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Espaces (A, B)-invariants max-plus et commande de
systémes a événements discrets temporisés

Résumé : Nous étendons la notion de sous-espace (A, B)-invariant au cas des systémes
linéaires sur le semi-anneau max-plus. Bien que cette extension présente des difficultés
analogues au cas des systémes linéaires a coefficients dans des anneaux, elle permet d’aborder
des problémes de controle de systémes & événements discrets. Nous donnons des conditions
suffisantes, sous lesquelles il est possible de calculer le sous-espace (A, B)-invariant maximal
contenu dans un espace donné. Nous montrons aussi comment déterminer un feedback
linéaire associé, lorsqu’un tel feedback existe. Nous appliquons cette approche & la synthése
d’horaire pour un exemple de réseau de transport.

Mots-clés :  Espaces invariants, approche géométrique, algébre max-plus, systémes a
événements discrets.
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1 Introduction

The geometric approach to the theory of linear dynamical systems has provided deep in-
sights and elegant solutions to many control problems, such as the disturbance decoupling
problem, the block decoupling problem, and the model matching problem (see [Won85] and
the references therein). The concept of (A, B)-invariant subspace (or controlled invariant
subspace, see [BM91]) has played a significant role in the development of this approach.

It is natural to try to apply the same kind of methods to discrete event systems. Several
mathematical models have been proposed, see in particular [CLO95] for a survey of the fol-
lowing approaches. Ramadge and Wonham [RW87] initiated the logical, language-theoretic
approach, in which the precise ordering of the events is of interest and time does not play
an explicit role. This theory addresses the synthesis of controllers in order to satisfy some
qualitative specifications on the admissible orderings of the events. The max-plus algebra
based control approach initiated by Cohen et al. [CDQVS&5], in which, in addition to the
ordering, the timing of the events plays an essential role. A third approach is the perturba-
tion analysis of Cassandras and Ho [CH83], which deals with stochastic timed discrete event
systems.

The max-plus semiring is the set R U {—o0}, equipped with max as addition and the
usual sum as multiplication. Linear dynamical systems with coefficients in the max-plus
semiring turn out to be useful for modeling and analyzing many discrete event dynamic sys-
tems subject to synchronization constraints (see [BCOQ92]). Among these, we can mention
some manufacturing systems (Cohen et al. [CDQV85]), computer networks (Le Boudec and
Thiran [BT01]) and transportation networks (Olsder et al. [0SG98], Braker [Bra91, Bra93],
and de Vries et al. [dDD98]). Many results from linear system theory have been extended to
systems with coefficients in the max-plus semiring, such as the connection between spectral
theory and stability questions (see [CMQV8&9]) or transfer series methods (see [BCOQ92]).
Several interesting control problems have also been studied by, for example, Boimond et
al. [BCFH99, BFHMO00], Cottenceau et al. [CHMSMO03| and Lhommeau [Lho03]. In con-
trast to the approach presented here, which is based on state space representation, their
approach uses transfer series and residuation methods and therefore deals with different
types of specifications.

This motivates the attempt to extend the geometric approach, and in particular the
concept of (A4, B)-invariant subspace, to the theory of linear dynamical systems over the max-
plus semiring, a question which is raised in [CGQ99]. The same kind of generalization, which
was initiated by Hautus, Conte and Perdon, has been widely studied for linear dynamical
systems over rings (see [Hau82, Hau84, CP94, CP95, Ass99, ALP99]). In this paper we
will see that the extension of the geometric approach to linear systems over the max-plus
semiring presents similar difficulties to those encountered in dealing with coefficients in a
ring rather than coeflicients in a field.

To illustrate one of the possible applications of the results presented in this paper, we
apply the methods presented here to the study of transportation networks which evolve
according to a timetable. Max-plus linear models for transportation networks have been
studied by several authors, see for example [OSG98, Bra91, Bra93, dDD98]. Let us consider
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Figure 1: A simple transportation network

the simple railway network given in Figure 1, which has been borrowed from [dDD98]. In
this network there is a train service from station P to station S via station () and vice versa,
and there is also a service from station @ to station R and back. The traveling times for
each of the four possible destinations are indicated in the figure. We will assume that the
following conditions are satisfied. A first condition is that at station @) the trains coming
from stations P and S have to ensure a connection to the train which leaves for destination
R and vice versa. The second condition is that a train cannot leave before its scheduled
departure time which is given by a timetable. If we assume that a train leaves as soon as all
the previous conditions have been satisfied, then the evolution of the transportation network
can be described by a max-plus linear dynamical system where the scheduled departure times
can be seen as controls (see Section 6). We will see that the tools presented in this paper can
be used to analyze this kind of network. For example, it is possible to determine whether
there exists a timetable that satisfies such conditions as the following. A first condition
could be that the time between two consecutive departures of trains in the same direction
be less than a certain given bound. As a second condition we could require that the time
that people have to wait to make some connections be less than another given bound. Of
course, more general specifications could be analyzed. We show how to compute a timetable
which satisfies these requirements when they exist. For instance, suppose that in the railway
network given in Figure 1 we want the time between two consecutive departures of trains in
the same direction to be less than 15 time units and the maximal time that people have to
wait to make any connection to be less than 4 time units. In Section 6 we show that this is
possible and give a timetable which satisfies these requirements.

This paper is organized as follows. In Section 2, after a short introduction to max-plus
type semirings, we introduce the concept of geometrically (A, B)-invariant semimodules and
generalize to max-plus algebra Wonham fixed point algorithm (see [Won85]) which is used
to compute the maximal (A, B)-invariant subspace contained in a given space. In Section 3
we introduce the concept of volume of a semimodule and study its properties. In Section 4
we use volume arguments to show that the fixed point algorithm introduced in Section 2
converges in a finite number of steps for an important class of semimodules. In Section 5

INRIA
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we consider the concept of algebraically (A, B)-invariant semimodules and give a method to
decide whether a finitely generated semimodule is algebraically (A, B)-invariant. Finally, in
Section 6 we apply the methods given in this paper to the study of transportation networks
which evolve according to a timetable.

Let us finally mention that some of the results presented here were announced in [GKO03]
and considered in [Kat03].

Acknowledgment. The author thanks Stéphane Gaubert for many helpful suggestions and
comments on preliminary versions of this manuscript and Jean-Jacques Loiseau for useful
references.

2 Geometrically (A, B)-invariant semimodules

Let us first recall some definitions and results. A monoid is a set equipped with an asso-
ciative internal composition law which has a (two sided) neutral element. A semiring is a
set S equipped with two internal composition laws @ and ®, called addition and multipli-
cation respectively, such that S is a commutative monoid for addition, S is a monoid for
multiplication, multiplication distributes over addition, and the neutral element for addition
is absorbing for multiplication. We will sometimes denote by (S, ®,®, ¢, e) the semiring S,
where € and e represent the neutral elements for addition and for multiplication respectively.
We say that a semiring S is idempotent if © @ x = z for all x € S. In this paper, we are
mostly interested in some variants of the max-plus semiring Ry,ax, which is the set RU{—o0}
equipped with @ = max and ® = + (see [Pin98] for an overview). Some of these variants
can be obtained by noting that to any submonoid (M, +) of (R, +) is associated a semiring
Mmax whose set of elements is M U{—o0} and laws & = max and ® = +. Symmetrically, we
can consider the semiring Mmin with the set of elements M U {+o00} and laws & = min and
® = +. For instance, taking M = Z we get the semiring Zmax = (ZU{—o0}, max, +), which
is the main semiring we are going to work with, and taking M = N we get the semiring
Nmin = (NU{+00}, min, +), which is known as the tropical semiring after the work of Simon
(see [Sim78]). Recall that an idempotent semiring (S, ®, ®) is equipped with the natural
order: © Xy <= xz®y =y (see for example [BCOQ92]). We can also add a maximal
element for the natural order to the semirings Myax and My, obtaining in this way the
semirings Myax = (M U {£oo}, max, +) and My, = (M U {+oc}, min, +), respectively.
Note that, in the semirings Mmax and M pin, the value of (—o0) + (+00) = (+00) + (—00)
is determined by the fact that the neutral element for addition is absorbing for multi-
plication. Then, we know that (—o0o) + (+00) = (+00) + (—=00) = —00 in Mmax and
(—00) + (+00) = (+00) + (—00) = +00 in M.

A (left) semimodule over a semiring (S,®,®,¢es,€) is a commutative monoid (X, ),
with neutral element €y, equipped with a map S x X — X, (A\,z) = X -z (left action),
which satisfies:

A@p)-z=X-(u-12),

>
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6 Ricardo David Katz

Aeu-s=Xzdpua,

ES"T =E&x,
/\'6;\{:6;\{,
e-r=x,

for all z,y € X and \,u € S. We will usually use concatenation to denote both the
multiplication of S and the left action, and we will denote by € both the zero element
es of & and the zero element ey of X. A subsemimodule of X is a subset Z C X such
that \eduy € Z, for all z,y € Z and A\,u € S. In this paper, we will mostly consider
subsemimodules of the free semimodule S™, which is the set of n-dimensional vectors over
S, equipped with the internal law (z&y); = x; ® y; and the left action (Az); = A ® z;. If
G C X, we will denote by span G the subsemimodule of X generated by G, that is, the set
of all x € X for which there exists a finite numbgr of elements uy,...,ur of G and a finite
number of scalars Ay, ..., A, € S, such that z = @,_; _,Aiu;. Finally, if C € ™7, we will
denote by Im C' the subsemimodule of S™ generated by the columns of C.

Let (S, ®,®) denote a semiring. By a system with coefficients in S, or a system over S,
we mean a discrete-time linear dynamical system whose evolution is determined by a set of
equations of the form

xz(k) = Az(k — 1) ® Bu(k) , (1)

where A € ™" B € S"*9, and z(k) € S, u(k) € S9*!, k =1,2,... are the sequences
of state and control vectors respectively.

We are interested in studying the following problem: Given a certain specification for
the state space of system (1), which we suppose is given by a semimodule K C 8", we want
to compute the maximal set of initial states K* for which there exists a sequence of control
vectors which makes the state of system (1) stay in K forever, that is, such that z(k) € K
for all £ > 0. Note that K* is clearly a subsemimodule of S™. To treat this problem it is
convenient to make the following definition.

Definition 1 Given the matrices A € S"*" and B € 8™, we say that a semimodule
X C 8™ is (geometrically) (A, B)-invariant if for all x € X there exists u € SY such that
Axz ® Bu belongs to X.

This definition clearly implies that a semimodule X C 8™ is (geometrically) (A4, B)-
invariant if and only if for all € X" there exists a sequence of control vectors such that the
trajectory of the dynamical system (1), associated with this control sequence and the initial
condition z(0) = z, is completely contained in X.

The proof of the following lemma is omitted as it is identical to the case of linear dy-
namical systems over rings.

Lemma 1 If K C 8" is a semimodule, then K* is the mazimal (geometrically) (A, B)-
invariant semimodule contained in K.

INRIA
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To tackle the previous problem in the case of max-plus type semirings, we generalize
the classical fixed point algorithm which is used to compute the maximal (A, B)-invariant
subspace contained in a given space (see [Won85]). With this purpose in mind, we set
B =Im B and consider the self-map ¢ of the set of subsemimodules of S, given by:

p(X)=XnA Y (xenB), (2)
where the operation & is defined as follows:
ZoY={ueS"| yeVudyecZ}, VZ,YCS".

Note that when § = Z a5 or S = Ny, if the semimodule X is finitely generated, then the
semimodule p(X) is also finitely generated and can be computed using a general elimination
algorithm due to Butkovi¢ and Hegediis [BH84] and Gaubert [Gau92]. More generally, if X
belongs to the class of rational semimodules (this class, which extends the notion of finitely
generated semimodule, turns out to be useful in the geometric approach to discrete event
systems, see [GKO04]), then ¢(X) is also a rational semimodule and can be computed by
Theorem 3.5 of [GKO04].

Lemma 2 A semimodule X C S™ is (geometrically) (A, B)-invariant if and only if X =
p(X).

Proof. Since

A (xeB) = {ze8"| AzeXoB}=
= {zeS8"|beB,Azdbe X} =
= {z€8"| eSS Az®Bue X},

we can see that A=1(X © B) is the set of initial conditions z(0) of the dynamical system (1)
for which there exists a control u(1l) which makes the new state of the system, that is
z(1) = Az(0) ® Bu(l), belong to X. Then, it readily follows from Definition 1 that a
semimodule X C 8™ is (geometrically) (A, B)-invariant if and only if X ¢ A=1(X & B).
Therefore, a semimodule X C S™ is (geometrically) (A, B)-invariant if and only if X = ¢(X),
that is, (geometrically) (A, B)-invariant semimodules are precisely the fixed points of the
map ¢ defined by (2). ]
Inspired by the algorithm in the classical case, we define the following sequence of semi-

modules:
Xl =K ) XT+1 = (,D(XT) y Vr e N (3)

Then we have the following lemma.

Lemma 3 Let K C 8™ be an arbitrary semimodule. Then the sequence of semimodules
{X:}ren defined by (3) is decreasing, i.e. Xpry1 C X, for all v € N. Moreover, if we define
Xo = NpenXy, then every (geometrically) (A, B)-invariant semimodule contained in K is
also contained in X,,. In particular, it follows that K* C X,,.

RR n® 5521
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Proof. The fact that the sequence of semimodules { X, },.¢cn is decreasing is a straightforward
consequence of the definition of the map ¢:

X1 = (P(Xr) =4&.N ATt (Xr S/ B) c &,

for all r € N.
To prove the second part of Lemma 3, firstly it is convenient to notice that ¢ satisfies
the following property:

VZ,YC8", ZCY=9(Z)Cp),

that is, ¢ is monotonic when the set of subsemimodules of 8™ is equipped with the order:
Z <)Yifandonlyif Z C ).

Now let X C K be an arbitrary (geometrically) (A, B)-invariant semimodule. We will
prove by induction on r that X C A, for all r € N, and therefore that X C NyenX, = A,,.
In the first place, we know that X C K = X;. Since X is a (geometrically) (A, B)-invariant
semimodule, thanks to Lemma, 2, it follows that X = ¢(X). If we now assume that X C A,
then we have:

X = (X) Co(Xy) = Xiga -

Therefore, X C A&, for all r € N, as we wanted to show. |

Note that if the sequence {X,},cn stabilizes, that is, if there exists k € N such that
Xi+1 = A, then our problem will be solved. Indeed, if there exists k¥ € N such that
Xy = Xgr1 = @(Xg) then, thanks to Lemma 2, we know that X} is a (geometrically) (4, B)-
invariant semimodule which is contained in K (since X; = K and by Lemma 3 the sequence
{X.}ren is decreasing). Therefore X C K*, and as by Lemma 3 we know that X* C Xy, it
follows finally that K* = X}.

Example 1 Let S = Zmax. Let us consider the matrices

-0 0 0
A_<0 —oo) and B—(O),
and the semimodule K = {(z,y)T € Z2,.| v > x + 1}. Let us compute, in this particular
case, the sequence of semimodules {X,},en defined by (3). By definition we know that

X =K={(z,y)T €22, | y>z+1}. To compute X = p(X1) = X1 N A=Y (X, © B), first
of all it is straightforward to see that X1 © B = X;. Therefore,

AN X oB) = AT\ =
= {(@y9)" €Z] x| Alz,y)" € X1} =
= { ) )TEZEnax| (y,a:)TEXl}:

(z,y
= {(@y)" €Zlp |l z>y+1},

INRIA
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and thus

Xy

Xl n A_l(Xl GB) =
{@y)" €Zhax| y 22+ 130 {(,9)" €L | 2>y +1} =
= {(—OO,—OO)T} .

Then, since by Lemma 3 the sequence of semimodules { X, },en is decreasing, it follows that
X, = {(—00, —00)T} for all k > 2. Therefore, the mazimal (geometrically) (A, B)-invariant
semimodule contained in K is trivial: K* = X, = {(—o0, —00)T}.

In the case of the theory of linear dynamical systems over a field, the sequence {X; }ren
always converges in at most n steps, since it is a decreasing sequence of subspaces of a
vector space of dimension n. However, one of the problems in the max-plus case, which is
reminiscent of difficulties of the theory of linear dynamical systems over rings (see [Ass99,
ALP99, CP94, CP95, Hau82, Hau84]), is that the sequence {X; },ecn may not stabilize (see
Example 2 below). This difficulty comes from the fact that the semimodule ZZ . is not
Artinian, that is, there are infinite decreasing sequences of subsemimodules of Z,.. In the
case of linear dynamical systems over rings, the convergence of the sequence {X,},en in a
finite number of steps is not guaranteed either, and although there exists a procedure for
finding £* when § is a Principal Ideal Domain (see [CP94]), in general the computation of
K* remains a difficult problem.

Example 2 Let S = Zax. Let us consider the matrices

-1 - 0
A_<—oo 0) and B—<O>7

and the semimodule K = {(z,y)T € 72 y < x —1}. Note that K = Im K, where
max

0 0
K= (_1 _OO) .
Next we show that in this case the sequence of semimodules { X, }ren defined by (3) is given
by:
r —oo

XT={(x,y)TeZ?nax|ySm—r}:Im(_0 0 ) , @)

for all r € N. We prove equality (4) by induction on r. Let us note, in the first place, that
equality (4) is satisfied by definition when r = 1. Assume now that equality (4) holds for
r =k, that is:

—0o0

He= o) €l y<o—ip=mm (5 ).

RR n° 5521
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Let us note that X, ©B = X}, since there exists A € Zmax such that max(y,\) < max(z,\)—k
(that is, there exists (\, )T € B such that (z,y)T ® A\, AT € Xy) if and only if y <z — k
(that is, (z,y)T € Xy). Therefore,
AT (X eB) = ATH(X) =

{(@,9)" € Zhax | Alz,y)" € Xi} =
= {(zy)! €Zin| @ -1y) " € X} =

{(w,y)TerHax| ygw—l—k},
and thus

Xep1 = X NA (A eB) =
(@) €eZ2 | y<z—k}n{(z,y) €2, |y<z—1-k}=
= {(@y €zl ly<a—(1+k)},

which shows that equality (4) holds for all r € N.

We see in this way that the sequence of semimodules {X,},en is strictly decreasing and
therefore does mot stabilize. Let us finally note that the semimodule X, = NpenX, =
{(z,9)T € Z2,, | y= —o0} is A-invariant, that is, A(X,) C X,. Then, X,, is in particular
(geometrically) (A, B)-invariant and therefore K* = X, = {(z,y)T € Z2,, | y = —oo}.

An open problem is to determine whether it is always the case that K* = X,,. It is
worth mentioning that this equality does not necessarily hold in the case of linear dynamical
systems over rings. Even when § is a Principal Ideal Domain, it could be necessary to
compute more than once (but a finite number of times) the limit X, of sequences defined
as in (3). To be more precise, in such a case &) is defined as K in the first step and, if it is
necessary (that is, when X,, is not a geometrically (A, B)-invariant module), in the next steps
X is defined as the smallest closed submodule containing the previous limit X, (see [CP94]
for details). Sufficient conditions for the stabilization of the sequence { X, },en defined by (3),
and therefore for the equality X* = X, to hold true, will be given in Section 4 in the case
of & = Zmax- Note that Example 2 shows that even in the case of the tropical semiring
Nmin the sequence of semimodules { X, },en may not stabilize (indeed all the computations in
Example 2 are valid when we restrict ourselves to the semiring N, = (N~ U{—00}, max, +),
which is clearly isomorphic to Ny, ). However, more general sufficient conditions for the
equality £* = A, to hold true can be given in the case of the tropical semiring using
compactness arguments. With this aim, let us consider the topology of Ny, defined by the
metric:

d(z,y) = [exp(—2) — exp(=y)| ,

for all z,y € Niin. Then we have the following lemma.

Lemma 4 Finitely generated subsemimodules of NI, ~are compact.

in

INRIA
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Proof. 1In the first place, let us notice that Ny, is a topological semiring, that is, for all
sequences {Z, }ren and {y,}ren of elements of Ny, the following equalities are satisfied:

iz (- @ 9r) = (lim =) & (lim vv)

T—>00

and

lim (z, ®y,) = (lim mr) ® (lim yr) .

T—00 T—00 T—00
Let us now see that every finitely generated semimodule X C N[, is compact. Indeed,
since X is finitely generated there exists a matrix @ € NP, for some p € N, such that
X =Im@Q. Let {z,}ren be an arbitrary sequence of elements of X. To prove that X is
compact, we must show that {z,},en has a subsequence which converges to an element of
X. Since {z,}ren C X, there exists a sequence {y,}ren C NE. = such that z, = Qy, for all
r € N. Now it is straightforward to see that there exists a subsequence {y,, }ren of {yr}ren
and an element y € Nﬁlin such that limg_,o0 yr, = y. Then, using the fact that Ny, is a

topological semiring, it follows that
lim z,, = lim (Qy,.) =@ (lim yrk> =QyeX.
k— o0 k— oo k—oc0

Therefore, X' is compact. n
The following theorem shows that in the case of Ny, the equality £* = X, holds when
K is finitely generated.

Theorem 1 Let K C NI, be a finitely generated semimodule. Then, for all matrices

A e NI and B € N\7, the mazimal (geometrically) (A, B)-invariant semimodule K*

contained in K is given by X, = NyenX,, where the sequence of semimodules { X, }ren is

defined by (3).

Proof. By Lemma 3, to prove the theorem, it suffices to show that X, is a (geometrically)
(A, B)-invariant semimodule, which is equivalent to showing that X, = ¢(X,,) by Lemma, 2.

Since X, C A&, for all » € N, it follows that p(X,) C p(X,) = Xpqq for all r € N.
Therefore, p(X,) C NpenXyr = X,

Let us now see that X, C ¢(X,). Let £ be an arbitrary element of X,,. Then, since
x € p(X,) = Xpqq for all r € N, we know that there exists a sequence {b,},eny C B such
that Az & b, belongs to X, for all r € N. As B is compact by Lemma 4, there exists b € B
and a subsequence {b,, }ren of {b,}ren such that limg_, o b, = b. Now, since by Lemma 3
the sequence of semimodules {X,},cn is decreasing, it follows that Az @ b,; € &, for all
j > k. Therefore, Ax®b € X,, for all k € N (recall that the semimodules X, are all finitely
generated and then, by Lemma 4, in particular closed). Then, Az & b belongs to X, from
which we can see that z € ¢(X,,). Therefore, X, C p(X,,). [ |

RR n° 5521



12 Ricardo David Katz

3 Volume

In the next section we will give sufficient conditions on the semimodule K, when & = Zax,
to assure that the sequence of semimodules {X,},en defined by (3) stabilizes. For this
purpose it is convenient to introduce first the notion of volume of a subsemimodule of Z7 .
and study its properties.

Definition 2 Let K C Z7},. be a semimodule. We call the volume of K, represented
by vol(K), the cardinality of the set {x € K | 1 ® --- ® z, = 0}, that is, vol (K) =
card ({z €K | 21D - Dz, =0}). Also, if K € ZXE, we represent by vol (K) the volume

max’

of the semimodule K = Im K, that is, vol (K) = vol (Im K).

Remark 1 Let us consider the maz-plus parallelism relation ~ on Z7,,, defined by: x ~ y
if and only if © = Ay for some A € R (that is, x; = A+ y; for all 1 < i < n, in the usual
algebra). Then, it is straightforward to see that the volume of a semimodule K C ZZ,,.
is equal to card (K/ ~) — 1, that is, the cardinality of the set of nontrivial lines contained
in K (here K/ ~ denotes the quotient of KL by the parallelism relation ~). The max-plus

projective space is the gquotient of R .. by the parallelism relation.

Before stating the following lemma, which provides some properties of the volume, it is
convenient to introduce the following notation: if X C Z2__, then we define

max?
X={zeX|5,® - Oz, =0} .

Lemma 5 Let A € ZTX", B € Z*P and C € ZPX1 be matrices and Z,Y C ZI.. be

max’ max max max

semimodules. Then we have:

1. Y C Z=vol(Y) <vol(2),

2. if vol (Y) < o0, then Y G Z = vol (Y) < vol(2Z) ,

3. vol (AY) < vol (A) and then vol (AB) < vol (A4) ,

4. vol (AY) < vol(Y) and then vol (AB) < vol (B) ,

5. vol (ABC) < vol(B) ,
6. if P € Z"5" and Q € ZPXP are invertible, then vol (PBQ) = vol (B) ,
7.

max max

vol (A4) = vol (AT) .

Proof. 1. This property is a straightforward consequence of the definition of volume:
YCZ=YCZ=card(Y) < card (2) = vol (V) < vol (2).

2. In the first place, we will show that the following simple property is satisfied: for all
semimodules )V, Z C ZT

max?

VGZ2=3VG 2. (5)
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In effect, assume that Y G Z. Then there exists « € Z\ Y. Therefore, we know that
z # (—o0,...,—00)T and we can define the vector & = (z1 ® -+~ ® z,) *« (that is, F; =
x; — max{xy,...,z,} for all 1 <4 < n, in the usual algebra). Now, it is easy to check that
FeZ \ Y and thus Y G Z. This proves property (5).

Now, using property (5) and the fact that vol (J)) < oo, we get: YV ¢ Z2 = YV ¢ Z =
card (Y) < card (£) = vol (V) < vol (Z).

3. Since AY C Im A, applying Statement 1, we have: vol (AY) < vol (Im A) = vol (4).

4. From the definition of the set ) it is easy to see that for all y € Y\ {(—oc, ..., —00)T}
there exists § € Y and X € Z such that y = \j (it suffices to take A = y1 @ --- ® y,, and
§ = A~1y). Therefore,

Ay\{(—OO,...7—OO)T} C {AAgl Zj Ej}a)‘ EZ},
and then we get:

vol(AY) =card({z € AY | 21 ®--- ® 2, = 0})
<card({z =Mj | €V, €L, 2, B - Dz, = 0})
< card ({A7 | § € Y}) < card (Y) = vol (V) .

5. Applying Statements 3 and 4 we get: vol (ABC) < vol (AB)

6. From Statement 5 we obtain: vol (B) = vol (P~ !PBQQ 1)
Therefore, vol (B) = vol (PBQ).

7. Let us note, in the first place, that we can define in a completely analogous way the
volume of a subsemimodule of Z7; . Then, since the function 2 — —z is an isomorphism
from Zmax t0 Zmin, it is clear that vol (£) = vol (—Z2) for every subsemimodule Z C Z2, ..
Let us now consider the matrix A* = —A? and the semimodule ) = Im (4*%) C Z7;, . Since
Y = —Im (A7), we know that vol (A7) = vol (V). Now, using elements of residuation theory,
it can be shown (see for example [BCOQ92] or [CGQO1]) that the following two properties

hold:

vol (B).

<
< vol (PBQ) < vol(B).

A(AY(Az)) = Az, VeeZ",, , and

where the products by A are performed in Zpa, and the products by A* are performed in
Zinin- Therefore, the function f : Im (A) ~ Im (A*) defined by f(y) = A'y is a bijection
with inverse g(z) = Az. Then, the function F from Im (A4)/ ~ to Im (A%)/ ~ defined by
F(y]) = [A%y], where [z] denotes the equivalence class of x by the parallelism relation ~,
is also a bijection. Now, using Remark 1, we obtain: vol(A) = card (Im(4)/ ~) —1 =
card (Im (A%)/ ~) — 1 = vol (4*) = vol (), and then vol (4) = vol ()) = vol (AT). [

4 Specifications with finite volume

In the next theorem we give a condition on the specification K, when & = Zmax, ensuring
that the sequence of semimodules defined by (3) stabilizes.
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14 Ricardo David Katz

Theorem 2 Let K C Z7., be a semimodule such that vol (K) < oo, that is, a semimodule
with finite volume. Then, for all A € Z2X" and B € Z7XP, the mazimal (geometrically)
(A, B)-invariant semimodule K* contained in K is finitely generated. Moreover, if we define
the sequence of semimodules { X, }ren by (8), then K* = X}, for some k < vol (K) + 1.
Proof.  First of all, let us note that every semimodule Y C Z7,, with finite volume is
necessarily finitely generated. Indeed, this property is a straightforward consequence of the
fact that ) = span (/). Now, as K* C K, applying Statement 1 of Lemma 5 it follows that
vol (K*) < vol(K) < oo, and then K* is finitely generated.

Let us now see that the sequence of semimodules {X, },cn defined by (3) must stabilize
in at most vol (K)+1 steps. Indeed, by Lemma 3 we know that the sequence of semimodules
{X;}ren is decreasing. Then, using Statement 1 of Lemma 5, we can see that {vol (X,)}ren
is a decreasing sequence of nonnegative integers. Therefore, there exists k < vol (X}) +1 =
vol (K) + 1 such that vol (Xxy1) = vol(Xy). Then, as Xy 1 C Xx C K by Lemma 3, we
know that vol (Xg+1) = vol (X}) < vol (K) < oo (once again, by Statement 1 of Lemma, 5).
Finally, applying Statement 2 of Lemma 5 to the semimodules X1 and X}, it follows that
Xp41 = Xy, from which we conclude that £* = A. |

An important particular case of Theorem 2 is that where the semimodule K is generated
by a finite number of vectors whose entries are all finite. In this case it is possible to bound
the volume of K by means of the additive version of Hilbert’s projective metric: for all
x € Z", define

||z||lr = max{z; | 1 <i<n}—min{z; | 1<i<n},

and for all K € Z™*?, define
Ap(K) = max{[|Klla | 1 <i<s},
where K.; denotes the i-th column of the matrix K. Then we have the following corollary.

Corollary 1 Let K = Im K, where K € Z7.%3 is a matriz whose entries are all finite. Then,

for all A € Z5" and B € Z"XP, the mazimal (geometrically) (A, B)-invariant semimodule

max max’

K* contained in K is finitely generated and, if we define the sequence of semimodules { X, }ren
by (3), there exists some k < (Ap(K) +1)" — Ag(K)™ + 1 such that K* = Xj.

Proof. By Theorem 2, to prove the corollary, it suffices to show that
vol (K) < (Ar(K) +1)" — Au(K)" , (6)

where the power n is in the usual algebra.
Since the additive version of Hilbert’s projective metric || - ||z satisfies the following
straightforward properties:

el = llzlla,
lzoyla < llzlla eyl
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for all z,y € Z™ and X € Z, it follows that ||z||g < Ag(K) for all z € K\ {(~o0,...,—00)T}
and therefore K is contained in the semimodule

Y={z€Z"| ||lzlla < Au(K)}U{(~00,...,—00)"}
(note that the only vector in K with at least one coordinate equal to —oo is (— o0, .. ., —00)T).

Then, by Statement 1 of Lemma 5, to prove inequality (6) it suffices to show that vol ()) =
(Apg(K)+1)" — Ag(K)"™. With this aim, we must compute the number of elements of the
set:

Y ey |m®--- @, =0} =

{zeZ"| |lz|lg < Au(K),z1®---® 2, =0},

that is, the number of vectors x of Z™ with at least one coordinate equal to zero (since
max; ; = o1 D - - D x, = 0) and with the rest of the coordinates greater than or equal to
—Ap(K) (since Ag(K) > ||z||g = max; z; — min; z; = — min; ;). We know that there are
(")Ag(K)"" elements in the set J with exactly r coordinates equal to zero. To be more
precise, there exist (TT‘) different ways of choosing the r coordinates which will have the value
zero, and there exist Ay (K)™ " different ways of assigning values to the n — r remaining
coordinates among the A (K) possible values. Therefore, the number of elements of the
set ) is:

r

> (”) Ap(K)"" = (Ag(K)+1)" — Ag(K)",

r=1

and then vol (Y) = (A (K) +1)" — Ag(K)™. ]
Note that in the proof of Corollary 1 we showed, in particular, that for each matrix K €

77X ¢ whose entries are all finite, the volume vol (K) is bounded by (Ag(K)+1)"—Ag(K)"

(this is inequality (6)). We next show that this bound is tight. Indeed, let us consider the

semimodule

Y={zeZ"| |lalla < M}U{(~00,...,~00)"},

where M € N. Note that in the proof of Corollary 1 we proved that ) has volume (M +
1) — M™. Now, if we define the matrix

M 0 -+ 0 0
0 M -~ 0 0
K= & "~ @ el
0 0 -+ M 0
0 0 0 M

it is straightforward to verify that ) = Im (K) and Ay (K) = M. Therefore, there exist
matrices K € ZIX2 (whose entries are all finite) which have volume equal to (Ag(K) +
"™ — Ag(K)".

Theorem 2 is useful in many practical problems because in such problems the specification
K frequently has finite volume. This is often the case when K models certain stability
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conditions, as for example, “bounded delay” requirements. To be more precise, let us assume
that system (1) is the dater representation of a timed event graph (we refer the reader
to [BCOQ92] for more details on the modeling of timed event graphs). Then, a typical case
of semimodule K which arises in applications is:

/C:{:CEZ&MJz‘i—:Cdeij,VISi,an}, (7)

where D = (d;;) is a matrix with entries in Z U {+00}. Note that the state vector for the
firings number k, z(k), belongs to K if and only if x(k); — 2(k); < d;;, for all 1 < 4,5 < n,
which means that the delay between the k-th firing of the transition labeled j and the k-th
firing of the transition labeled 4 should not exceed d;;. We next show that the semimodule
K defined by (7) often has finite volume. Let us first recall that to any matrix A € RLX»
is associated a directed graph G(A), called the precedence graph of A, which is defined as
follows: there exists an oriented arc of weight A;; from node ¢ to node j if and only if
Aj; # —oo. A matrix whose precedence graph is strongly connected is called irreducible.

The spectral radius pmax(A) of A is defined by:

- Ajin + -+ A
Pmax(A) = @tr(Ak)% — max max ni T Aiiy ,
k=1

1<k<n i, ik k

that is, the maximal circuit mean of G(A).
To see that the semimodule (7) often has finite volume, let us first note that

K={z€eZy,.| Bx <z}, (8)
where E = (—D)?. Then we have the following lemma.

Lemma 6 If the matriz E is irreducible, then the semimodule K defined by (8) has finite
volume. Moreover, if E has spectral radius strictly greater than the unit (that is, 0), then K
reduces to the null vector.

Proof. In the first place, let us see that X = Im (E*) N Z2,,, where
E=PE =I0E0E*®---
r=0

(note that the matrix E* can have entries equal to 400, so that E* should be thought of as
a map from Z. .. to Z...). Indeed, we have:

teEK=>FEx<z,z €, =

max
Ez<z,VreNzeZl, = Erx<zx€cll, =
Ex=z,zxell >z €Im(E*)NZL,,,
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and

z €Im(E*)NZY =

max
(l

z = E*y, for some y € Zy ., T € L1, =

max

Ex< E*xr=FE*E*y=FE*y=x,2€Z" _ =>z€k.

max

When E has spectral radius less than or equal to the unit, we can see that:
E*=I®E®---®E" !,

since E" < IT®E@®---® E™"! for all r > n (see for example Theorem 3.20 of [BCOQ92]).
Moreover, since E is irreducible, we know that all the entries of E* are finite. Indeed, this is
a straightforward consequence of the interpretation of the entries of the matrix E* in terms
of the weight of paths in the precedence graph of E. Then, the proof of Corollary 1 shows
that X has finite volume.

When FE has spectral radius strictly greater than the unit, since F is irreducible, all the
entries of E* are equal to 400 (once again by the interpretation of the entries of the matrix
E* in terms of the weight of paths in the precedence graph of E). Therefore, the only vector
in £ =Im (E*)NZ7Y,, is the null vector. ]

We end this section with an example showing that in Theorem 2, the bound vol (K) + 1
on the number of steps needed to stabilize the sequence of semimodules {X,},en defined
by (3), cannot be improved.

Example 3 Let us consider the matrices

1 —o0 0
A_(—oo 0) and B_(O)’
and the semimodule K = {(z,y)T € Z2,,, | *+1 <y <z +1}, where |l € N. Then, in this
case we have:

K={@y"ek|zey=0}={-L0)7....(-1,0)},

from which we get vol (K) = l. Therefore, we are able to apply Theorem 2. In fact, it is
straightforward to see that K = Im K, where

00
e=(10)
so we are also in a position to apply Corollary 1.

By Theorem 2 we know that the sequence of semimodules {X;}rcn defined by (3) must
stabilize in at most vol(K) +1 =1+ 1 steps. Let us check this fact in this particular case.
In the first place, note that K C {(z,y)T € Z2,,, | x+ 1 <y}, so that X, C K C {(z,y)T €
Z2%..| ©+1 <y} for allr € N. Then, it is easy to show (applying a straightforward variant
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of the computation of X. © B done in Example 2) that X. © B = X,. for all v € N. In this
way we get:
X = {(zy) ' el |z+1<y<z+l},
Xo = NnNAMXeB=xinA'(x)=
= {(z,9)' €z |z+1<y<z+I}n
{(z,y)" €Z2 |z +2<y<z+l+1}=
= {@y)" €Zinloz+2<y<az+I} G,

X = AanA ' 0B =X 1nAN Y )=
= {@y)" €Zpax|z+l-1<y<z+I}N
{(.9)" €Zle |z +I<y<z+i+1} =
= {@y)' €Zhulz+l<y<z+l}=
= {(my) €eZiuly=c+1} ¢ X1,
X = NATN (X eB) =xnAT (X)) =
= {@y) €Ziply=a+1}n{(z,9)" €L |y = +1+1} =
= {(-00,—0)"} ¢ X .

Then, since by Lemma 8 we know that
{(—=00,—00)T} C Xiy2 C g1 = {(—00,—00)"} ,
it is clear that Xj42 = X1, and therefore
K* = Xip1 = {(—o00,—00)"} .

In this way we see that in this particular case the sequence of semimodules { X, }rcn stabilizes
in exactly vol (K) +1 =141 steps.

5 Algebraically (A, B)-invariant semimodules

This section deals with another fundamental problem in the geometric approach to the
theory of linear dynamical systems: the computation of a linear feedback. Let us once
again consider the dynamical system (1). Let us assume that we already know the maximal
(geometrically) (A, B)-invariant semimodule X* contained in a given semimodule X C S™.
From a dynamical point of view, this means that the trajectories of system (1) starting in X*
can be kept inside K* by a suitable choice of the control. Our new problem is to determine
whether this control can be generated by using a state feedback. In other words, we want to
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determine whether there exists a linear feedback u(k) = Fz(k — 1), where F € S9*" which
makes K* invariant with respect to the resulting closed loop system:

z(k) = (A® BF)z(k - 1), 9)

that is, such that every trajectory of the closed loop system (9) is completely contained in
K* when its initial state is in K*. If a linear feedback with this property exists, we will
say that X* is an algebraically (A, B)-invariant semimodule. Some authors call this notion
(A + BF)-invariance (see [Ass99]) or the feedback property (see [Hau82, CP95, CP94]).

Definition 3 Given the matrices A € S"*" and B € §™*?, we say that the semimodule
X C 8™ is algebraically (A, B)-invariant if there exists F € ST*" such that

(A@BF)X C X .

Obviously, every algebraically (A, B)-invariant semimodule is also geometrically (A, B)-
invariant. Nevertheless, when & = Znax it is not clear whether a geometrically (A, B)-
invariant semimodule is algebraically (A, B)-invariant. Once again, this problem is reminis-
cent of difficulties of the theory of linear dynamical systems over rings (see [Hau82, Hau84,
CP94, CP95, Ass99, ALP99]|). Indeed, in the case of linear dynamical systems with coeffi-
cients in a field, the class of geometrically (A, B)-invariant spaces coincides with the class
of algebraically (A, B)-invariant spaces (see [Won85]). This property makes the (geometri-
cally) (A, B)-invariant spaces very useful in the classical theory. However, this crucial fea-
ture is no longer true for linear dynamical systems with coeflicients in a ring, that is, there
exist geometrically (A, B)-invariant modules which are not algebraically (A, B)-invariant
(see [Hau82|, in particular Example 2.3). The following example shows that this is also the
case for linear dynamical systems over the tropical semiring Npin = (N U {400}, min, +).
In the case of rings, the class of algebraically (A4, B)-invariant modules does not have some
of the properties of the class of geometrically (A, B)-invariant modules. For example, a
module K does not necessarily have a maximal algebraically (A, B)-invariant submodule
(see [Hau82, CP95, CP94]). A necessary and sufficient condition for K£* to be algebraically
(A, B)-invariant can be given in the form of a factorization condition on the transfer function,
assuming that the system is reachable and injective (see [Hau82]). When S is a Principal
Ideal Domain, it can be shown that K* is algebraically (A, B)-invariant if and only if it is a
direct summand (see [Hau82, CP95, CP94)).

Example 4 Let S = Ny . Let us consider the matrices
(1 4o (1
A_(l 0) and B—(l),
and the semimodule K = {(z,y)" e N2, |z <y}.

In the first place, let us compute the mazimal geometrically (A, B)-invariant semimodule
K* contained in K. With this aim, we will compute the sequence of semimodules {X,}ren

RR n° 5521



20 Ricardo David Katz

defined by (3). We have:

o . B 0 0
Xy = K—{(may) Eernin'xsy}_Im (+oo 0),

Xy, = XnA' (X eB) =
= {(m7y)T€Ni1in|$Sy}m{(xay)T€N12nin|]‘Sy}=

_ T _ 2 _ 0 1
= {(w,y) ENmin|w§y71§y}_hn <+OO 1) ’

Xs = HLNA Y (XHhoB)=
= {@y) ' eNyp o<y, 1<y}n{(z,9)" e Ny |1 <y} =
= (@) €N [2< 01 <y} =

Then, we get K* = X, = {(z,y)T € N2, | 2 <y,1 <y}. Indeed, it is easy to check that
a trajectory which starts at a point of K\ {(0,0)7} = K* can be kept inside K with the
sequence of controls identically equal to (1,1)T, and that a trajectory which starts at the
point (0,0)T cannot be kept inside K (since for all controls in B the next state of the system
is always (1,0)T, which does not belong to K).

Let us now see that K* is not an algebraically (A, B)-invariant semimodule. With this
aim, we will show that a trajectory which starts at the point (1,1)T € K* cannot be kept
inside KC* when a linear state feedback is applied. Let F € N:X2 be an arbitrary feedback.
Then, since F(1,1)T > 1, we know that BF(1,1)T = (a, )T, where a > 2. Therefore,

wemn(1)= ()= (2)(2) e

which shows that K* is not an algebraically (A, B)-invariant semimodule.

We next show how we can decide, using the existing results on max-plus linear equations,
whether a finitely generated subsemimodule of Z7 . is algebraically (A, B)-invariant. This
method also computes a linear feedback with the required property when the subsemimodule
is algebraically (A, B)-invariant. Let A € ZX", B € Z*4 and let X be a finitely generated

max? max’
subsemimodule of Z7 ., so that there exists ) € Z[.Xr, for some r € N, such that X =

max?

Im @. Then, from Definition 3 it readily follows that X is an algebraically (A, B)-invariant

semimodule if and only if there exist matrices F' € Z4X% and G € Z] 5% such that:

(A® BF)Q = QG . (10)

As (10) is a two sided max-plus linear system of equations, we know that its set of solutions
(F,@G) is a finitely generated max-plus convex set, which can be explicitly computed by the
general elimination methods (see [BH84, Gau92, Gau98, GP97]). In this way we see that we
can effectively decide whether a finitely generated subsemimodule of Z7 . is algebraically

(A, B)-invariant.
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Remark 2 The elimination algorithm shows that the set of solutions of a homogeneous maz-
plus linear system of the form Ax = Bz, where A, B are matrices of suitable dimensions, is
a finitely generated semimodule. This algorithm relies on the fact that hyperplanes of Ry ..
(that is, the set of solutions of an equation of the form ax = bz, where a,b € RY_  are
row vectors) are finitely generated. It is worth mentioning that the resulting naive algorithm
has an a priori doubly exponential complexity. However, the doubly exponential bound is
pessimistic. It is possible to incorporate in this algorithm the elimination of redundant
generators which reduces its execution time. In fact, we are currently working on this subject
and we believe that improvements are possible, since we have shown by direct arguments that
the number of generators of the set of solutions is at most simply exponential. This will be
the subject of a further work.

Let us note that to decide whether X = Im () is an algebraically (A, B)-invariant semi-
module it suffices to know whether the system of equations (10) has at least one solution.
Since there exist algorithms to compute only one solution (with finite entries) of a homo-
geneous max-plus linear system of the form Ax = Bz, which seem to be more efficient
in practice than the elimination methods (see [BCG03, WB98|), we propose the following
alternative procedure. In the first place, we add one unknown ¢ to obtain a homogeneous
max-plus linear system of equations:

(At ® BF)Q = QG . (11)

Now it is straightforward to see that system (10) has at least one solution if and only if
system (11) has at least one solution with ¢ # —co. Therefore, the semimodule X = Im @
is algebraically (A, B)-invariant if and only if system (11) has at least one solution with
t # —o0.

Let us finally recall that the problem of the existence of a solution (with finite entries)
of a homogeneous max-plus linear system can be reduced to the problem of the existence
of a sub-fixed point of a min-max function (see [Gau98, GG98, CTGG99]). In the case of
system (11), using elements of residuation theory (see for example [BCOQ92]), it can be
easily shown that (¢, F, G) is a solution of (11) if and only if

t < (AQ\(QG),
F < B\(QG)/Q, (12)
G < Q\((Ate BF)Q),

where D\C is defined as sup{E € Zﬁf;i | DE < C} for all D € Z%? and C € Z7%T

(the function / is defined in an analogous way). Since D\C' can be computed as (—D7T)C,
where the product is performed in Zmin (see [BCOQ92]), it follows that (12) is a problem
of the form z < f(x), where f is a min-max function. We see in this way that our problem
reduces to a variant of a well-known problem: the existence of a sub-fixed point of a min-
max function. For this problem there exist algorithms which behave remarkably well in
practice, although their complexities are not yet well understood (see [GG98, CTGG99]).
The only difference is that all these algorithms have been developed to find solutions with
finite entries, but we are in fact interested in solutions which only have ¢ finite.
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6 Application to transportation networks with a timetable

Let us consider the railway network given in Figure 1. Firstly, we will recall how the evolution
of this kind of transportation network can be described by max-plus linear dynamical systems
of the form of (1). We are interested in the departure times of the trains from the stations.
Let z;(k) denote the k-th departure time of the train which leaves in direction i, for ¢ =
1,...,n (we have n = 4 in Figure 1). As we explained in the introduction, a train cannot
leave before a number of conditions have been satisfied. A first condition is that the train
must have arrived at the station. For instance, let us assume that the train which leaves in
direction 4 is the one which comes from direction r(¢). Then the following condition must
be satisfied:

Qiri) + Tr(iy (K — 1) < zi (k) , (13)

where a;,(;) is the traveling time in direction r(é) (to which the time needed for passengers
to leave and board the train is added). A second constraint follows from the demand that
trains must connect. This gives rise to the following condition

aij + T; (k - 1) < Z',(k) , Vj € C(Z) ’ (14)

where C(7) is the set of all the directions of the trains which have to provide a connection
with the train which leaves in direction i. Finally, the last condition is that a train cannot
leave before its scheduled departure time. This yields

ui(k) < zi (k) , (15)

where wu;(k) denotes the scheduled departure time for the k-th train in direction i. Now, if
we assume that a train leaves as soon as all the previous conditions have been satisfied, in
max-plus notation conditions (13), (14) and (15) lead to

zi(k) = @ aijzi(k—1) ® aypy, (k — 1) S u(k) . (16)
JEC(4)
If we define a;; = —oo for all j & C(i) U {r(i)}, z(k) = (z1(k),...,z,(k))T and u(k) =
(uy(k), ..., un(k))T, then (16) can be written in matrix form as
z(k) = Az(k — 1) @ u(k) , (17)

where A = (a;;) € Z2X7, which is a system of the form of (1). In the particular case of the
railway network shown in Figure 1 we have

-0 17 —00 —o0
—o00 —ox 11 9
14 —oco 11 9
14 —oc0o 11 -0

A=

Suppose now that we want to decide whether there exists a timetable such that the time
between two consecutive train departures in the same direction is less than a certain given
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bound or such that the time that people have to wait to make some connections is less
than another given bound. To be able to model this kind of requirement it is convenient
to introduce the extended state vector Z(k) = (z1(k),...,zn(k),z1(k—1),...,2,(k —1))T.
Then (17) can be rewritten as Z(k) = AT (k — 1) @ Bu(k), where

(4 2) ()

(here I, e € Z7 X denote the max-plus identity and zero matrices, respectively). Assume that
we want the time between two consecutive train departures in direction ¢ to be less than L;
time units. This can be expressed as T;(k) — Ti1n(k) < L;, or equivalently as F;(k) — L; <
Tiyn(k). For simplicity we will take the same bound L for all the directions, although
everything that follows can done with different bounds. Then the previous condition can be
written in matrix form as
€ A _

((—L)I 6):t:(lc)gszc(k),\ﬂcEN. (18)
Suppose now that we want passengers coming from direction ¢ not to have to wait more
than M;; time units for the departure of the train which leaves in direction j. This can be
expressed as T; (k) — a;j; — Titn (k) < M;;, which is equivalent to ZT; (k) — aj; — Mi; < Tipn (k).
Once again, if for simplicity we take the same bound M for all the possible connections, the
previous condition can be written in matrix form as

((_;4)5 z)i(k)gf(k),VkeN, (19)
where the matrix S = (s;;) € Z%X" is defined by s;; = —a;; if aj; # —00 and s;; = —oc if

aj; = —oo. Finally, the obvious physical constraints z(k — 1) < z(k) and Az(k — 1) < z(k)
lead to the following condition for the extended state vector

(E IdA

- - )f(k)gf(k),VkGN. (20)

Therefore, to get the desired behavior of the network, the timetable u(k) should be such
that the extended state vector satisfies conditions (18), (19) and (20), that is, such that
Ez(k) <=z(k) for all k € N, where

B= ((—M)Se@ (L)1 IesA> '

For instance, let us take L = 15 and M = 4 in the case of the railway network shown in
Figure 1. Then EZ(k) < Z(k) is equivalent to Z(k) € Im E* (see the proof of Lemma 6),
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where
0 2 -2 -2 12 17 13 11
-5 0 -4 -4 10 12 11 9
-1 1 0 -3 14 16 12 10

-1 1 -3 0 14 16 12 10
-1 -13 -1 -17 0 2 -2 -4
-20 -15 -19 -19 -5 0 -4 -6
-16 -14 -15 -15 -1 1 0 =5
-14 -12 -13 -15 1 3 -1 0

Therefore, our problem is to determine the maximal geometrically (A, B)-invariant semimod-
ule contained in K = Im E*. With this aim we will compute the sequence of semimodules
{X;}ren defined by (3). Since the entries of E* are all finite, from Corollary 1 we know that
this sequence must stabilize. In fact, we can show that X5 = Xy G X5 ¢ Xy ¢ A7 = K.
Then, the maximal geometrically (A4, B)-invariant semimodule X* contained in K is X},
which is generated by the columns of the following matrix

17 17 17 18 17
15 15 14 15 15
18 18 17 18 18
19 19 18 19 19
4 2 2 3 2

0 0 0 0 O
4 4 3 4 4
5 5 4 5 2

Consequently, it is possible to obtain the desired behavior of the network with a suitable
choice of the timetable u(k) when the initial state belongs to K*. To be able to compute these
timetables we use the method described at the end of Section 5 to decide whether K* = K4
is an algebraically (4, B)-invariant semimodule (that is, we apply sub-fixed point techniques
to find a state feedback). In this way we can see that K* is algebraically (A4, B)-invariant
and one possible state feedback is given by

14 14 14 13 14 14 14 14
11 14 11 10 14 14 14 14
14 14 14 13 14 14 14 14
14 14 14 14 14 14 14 14

F =

For instance, let us consider the evolution of the network when the initial state is Z(0) =
(5,4,0,4,19,18,15,17)T € K* and the control F is applied. In that case we obtain the
following trajectory x(k) of the system

4 17 32 46 60 74
0 15 29 43 57 71
417118 )7 32)° 146 ) 160" {714 "
5 19 33 47 61 75
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which clearly satisfies the constraints imposed on the network. However, if no control is
applied, we get the following trajectory starting from the same initial state

4 17 32 46 59 74
0 15 29 42 57 71
4171187131746 )7 160]° {73 "~
5 19 31 46 60 73

which does not satisfy the constraints imposed on the network, since for example the pas-
sengers coming from station S on the third train (which leaves from station @ in direction
4 at time 31) will have to wait 6 time units for the next departure of a train in direction 3
toward station R (which will take place at time 46).

If we want to obtain the desired behavior of the network with a periodic timetable, that
is with a timetable u(k) of the form u(k) = \*u, where A\ € Zyax and u € Z7, , then what
we can do is to see if the matrix A @ BF has an eigenvector in K*. In this case it can be
shown that 7(0) = (4,3,0,3,18,17,14,17)” € K* is an eigenvector of A® BF corresponding
to the eigenvalue A\ = 14, that is, the following equality is satisfied:

(A® BF)z(0) = 14%(0) .
Therefore, the periodic timetable

31
u(k) = Fz(k — 1) = 14* " VF7(0) = 14V gf = 14(k+1)
32

= w o w

leads to the desired behavior of the network when the initial state is Z(0). In other words,
one train should leave in each direction every 14 time units but the k-th departure time of
the trains in direction 1 and 3, respectively in direction 4, should be scheduled 3 time units,
respectively 4 time units, after the k-th scheduled departure time of the train in direction 2.

Let us finally mention that the computations of the examples presented in this paper
have been checked using the max-plus toolbox of scilab (see [Plu9g]).

References

[ALP99] J. Assan, J. F. Lafay, and A. M. Perdon. On feedback invariance properties
for systems over a principal ideal domain. IEFEE Trans. Automat. Control,
44(8):1624-1628, 1999.

[Ass99] J. Assan. Analyse et synthése de l’approche géométrique pour les systémes
linéaires sur un anneau. Thése de doctorat, Université de Nantes, Octobre
1999.

RR n® 5521



26

Ricardo David Katz

[BCFH99]

[BCGO3]

[BCOQ92]

[BFHMOO0]

[BHS4]

[BMo1]

[Bragl]

[Bra93]

[BTO1]

[CDQVS5]

[CGQYY

[CGQOL]

[CHS3]

J. L. Boimond, B. Cottenceau, J. L. Ferrier, and L. Hardouin. Synthesis of
greatest linear feedback for timed-event graphs in dioid. IEEFE Trans. Automat.
Control, 44(6):1258-1262, 1999.

P. Butkovi¢ and R. Cuninghame-Green. The equation A ® x = B ® y over
(RU{—o00},max,+). Theor. Comp. Sci., 293(1):3-12, 2003.

F. Baccelli, G. Cohen, G. J. Olsder, and J. P. Quadrat. Synchronization and
Linearity. Wiley, Chichester, 1992.

J. L. Boimond, J. L. Ferrier, L. Hardouin, and E. Menguy. Just-in-time control
of timed event graphs: update of reference input, presence of uncontrollable
input. IEEE Trans. Automat. Control, 45(11):2155-2159, 2000.

P. Butkovi¢ and G. Hegediis. An elimination method for finding all solu-
tions of the system of linear equations over an extremal algebra. Ekonomicko-
matematicky Obzor, 20(2):203-215, 1984.

G. Basile and G. Marro. Controlled and Conditioned Invariants in Linear
System Theory. Prentice Hall, 1991.

J. G. Braker. Max-algebra modelling and analysis of time-dependent trans-
portation networks. In Proceedings of the 1st European Control Conference,
pages 1831-1836, Grenoble, France, July 1991.

J. G. Braker. Algorithms and Applications in Timed Discrete Event Systems.
Ph. D. thesis, Faculty of Technical Mathematics and Informatics, Delft Uni-
versity of Technology, Delft, The Netherlands, 1993.

J-Y. Le Boudec and P. Thiran. Network calculus. Number 2050 in LNCS.
Springer, 2001.

G. Cohen, D. Dubois, J. P. Quadrat, and M. Viot. A linear system theo-
retic view of discrete event processes and its use for performance evaluation in
manufacturing. IEEE Trans. on Automatic Control, AC-30:210-220, 1985.

G. Cohen, S. Gaubert, and J. P. Quadrat. Max-plus algebra and system theory:
where we are and where to go now. Annual Reviews in Control, 23:207-219,
1999.

G. Cohen, S. Gaubert, and J. P. Quadrat. Duality of idempotent semimodules.
In Proceedings of the Satellite Workshop on Maz-Plus Algebras, IFAC SSSC’01,
Praha, 2001. Elsevier.

C. G. Cassandras and Y.-C. Ho. A new approach to the analysis of discrete
event dynamic systems. Automatica J. IFAC, 19(2):149-167, 1983.

INRIA



Mazx-Plus (A, B)-invariant spaces and control of timed discrete event systems 27

[CHMSMO03] B. Cottenceau, L. Hardouin, C. A. Maia, and R. Santos-Mendes. Optimal
closed-loop control of timed event graphs in dioids. IEEFE Trans. Automat.
Control, 48(12):2284-2287, 2003.

[CLO95] C. G. Cassandras, S. Lafortune, and G. J. Olsder. Introduction to the mod-
elling, control and optimization of discrete event systems. In Trends in control
(Rome, 1995), pages 217-291. Springer, Berlin, 1995.

[CMQV89] G. Cohen, P. Moller, J. P. Quadrat, and M. Viot. Algebraic tools for the
performance evaluation of discrete event systems. IEEE Proceedings: Special
issue on Discrete Event Systems, 77(1):39-58, Jan. 1989.

[CP94] G. Conte and A. M. Perdon. Problems and results in a geometric approach to
the theory of systems over rings. In Linear algebra for control theory, volume 62
of IMA Vol. Math. Appl., pages 61-74. Springer, New York, 1994.

[CP95] G. Conte and A. M. Perdon. The disturbance decoupling problem for systems
over a ring. SIAM J. Control Opt., 33(3):750-764, 1995.

[CTGGY9] J. Cochet-Terrasson, S. Gaubert, and J. Gunawardena. A constructive fixed
point theorem for min-max functions. Dynamics and Stability of Systems,
14(4):407-433, 1999.

[dDD9g| R. de Vries, B. De Schutter, and B. De Moor. On max-algebraic models for
transportation networks. In Proceedings of the International Workshop on
Discrete Event Systems (WODES’98), pages 457-462, Cagliari, Italy, August
1998.

[Gau92] S. Gaubert. Théorie des systémes linéaires dans les dioides. Thése, Ecole des
Mines de Paris, July 1992.

[Gau9s] S. Gaubert. Exotic semirings: Examples and general results. Support de cours
de la 26'°™€ Ecole de Printemps d’Informatique Théorique, Noirmoutier, 1998.

[GGI8| S. Gaubert and J. Gunawardena. The duality theorem for min-max functions.
C.R. Acad. Sci., 326(1):43-48, 1998.

[GKO03] S. Gaubert and R. D. Katz. Reachability and invariance problems in max-plus
algebra. In L. Benvenuti, A. De Santis, and L. Farina, editors, Proceedings of
POSTA’03, number 294 in Lecture Notes in Control and Inf. Sci., pages 15-22,
Berlin, Aug. 2003. Springer.

[GKO04] S. Gaubert and R. D. Katz. Rational semimodules over the max-plus semiring
and geometric approach to discrete event systems. Kybernetika, 40(2):153-180,
2004. Also e-print arXiv:math.0C/0208014.

RR n® 5521



28

Ricardo David Katz

[GP97]

[Hau82]

[Hau84]

[Kat03]

[Lho03]

[0SGOS]

[Pin98]

[Plu9s]

[RWS7]

[Sim78]

[WB9S]

[Won85]

S. Gaubert and M. Plus. Methods and applications of (max, +) linear algebra.
In R. Reischuk and M. Morvan, editors, 1/th Symposium on Theoretical As-
pects of Computer Science, STACS 97 (Liibeck), volume 1200 of Lecture Notes
in Comput. Sci., pages 261-282, Berlin, 1997. Springer.

M. L. J. Hautus. Controlled invariance in systems over rings. In Feedback
control of linear and nonlinear systems (Bielefeld/Rome, 1981), volume 39 of
Lecture Notes in Control and Inform. Sci., pages 107-122. Springer, Berlin,
1982.

M. L. J. Hautus. Disturbance rejection for systems over rings. In Mathematical
theory of networks and systems (Beer Sheva, 1983), volume 58 of Lecture Notes
in Control and Inform. Sci., pages 421-432. Springer, London, 1984.

R. D. Katz. Problemas de alcanzabilidad e invariancia en el dlgebra max-plus.
Ph. D. thesis, National University of Rosario, November 2003.

M. Lhommeau. Etude de systémes & événements discrets dans lalgébre
(max, +). Thése de doctorat, ISTIA - Université d’Angers, December 2003.

G. J. Olsder, S. Subiono, and M. Mc Gettrick. On large scale max-plus algebra
model in railway systems. In Proceedings of the International Workshop on
Discrete Event Systems (WODES’98), Cagliari, Italy, August 1998.

J-E. Pin. Tropical semirings. In J. Gunawardena, editor, Idempotency (Bristol,
1994), volume 11 of Publ. Newton Inst., pages 50-69. Cambridge University
Press, Cambridge, 1998.

M. Plus. Max-plus toolbox of scilab. Available from the contrib section of
http://www-rocq.inria.fr/scilab, 1998.

P. J. Ramadge and W. M. Wonham. Supervisory control of a class of discrete
event processes. STAM J. Control and Optimization, 25(1):206-230, Jan 1987.

I. Simon. Limited subsets of the free monoid. In 19th Annual Symposium on
Foundations of Computer Science (Ann Arbor, Mich., 1978), pages 143-150,
Long Beach, Calif., 1978. IEEE.

E. A. Walkup and G. Borriello. A general linear max-plus solution technique.
In J. Gunawardena, editor, Idempotency (Bristol, 1994), volume 11 of Publ.
Newton Inst., pages 406-415. Cambridge University Press, Cambridge, 1998.

W. M. Wonham. Linear multivariable control: a geometric approach. Springer,
1985. Third edition.

INRIA



/<

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)
Unité de recherche INRIA Lorraine : LORIA, Technopdle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lés-Nancy Cedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhone-Alpes : 655, avenue de I’Europe - 38334 Montbonnot Saint-Ismier (France)
Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)
http:/ /www.inria.fr

ISSN 0249-6399



