nodes, 375MHz/node).

Obviously, the computations realized from D (10*¥11*4 o F} computations because D already
involves 4 9F7) is much cheaper to achieve than a computation performed from the start
code C (30*55 o Fy computations).

INRIA
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Without any doubt, OO is a precious technique for the computation of high order deriva-
tives. It remains true when cross derivatives with respect to two independent variables are
considered. The library may be applied to any differentiable wavefunction, the performance
depending on the order of differentiation and the number of independent variables.
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5 TIonisation results

The energy of the ground state of helium is E=-2.903724 a.u.. Figures[ and Pl compare the
five-fold differential cross section (FDCS) calculated for three different initial wavefunctions:

1. the Kinoshita wavefunction (EFx = —2.903715a.u.) written in (),

2. the [Stewart & Webb(1963)] wavefunction (Esw = —2.90332a.u.):

Ysw(s,u,t) = e*kS/Q(CO + c1u + cot? + ¢35 + c45% + c5u?), (24)

3. the [Bonham & Kohl(1966)] wavefunction (Epx = —2.903115a.u.):

/I/JBK(T:[, TQ, T12) — e*(ll’l"l*(lQ’l"z + 670.27"17(117”2
_'_(67(137”17(147”2 _"_ 67(147’17(137‘2)1)2677"12' (25)
On the one hand, curves are quite identical whatever is the accuracy of the initial wavefunc-
tion. Increasing the number of derivatives has no effect on the FDCS: Brauner’s method is a
convergent one. On the other hand, the agreement with the data of
[Lahmam-Bennani et al.(1999)] is not complete since computations reproduce the shape
only: there still exists a factor 2 between experiments and theory. Curiously, wavefunc-
tion ¢; = e‘“(””?)(l + .257’126”2/4) with a bad energy value £ = 2.8766a.u. was able to
reproduce the magnitude of the experimental results [Ancarani et al.(2004)].

Many questions are still open for the interpretation of the (e, 3e) measurements on helium
at 5.6 keV incident energy because the models proposed in the literature are unable to
reproduce the magnitude of these experiments. Indeed, none of the models propose an
accurate treatment of the TS1 mechanism that may occur in a double ionisation. In this
mechanism, the interaction between the incoming electron and one of the target electrons
leads to a first ejected electron. Thus, its interaction with the other target electron sometimes
induces its ejection. The second Born approximation is able to describe the two interactions
of the TS1 mechanism since two interactions are involved. Nevertheless, this second Born
approximation requires a 6-dimensional quadrature when applying Brauner’s method, and
a 10-dimensional quadrature if the method of Jones and Madison is used. Obviously, our
method could be used while the method of Jones and Madison, that requires a larger amount
of CPU time, would reach the limits of most of supercomputers.
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Figure 1: FDCS for (e, 3e) ionisation of the helium ground state, as a function of the angle
6. The other ejected electron is detected at §; = 319°. Vertical bars: absolute experimen-
tal data [Lahmam-Bennani et al.(1999)]. Solid line: Kinoshita wavefunction. Dashed line:
Stewart-Webb wavefunction. Dotted line: Bonham-Kohl wavefunction.
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Figure 2: FDCS for (e, 3e) ionisation of the helium ground state, as a function of the angle
5. The other ejected electron is detected at #; = 139°. Vertical bars: absolute experimen-
tal data [Lahmam-Bennani et al.(1999)]. Solid line: Kinoshita wavefunction. Dashed line:
Stewart-Webb wavefunction. Dotted line: Bonham-Kohl wavefunction.
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6 Conclusions

The OO offers a precious solution to achieve high order differentiation, cross derivatives being
deduced. This especially true for differentiation with respect to two independent variables
as proved by the FDCS calculation (figure B) involving up to a 6-order differentiation of
the generic term D. Complexity calculations give information on the actual feasibility of
cross derivative computation assessing how the order of differentiation and the number of
independent variable could limit the performance.

The library we constructed in FORTRAN 90 for our collision application, includes the
differentiation of the hypergeometric function oF;. Two more classical version (dealing
with operators and elementary functions only) are under development in FORTRAN 90 and
C-++. They allow for some automatic optimized computation of cross derivatives involving
two independent variables through the management of linear combinations of directions of
S. They will be documented in a next future.

The model of first Born approximation presented in this paper describes one of the
mechanisms of the double ionisation, namely the shake-off mechanism. The latter consists
of a collision between the incoming electron and the target. This first ionisation is followed
by a relaxation process due to the sudden change of potential that is responsible for a
second ejection. Calculations are realized with an accurate description of the initial state
of the target. Based on a 2-dimensional integral and computations of high order cross
derivatives, our method gives the same results than the method [Jones & Madison(2003)|
that deals with a very expensive 6-dimensional integral. Furthermore, numerical results are
compared with the recent experiments of [Lahmam-Bennani et al.(1999)]. It appears that
the accurate Kinoshita wavefunction does not improve the results obtained with the lighter
Bonham-Kohl wavefunction: the model still reproduces the shape but not the magnitude.
The second mechanism (TS1) could be tackled in a next future with our method using the
same description of the initial state and of the final state.
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