Skip to Main content Skip to Navigation
New interface
Reports (Research report)

Isotopic meshing of a real algebraic surface

Bernard Mourrain 1 Jean-Pierre Técourt 1 
1 GALAAD - Geometry, algebra, algorithms
CRISAM - Inria Sophia Antipolis - Méditerranée , UNS - Université Nice Sophia Antipolis (1965 - 2019), CNRS - Centre National de la Recherche Scientifique : UMR6621
Abstract : We present a new algorithm for computing the topology of a real algebraic surface $S$, even in singular cases. We use previous algorithms for 2D and 3D algebraic curves and show how properties of the polar variety of $S$ yield a topological complex equivalent to $S$, or even a simplicial complex isotopic to $S$. The proof of correctness of the algorithm is detailed. It is based on tools from stratification theory. We construct an explicit Whitney stratification of $S$, by resultant computation. Using Thom's isotopy lemma, we show how to deduce the topology of $S$ from a finite number of characteristic points on the surface. An analysis of the complexity of the algorithm and effectivity issues conclude the paper.
Document type :
Reports (Research report)
Complete list of metadata

Cited literature [1 references]  Display  Hide  Download

https://hal.inria.fr/inria-00070499
Contributor : Rapport De Recherche Inria Connect in order to contact the contributor
Submitted on : Friday, May 19, 2006 - 8:40:06 PM
Last modification on : Wednesday, October 26, 2022 - 8:16:05 AM
Long-term archiving on: : Sunday, April 4, 2010 - 9:21:22 PM

Identifiers

  • HAL Id : inria-00070499, version 1

Citation

Bernard Mourrain, Jean-Pierre Técourt. Isotopic meshing of a real algebraic surface. [Research Report] RR-5508, INRIA. 2006, pp.21. ⟨inria-00070499⟩

Share

Metrics

Record views

80

Files downloads

117