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Abstract: Most of the work on temporal representation issues in Machine Learning deals
with the problem of learning/mining temporal patterns from a large set of temporal data.
In this paper we investigate the somewhat different problem of learning the behavioral
rules of a system from its observed temporal properties formalized in temporal logic. Our
interest in this problem arose from Systems Biology and the development of machine learning
techniques for learning biochemical reaction rules and kinetic parameters in the Biochemical
Abstract Machine BIOCHAM. Our contribution is twofold. First, in the general setting of
Kripke structures and concurrent transition systems, we define positive and negative CTL
formulae and propose a theory revision algorithm for learning transition rules from a CTL
specification. Second, in the setting of hybrid systems which add a continuous dynamics
described by differential equations, we show how a similar algorithm can be built to learn
parameter values from a constraint LTL specification. In the context of BIOCHAM, which is
used as a running example in this paper, we report evaluation results showing the usefulness
of this approach and encouraging performance figures.
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Apprentissage de régles de transition a partir de
propriétés de logique temporelle

Résumé : La plupart des travaux sur les questions de représentation temporelle en appren-
tissage automatique traitent du probléme d’apprentissage de “motifs temporels” & partir d’un
grand ensemble de données temporelles. Dans ce papier nous étudions le probléme quelque
peu différent d’apprendre les régles de comportement d’un systéme & partir de ses propriétés
temporelles observées et fomalisées en logique temporelle. Notre intéret pour ce probléme
vient de la biologie des systémes et du développement de techniques d’apprentissage auto-
matique pour apprendre des régles de réactions biochimiques et des parameétres cinétiques
dans la Machine Abstraite Biochimique BIOCHAM. Notre contribution est en deux temps.
Premiérement, dans le cadre général des structures de Kripke et des systémes de transition
concurents, nous définissons les formules CTL positives et négatives et proposons un algo-
rithme fondé sur la révision de théorie, pour apprendre des régles de transitions & partir
de spécifications en logique temporelle CTL. Deuxiémement, dans le cadre des systémes
hybrides qui ajoutent une dynamique continue décrite par des équations différentielles, nous
montrons comment un algorithme similaire peut étre construit pour apprendre les valeurs
des paramétres & partir de spécifications en logique temporelle LTL avec contraintes. Dans
le contexte de BIOCHAM, qui est utilisé comme exemple d’application dans ce papier, nous
présentons des résultats d’évaluation qui montrent 1’utilité de cette approche et des temps
d’exécution encourageants.

Mots-clés : Logique Temporelle, CTL, LTL, Contraintes, Apprentissage de régles, Ap-
prentissage de paramétres, Biologie des Systémes
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1 Introduction

The representation of temporal data has been investigated for a long time in Artifical Intel-
ligence [2, 6]. In Machine Learning, most of the work on temporal representation issues deal
with the problem of learning/mining temporal patterns from a large set of temporal data
[16, 21, 25, 1, 18]. In this context, the use of temporal logic has been proposed as a mean
to represent the temporal structure of time series of events.

In this paper we investigate the somewhat different problem of learning the behavioral
rules of a system from its observed temporal properties formalized in temporal logic. Our
interest in this problem arose from Systems Biology and the development of the Biochemical
Abstract Machine BIOCHAM [15] which provides an environment for modeling, querying
and curating models of complex bio-molecular interaction processes. BIOCHAM is com-
posed of a rule-based language to model bio-molecular interactions, and an original tempo-
ral logic based language to formalize the biological properties of the system [11]. Our first
experimental results have been reported on a qualitative model of the mammalian cell cycle
control involving about 500 variables and 2700 reaction rules [12]. In this context, we are
investigating machine learning techniques for learning BIOCHAM reaction rules [9], as well
as kinetic parameters, from the observed biological properties of the organism formalized
in temporal logic. There has been work on the use of machine learning techniques, such as
inductive logic programming [19], to infer gene functions [8], metabolic pathway descriptions
[3, 4] or gene interactions [7]. However structural learning of bio-molecular interactions from
temporal properties is quite new, both from the machine learning perspective and from the
Systems Biology perspective.

The contribution of this paper is twofold. First, in the general setting of concurrent
transition systems [22], we propose an enumerative algorithm, and a more involved theory
revision algorithm [23], for learning transition rules from a behavioural specification given
in Computation Tree Logic CTL [13]. This algorithm is illustrated with BIOCHAM reac-
tion rule discovery from a partial model of reaction rules and a set of observed biological
properties formalized in CTL.

Second, in the setting of hybrid systems which add a continuous dynamics described
by differential equations, we show how a similar algorithm can be used to learn parameter
values from a LTL specification based on first-order logic with constraints over the reals. This
general method is illustrated with the learning of kinetic parameter values in BIOCHAM
reaction rules from expected numerical properties, such as oscillations, thresholds, curve
patterns, etc.

The performance figures reported in the context of BIOCHAM for semi-automatically
curating models of bio-molecular processes are encouraging and already show the usefulness
of these methods.

RR n° 5543



4 Nathalie Chabrier-Rivier , Francois Fages , Sylvain Soliman , Laurence Calzone

2 Preliminaries on Temporal Logics and BIOCHAM

2.1 Syntax: CTL and LTL

The Computation Tree Logic CTL* [13] basically extends classical logic used for describing
states (we will see later examples using either propositional logic for a boolean setting or
first order logic to describe arithmetic constraints over reals), with operators for reasoning
on time (state transitions) and non-determinism. Several temporal operators are introduced
in CTL*:

e X ¢ meaning ¢ is true at next step,

e (¢ meaning ¢ is always true,

F'¢ meaning ¢ is finally true,

¢Ur meaning v is finally true and ¢ is always true until ¢/ becomes true,

and ¢W1 meaning ¢ is always true until ¢ becomes true or ¢ is always true.

Note that F (resp. G) can be defined by U (resp. W). Two path quantifiers are introduced
for reasoning about non-determinism:

o A¢ meaning ¢ is true on all paths, and
e FE¢ meaning ¢ is true on some path.

In CTL, all temporal operators must be immediately preceded by a path quantifier
(e.g. AFG¢is not in CTL, but AF(EG¢) is). In the Linear Time Logic, LTL, only temporal
operators are used, so the reasoning is only about one single path.

Note that there is a strong duality in the operators:

o “EX(¢) = AX(~¢)
o ~EF(¢) = AG(~¢)
» ~EG(¢) = AF(—¢)
o “E(¢U )= A(-¢ W =¢)
2.2 Semantics: Kripke Structures
The model theory of temporal logic is given by Kripke structures [13].

Definition 1 Let AP be a set of atomic propositions. A Kripke structure M over AP
is a four tuple M = (S, So, R, L) where

1. S is a finite set of states,

INRIA
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2. So C S is the set of initial states, (can missing)

3. R C S xS is a transition relation that must be total, that is, for every state s € S
there is a state s' € S such that R(s,s').

4. L: S — AAP 4s a function that labels each state with the set of atomic propositions
true in that state.

Definition 2 A path in o struture M from a state s is an infinite sequence of states m =
808182... such that s = s and R(s;, s;+1) holds for all i > 0.

We note n" the state s, in the above sequence.

We can now define the semantics of CTL* formulae over AP w.r.t. a Kripke structure
over AP as in table 1.

Conjunction and disjunction are defined as usual.

Table 1: Inductive definition of the truth relations s = ¢ and 7 | ¢ in a given Kripke
structure.

sEa iff «e€ L(s),
sk Evy iff there is a path 7 from s s.t. 7 =1,
s Ay iff for every path 7 from s, 7 = 9,

rEe  ff kg,

TEXy  iff e,

T = Fy iff  there exists k > 0 s.t. 7 =1,

T EGY iff for every k> 0, 7* = 9,

7w Uy' iff  there exists k > 0 such that 7* |= ¢/
and 7/ =9 for all 0 < j < k.

7 EyYWy' iff forall k>0, if for every 0 < j <k
7 W= o then 7* = 9.

2.3 Generalization/Specialization of a Kripke Structure
We provide a few more definitions about Kripke structures that will be used in Sect. 4.
Definition 3 Let K1 = (S1,R1,L1) and K2 = (Sa, Ra, La) be two Kripke structures over

AP a set of atomic propositions. such that S; C Sa, R1 C Ry and Vs € S1 La(s) = Ly (s).
We say that K- is more general than K.

K, is more general than K; implies that each path in K; is a path in K. Thus if we
add a transition rule in a rule-based model, the new model is more general than the initial
model.

RR n° 5543
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Definition 4 Let Ky = (S1, R1,L1) and K2 = (S2, Ra, L) be two Kripke structures over
AP a set of atomic propositions. such that Sa C S1, Re C Ry and Vs € Sy L1(s) = La(s),
We say that K- is more specific than K.

K, is more specific than K; iff K; is more general than K,. Thus if we remove a
transition rule in a rule-based model, and the relation of transition remains total, then the
new model is more specific than the initial one.

3 BIOCHAM Example

The simplest way to define a Kripke structure is often to use a rule-based language to define
R. In the context of Systems Biology, BIOCHAM ! provides such a language to formalize
sub-cellular biological processes as a Kripke structure, by means of biochemical reaction
rules.

Here is a simple example of BIOCHAM model based on a cell cycle control model [20]:

present (CKI,1). present(Y,1.5).
parameter(k1,0.2). parameter(k2,0.2).

k1 for _ => CycB.

k2% [CycB] for CycB => _
(k2ux[APC])*[CycB] for CycB =[APC]l=> _

(k3*CDK* [CycB] ,k4*[MPF])  for CycB<=>MPF.

After the definition of the initial state of the system and of macros and parameter values,
the rules related to the cyclin behavior are given (the full model is available in appendix
A). The rules given, corresponding to biochemical reactions, show the synthesis of molecule
CycB, its degradation, at constant rate and with catalysis of APC, and finally the complex-
ation/decomplexation into MPF. These rules are given with kinetic expressions which corre-
spond mostly to the mass action law in this example. The kinetic expressions are optional
and can be omitted.

3.1 CTL Queries

If we abstract from kinetic expressions, as usually done in large systems, one can associate
to the BIOCHAM rules a Boolean Kripke structure in which :

e the states are defined by boolean variables associated to molecules (denoting their
presence or absence in the cell);

lhttp://contraintes.inria.fr/BIOCHAM/

INRIA
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e the transitions are defined by the reaction rules, taking into account the possible
consumption of the reactants by the reaction. A reaction rule with n reactants among
which m appear in the right hand side, is thus translated into 2"~™ transition rules
corresponding to the possible consumption or not of the n—m reactants by the reaction.

As shown in [12, 11], CTL logic provides a very powerful language to formalize the
biological properties of a model. Questions of reachability, like, is there a pathway for
synthesizing a molecule P?, can be formalized by the CTL formula EF(P). Questions
about pathways, like, can the cell reach a state s while passing by another state s2? can
be formalized by EF(so A EF(s)); or is state sy a necessary checkpoint for reaching state
s? by =E((—s2) U s) which is abbreviated as checkpoint(s2,s). Questions about stability,
like, is a certain (partially described) state s of the cell a steady state? can be formalized by
s = EG(s); or, can the cell reach a given permanent state s? by EF(EGSs). Also questions
about oscillations, like, can the system exhibit a cyclic behavior w.r.t. the presence of P?
can be formalized by the CTL formula EG((P = EF —-P) A (P = EF P)), which is
abbreviated as loop(P).

Checking the validity of CTL formulae in a given BIOCHAM model provides a form
of validation of the model against biological experiments, made in wild life and mutated
organisms and formalized as a set of CTL properties. For this task, BIOCHAM is interfaced
to the state-of-art model checker NuSMV [10] which uses a very efficient representation of
states and transitions by Binary Decision Diagrams.

Here is the result of a BIOCHAM run on the above example, asking if CycB is a checkpoint
for the activation of MPF, then if Weel is one:

biocham: check_checkpoint(CycB,MPF).
Ai (M (E('(CycB) U MPF))) is true

biocham: check_checkpoint(Weel,MPF).
Ai (' (E()(Weel) U MPF))) is false

biocham: why.
CKI is present

1 _=>CycB.
CycB is present
4 CycB=>MPF.

MPF is present
CycB is absent
Query time: 0.02 s

3.2 Constraint LTL Queries

If the kinetic information is available and taken into account, one can associate to the
BIOCHAM model a system of Ordinary Differential Equations (ODE) which makes the

RR n° 5543
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Figure 1: Simulation result for the cell cycle model of [20]

ag

model deterministic and can be simulated with numerical methods. Figure 1 shows the
result of the simulation in this example.

The simulation plots (using adaptive step size Runge-Kutta or Rosenbrock’s methods)
provides a time series which constitutes a linear Kripke structure amenable to LTL query-
ing with constraints. BIOCHAM allows to check the validity of an LTL formulae with
arithmetic constraints on molecule concentrations and on their derivatives, similarly to [5].
The LTL formulae with arithmetic constraints formalize properties of the curve that can be
automatically checked in a given model or imposed as a specification for revising the model.

Here is the result of a BIOCHAM run, on the same example, where one asks if MPF
oscillates (i.e. its derivative change its sign) three then four times, on a trace of length 100:

biocham: trace_check(oscil (MPF,3)).
oscil(MPF,3) is true.

biocham: trace_check(oscil (MPF,4)).
oscil (MPF,4) is false.

4 Learning Reaction Rules from CTL properties
Turning the temporal logic query language into a specification language for expressing the

observed behavior of the system, opens the way to the use of machine learning techniques
for completing or correcting such formal models semi-automatically.

INRIA
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4.1 Enumerative Algorithm

The intended behavior of a model can be described through a set of CTL properties providing
a specification, with positive and negative examples, generalized by logical formulae closed
by negation. A rule pattern (the bias) describing the plausible rules to add to the system can
be given to guide the search of new rules, eliminating in advance rules having no biological
meaning, and we want the system to come up with corrections/completions of the initial
model.

After unfruitful experiments with state-of-the-art Inductive Logic Programming tools
related to the complexity of temporal properties, even with the simple transitive closure
program expressing only reachibility properties, we developed an ad-hoc exhaustive enu-
meration method: from the rule pattern, all its ground instances are generated, ordered by
size and tried one by one, adding them to the model and checking the specification with
the model-checker. Those rules which check all the specifications (positive examples and no
negative examples) are returned as answers and proposed to the user.

This approach is somewhat limited, since it currently handles only the addition of a
single rule to the model, however Sect. 4.2 shows that it already provides interesting results
for a certain number of examples.

4.2 BIOCHAM Example

The example of Qu’s cell cycle model and another example of the MAPK cascade were,
among others, tried out in the following way: some rules were deleted, and BIOCHAM
had to find them, in order to satisfy the CTL specification (constructed from the working,
original model).

Table 2 summarizes the results and shows that even for models of a moderate size, it is
possible to find the missing rules.

In both cases the bias provided was very permissive, and could have been refined by a
modeler knowing what kind of rule/process he was looking for.

4.3 Positive and Negative CTL Formulae

Definition 5 p is a positive formula iff:
e p is a propositionnal formula,
e p= EX(c) where ¢ is a positive formula
e p = EF(c)where c is a positive formula
e p = EG(c)where ¢ is a positive formula
e p=FE(c1 U c2) where ¢; and co are two positive formulae,

e p=FE(c; W ¢3) where ¢; and cy are two positive formulae,

RR n° 5543
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Table 2: Two examples. The bias given defines all possible biological reactions
((de)complexation, synthesis, degradation or (de)phosphorylation)

deleted rule good | tested | time
rules rules
Cell cycle model by Qu et al. [20] (25 rules , 17 molecules, 46 specifications)

synthesis of CycB deleted 19 1041 345s
inhibition of Weel by MPF 14 1041 655s
activation of MPF by C25 2 1041 | 4680s
activation of C25 by MPF 5 1042 740s
RTK-MAPK cascade by Levchenko et al. [17] (22 rules, 22 molecules, 4 spec.)

RAF+RAFK=>RAF-RAFK 40 1888 | 1092s
MEK+RAF~{p1}=>MEK-RAF~{p1} 33 1888 | 1570s
MEK~{p1}+RAF~{p1}=>MEK~{p1}-RAF~{p1} 23 1888 | 794s
MAPK+MEK~{p1,p2}=>MAPK-MEK~{p1,p2} 68 1888 | 1382s
MAPK~{p1}+MEK~{p1,p2}=>MAPK~{p1}-MEK~{p1,p2} 83 1888 | 585s
RAF-RAFK=>RAFK+RAF~{pi} 35 1887 | 917s
same rule, other pattern tested 4 877 563s
MEK~{p1}-RAF~{p1}=>MEK~{pl,p2}+RAF~{p1} 29 1887 | 636s
MEK-RAF~{p1}=>MEK~{p1}+RAF~{p1} 23 1887 | 1189s
same rule, other pattern tested 2 877 604s
MAPK-MEK~{p1,p2}=>MAPK~{p1}+MEK~{p1,p2} 86 | 1887 | 1102s
MAPK~{p1}-MEK~{p1,p2}=>MAPK~{p1,p2}+MEK~{p1,p2} 62 1887 | 535s

INRIA



Learning Transition Rules from Temporal Logic Properties 11

Positive formulae are conserved by generalization of a kripke structure.

Proposition 1 (Positive formula conservation) Let be K = (S,Sp,R,L) and K' =
(S8',80,R', L) be two kripke structures such that K' is more general as K. Let ¢ a positive
formula such that K,s |= ¢ then K',s = ¢

Proof. ¢ being positive means that if K,s |= ¢ then, there exists a path 7 = ssysa... in
the struture K such that 7 |= ¢ or s = ¢ (by case on the definition of positive). K’ is more
general than K thus 7 is a path in the struture K’, and K', s = ¢, or s is a state of S" and
K' sk ¢. O

It is worth noting however that the preceding proposition is no longer true for the oper-
ators G and W if we impose fairness.

Definition 6 p is ¢ negative formula iff:
e p is a propositionnal formula,
e p=—p' where p' is an atomic proposition,
e p= AX(c) where c is a negative formula
e p = AF(c)where c is a negative formula
e p = AG(c)where ¢ is a negative formula
e p=A(c1)U(c2) with ¢1 and ¢o two negative formulae,
e p= A(c1)W(c2) where c1 and c2 two negative formulae,
Proposition 2 (Duality) ¢ is a positive formula iff —¢ is a negative formula.
Proof. By recursion of the size of the formula ¢. For the base case, ¢ = p or ¢ = —p with
p an atomic proposition then —¢ = —p or —¢ = p, thus ¢ and —¢ are positive and negative

formulae.
Let ¢ be a negative formula of size n + 1, different forms of 1 are:

e ¢y = AX(q), q is negative of size n and by induction —q is positive, ¢ = =AX(q) =
EX (—q) which is thus a positive formula , ged.

o ¢y = AF(q) and ¢ = AG(q) are treated in the same way.

e ¢y = A(q1)U(go) with ¢; and ¢2 two negative formulae,—) = E(—qgas W —qi) is a positive
formula by using induction twice.

e ) = A(q1)W(g) is treated in the same way.

e the same for ¢ = q; V¢y and ¥ = ¢1 A qo.

RR n° 5543
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O

Proposition 3 (Negative formula conservation) Let be K = (S,So,R,L) and K' =
(S',S0,R', L) two kripke structures such that K' is more specific than K. Let ¢ a negative
formula such that K,s |= ¢ then K',s = ¢

Proof. Let us reason by contradiction and suppose that K’ s [~ ¢. We have K' s = ¢
where, by duality, —¢ is a positive formula. Hence by conservation, we get K,s = —¢, a
contradiction. d

In the somewhat related context of incremental model checking introduced in [24], it
is worth noticing that the concept of positive and negative formulae provides a syntactic
criterion for the formulae which need not be revised.

4.4 Improved Theory Revision Algorithm

The Theory Revision framework [14, 23], of which the enumerative method is an extremely
simple instance, should provide more efficient methods for structural learning:

e in order to limit the number of candidate rules according to the CTL specification, in
addition to the bias pattern;

e to learn, delete or modify more than one rule.

With respect to this framework, a CTL formula can be either seen as:
e positive;

e negative;

e or unclassified, for the other formulae.

Thanks to the results of the previous section, this classification is important in order to
anticipate whether one has to add or remove rules when trying to make a positive example
true (or a negative example false). For instance, if EF(a) is in the specification and is not
true in the current model, one needs to add a rule (i.e. to generalize the Kripke structure)
in order to make it true. If AG(b) is in the specification and is not satisfied, one needs to
remove a rule (i.e. specialize the Kripke structure).

It is worth noting that the model-checker does not only provide a yes/no answer but can,
in certain cases, provide counter-examples for unsatisfied properties. In the above example,
typing the command why in BIOCHAM after noticing that AG(b) is false, will come up with
a path leading to a state where b is absent. At least one rule used in this path need to be
removed.

Properties about cyclicity (AG((a — EF(b)) A (b — EF(a))) remain nevertheless among
the unclassified properties and can hardly take advantage of theory revision techniques.

A machine learning system taking into account the classification of properties to speed
up the learning is currently under development.

INRIA



Learning Transition Rules from Temporal Logic Properties 13

5 Learning Parameters from Constraint LTL Properties

5.1 Enumerative Algorithm

In the same spirit as what is done for learning boolean rules from CTL properties, one can
use an LTL specification with arithmetic constraints to learn parameter values of a kinetic
model. Once again an enumerative method is used, and the search space is explored with a
precision specified by the modeler. For each set of parameters tried, a simulation is run, and
the resulting time series is used as a Linear Time Logic model on which the specifications
are checked.

In a sense, the machine learning process actually replicates what most modelers do by
hand, i.e. trying different values for parameters, guided by ideas about the plausible interval
of values to try and the shape that the simulation should produce. The machine learning
algorithm allows us to test parameter sets much faster once the formalization effort of that
shape into an LTL specification is done.

It is worth noticing that this method applies to highly non-linear systems and proves
particularly effective in this context.

5.2 Example in BIOCHAM

Starting from the same example as usual, let us “erase” the values of parameters k1 and k4
(put them to 0). The model doesn’t oscillate at all any more.

Acting as a modeler we try to find values for these parameters such that the system
oscillates.

The command trace_get ([k1,k4], [(0,5), (0,5)], 20, oscil(Weel,3), 100) searches
for two parameters (k1 and k4) in the interval of possible values [0, 5], with only 20 different
values tried for each, and such that before time 100, Weel oscillates 3 times. The output is
as follows:

biocham: trace_get([k1,k4],[(0,5),(0,5)],20,
oscil(Weel,3),100).

Search time: 9.76 s

Found parameters that make oscil(Weel,3) true:

parameter(k1,0.25).

parameter (k4,0) .

We find very fast some values, but obtain an oscillation a bit too fast and where CycB
stays very low (see Fig. 2). This might be enough, but if we want to obtain results closer
to the published ones, we can refine our query: we give a more precise interval for k1, since
we see that low values are enough to get an oscillating system; we also ask for the precise
number of oscillations that we want, and force an activation of CycB.

trace_get([k1,k4],[(0,1),(0,5)],10,
oscil(Weel,3)&! (oscil(Weel,4))&F ([CycB] gt

RR n° 5543
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Figure 2: Simulation result after a first round of parameter learning

0.08),100)..
Search time: 48.03 s
Found parameters that make oscil(Weel,3)
&! (oscil(Weel,4))&F([CycB] gt 0.08) true:
parameter(k1,0.2).
parameter (k4,1).

The resulting simulation fits almost perfectly with the original one, which shows a weak
sensitivity on k4 for this model.

It is also possible to start with very wide intervals, like [1,100], and a quite loose specifi-
cation. Then once one gets an answer, the specification can be made more precise, and the
intervals smaller if necessary.

6 Conclusion

With the advent of formal languages for describing on the one hand, complex systems, and
on the other hand, their expected temporal properties, the design of machine learning tools
becomes possible, in order to semi-automatically correct or complete a system implementa-
tion w.r.t. its behavioural specifications.

In the general settings of rule-based languages describing (non-deterministic) concur-
rent transition systems, and Computation Tree Logic formalizing temporal properties of the
system, we have shown that a relatively simple enumerative algorithm can be used to find
missing rules to satisfy a temporal specification. Furthermore, we have proposed a classifica-
tion of CTL formulae into positive and negative formulae in order to design a more involved
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theory revision algorithm making use of the temporal specification actively to reduce the
search space.

We have also shown that the same approach can be applied to the learning of numerical
parameters in hybrid systems equipped with a continuous dynamics, from a specification of
their behaviour in temporal logic with numerical constraints.

These results have been illustrated with examples coming from the Biochemical Abstract
Machine BIOCHAM which offers a modeling environment for Systems Biology at two levels
of abstraction: the Boolean abstraction which abstracts from the quantities of molecules,
and the concentration semantics which deals with kinetic laws. In this context, our first
experiments are very encouraging and proved already useful in some problems of decompo-
sition of interactions and parameter fitting. More generally, we believe that the machine
learning algorithm proposed for temporal logic with numerical constraints, may also prove
succesful as an original optimization numerical method for highly non-linear systems.

A  BIOCHAM model after [20]

present (CKI,1).

absent (preMPF) . absent (MPF) .
absent (C25) . absent (C25P) .
absent (C25PP) . absent (Weel) .
absent (WeelP) . absent (APC) .
absent (C) . absent (CP) .

macro (CDK, ((cO- [preMPF] - [MPF]-[C]-[CP1)/c0)).
macro (MPFT, [MPF]+ [preMPF]) .

%% Cyclin
k1 for _=>CycB.
k2* [CycB] for CycB=>_.

(k2ux* [APC]) *[CycB]  for CycB=[APC]=>_.

(k3*CDK* [CycB] ,k4*[MPF]) for CycB<=>MPF.

(k5% [preMPF]) for preMPF=>MPF.
[C25PP] * [preMPF] for preMPF=[C25PP]=>MPF.
k6* [MPF] for MPF=>preMPF.

[Weel] * [MPF] for MPF=[Weel]=>preMPF.
k7*[MPF] for MPF=>_.

k7u* [APC] * [MPF] for MPF=[APC]=>_.

%% Cdc25

k8 for _=>C25.
k9% [C25] for C25=>_.
k9* [C25P] for C25P=>_.

RR n° 5543



16 Nathalie Chabrier-Rivier , Francois Fages , Sylvain Soliman , Laurence Calzone

k9x* [C25PP] for C25PP=>_.

bz*[C25] for C25=>C25P.
cz*[MPF]*[C25] for C25=[MPF]=>C25P.
az* [C25P] for C25P=>C25.

bz* [C25P] for C25P=>C25PP.

cz* [MPF] * [C25P] for C25P=[MPF]=>C25PP.
az* [C25PP] for C25PP=>C25P.

%h Weel

k10 for _=>Weel.

k11*[Weel] for Weel=>_.

k11*[WeelP] for WeelP=>_.

bw* [Weel] for Weel=>WeelP.

cw* [MPF] * [Weel] for Weel=[MPF]=>WeelP.
aw* [WeelP] for WeelP=>Weel.

%h APC

(([MPF]*[MPF]) / (a*a+ ([MPF]*[MPF])))/tho
for _=[MPF]=>APC.

[APC] /tho for APC=>_.

%% CKI
k12 for _=>CKI.
k13*[CKI] for CKI=>_.

(k14*[CKI]*[MPF] ,k15*%[C]) for CKI+MPF<=>C.

bix[C] for C=>CP.
ci*[MPF]*[C] for C=[MPF]=>CP.
aix[CP] for CP=>C.
k16%*[CP] for CP=>MPF.

k16u* [APC]*[CP] for CP=[APC]=>MPF.

parameter(k1,0.2).
parameter (k3,30) .
parameter(k5,0.7) .
parameter (k7,0) .
parameter (k9,1) .

parameter(k11,0.5).

parameter(k13,1).

parameter(k15,0.1) .

parameter (k2u,2) .
parameter (k16u,5) .

parameter(k2,0.2).
parameter (k4,1).
parameter(k6,0.7) .
parameter(k8,1).

parameter (k10,0.5) .

parameter(k12,1).
parameter (k14,50) .
parameter (k16,1) .
parameter (k7u,2) .
parameter (c0,200) .
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parameter(a,1). parameter (tho,5) .
parameter(az,1). parameter (aw,1).
parameter(ai,1).

parameter(bz,0.1). parameter(bw,0.1).
parameter(bi,0.1).

parameter (cz,10) . parameter (cw,10) .

parameter(ci,2).
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