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Concentrations des solutions des équations de
Navier-Stokes compressible discretisées en temps.

Résumé : On étudie les propriétés de compacité des solutions des équations de Navier-
Stokes compressible discrétisées en temps en dimension 3. L’existence de solutions généra-
lisées est établie.

Mots-clés : Fluide compressible, équations de Navier-Stokes, solutions généralisées
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1 Introduction

Problem formulation A flow of compressible Newtonian fluid in bounded domain Q C
R3 is governed by the Navier-Stokes equations

% + div (ou ® u) + Vp(p) = oF + div X(u), (1a)
do | .. B
T + div (pu) = 0, (1b)

where p(0) = 07, 0, and u are pressure, density, and velocity of fluid, F € C(2)? is a given
vector field, ¥ is a viscous stress tensor defined by

Y(u) = (Vu+Vu') +vdival, divE(u) = Au+ (1 +v)Vdivu, (2)

where v > —2 is the viscosity ratio. The existence of generalized solutions to initial
boundary-value problems for equations (Il was proved by Lions in [I9] and by Feireisl,
Matusi-Necasova, Petzeltova, Stragkraba in [13] for all v > 9/5. These results were essen-
tially improved by Feireisl, Novotny, and Petzeltova in paper [14], where the existence of
solutions was established for all v > 3/2. For the range v > 3/2, the mathematical theory
of compressible Navier-Stokes equations is covered in the book by E. Feireisl [I5]. Recall
that v = 5/3 for monoatomic gases, v = 7/5 for air, and v = 1 in isothermal case. The
problem of the existence of solutions to () for v < 3/2 was listed among other unsolved
problems of fluid mechanics in [20]. In the paper we consider a boundary-value problem for
the stationary equations, obtained by the time discretization of equations (),

agu +div (ou®u) + Vp = ¢oF + divE(u) in D'(Q), (3a)
ap+div(ou) = f in D'(Q), u=0 on 0Q. (3b)

Here o > 0 is a parameter of the time discretization, f € C() is a given non-negative
function.

Let K denote the cone of non-negative functions functions ¢ € L'(Q). A pair (p,u) €
K x H,(Q) is said to be a generalized solution to problem (@) if it satisfies the moment
and the mass balance equations, which are understood in the sense of distributions.

Notation In the paper the standard notation is used for the function spaces. The space
HYP(Q) is the Sobolev space of functions integrable along with the first order generalized
derivatives in LP({)) equipped with its natural norm. For p = 2 we use the notation H'2({2)
rather than H!(f2), and for real m > 0 we denote the Sobolev space of order m by H™?().
Hy%(Q) is the closure of the space C5°(€) in the norm of the Sobolev space H2(1).
We use also the summation convention over repeated indices 4,7 = 1,2,3, e.g., ¢; ;&€ =
Zf’ j=1%i,3&i&;- The support of a function ¢ is denoted by spty. For a vector function
¢ € L*(Q)? its norm is denoted by [|¢[|12(q), the same notation is used for the tensor
functions. We denote by B(z, R) C R? the ball of the radius R with the centre at x, and
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4 Plotnikov € Sokolowski

by S? = 0B(0,1) = {z € R* : |z| = 1} the unit sphere in R3. A function defined as
the mapping G : Q x Ry, — R means G(z,\) € R for z € Q and A € R. For a positive
parameter € > 0 we denote e.g., by ¢, € B the sequence as € \, 0, and will speak about e.g.,
the strong (norm) convergence, possibly for a subsequence, i.e., lime\ g || — ¢l = 0. We
can consider as well as the weak convergence or weak star convergence for the sequence ¢,
in the function space B.

In addition, by c is denoted a generic constant in all estimates given in the paper.

Generalized solutions The local existence and uniqueness theorems for viscous steady
compressible flows were proved in pioneering paper by M. Padula [23]. P.L. Lions, cf [19],
established the existence result for problem (B) for all v > 5/3 in the case « > 0 and v > 5/3
in the case a = 0. Note that these results can be extended to the range v > 3/2 by method
developed by E. Feireisl et al in [I3, [T4]. The solvability of problem (@) in two-dimensional
case was proved in [I9] for all (v, a) € [1, 00) x (0,00)U(1,00) x {0}. The limiting case v = 1,
a = 0 was considered by the authors in [25]. Recall that the standard energy estimate gives
the following bounds for quantities involved in the equations

07|22y + llelal* i) + lullare@) < Cle, QL [Fllcw), | fllow) for v>1,  (4a)
loln(1 + 0)llz1(0) < Cla, Q, |Flc(ay, | fllc)) for v=1. (4b)

It is easy to see that in the three-dimensional case the energy estimates and embedding
theorems guarantee the inclusion plu|? € L*(Q) with s > 1 if and only if v > 3/2. Hence,
for v < 3/2 we have only an L' estimate for the density of the kinetic energy. The question
is under what conditions will a weak limit of approximate solutions to equations (@) be a
solution. If a sequence of approximate solutions (g.,u.), € > 0, to problem (Bl satisfies
the inequalities @) with a constant C, independent of €, we can assume, after passing to a
subsequence, that

u. —u weakly in Hy?(Q), 0. — o weaklyin LY(Q), (5)
ou: @ u. — M star weakly in the space of Radon measures as ¢ — 0, (6)

where M = (M, ;)3x3 denotes a 3 x 3 matrix-valued Radon measure in 2. In the general case
the weak star defect measure S = M —pu®u # 0. This leads to the so-called concentration
problem, which was widely discussed in the mathematical literature in connection with
vortex sheets dynamics, cf. [, [0, 27]. According to DiPerna and Majda, we say Qgng is a
concentration set if S(Q2\ V) = 0 for every open V' D Qy;,; the cancellation concentration
phenomenon is the case when divS = 0. Hence the question is to describe the structure of
the defect measure and to find conditions under which it is equal to 0.

Results We intend to propose a new approach to this problem which is based on the

following result on the compactness properties of solutions to the generalized momentum
equation. Suppose that the tensor fields I, = Hgl) + Hg) and the vector-valued functions

INRIA



Concentrations of solutions to compressible Navier-Stokes equations 5

g are defined on bounded domain © C R3 and satisfy the conditions

IO agay + N1gell 2oy < e (7)
Hgl) — II weakly in Lq(Q)g, ge — g weakly in Ll(Q)37 (8)
HH§2)||L3/2(Q) + sup  sup |SHP(z,r,R)|=¢&(R) —0 as € — 0. (9)

B(z,R)CQ0<r<R

Here the constants ¢ > 3/2 and c is independent of ¢, the integral operator & is defined by

Gl(z,r, R) = / !

—— I —-—n®n):(y)dy , 10
r<|z|<R

where n = |z — y|~}(y — ).
Suppose also that a sequence (g, u.) € K X Hé’Q(Q) satisfies the energy inequality (Eal),
relations (Bl), and the equations

div (geu: ® u.) + Vp(oe) =divil. + g. in D'(Q) . (11)

We assume that the total energy density satisfies the weak regularity condition

lii%r_l / (0c|uc? + p(o:))dz =0 for all = € Q. (12)
B(z,r)NQ

The first main result of this work is the following theorem.

Theorem 1.1 (i) If v > 1 and o > 0, then M = pu®u. Moreover, there exists k > 0 such
that for all Q' € Q, the sequences o-|u.|* and o. are bounded in L'**(QV) and LY(+5)(Q),
respectively.

(i) If y =1 and o > 0, then M = pu ® u+ S, where matriz-valued defect measure S
has the representation

/ga(z) :dS(z) = / s(z) @s(x) : p(z)o(x)dH for all ¢ € Co(Q)°. (13)
Q Qsing
Here Qging is a Borel set, in which every compact subset is countable (H', 1) rectifiable, s(x)

is the unit tangent vector to Qsing at point z, H' is the one-dimensional Hausdorff measure,
and o is a non-negative, locally bounded function.

Recall that Qg;,, is countable (H!, 1) rectifiable if there is a family of C' one-dimensional
manifolds 'y such that H!(Qsing \ UrLl'x) = 0.
Theorem [[1] leads to new results on a solvability of problem (B). Suppose that Q is
a bounded domain with 9Q € C'*4, 3 € (0,1), and consider a family of boundary-value
problems, depending on a small positive parameter ¢,
(ao+ Veo”)u+div (u® (ou—eVp)) + Vp = oF + divE(u) in €, (14a)
o+ e’ +div(ou) —cAp=fin Q, u=0, d,0=0on IN. (14b)
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6 Plotnikov € Sokolowski

Theorem 1.2 For any v > 1, a > 0, F € C?(Q)3, and non-negative f € C(Q) problem
@) has a solutionu. € C**P(Q)3, 0. € C*T5(Q), 0. > 0. There is a constant c independent
of € such that

[0l L) + el (o) + [loslue [l 1) < ¢ (15a)
20 i) + 202 uc o) < e (15b)
El/8HQ&VUEHLS/S(Q) + E1/8HQ&“&HLQ‘*”(Q) <c (15¢)
eV ol L2y + ell(1 + 02) 2| Vee i) < ¢, (15d)
In the case v =1 any solution to problem ([[4) also satisfies the inequalities
loe (1 + o)l pr () + /202 (1 + 0c)l| 1 (o) < . (15€)

This result along with Theorem [Tl implies.

Theorem 1.3 (i) If v > 1 and o > 0, then problem @) admits at least one weak solution
o€ L), ue Hy* (), satisfying @).
(it) If v = 1 and o > 0, then there are o € L*(Q) and u € Hy>(Q) which satisfy @B) and
the modified momentum balance equation

aou + div(pou®@u) + Vo + divS = oF + divY in D'(Q),
where the measure-valued tensor S meets all requirements of Theorem [l

Theorem [[Ayields the alternative: Either the concentration set is empty or its Hausdorff
dimension is equal to one. Whether concentrations are cancelled or a non-trivial singular
set really exists is a question which we cannot decide with certainty. Note only that if
approximate solutions and a flow region are also invariant under the action of some group
x — a’, then a concentration set and a measure density 0 also are invariant under the action
of the this group. The precise definition of the concentration set and the measure density
are given below. In particular, the velocity field and the pressure are invariant with respect
to the shift 3 — x3 + const, in the case of a two-dimensional flow in the plane (x1,x2).
Therefore, in this case (ing is the union of a countable set of straight lines and 6 is a
constant along each of those. From this we conclude that divS = 0 and concentrations
are cancelled in agreement with results of [I9] and [25]. The same results hold true for
axially symmetric flows. On the other hand, the simple examples show that singularities
definitely exist for solutions of the pressureless Navier-Stokes equations, which are used in
astrophysics. Finally, let us point out that the results of the present paper can be used,
in the same way as in [25], to establish the existence of solutions for the associated shape
optimization problems.

Mathematical background There are three aspects of our method which deserve brief
description.

INRIA



Concentrations of solutions to compressible Navier-Stokes equations 7

1. The first concerns the estimates for the trace of non-negative, measure-valued tensor
fields £ with div€& € Hé 1(0)*, which play the key role in the proof of Theorem [Tl

2. The second is the observation that the boundedness of the potential |x|~! % u of the
measure £ in Q implies the boundedness of the embedding H,(2) < L(Q, dpu).

3. The third is the use of kinetic formulation of the mass balance equation BH) to obtain
the convergence p(g:) — p(0)-

Now, we can explain the organization of the paper. Sections are devoted to the
proof of Theorem [Tl In section B we derive the estimates for non-negative, matrix-valued
Radon measure & satisfying the equation div (£ — II) = g, in which a tensor field I and a
vector-valued function g satisfy the assumptions of Theorem [Tl We show that the measure
density

0(x) = lim — du (16)

r—0r B(z,r)

of the Radon measure p = Tr £ and the potential

w/u—yrl(du(y)—n@nsdé’(y))

are well defined and bounded on every compact subset of ). Applying these results to the
measure d€. = (p.u. ®u.+p(o:)I)dz we conclude that the Newtonian potentials |z| =1 xp(o.)
are uniformly bounded on every compact subset of 2. In the next section we consider the
embedding of the Sobolev space into the space of functions, which are square integrable with
respect to some measure . The main result is that the embedding Hy?() — L2(K,dp),
K € Q, is continuous, if

w(t) = sup / |z —y| ™ dp(y) < oo
reK
B(z,t)NK

Moreover, the embedding is compact provided that w(t) — 0 as ¢ — 0. These results
yield the statement of Theorem [[1] for v > 1. The proof of Theorem [l in the case
~v =1 is based on the connection between mathematical theory of compressible fluids and
mathematical problems arising in geometric measure theory. The key observation is that
the tensor fields o (u. ® u. +I) converge weakly to a matrix-valued measure £ satisfying the
equation div (£ —1I) = g with I € L?(Q2)? and g € L'(©)3. The results of section Bimply the
existence of the measure density 6(z) = hm rtf Bz dTr & at each point z € ). In section

we introduce the weak star defect measure S = 5[ Quing> Where Qging = {z : 0(z) > 0}.
Since the linear form ¢ — fQ Vi : d€ can be regarded as the first variation of a one-
dimensional varifold, the rectifiability of ;4 and representation (@) follow from the classical
results of the theory of varifolds, see [4]. The remaining part of the paper is devoted to the
existence theory for boundary-value problem (B). In section [l we show that the statement

RR n° 5481



8 Plotnikov € Sokolowski

of Theorem [[3 holds true under the assumption that, for v > 1, the sequence of solutions
0. to problem () converges almost everywhere in ). To obtain this result we apply the
technique developed by Lions and Feireisel et al (cf. [19], [12], [14]). In section [ we recall
the famous results of P.L. Lions and E. Feireisel et al on compactness properties of the
viscous fluz and the basic facts from the theory of the oscillations defect measure proposed
by E. Feireisl in [T2].

The peculiarity of our approach is the systematic use of representations of weak limits p =
w — ;l_r,% ©(0:), in the form of the Stieltjes integrals [, ¢(A)dxT'(x, A), in which a monotone

distribution function I'(x,-) does not depend on ¢ and has the limits )\lirf L(z,\) =0,1.

In this setting the strong convergence of o. is equivalent to the equality I'(1 — T') = 0. In
section B Lemma Rl we show that the distribution function satisfies in the strip 2 x R the
kinetic equation

% [(Aa + Mdivu(z) — f(2))I] — div (u(z)T') = ol + %[/\M(F) +m], (17)
in which m is some non-negative Borel measure and M is non-linear integro-differential
operator defined by ([[I2). The preference of the method of such a kinetic equation is that
equation (7)) allows us to tackle problems, in which the strong convergence does not take
place; for instance, the problems with fast oscillating data. Note that, in contrast to the
theory of conservation laws (cf. [6]), kinetic formulation of problem () involves the non-
linear term. Nevertheless, we show that equation () can be renormalized, which leads to
the identity I'(1 — ') = 0 and, thus, to the strong convergence of solutions to problem ([I4]).

2 Tensor fields with integrable divergence

In this section we obtain the basic estimates for solutions of equations ([[1]). The most signif-
icant of them are the bounds for the Newtonian potential |z| = *p(o.) of the pressure which
are given by Proposition ZZ3 With further applications in mind we deduce these estimates
from general statement on non-negative tensor fields with divergence from (H5’3/ 2(Q)*.
Suppose that 3 x 3 matrix-valued finite Radon measure £ = (&, ;) is symmetric and non-
negative :

Eiﬁj = Ejﬁi , <5i,j80i7<ﬂj> >0 for all Pi, P € OO(Q), 1< 1,] < 3.

In particular, ¢ = Tr £ is a non-negative Radon measure in 2. Suppose also that there
exist a tensor field IT € L?/2(Q)? and vector-valued function g € L*(Q)? such that for every
vector-function ¢ € C§°(Q)3,

/ djpi(y)dEi ; = / Ojpi(y)I; ; (y)dy — / wi(y)gi(y)dy - (18)
Q Q

Q

INRIA



Concentrations of solutions to compressible Navier-Stokes equations 9

It is easy to see that the integral identities ([®) can be equivalently assembled as the differ-
ential equation div (€ — IT) = g. The main result of this section is the following proposition.

Proposition 2.1 Suppose that a tensor field II admits the decomposition 11 = II(V) 411
in which TV € LY(Q)?, ¢ > 3/2, and
I 372 + sup ST (z,r, R) < Ck (19)
0<r<R

for all x in a compact K € Q and with R < dist (K,09). Then there exists a constant cx
depending only on R, Ck, u(f2), ||H(1)|\Lq(g),and llgllz1 () such that

1 1
L awrin [ ) —nenidb) <on (20)
B(z.r) s<|o—y|<r
% / du(y) = (x,r) + Y(z,7r) for x € K and r € (0, R]. (21)
B(z,r)

Here ((x,7) is a function which increases in r and the remainder is bounded |Y(z,r)| <
U(r) + Ck, with

U(r) = C||H(1)HLq(Q)T273/q + sup / lglde — 0 as r— 0.
e
© B(z,r)NQ
Note that y —m®n : € >0 in B(z,R) \ {0}.
The proof of Proposition Zlis based on the following lemma.

Lemma 2.2 Under the assumptions of Proposition 21l for each x € K,

My(x,r 1
1(7“ L+ / g () —n@n:dEy) + Gz, 1) =
r<|z—y|<R
Ml(IaR) 1
niinbh St bt/ T 22
5 7 r Idy+ (22)
B(z,R)
1
" Tr Udy + SIl(z,r, R) — / ke r(y — x)dg(y),
B(x,r) B(z,R)
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10 Plotnikov € Sokolowski

where k. r(x) = min{r=!,|z|7'} — R~ and non-negative, non-increasing in r functions (o,
M;, are defined by

Colz,r) = / s~ dyMy(x, s) — / 571M675(I,S)d8,

(r,R) (r,R)
My(eos) = [ men:dew). M) = [ duty) .
B(z,s) B(z,s)

Proof. By abuse of notation we write simply (y(r), M;(r) for {o(x,r) and M;(x,r), respec-
tively. Select positive s < r and § < R — s such that ;(0B(x,s +d)) = 0 and M}(s) < oo,
7 =0,1. Choose also a sequence of smooth functions &, satisfying the conditions

hi(t)=1 for t<s, hg(t)=0 for t>s+6=0, —2/6<h) <0,
hy(t) — —1/5 as k — oo for each t € (s,s+9).

Substituting the vector-valued function ¢(y) = hi(ly — |)(y — z) into [[8) we derive the
identity

hi(ly — ) (da(y) — Tr Thdy) + / hily — 2 — ) - g(y)dy+
B(xz,s+96) B(z,s)
/ W (ly — 2y — 2l ® 1 - (dE(y) — T(y)dy) =0 .
s<|y—x|<s+d

Passing to the limit as k¥ — oo and noting that

lim A, (jly —2z))n®n=—-6"'n®n
k—o0

everywhere in the annulus s < |y — x| < s + ¢ we arrive at the equality

S

Ml(s) 5

(Mo(s +8) = Mo(s)) = [ (T 1= (v = 0)g(w)iy-
B(z,s)

% / nen: Iy + A,

B(z,s+8)\B(z,s)

where
1
|A| < 5 (ly —z] = s)n@n: dE(y)+
s<|y—zx|<s+d
(du(y) + |Tr H|dy + |y — =||g(y)|dy) — 0 as 6 — 0.

s<|y—z|<s+d

INRIA



Concentrations of solutions to compressible Navier-Stokes equations 11

Letting § — 0 we obtain that for almost every s € (0, R],
M (s) — sM{(s) = / Tr Tldy — s / n®n:IldS — / (y — ) - g(y)dy.
B(z,s) OB(xz,s) B(z,s)
Multiplying both sides by s~2 and integrating the result over the interval (r, R] we arrive at

/(M_M)ds_l / Tr Tdy—

52 s r
(r,R] B(z,r)

1
= / Tr IIdy + SI(z, 7, R) — / krr(y — x)dg(y). (23)
B(z,R) B(z,R)

It is easy to see that

/(5—2M1(s)_s—1Mg(s))ds: / 52 M, (s)ds — / s~ dM; (s)+

(r,R] (r,R) (r,R)
/S”ﬂMﬂﬁ—MMw+@@w% (24)
(r,R]

where dM; are the Stieltjes measures generated by the monotone functions M;, i = 0, 1.
Integrating by parts the Stieltjes integral in the right-hand side of 24)) gives

[ smneas- [ stane =1 [ aw-g [ aw. e

(r,R) (r,R) B(z,r) B(z,R)

On the other hand, the Fubini’s theorem yields the identity

1
[ tone - = [ ) —noniiEw). @)
(r,R) r<|lz—y|<R
Combining ([Z3)-E8) we obtain (Z2) and the lemma follows. O
We are now in a position to complete the proof of Proposition 21 Since |SII(z, 7, R)| <
fB(m T = y| 1T (y)|dy, the Holder inequality implies

1 _

5 / T TWdy < s/ 10W | pogqy |
B(z,s)
1
3 / Tr TI®|dy < C||H(2)HL3/2(Q) ;

B(z,s)
|6H(1) (‘Tu T, R)' S CR2_3/qHH(1) ”Lq(Q) )

RR n° 5481



12 Plotnikov € Sokolowski

which along with (22) yields (20). Proceeding towards the representation (ZI]) we set

o)== [ Erldul) —n e de) — Golor)-
r<|lz—y|<R
Mi(R 1
ljé ) + / K(y—z):lldy -5 / (y — ) g(y)dy,
B(z,R) B(z,R)
U(x,r) = % / Tr Idy — / K(x —vy) : Ildy+
B(z,r) B(z,r)
1 1
/ <; - m) (y — ) - g(y)dy,
B(z,r)

where K(y — x) = | — y|7}(I — n ® n). It remains to note that since |K (z)| < c|z| ™!,

oW|d 1
[v(z,r)| <c / ||y _|x|y + } / K(z — y)n<2>dy} + = / | Tr TI?) |dy+
B(z,r)

B(x,r) B(w,r)

/ l91(y)dy < TV Lagqyr?=3/7 + sup / l9l(y)dy + Cx = ¥(r) + Ck,
xE
B(z,r) B(z,r)

and the proposition follows.

We apply Proposition 2l to obtain estimates for the solutions to equations ([I)). It is easy
to see that, under the assumptions of Theorem [Tl the measures d€. = (g-u-.@u.+p(o:)I)dy
and dpu. = (gc|uc|? + 3p(o:))dy meet all requirements of Proposition 2] which implies the
following result.

Proposition 2.3 Under the assumptions of Theorem Ll for any R > 0 there exists a
constant ¢, which does not depend on ¢, such that

1 t12 49
z / dpe + lim / Mdy <e, (27)
r s—0 |z —yl

B(x,r) s<|z—y|<R

1 t2 4 9

1 / di. = / Qefuel” +2p(ec) (o, 7), (28)
r ly —

B(x,r) B(zx,r)

for all r € (0, R], where u* = u — (u-n)n. The remainder is bounded || < ¥ (r) + c&(R),
where {.(R) defined by @) and

W(r) < er?=3/7 4 sup sup / |geldy — 0 as r — 0. (29)
€N e>0
B(z,r)NQ

INRIA



Concentrations of solutions to compressible Navier-Stokes equations 13

Proof. Inequality 7) obviously follows from the assumptions of Theorem [T and Proposi-
tion 2l Fix an arbitrary s < r < R, R = dist (z, 9Q). Substituting &., u., Il;, and g. into
the identity (22), noting that (o = 0 for € > 0, replacing r by s and R by r in the resulting
equation we obtain

1 1 1
- / dpie = - / dpe + / g (eeluel? + 2p(ec))dy+

B(z,r) B(z,s) s<|z—y|<r
Az, s,r) + A%(x,s,7) + a(z, s,7), (30)

where

; 1 - 1 . .
Az, s,1) = - / Tr O dy — 3 / Tr TWdy — 619 (x, s, 1),
B(z,r) B(z,s)
a(z,s,r) = / ks rgedy

B(z,r)
It follows from (@), ), and () that
|AY(z, 5,7) + a(z,s,7)| < U(r), |A%(z,s,7)| < E(R).

Letting s — 0 in (B and noting that, by hypothesis of Theorem [[1]

1im571/ dpe =0 for z €}
B(z,s)

s—0

we obtain identity (28) and the proposition follows. O

3 Embedding theorem

The objective of this sections is to investigate the inequalities that allow the weighted
L?(Q, odr) norm of a function be estimated by the L? norm of its partial derivatives.

Let 2 C R? be a bounded domain and p be a finite non-negative Radon measure in .
Without loss of generality we can assume that the measure p is extended by 0 outside of
Q. Denote by i a compactly supported, finite Radon measure in R? such that pux(F) =
w(E N K) for every Borel set F.

V. Maz’ja established, cf. [2T], 22], that the embedding H'?(Q) — L?(, du) is continu-
ous if and only if u(F) < ¢ cap (F) for all Borel sets £ C . On the other hand, D. Adams
, cf. |1, 2], proved that the embedding is continuous if H(—A)l/Q,uKH%z(W) < cu(K) for each

compact K C R3. Note that formally we have

=) 21 sy = = [ (A e < sup Al ().
R
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14 Plotnikov € Sokolowski

Hence one can expect that the boundedness of the potential —A~!y provides the continuity
of the embedding. In this section we develop these arguments and present a simple condition,
sufficient to guarantee, that the embedding H?(Q) — L?(£2, du) is continuous and compact.

Theorem 3.1 Suppose that for some compact K € Q2 and t € (0, dist(K,00)),

sty =swp [ o=yl duly) < o
xeK
B(z,t)NK

Then there exists a constant cy depending only on Q such that for all v € Hé’2(Q),

[ 10@Pan(0) < ool s + 1010y (1 +7) )
K

The proof relies on the following lemmas. Introduce the quadratic form L : Hé 2 R
defined by L(v) = w(t)[[Vo]|Z2q) + (1 +17%)?||v]|71 ) and set

Cap,(F) :=inf{L(v) : v € C§°(Q) and v(z) >1 forall =€ E}.

Lemma 3.2 Under the assumptions of Theorem [Z1l there is a constant c¢; depending only
on Q such that g (E) < ¢1 Cap,(E) for all Borel sets E C .

Proof. Recall that for any v € Hy*(Q),

v(x) —%/ﬁ~Vv(y)dy in Q and v(z) =0 outside of Q.
Q

Choose a decreasing function n € C°°(R) such that n(s) = 0 for s < ¢/8, n(s) = 1 for
s> t/4, and 7/(s) < 16/t. Now rewrite the last identity in the form

o) = 3= [ (1=l = o)) =25 - Volwdy + 1= [ nlle ~s)Z=Ys - Tolu)ay

x
Q Q

It is easy to see that

[In@lduc) < [ g 9ol@)due) =

E ENK
c/|Vv|(:v){ / gl(y—x)d,u(y)}dm <
Q KNE
Aol [{ [ atv-nuw)} e},
Q KnE
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Concentrations of solutions to compressible Navier-Stokes equations 15

where g1 (z) = |z|72 for |x| < t/4 and g;(x) = 0 otherwise. Since the function g; * g1 (x) <
c|lz|~! vanishes for |z| > t, we have

{/gl(y—x)du(y)}2= /{/gl*gl(y—w)du(y)}du(x)ﬁ

KnNE KNE KnE
c / { / |z — yl’ldu(y)}du(z) < cw(t)u(ENK),
KNE {|lz—y|<t}NK

which yields the inequality

[ 11 @ldusc () < el Vollpaio) Vol Vi (B (33)
E

On the other hand, since the function 7(|y|)|y| =y is smooth and the norm of its gradient is
bounded by ¢(1 +¢?), we have |I5] < ¢(1 +¢?)||v[|L1(q)- Thus, we get

/Ifz(ﬂf)lduK(I) < 1+ t70) e pxc (B) < e+ 7)ol o)V ik (B). (34)
E
Combining [B3) and ([B4)) we conclude that for every Borel set E C Q and for all functions

v € Hy™(2),
[ 1Wldnsc < eV EycB). (35)
E

If v > 1 on a Borel set E, then we have

i (B) < /E [oldpure (2) < ev/E@0) /i (B,

and the lemma follows. O
The next lemma is a version of a well-known Maz’ja result, see [22].

Lemma 3.3 There exists a positive constant c, which depends only on 1 and does not
depend on t, such that the inequality

/Capg(f\’t)dlﬁ2 < cw(t)|Volliz(q)de + (1 + 72 (14 ol ey vl T2)  (36)
0
holds for every function v € C§°(S2). Here Ny = {x € Q: |v(z)| > t}.

Proof. The proof imitates the Maz’ja proof. We start with the observation that since
Cap,(Vy) decreases in t,

oo j=o0
/ Cap (N2 <3 S 2%Cap,(Ny). (37)
0

j=—o00
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16 Plotnikov € Sokolowski

Now choose a non-decreasing function n € C*°(R) such that 7(s) =0 for s < 0, n(s) = 1 for
s > Land 7/ (s) < 2forall s. Set v; = n(2"~7|v(x)|—1). Note that v; = 0 when |v(z)| < 2/~
and vj(x) = 1 when |v(z)| > 27. Using v; as a test function we get the inequality

2
Cap,(Nyi) < w(t) / |ij|2dx+c(1+t_3)2(/ |vj|dx) : (38)
Nyj—1\Nyj Nyj—1

Obviously |Vv;| < 2277|Vu|. Moreover, if j > 0 and € Na;—1, then we have |v;(z)] <
21=J|v(x)|. Tt follows from this and (B8) that

Cap,(Ny) < 24 Hw(t) / |Vol?dz + c(1+t73)? for j <0,

Nyj—1\Ny;
. X 2
Cap(Noi) < 24 % cw(t) / |Vol? + 22729 ¢(1 4 t_3)2( / |v|dx)
Nyj—1\Ny; Nyj—1

for 7>0.

Substituting these inequalities into 1) we obtain

Cap,(Ny)dt? < cw(t) | |Vol?de + c(1 +173)? |v|dx 2. (39)
0/ ap, / + + Z(/ )

Q 20 N

Obviously we have

2 .
( / |v|dz) < meas (N2j71)/|v|2d:c, and meas (Ngj-1) §21*7/|v|dz,
Q Q

sz,l

which implies

2 .
(/ |v|dw> < 277 ol 0l o)
N,j—1

Combining this inequality with ([B3) gives B8) and the lemma follows. O

We are now in a position to complete the proof of Theorem Bl It suffices to prove
inequality 1) for functions v € C§°(2) normalized by the condition |[v||z2(q) = 1. Since
by Lemma B2 i (E) < c¢Cap,(F) for every compact K € 2, we have

/|v|2d,u(cc) = /,uK(Nt)dt2 < c/CapL(Nt)dt2.
K 0 0

Estimating the right side of this inequality, by an application of @f) from Lemma and
noting that ||v][z2(q) = 1, [[v||L10) < /meas(Q) < ¢ we obtain (BI), which completes the
proof.

INRIA



Concentrations of solutions to compressible Navier-Stokes equations 17

4 Proof of Theorem [Tl for v > 1

We start with the observation that, by Proposition EZ3, for any compact Q' € €,

sup /|:v —yl pe(y)dy < C(Q).
e’

Q
>From this, in view of the identity p. = oY, and by an application of Theorem Bl we obtain
the estimate

[0 [uc?|| L1y < e(€)

which along with the energy estimate (#al) and the embedding H,*(Q) — L%(Q) gives

(I+r)/~ (v—r=1)/~
/(gs|u5|2)1+“dz < (/ gz|u5|2dz) (/ |u5|6dz) < o).
Q/

Q Q

Here k = 2(v — 1)/(2 4 ). On the other hand, equation (Il obviously yields, for r < 3/2,
the estimate

lo2llzry < C(Q/)”Q5|us|2”L7‘(Q’) + 1| 2y + lgll iy + o2l oy -

>From this, @al), and the assumptions of the theorem we conclude that [0 | p1+~) < ¢
with ¢ independent of ¢ for each £ < min{3/2,2(y —1)/(2+ v)}. It remains to note that
since g. — o weakly in L7(Q2), u. — u a.e. in Q, and the sequence o.|u,|? is bounded in
L1T#(Q), the sequence p.u. ® u. converges to ou ® u weakly in L1T%(Q)9.

5 Proof of Theorem [Tl for v =1

The proof of Theorem [[LTlfor v = 1 is more delicate. We split the proof into two steps. First,
we define the concentration set and show that either it is empty or its Hausdorff dimension
is equal to 1.

Concentration set Let us consider the sequences (o, u.) and Il., g. satisfying the hy-
pothesis of Theorem [Tl Recall that 9. — o weakly in L'({2), and g.u. ;u. ; are uniformly
bounded in L(f2). After passing to a subsequence we can assume that there exists a 3 x 3
matrix-valued Radon measure £ such that o.u. ® u. + o.I — £ star weakly in the space
of Radon measures on 2. Obviously the measure £ and its trace p meet all requirements
of Proposition Bl with TI(V) = I € L9(Q), I® = 0, g = oF, and Cx=0. It follows
from Proposition B that r—u(B(z,r)) = ((z,7) + ¥ (x,7), where ((z,r) increases in r
and |[¢(z,r)| < ¥U(r) — 0 as r — 0. Hence the Borel function 6(x) := }13% r~1u(B(x, 1))
is well-defined and bounded on every compact subset of 2. Split € into two disjoint parts
Qreg and Qging given by

Qreg ={r: 2€Q, (x) =0}, Qing ={x: €, 0(x) > 0}. (40)
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18 Plotnikov € Sokolowski

The following theorem shows that (2,4 is a concentration set for the sequence p.u. @u..

Theorem 5.1 Under the assumptions of Theorem [, for every matriz-valued function
¢ € Co(2)° we have

/cp:dé’ = 8lilv%/g;._-(uf._-éi)ug—i—l) D pdy = (41)
Q Q

/ olu®@u+I): edy+ / @ dE .
Qreg Qsing

We divide the proof into a sequence of lemmas. In the sequel the notation K; =
{z| dist(z, K) < 0} stands for the compact d-vicinity of a compact K & Q.

Lemma 5.2 If a compact K C .4, then for any n > 0 there exist positive 6(n) and c(n)
such that the inequality

/ 0clvf? < ol + ol (42)
Ks

holds for all v € H2(Y) and for any 6 < §(n). Here the constants 5(n), c(n) depend on K,
1 and do not depend on ¢ and v.

Proof. First we show that there exist positive §(n) and ¢(n) such that
sup  sup / ly — 2| o-(y)dy < n. (43)
T€EKs5(,) €

ly—a|<t(n)

If the assertion is false, then there are k£ > 0 and sequences z. € (2, t. > 0, such that

lir% dist (2, K) = lir%tE =0 and / |z —y| Lo (y)dy > k.
£— £—

Iy_w|<t5

Set due(x) = 0 (|uc|? + 3)dz, R = 27 1dist (K, 02), and recall that, by Proposition EZ3,

/ ly — 2| e (y)dy < ti / dpie(y) — Ve (e, te), where | (z,t)] < W(t) + E(R).

€
B(z,te) B(xe,te)

Since, by @) and @), U(t.) + & (R) — 0 for € N\, 0, the inequality jc(B(ze,te) > tek/2
holds for all sufficiently small . After passing to a subsequence we can assume that x.
converge to some x € K as € — 0, and hence

1

oS / dpe(y) > k/4 > 0 for all sufficiently small «. (44)
€

B(x,2t.)
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Concentrations of solutions to compressible Navier-Stokes equations 19

On the other hand, Proposition 23 implies the representation u.(B(z,t)) = t((x,t) +
te(z,t), in which the function (. is non-decreasing in ¢. From this and #4]) we conclude
that for all ¢t > 2t.,

P / dpie(y) < ~ / dpie(y) + W(E) + W(21) + 2. (R).

2t t
B(z,2t.) B(z,t)

Note that u.(B(z,t)) — pu(B(z,t)) for almost every positive ¢t. Letting ¢ — 0 in the last
inequality and noting that £. — 0 by Proposition 23, we conclude that k < 4t~ (B(x,t))+
4¥(t) + 4T (2t) for almost every positive ¢. Therefore, 6(x) > k/4 which contradicts to the
inclusion = € €,.4, and the assertion follows. Now inequality [@3) implies that the measures
dpe = o-dx satisfy the hypothesis of Theorem Bl with K = Ks(,)), t = t(n), and w(t) = 7.
Applying this theorem we obtain ([@2) which completes the proof. O

Lemma 5.3 For any compact K € Q, p € C(Q), and f,g € Hé’Q(Q),

lim [ (0 — 0)fgdx = 0.

e—0
K

Proof. Fix § > 0 and choose f,g € C5°(f2) such that

If = Fllarz@) + lg — gllmz@) < 6.
Since the Newtonian potentials of ¢ and o, are uniformly bounded on K, Theorem Bl yields

the inequality

/(gs + o)|ullv|dz < c||v]| g2y l|ullgre) for all u,v e Hy?(9Q).
K

>From this we conclude that

1imsup’/<p -0 fgd:c’ < hmsup’/ — 0)fgdz|+
K

e—0

(i) lim sup / (0= + @)(gllf — F1 + | Fllg — gl)dz <

e—0

K
cS(|[fllarz) + llgllarz@) — 0 as 6 — 0,

which proves the lemma. O

Lemma 5.4 Under the assumptions of Theorem [l for any n > 0, a compact K € 2, and
p € C(Q), there exists 6(n) > 0 such that

hmsup’/gpgE (Jucl? = Jul®)dz| <n for all § < 5(n). (45)
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20 Plotnikov € Sokolowski

Proof. Note that for every A > 0,

1
| [ ontul uas] < o) (2= [ ooue—uPite+ i [ o i) <
KA KA

A

1
c/n + c%K/ 0c|ue — u|2dz, (46)
A

where the constant ¢ depends on ¢ and K. Set A = §(n), where §(n) is defined in Lemma
Inequality @) now implies

/ o=|uc —u® < plu. - U||§{1,2(Q) + c(n)|lus — u||%2(9).
K

Substituting this estimate into (#H)) we finally obtain

. . C
tmswp| [ o (el ~ [uf)iz Sc\/ﬁ+hms3p%lu5—UIli2<m—c\/ﬁ,
E—

e—0
50
which completes the proof. O
Lemma 5.5 The equality
[ = [ el + 3)0dy (47)
K K

holds for all compacts K C Qe and all functions ¢ € Cp(£2).

Proof. It suffices to prove the lemma for ¢ > 0. Choose an arbitrary non-negative
v € Cp(2). In this case Lemma B4 implies the inequalities

[ et +3joay —n < timigt [ olluf? +3)0.dy < (48)
K Ky
1ims$1p / o(|ucl* + 3)o-dy < / o(|lul* + 3)ody +1n .
£—
Ks(n) Ks(n)

On the other hand, since g.(|u.|? + 3) converges star weakly to x in the space of the Radon
measures on ) and K, is a compact, we have

/ wdp < lign_)iglf / o(Jus* + 3)o.dy <

int(K(j(n)) int(K5(n))
lim sup / o(luc]® + 3)o-dy < / wdp .
E—
K Ks(n)
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>From this and (@R) we conclude that
pdp < / ¢(lu® +3)edy +n and / pdp > / p([u® +3)edy —n.  (49)
int (Ks(y)) K s K
Since Ny>oint(Ks(,;)) = Ny>0Ks(y) = K, we have
lim / pdp = lim / pdu = /(pdu.
n—0 n—0
int(Ks(y)) Ks(n) K
Passing to the limit in @) as 7 — 0 we obtain 1), which completes the proof. O
Lemma 5.6 The inequality
/(gu®u+gI):<p®<pdx§/cp®<p:d€ (50)
K K

holds for every compact set K € Q and all vector-valued functions ¢ € Cy(2)3.

Proof. Recall that the sequence u. converges to u almost everywhere in 2. By the
Egoroft’s theorem, there exists a sequence of measurable sets Ay C K such that u. — u
uniformly on each Aj and meas (K \ Ay) — 0 as k — co. Lemma B3 and weak L!
convergence of g, to ¢ imply the relations

e—0
K Ak

lim [ (g: —o)u®u: p® pdy =0, lirno/gs(ua(@uE —u®u):e®edy =0,
E—
which along with the inequality u. ® u. : ¢ ® ¢ > 0 yields

limsup/(g€u€®u€+ggl) : cp®<pdy—/(gu®u+gl) S @ pdy =
e—0
K K

lim sup / 0c(Uc®@u. —u®u): e pdy > — / ouRu:pedy (51)

e—0

Since g|u|? belongs to L!(2), the last term tends to 0 as k — oo, which implies
1imsup/(gsus ®u. + 0.I) 1 p® pdy — /(gu®U+ ol) : o ® pdy = 0 (52)
e—0
K K

Since the non-negative L!-functions (p.u. ® u. + o0.I) : ¢ ® ¢ converge to ¢ ® ¢ : £ star
weakly in the space of Radon measures on 2, we have

limsup/(g€u8®ua+3gal):go@godyg /cp@cp:d&
e—0
K
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which along with (B2) gives (&), and the lemma, follows. O
We are now in a position to complete the proof of Theorem Bl Choose an arbitrary
compact K C ¢4, a non-negative function h € Cy(2), and a vector £ € R3. Set p(z) =

Vh(z)¢. Applying Lemma BB we get the inequality

B§-§E/<p®cp:d5—/(gu®u+gl):<p®<pdx20,
K K

where the symmetric matrix B is given by

Bz/hdé’—/h(gu@u—&-gI)dm.
K K

By Lemma B8 TrB = 0, which implies B = 0. Hence the equality

/h(guiuj + Q(;iyj)dCC = /hdgz,g (53)

K K

holds for all h € Cy(£2). Next, choose an increasing sequence {K,, }m>1 of compact subsets
of Q such that p1(Qeg \ UK,,) = meas (Qreg \ UKy, ) = 0. From (B3) we conclude that for
every matrix-valued function ¢ € Co(Q2)?,

/go:dé':lim p:d€ =

Qreg K

lim v: (ou®@u+ pl)dz = /cp:(gu®u+gI)dx,

m—00

Km Qreg

and the theorem follows.

Rectifiability of concentration set In this paragraph we show that the set g4 is
countably H! rectifiable, and investigate in more details the structure of the measure £.
Recall some basic facts from geometric measure theory which will be used throughout this
section, cf. |11, @].

Let 1 be a non-negative Radon measure in €2 and a € Q. Then VarTan (u, a) is a set of
those Radon measures v on R3 for which there is a sequence {¢;};>1 of positive real numbers
such that lim ¢; = 0 and

11— 00

/godv = Zlirgo gt / ¢ (i (z—a)) du (54)

R3 Q

INRIA



Concentrations of solutions to compressible Navier-Stokes equations 23

If there exists 0(a) = lin%) r~u(B(a,r)) < oo, then VarTan (y,a) is non-empty, and v(B(0,r)) =

ru(B(0,1)) = rf(a) for every member v of VarTan (i, a). The tangential cone to a measure
1 at the point a is the set

Tan (p,a) = ﬂ{Tan (A,a) : ACQ and }11% rtu((Q\ A) N B(a,r)) =0},
A

where for a subset A C 2 the notation Tan (A, a) stands for the cone

Tan (A,a) ={v€R*:Ve >03z € A, r € (0,R)
such that |z —a| <e and |r(z —a)—v| <e}.

If 0 < 6(a) < oo and VarTan (u,a) consists of the only element v = 27'0(a)H! |7 con-
centrated on a one-dimensional subspace 7 C R?, then Tan (,a) = 7. The following
rectifiability result, cf. [4] section 2.8, is a straightforward consequence of the definitions.

Proposition 5.7 Suppose that 1 is a non-negative Radon measure in 0 with 6(x) € R
for each x € Q, and Tan (u,z) is a one-dimensional subspace of R for u-almost every
T € Qging = {2 : 0 < 0(x) < co}. Then every compact subset of Qging is (H',1)-rectifiable
and

/ f(z)du(x / f(z dH (x) for all f € Co(Q).
The main result of this section is the following theorem.
Theorem 5.8 Under the assumptions of Theorem [,
(i) every compact subset of Qsing is (H', 1)~ rectifiable;
(ii) for u-almost every x € Qging there is s(x) € S? such that Tan (u,r) = span {s(z)};
(#ii) the measure & has the representation

/ pla) - dE(w) = / o(z) : 8(x) © 8(2)0(x)dH () (55)
Qsing Qsing
for all ¢ € Cp(2)°.

Proof. We start with the observation that the components of measure £ are absolutely
continuous with respect to p which implies the representation

/ Y(x)dE(x / (z du(z)  for all ¥ € Co(Q)°. (56)

szng szng

Here the matrix-valued function M € L'(Q4,1)° is non-negative and TrM(z) = 1 p-
almost everywhere in {2;,,. Note also that

Jim / M (a) — M()|du(z) = lim M (a) = M(2)|du(z) =0 (57)

Y W (Bla )
B(a,r) B(a,r)
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for p-almost every a € {lgng. Next, represent the concentration set in the form Qg;pg =
Ups1 Q% Q% = {x : 1/k < 6(x) < k}. The estimates from the geometric measure theory
imply that 1/(2k)H(A) < u(A) < kH'(A) for any Borel set A C Q. Hence, u(A) = 0 for
every set A of zero H'-measure, and the measure u is absolutely continuous with respect
to the one-dimensional Hausdorff measure. Next recall, cf. [26], that for any function
f € L*(Q), there is a set E of zero H!'-measure such that

1
lim — / |f(z)|dx =0
B(a,r)
everywhere in 2 possibly except of the set E. Since p is absolutely continuous with respect

to the Hausdorff /', this relation holds true for p-almost every a € Q. In particular, the
equalities

1 1
lim — / olu*dx = lim ~ / odr = (58)
r—07r r—07r
B(a,r) B(a,r)
.1 !
lim — / ||dx = lim — / lgldx =0
r—07r r—0 7r
B(a,r) B(a,r)

holds true for p-almost all a € Q. Passing to the limit in equations ([ and using the
equalities (), (BB) we conclude that for every p € C3(Q)?,

/(Vg? cou®u+divpp) dr + / Ve : M(z)du(x) = (59)
Q Qsing

/V¢:Hdz—/gp~gdx.

Q Q

Now fix an arbitrary a € g, satisfying (&0), B8) and a vector-valued function ¢ €
C3(R3)3. Substituting (e ~!(z — a)) in (B we arrive at

1 / v (“’ = “)  M(a)dp(z) = (60)

3

sing

! / Ve (x_a>:(M(a)—M(I))d#(x)+

9 9
Qsing

l/vsp (x_a) (I — pu®u)de—
€ €
Q

1/divw(z_a)gdm—l/ga(x_a)~gda:.
€ € € €
Q Q
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Note that, by &7) and ([B8), the right side of this equality tends to 0 as € — 0. Choose an
element v € VarTan (u,a) and the sequence ¢; satisfying (B4]). Substituting ¢ = ¢; into (E0)
and passing to the limit we obtain

/V(p(:c) : M(a)dv(z) =0 for all ¢ € Cp(R?)3. (61)

R3

It follows from this that the matrix-valued measure M (a)v satisfies all assumptions of Lemma
B2 with IT = 0, g = 0, and Q = R3. Replacing £ by M (a)v in identity ([22) and noting that
Tr M(a) = 1 we obtain

1 1 1
- / dv + / ﬂ(l—n@)n:M(a))dv—i—Co(Om):}—% / dv (62)
r Y

B(0,r) r<|y|<R B(0,R)

where ¢y > 0 and n = y/|y|. Since r1v(B(0,r)) = R~'v(B(0, R)), we conclude from this
that

1
m(l —n®n: M(a))dv=0 forall r R.

r<ly|<R

Therefore, |y| —y ® y : M(a) = 0 for v-almost every y € R3. It is possible if and only if
there exists s(a) € S? such that M (a) = s(a) ®s(a) and v = 27(a)H* |span {s(a)}. Hence
Tan (p,a) = span {s(a)} for p-almost every a € Qgny. From this we conclude that the
measure p satisfies the hypothesis of Proposition B7l Applying this proposition we obtain
(BA) which completes the proof of Theorem B8 O

We return to the proof of Theorem [Tl It remains to note that the statement of Theorem
[CT for v = 1 is an obvious consequence of Theorems (.1 and BR

6 Proof of Theorems and

Proof of Theorem In order to avoid repetitions we give only the proof for v > 1.
Fix an arbitrary ¢ > 0 and consider the family of boundary-value problems, depending on
parameter ¢ € [0, 1],

(a0 + veo")u + div (u® (tou — Vo)) + tVp(o) = toF + divE(u) in Q, (63a)
o+ Vep® +tdiv (ou) —eAp=1tf in Q, u=0, d,0=0 on N (63b)

We begin with proving a priori estimates for solution to problem (B3)). Multiplying the both
sides of equations (63al) and (63H) by %u and 0771, respectively, integrating over (2, and
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combining the obtained results we arrive at the identity

1 2
WT /(|Vu|2 + (1 +v)|divual® + %(a + \/5@4))dac+
Q

/ (ag” +vEe" 7 +2(y = e Vol d =
Q

y—1 -1 _ W7
/(t m oFu+ f(o 5 ))dgc7
Q

which holds true for every smooth solution (o, u), with a positive density g, to problem (B3]).
Noting that for v > -2,

/(|Vu|2 + (1 4 v)|div u|2)dx > c(v) / |Vu|?dz, where c(v) >0,
Q Q
we obtain the estimates
lollz ) + lull 2@ + llolul[Li@) < ¢ (64)
210" pa) + €0 P i) +ell(1+0)* 7 Vol i) < ¢ (65)
with a constant ¢ independent of ¢ and . Next, multiplying the both sides of (@3H) by

VEo™ 1, 1 < m < 4, and integrating the result over Q we obtain

/(53/2(m —1)o™ ?|Vo|* + e 2™ + EQ4+m)d£E =
Q

—1
\/E/(gmflf—tm gmdivu)dz .
m
Q
Noting that
. _ o\ 1/2 . 1/2
‘/Qm fdw’Jr’/@mdlvudx’ Sq(/g ’") S@(/@ +m) + ¢,
Q Q Q Q

we arrive at the inequality

1/2
/(53/2(m —1)0™?|Vol? + &' 2ag™ + 5@4+m)dz < 04\/5(/ 94“”) + s,
Q Q
which with m = 2 and m = 4 gives the estimates
e |Voll L2y + el s < e (66)
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Next note that (@)-(@H) imply the estimates

oVl 1s/s(q) < IVullz2(oylloll sy < ce™V/5, (67a)
[al[Volll porzoy < llullzo)IVoll L2y < e/, (67b)
loul| /7y < lallpoqoyllell sy < ce™ /5, (67¢)
||95|HL8/5(Q) < ||Q||is(ﬂ) < e 08 (67d)

It is easy to see that a solution to (B3al) has the representation ¢ = g1 + g2 in which g;
satisfy the equations

(A — a)p1 = tdiv (ou), (¢A — )0y = VEQ®,
and the homogeneous Neumann boundary conditions. From this, in view of the embeddings
HY27(Q) — C(Q), H>¥/5(Q) — C(Q), and inequalities (67d), @7d), we conclude that
0 < ce, where a constant c. does not depend on ¢. Since g is bounded from above, equation
(632l can be rewritten in the form

Au+ (1+v)Vdivu=divGe + Gy in Q,

with the terms in the right side satisfying the inequalities |G;| < c.(1 + |[u]?), i = 1,2.
Embedding H'3(Q) — L"(Q), r > 1, inequality (64) and a priori estimates for elliptic
equations yield |[u||zr) < c.(r). Arguing as before we conclude that |[ul| 1.~y < c(r) for
every r > 1 and hence |u| < ¢.. Therefore, ¢ and |u| are bounded by a constant independent
of t. From this and the results from the theory of weakly nonlinear elliptic equations, see
Theorem 13.1 in [3], we conclude that the inequality

(0, 0)[lc2r50) < C* (e, 2, |(f, F)llcsay, @, v) (68)

holds for every solution (p,u) € C'*7(€), o > 0, to problem (B3).

To tackle the existence question we need to reformulate problem (B3) as a nonlinear
operator equation in the form (p,u) = ®;(p,u). Introduce the mapping ®; : (g,1) — (o, u)
defined as a solution to the boundary-value problem

divE(u) = (ap + 0" ) + div ((tot — Vo) ® @) + tVp(p) — toF, (69a)
Ao —ap = epto+tdiv(gh) — f in Q, u=0, 9,0=0 on Q. (69Db)

Obviously, the mapping (9,1,t) — (o,u) denoted by ® : C1T#(Q)* x [0,1] — C?TP(Q)*
is continuous. The remaining part of the proof relies on the following lemma, but first we
recall an abstract result useful for our purposes.

The proof of LemmalE2is based on the following result from the theory of positive operators,
cf. [18], ch.7.3.10. Let E;, FE> be Banach spaces with the cones K; C E;, i = 1,2. A bounded
operator A : Fy — FEj is said to be positive if AK,; C Kj.

RR n° 5481



28 Plotnikov € Sokolowski

Proposition 6.1 Suppose that bounded operators By, B : Fq — FEs satisfy the following
conditions:

1. The operator By has the bounded, positive inverse.
2. The operator Bfl(Bl — Bs) is compact.
3. There is an element o9 € Int Ky and a positive constant » such that Baoy > »xB10o.
4. (B1 — B2)u € Kq for all u € Ky, in other words, By > Bs.
Then the operator By has a positive inverse.
The following lemma is an application of the abstract result.

Lemma 6.2 Let Q C R® be a bounded domain with the boundary 0Q € C?T8, vector field
u € CH8(Q)3 vanishes on 99, and a function b € CP(Q) is strictly positive in the closure
clQ. Then for any non-negative f € C?(Q) the problem

—eApo+div(gu) +bo=f in Q, 9,0=0 on 09, (70)
has a unique strictly positive solution o € C?T5(Q)

Proof. Now denote by E; the closed subspace of C?*5(f)) which consists of all functions
satisfying the homogenous boundary Neumann condition on 052, and set Ey = C?(f2). Let
K; C E;, i = 1,2, be the cones of non-negative functions. Let L : F; — Fs be a linear
operator defined by Lo = —cAp + div (ou). Hence our task is to prove that there exists
the bounded positive operator (L + b)~' : FEy — FE;. We start with proving that the
equation Log = 0 has a strictly positive solution gy € E;. It follows from the general theory
of boundary-value problems for the second order elliptic differential equations [16] that for
fixed k£ > sup(|divu(x)| + b(z)) and all f € E,, the Neumann problem
Q

(L+klo=feEy, o€k (71)

has the unique non-negative solution. By the maximum principle o is non-negative if f is
non-negative. Hence the compact positive operator is defined by A = (L + k)™ : Ey — Fs.
We can apply the maximum principle (JI6], Theorem 9.6) for [Il), to obtain that ¢ does
not attain the non-positive minimum in Q. Hence a solution to problem (1)) is strictly
positive inside Q for all f € Ky \ {0}. Moreover, the solution is strictly positive in the
closure of Q. In order to prove the last statement suppose, on the contrary to our claim,
that Af(zo) = 0 at some point xo € J. Observe that the function 9 = Af € F; is positive
inside Q and satisfies the inequality (L + k)0 > 0 in Q. Furthermore, p takes the zero value
for the minimum at zy. By Lemma 3.4 in [16] the interior normal derivative of ¢ at point
xg is strictly positive, which is in contradiction with the homogeneous Neumann boundary
condition.
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Set o1 = Al, where 1 is the characteristic function of 2. Since Af continuous and
strictly positive, for every f € Ko \ {0} there exist positive constants «, 5 depending on f
such that ap; < Af < [Bp;. Hence A : Ey — FE3 is a compact p;-positive operator, [17].
Classical results from theory of positive operators, see Theorems 2.8, 2.10 and 2.13 from [17]
for example, imply that A has a positive simple eigenvalue A\g such that the corresponding
eigenfunction is strictly positive and Ag > |A| for any eigenvalue X\ # X.

Our next task is to show that \g = (k)~!. We begin with observation that the operator
equation (k)~'p — Ap = 1 is equivalent to the boundary-value problem Lo = k, o € Fj,
which has no solutions. Therefore, by the Fredholm alternative, k! is an eigenvalue of the
operator A. Let us prove that k£~ is the maximal eigenvalue. If this assertion is false, then
there exists the positive eigenvalue \g > k~!. By the definition of A, the eigenfunction
0o € E1 satisfying the equation A\gog — Agg = 0 is a solution to the boundary-value problem
(L+71)o0 =0, go € E1, where 7 = k— Ay 1> 0. Let us consider the parabolic boundary-value
problem

ov

E—EA’U—FCHV(UU):O in Ox(0,00), Vv-n=0 on 99 x (0,00) ,

v(x,0) = vo(z) in Q.

For any vy € C%(€2) this problem has the unique smooth solution, which is positive if vg is
non-negative. Introduce the operator V (t) : vo(-) — v(-,¢). Obviously V(¢) preserves the
order and the charge i.e., V(t)vy > V (t)v for any vy > vo and [, V(t)vo(z)de = [, voda.
Since for every u,v € C?(Q) the function max{u,v} € C?(Q2) we can apply the Crandall-
Tartar Theorem [7] which implies that V'(¢) is a non-expansive operator in the metric of
L'(Q). In particular, we have ||V (t)oollz1() = lloollz:(n)- On the other hand, equation
(L + 7)po = 0 implies that V(t)gg = €7tpo. Hence 7 = 0 which gives \g = k~! and the
assertion follows. Recall that gy satisfies the equation Log = 0.

Therefore, the operators By = (L + k), By = (L + b) : E2 — FE; are continuous and the
inverse (L + k)~' = A : By — FEj is positive. Moreover, L +k > L+ b and (L + b)oy =
boo > »koo = »(L + k)po for some positive s2. Obviously oo > 0 is the interior point of the
cones K; and Ks. From this we conclude that the operator L + b has the bounded positive
inverse, which completes the proof. O

Let us turn back to the proof of Theorem Denote by J a subset of C1T7(Q)4
defined by the inequalities {(0,u) : 0 > 0, [|(0,u)||c1+8(q) < C*}. Tt follows from Lemma
that every fixed point (o, u) of ®; satisfies inequality (). Moreover, o € J is strictly
positive. Hence there are no fixed points of ®; at 7 for all ¢ € [0,1]. On the other hand,
the mapping ®( has the unique fixed point inside 7. By the Leray-Schauder fixed point
Theorem, problem (B3) has a solution (p,u) € int J. It remains to note that estimates ([[H)
follows from (64)-(@Zd) and the proof of Theorem [ is completed.

Proof of Theorem The proof is based on the following lemmas.
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Lemma 6.3 Let (u., 0-) be a sequence of solutions to problem [[A). Then there is a subse-
quence, still denoted by (u, 0:), such that

u. — u weakly in H&’Q(Q)7 0. — 0 weakly in L7(Q), o-u. — ou weakly in L*(Q), (72)
Vello2llLr ) + Velloluell i) + ell[ue| Ve a2i) — 0 as & — 0. (73)

Proof. The first two convergences in ([{2) obviously follows from Theorem In order to
prove the third convergence note that by the Egoroff’s theorem for every n > 0 there exists
E C Q such that u. — u uniformly on E, and meas(Q \ E) < n which yields

limsup‘/h(gguE - gu)dm‘ < 2||Al| Lo (a) limsup/g€|u€|dac <
e—0
Q E

e—0
1/2 1/2 1/2
climsup(/ gsd:c) (/ gs|u5|2dz) < climsup(/ gsdz) —0asn—0.
e—0 e—0
E E E

Since, by ([[5h)and ([[5d), the sequence /0% In(1 + g.) is bounded in L'(Q), we have

limsup /e ggd:c < limsup+/e g?dm <
—0 —0
c Q : 0e >N

In(1+4 N)~*limsup vz 0°In(1+ g.)dx < cln(14+ N)™' — 0as N — oo,
e—0
0:>N

which implies the convergence of the first term in ([Z3)). Noting that
Vello2uell i) < NVello2ll i) + N7 el 2lue i) < Nvello2llLi@) + N7+
we obtain limsup /2| 0u. || 11(o) < ¢N~!, which gives the convergence of the second term
in [@). Tt resr;aoins to note that, by ([@&d),
ellluc|VoellLs2 ) < llVeelr2)llucll Lo < ce'/t

and the lemma follows. O

Lemma 6.4 Ify =1, then p.u.®@u. — pu®u+S in D'(Q), where S meets all requirements
of Theorem L. If v > 1 then for any Q' € Q,

0c — 0 weakly in LYIT(Q),  pu. @u. — ou®u weakly in LI (Q).

Proof. We start with he observation that equation ([Zal) can be written in the form (1))
with the terms in the right side defined by

Hgl) = X(u.), H‘(f) =—-eVo.®u., g = 0F — pcuc — \/EQEUE' (74)
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Hence the lemma will be proved if we show that the functions satisfy all assumptions of
Theorem [CT Since the sequence T is bounded in L2(0)°, it follows from (Z2) and (Z3)

that it suffices to show that II*® satisfy @). To this end note that formulae ([I) and ()
yield the representation

R
dt
6H§2) (I,’I’, R) = /7 / 5i@sus,idsa

T lz—y|=t

where §; = 0;—n;n;0) denotes the tangential derivatives on the sphere {y € R? : |z—y| = t}
for a fixed x. Integrating by parts over this sphere we obtain the identity

e (z,r,R) / di / 0:-0;u. ;dS — / / o.u. - ndS,

r |z—y|=t T |z—y|=t

which along with ([2d) implies the estimate

SUE) (2,7, R)| < &

B(z,R)

(|stus| + |qu25|)dy <
ly| ly|

celloeVue|[Lsss () + cellocute| /e (q) < cc™/8 -0 as e — 0.

Hence H and g. satisfy all conditions of Theorem [[T] which completes the proof. O

It follows from Lemma B4 that for every Q' € 2 the sequence p. converges weakly in
LYF5(Q) to some function p € L*(Q) N L, 77(Q). The following theorem plays an important
role in the proof of Theorem [[3

Theorem 6.5 Let v > 1. Then D = p(o).

Proof. Sections [l B are devoted to the proof. O
It remains to note that the the statement of Theorem is an obvious consequence of
Lemmas 63, 64 and Theorem

7 Young measures, viscosity flux, and oscillations

Young measures and distribution functions In this paragraph we give the represen-
tations of weak limits of approximate solutions via the Young measures. Let us consider
the sequence of solutions to problem ([d). It follows from Lemma B4 that there exists a
subsequence, still denoted by (o.,u.), which enjoys the following property. Let positive ~y
and ~ be given. For any continuous function G : Q2 x Ry +— R satisfying the conditions

(14 M)A+ sup |Gz, A\)] — 0 as |A| — oo (75)

€N
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and ' € , the sequence G(z, o) converges weakly in L*(€’) to some function G € L}, ().
Moreover, for any continuous bounded function ¢ : R +— R, the functions ¢(g.)divu,.
converge weakly in L?({2) to some function ¢div u. The Ball’s version [5] of the fundamental

theorem on Young measures implies the following result.

Lemma 7.1 There exists a weakly measurable family of probability measures o, € Cy(R)*
with  spto, C [0,00) such that the equality

G- / G, Ao (N) (76)

[0,00)

holds for any function G satisfying condition ([[3). Moreover, the function

T / N AR do (N)
[0,00)
belongs to L}, .(Q). If the function G satisfy more restrictive condition (1+|\|) =7 sup |G(x, \)| —
€N

0 for |\| — oo, then G(z,0.) — G weakly in L' (). In particular, the functions p € L'(£)
and p € LV(2) are given by

p(r) = / Ndoy(N), o(z) = / Adoz(N). (77)

[0,00) [0,00)

By technical reasons it is convenient to replace the measure o, with its distribution
function I'(z, \) := 04 (—o00, A] such that the measure o, is the Stieltjes measure d\I'(z, A).
The distribution function is measurable with respect to (z,A) € Q x R,, monotone and
continuous from the right in A,

I(z,A\)=0 for A<0, T'(z,A\) "1 as A~ oo. (78)
Recalling that o, is the Stieltjes measure associated with T'(z, -) we get the following formulae
pa) =7 [ XTI o) = [ (=T (79)

[0,00) [0,00)

Remark 7.2 Relations ([[) imply that equality T'(1 —T) = 0 a.e. in Q x Ry which yields
p=p(o)-

In the rest of this paragraph we consider the family of Radon measures m. on 2 x R
defined by

/ D(x, N)dme(x, \) ::s/fl)(:c, 0 (2))|Voe (z)|?da (80)

QxR Q
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for each ® € Cp(2 x Ry). It follows from Theorem that there exist a subsequence, still
denoted by {o:}, and a Radon measure m on Q x R such that

/ O(z, N)dme(z,\) — / O(z, \)dm(z, ) for all ® € Cy(Q2 x Ry). (81)
QXR)\ QXR)\

Obviously m(Q x (—o0,0)) = 0. Moreover, estimates ([IEd)) from Theorem [ yield

/ (1+ )~ Ldm(@, ) < oo . (82)

QxR

The effective viscosity flux Following [I9] we introduce the quantity V (g,u) = p(0) —
(2 + v)divu called the effective viscous flux. As it was shown in [T9, 2, [14] the effective
viscous flux enjoys many remarkable properties. The most important is the multiplicative
relation ¢(0)V = (o) V which was proved in [19] for all ¥ > 3/2 . The simple proof of this
result, based on the new version of compensated compactness principle, was given in papers
[T2, T4]. In our case, by Lemma 4] the critical estimate ||oc[uc|?||za+n o) < ¢(€') holds
for every ' € ), which leads to the following local version of the compensated compactness
result from [T4].
Let us consider a function ® € C(2 x R) such that

D(-,\) € Co(Q) forall A€ RT, ®(,\) =P (-) € Co(Q) forall A >N >0. (83)

Lemma 7.8 Let (u., 0-) be a sequence of solutions to problem ([[A) satisfying the hypotheses
of Theorem[LA. Then for ® € C(Q x R) satisfying [&3),

/<I>(-7 0)V(o,u)dx = /EVCZ‘T, where V =P — (2 +v)divu. (84)
Q Q
Proof. We start with the observation that for every ¢ > 0 there exists a function

n

Os(z,A) = > he(@)er(N), e € CP(Q), ¢x € C®(RY), (85)
k=0

such that ¢} (A) = 0 for A > 2N, and |®5 — ®| < 4. In order to construct ®; note that there
are functions ¢ € C*>(0,2N) , hy € C§°(Q), k =1,..,n and hy € CZ such that

- 0 0
©r) = Pocle) = I < 5. [0m(o) ~ halo)] < 5
for all (xz,A) € Q x [0,2N]. Set g = 1,
o =n(A)Yr(A) for A < 2N, and ¢ = 0 otherwise ,1 < k < n, (86)
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where 7 : R — [0, 1] is a smooth function satisfying the conditions
nA)=1 for A< N, n(A\)=0 for \>2N.

It is clear that the function ®s defined by (BH), ([BH) is the desired approximation. Hence it
suffices to prove the proposition for ®(x, A) = h(x)e(A) with h € C5°(Q2) and ¢ € C*(R)
such that ¢’(\) = 0 for large A.

Denote by 1 the extension operator such that 1gu = u in 2 and 1qu = 0 outside (2.
The adjoint operator 1§, assigns to every function its restriction to €. Introduce the linear
vectorial operator A and the matrix operator R with the components

A =15A7"0,,1g, Rij =150,,A7'0,,1q, 1<4,j<3.

Recall that the operators R;; : L"(Q) — L"(Q), A; : L"(2) — H""(Q) are bounded for
every r > 1. Multiplying regularized moment balance equation ([4al) by h we arrive at

h(ag: + Vel )u, + div {hue ® (geus — Vo) — B(hu.) + hp I+ u. ® Vh+
Vh@u +vVh-uld) - {u. @ (o - £V0.) - S(uc) + pA} Vh = ho.F
Next apply to the both sides of this identity the operator A to obtain
A {h(ao: + Vo) u. — ho-F} + R : {hu. ® (gcu. — eVo.) — S(hue) + hp I+
2u. @ Vh+vVh-ul}=A- {(u5 ® (geue — Vo) — X(ue) + pEI) Vh} (87)
Since h is compactly supported in 2, we have
R:{-X(hu.) + hpI} = hV (0, u.) — 2+ v)Vh-u., R:((Vh-u)I)=Vh-u. (88)

Multiplying the both sides of ®7) by ¢. = ¢(o.), integrating the result over (2, and using
relations (B8) we obtain

/hgoaV(gg, u.)dz + / @ (P + Qe + R : (ho-u. ®u.))dx = 0, (89)
Q Q
P.= —2Vh-u. + 2R : (1. ® Vh)—

A-{(0-u: ®u. — B(u.) + pI)Vh + 0-h(F — au.)},
Q. = A-{h/zolu. + (eu. ® Vp.)Vh} — R: (chu. ® Vo.).

On the other hand, multiplying the both sides of regularized mass balance equation (40
by hy'(e:) we get

hl(0:) (o= + VE02) + div (hpeue) + h(wé(ga)ga - soa)div u. — ¢.Vh-u. =

£ [A(h%) —2Vh -V, — . Ah — hs@”(ga)IV@alz} + he'(e) f. (90)
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Introduce the vector field
v, = g( Ju. where g(") = min{n, o},n > 1.

Applying the operator v, - A := v, ;A; to the both sides of @), integrating the result over
2, and using the identities

[veadthin = [ Slprvds, [ voaing (@) ToPiis = - [ (o) (V0P Avada
Q Q Q Q
we arrive at the equality

/{vs("ﬁE +9.)—h(A- vs)Is}d:c + /vsR(fupsuE)d:c =0, (91)

Q Q
Peo=A- { #'(0:)0- + (¢ (0)e. — p)divu. — . Vh-w. — he/(e.)f }.
= A-{2eVhVg. + e Ah + hy/20} — eRV (hee),
I = 5¢I/(95)|v95|2-

Combining ([9), @) and noting that

/(VSR(hcpgua) —@:R: (hoeue ® ug))d:v = /(vgiRij(hgoaugj) — cpERij(hvgiugj))d:v—i—
Q Q

/<P€R : [(an) - Qs)hus b2 us]dz = /husj (@sRijvsi - VsiRijSﬁs)dz‘F
Q Q

/<P€R - Qs)hus b2 us]d
Q
we obtain the equality

/hﬁpsv(gaaua)dw:/(va(ma'f‘ﬂ) SDE(Pa"FQa)'i‘m —h(A- Va) )dx—i—wg, (92)

Q Q

in which components of the vector R, and the scalar w. defined by
(93)

%s,i = hus,j (@sRijVsi - VsiRij<P5)7 We = /90 R: [(an) - Qs)hus & us]dx-
Q
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Recall that o.u. ® u.-Vh — pu ® uVh and p.Vh — pVh weakly in L'T%(Q) as ¢ — 0.
Hence,

P. - P=-2Vhu+2R: (u®Vh)— A-{(ou®u—(u) + pI)Vh+

ho(F —ou)} in L"(Q) for some r > 1, (94)

PB. = P=A {ah@o+h(p'o— @)divu —Vh-u—¢hf} in L3(Q). (95)
Estimates [3)) yield

Q. —0 in L'(Q) and Q. —0 in L*(Q) as € — 0. (96)

Next, the functions I. are uniformly bounded in L!(2) and converge weakly in the space of
Radon measures C§(£2) to the Radon measure M, defined by

(M, ) = / h(z)e" (Ndm(z, ),
Qx[0,00)

where the measure m is given by (B0) . Since the sequence v. converges weakly in L5(2),
the continuous functions A - v. converge uniformly in €2 to A - v which leads to

lim [ h(A-v.)l.dz = (M, hA -¥). (97)

e—0

Q

Since the sequences . and v. are bounded in L>°(f2) and L°%(Q2), respectively, it follows
from the compensated compactness Lemma from [14] that

e RijVei — VeiRijoe — PRi;Vi — ViR;;p weakly in  L*(Q).
Therefore, M. converges weakly in L3/2(Q2) to | = {u;(PR;;V: — V;R;;7)}. Passing to the
limit in (@) and using @4)-@7) we obtain
/hcp_de = /(Vﬁ — PP + R)dr — /hA VdMy(z) + (98)
) ) o)

with |z0| < limsup |w.|. On the other hand, passage to the limit in equalities &7) and (@0)
gives

hap + div {hgu ®u— X(hu) + hpl +

u®Vh+Vh®u+Vh-u}—(QU@U—Z(U)-I—?I)Vh:hQF, (99)
ahy’ o + div (hpu) + h(yp'o — p)divu — pVh-u+hM, = o' f (100)
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Applying to the both sides of (@), (I0) the operators PA and ¥ - A, respectively, and
arguing as before we obtain

/h@de = /(Vﬁ — PP+ R)dx + / hA -VdMy(z) + w , (101)
Q Q Q
where
w = /@R : [h(¥ — ou) ® uldz.
Q
Combining ([@8) and () we finally obtain

/ hpVdz — / hoVdr = w — . (102)
Q Q

By Lemma B4 the sequence ho.u. ® u. converges weakly in L'*%(£2) to hou ® u; obviously

o u. = v. converges weakly in L%(Q) to V. From this we conclude that

|w| <R : [h(¥ — ou) @ ul| 1) < c[|MF — ou) @ul|p14r/2(0) <

climsup [[h(ve — 0eUe) @ Uel| p14r/2(sptn) -

e—0

The similar arguments give the same bound for lim sup |z, |. Since the sequence g.u. ® u.
e—0

is bounded in L;7"(Q2) and the sequence p. is bounded in L*(f2), we have

[B(ve = 0c112) @ | pransz(speny < e(B)][(08) = 02 )e @ Uc|| prrn/2gpny <

2/(2+k)
C( / (Qs|us|2)l+n/2d$)

{0=>n}Nspth

< C||Qs|us|2”L1+“(spth) mes {0 < n}" <cn’,

where ¢ = k(1 + k)71 (2 + k)"t > 0. Hence |w| + || — 0 as n — oco. It remains to note
that the left side of (IIZ) does not depend on n, and the lemma follows. O

The oscillation defect measure The notion of oscillation defect measure was introduced
in [12] in order to justify the existence theory for isentropic flows with "small" values of the
adiabatic constant . Following [I2, [T5] the oscillation defect measure associated with the
sequence o is defined as follows

oscylo- — 0 ](R) == sup(limsup/ [Tk (0:) — Tk(g)|pdz),
k>1 e—0 &

where Ty (2) = kT'(z/k), T(z) is a smooth concave function, which is equal to z for z < 1 and
is a const for z > 3. The smoothness properties of T} are not important and we can take it
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in the simplest form Ty (z) = min{z, k}. In particular, for the sequence of o. satisfying the
hypotheses of Lemma [(T] we have

oscylo. — 0 ](Q) = sup hm | min{oc, k} — min{o, k}|Pdx > bup/ |75 |Pdz
k>16—
Q

where 7;, = min{p, k} —min{p, k}. The important consequence of Lemma[[3is the following
version of the result of E. Feireis] et al [I2, [[4] on the integrability of the oscillations defect
measure. In order to formulate the result we introduce the function 7y(z) defined by the
equality 7y(z) = min{p, ¥}(x) — min{o(z),¥(z)} for any & € C(Q).

Lemma 7.4 Under the assumptions of Theorem [L1l and Lemma [Z1), there is a constant c
independent of U such that the inequalities

175115 ) < lim, / | min{o.(@),9(x)} = min{o(e), d@)}H' dw < e (103)

hold for all ¥ € C(). Recall that the limit in the right side exists by the choice of the
sequence Q.

Proof. The proof imitates the proof of Lemma 4.3 from [T4]. It is easily seen that
1Tl o < timsup [ [min{o.(o),0(a)} ~ minfo(e), 0. (10)
E—

Hence, it suffices to show that the right side of this inequality has a bound independent of
9. Noting that

| min{s’, 9} — min{s”, 9}|**7 < (min{s’,9} — min{s”,9})(s'" —s"7) for all &' ,s" € RT,

and 97 > 7, min{p, ¥} < min{p, ¥} we get for any compactly supported, non-negative
function h € C(Q),

hm h| min{o., 9} — min{p, 9}|'dx < hm/ (min{ e, ¥} — min{p, ¥})(02 — 0" )dx <

e—0

Q

ti [ hmin{o-,0) ~ min{o,0})(e? ~ )iz + [ (@~ ") (min{o,0} ~ Wn{e, TP =
Q Q

lir%/h(gz min{p., ¥} — oYmin{p, ¥})dz = lir%/h(pa min{ ., ¥} — pmin{p, ¥})dz. (105)
Q Q
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By Lemma [ with ®(p, z) = h(x) min{p, ¥(x)}, the right side of ([[IH), divided by (2 + v),
is equal to

lir%/h(min{gs, Y}divu, — min{p, v}divu)der =
e—
Q

e—0

lim [ A(min{g., ¥} — min{p, ¥})divu.dz — lir% / h(min{g., ¥} — min{p, 9})div udz
£—
Q Q

< 5limsup/h| min{o., 9} — min{p, 9}|*Vdx 4+ 67 1irnsup/h(|div u.| + |[diva|)3+/7 <
€—0 e—0
Q Q

4 lim sup / h| min{o., ¥} — min{o, 9}/ dz + ¢5 || h||c()- (106)
e—0
Q

Combining ([06) and ([0H), letting » — 1, and choosing ¢ sufficiently small gives ({3) O

We reformulate this result in terms of the distribution function I'. Recall that the
functions min{o., A} are uniformly bounded and min{o., A\}divu. converges weakly in L?({2)
for each non-negative A. Introduce the functions

Vy = (mm{g, Aldiv u) — min{o, \Jdivu € L2(Q), (107)
H= / I(x,s)(1 —T(x,s))ds, xz€q.

[0,00)

Lemma 7.5 There is a constant ¢ independent of A such that

911+ (e) + sup Vallzi) < e (108)
Proof. We begin with the observation that by Lemma [1]

Ty(z) = /min{)\,ﬂ(x)}dAF(:c,)\)—min{/ AdaT(x, A), 9} (109)
[0,00) [0,00)

for each ¥ € C(Q). From this and the identity o(x) = f[o 00)(1 — I'(x, A\))dA\ we conclude
that

I (x) o)
Ty(z) = / I'(x, s)ds for 9(z) > o(z) and Ty(z) = / (1 —=T(z,s))ds otherwise. (110)
0 I (x)
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Next choose a sequence of continuous non-negative functions ¥, — p as k — oo a.e. in (.
By Lemma [Z4 the functions 7y, are uniformly bounded in L!*7(Q) and converges a.e. in
Q to the function

o(x) o
T,(x) = O/F(:c,s)ds— (/)(1—F(x,s))ds,

which yields the inclusion 7, € L'™(Q). It remains to note that estimate () for H
obviously follows from the inequality $ < 27,.
In order to estimate V) note that

Vy =w- lir%((min{gs, A} — min{o, A\})div us) — (W— lir% min{ g, A} — min{p, )\})divu ,

where w — lim is the weak limit in L!(Q2). From this and the boundedness of norms
||d1V uEHLQ(Q) we obtain

Vallzr o) < 1imsélp(||divua||L2(Q)+
I 20| ming 0. (2), A} — min{o(z), AHlp2(o -
which along with (I03) yields (I0X) and the lemma follows. O

8 Proof of Theorem

It follows from Remark that Theorem B3 will be proved if we show that I'(z, \)(1 —
I'(x,A)) = 0 almost everywhere in {2 x R. We split the proof of this equality into three steps.
First, the kinetic equation for the distribution function is derived.

Kinetic formulation of the mass balance equation In this paragraph we show that
the distribution function I'(z, \) of the Young measure, associated with a sequence of solu-
tions to problem (4, satisfies some integro-differential transport equation named a kinetic
equation. This result is given by the following lemma.

Lemma 8.1 Suppose that all assumptions of Theorem are satisfied and T is a distri-
bution function of the Young measure associated with a sequence o- of solutions to problem
([@@). Then for any ¢ € C§°(Q2 x R),

/ C{Aa — f(x)}daT(x, N)dx + / I'(x, \)VzaC - wdAdz+

QXR)\ QXR/\

/ MnCdm(x, \) + / ONCAM (z, A)dx = 0. (111)

QxR QxR
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Here m is the Radon measure on Q X Ry given by &), the solenoidal vector field w =
(u(z), —Adivu), and the function M is defined by the equalities

1 1
M: _2+y / (87 —]_?)dsr(l'78) = 2+V / (S'Y —ﬁ)dsl—‘(:v,s), (112)
(=o0,2) [A,00)
in which p(x) = [ p(A)dAT'(x,X). For almost every x the non-negative function M (x,-) has

a bounded varmtwn Var) M (z,-), which belongs to L'(Q2). Note that integral identity ([T
is equivalent to kinetic equation ([[), which is understood in the sense of distributions.

Proof. Choose an arbitrary ¢ € C*°(R) vanishing near +o0, and note that for an arbitrary
h e C§°(Q),

/{hwé(ga)(aea +E0? = f) — 9 Vh-u. + h(¢l(0:) 0 — pe)div ua}der
Q

/5{—Ahg@a + hcp”(gg)|Vga|2}d:v =0.
o)

Letting ¢ — 0 we obtain

/(amh —BVh-u-— hfa) da+ (113)
Q

/h((p’(g)g — ¢)divudzr + / h(z)e" (N)dm(z, \) =
Q QxRy,

Lemma gives the expression for the second integral at the right side

/h((p’(g)g — p)divuds = /h[((p 0 — p)divu + ﬁ((«p’g —@)p—(¥'o— w)ﬁ)}df” :
Q Q

(114)

Next choose an arbitrary smooth function () vanishing near +oo and set ©(\) = [\ n(s)ds
Lemma [l yields the representations

o) = - / M\ (,N), P (z) = - / Nz, ),

[0,00) [0,00)
/ /77 )ds dAF (x,\) = / (AT (z, A)dA,
[0,00) A [0,00)
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which are substituted into (IT3) and ([II4) and lead to the equality

/ hn{f — da — Adivu}d I'dz — / ndiv (hu)I'dzdA—

QxR QxR
1 .
/ ha dm(z,t) + CE h((w’g —@)p— (Yo~ w)p) dx (115)
QXR)\ Q

Recall that I' and m vanish for A < 0, the function G(\, z) = (¢’ (M)A — p(N))h(x) satisfies
all conditions of Lemma [l and h is compactly supported in €. It follows from this and
Lemma [Z1] that

/h((w’g —p)p—(¥o— w)ﬁ)d:c = - / A (XY = B)dal (x, N)dz—
Q QxR

h{/n(s)ds}()\'y —Dp)d\I'(z, N)dx = (2 +v) / hndx (AM (z, \))dz. (116)
b\

QxR QxR

Since dxT'(z, ) is a probability measure and p(\) = A7, the function M is non-negative and
Var \M < 2p € L*(Q). Substituting ([I6) into (IH) and noting that the linear hull of the
set of functions in the form hn is dense in C§°(Q2 x R) we obtain (TIl) which completes the
proof. O

Renormalization of the kinetic equation Renormalization of kinetic equation (7))
is a core of our method. Recall that the notion of a renormalized solution, introduced in
pioneering paper [8], plays an important role in the theory of compressible Navier-Stokes
equations developed by P.L. Lions and E. Feireisl et al. Moreover, the kinetic equation itself
is a result of the renormalization procedure. Formally we can renormalize equation (1)
multiplying both its sides by a function ¥/(T"), which leads to the transport equation for a
function W(I"). The justification of this construction is a delicate question because we do not
know whether the function ¥’(T") is integrable with respect to the measure m or not. Instead
of this property we show that U'(T") satisfies the simple and effective integral inequality. The
result is given by the following lemma. Choose an arbitrary ¢ > 1 and function n € C*°(R)
satisfying the conditions

nA) =1 for A<t—1, n(A)=0 for A>t+1, 7/(\) <0,
and fix a function ¥ € C?(R) such that

T’(\) <0, TA)>0 for Ae0,1], T(0)=0.
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Lemma 8.2 Under the assumptions of Lemma 81 for all t > 2 + 2| f|| L)/,

/ U(D)dad\ < —(t+1) / n’{\IJ(I‘)(|divu| +2a) + aM}dzd/\— (117)

Qx[—o0,t—1) QxR

o(t+1) / W A tdm(z, \), ozr[11a>]<|\ll’|.
0,1
QxR

Proof. Let 62 and 6! be regularising kernels in R? and R, respectively i.e.
¢’ € D, (RY), /Gj(a:)dz =1, spt & e {|z| <1}
RI
The corresponding mollifiers are defined by the equalities
Uk o0 (T, A) = k3/6‘3(k(x —y))u(y, Ndy, Usok(x,\) = k/@l(k()\ — ))u(z, p)dp,
Q R

for each u € L{, (2 x R) and dist (z,0Q) > k~'. We will simply write ug,, instead of

loc
(Uk, 00 )oo,n- Substituting the test function

Clz, \) = B33 (k(zo — 2))9 (n(Mo — X)), dist (z9,00) > k™%, X €R,
into (ITI) we arrive at the equality

(‘9)\{[()\(0[ 4+ div u) — f]l“;m} — al“;m —div (F;g)nu) — 8>\(m + )\M)k,n =
(t1)k,00 + T2 + O\t =1, (118)

which holds true in any domain Q' x R, with dist (,09) < k~'. Here the remainders t;
are given by

t1 = —(a+divu)Or[(AD)oon — Alson], T2 =div|[(Too,n)k,co — Tknul,
t3 = Ay pdiva — AMToo,ndiva) g oo + Coonf koo — DS -

Recall that 'y, and (m + AM)y,, are smooth functions in Q' x R. Multiplying the both
sides of ([IR) by ¥'(T' ) and noting that Oy V' (T’ ) <0, M, m > 0 we obtain

(A — F)ONT(Tpn) — divor (U (Tpp)w) — 95 (w’(rk,n)(m + /\M),m) > U/ (Djn)e . (119)

Choose an arbitrary non-negative function h € C§°(Q2) with spth € €. Multiplying the
both sides of [[TJ) by h(x)n(A\) and integrating the result over Q' x Ry we arrive at the
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inequality
(T ) [ah —Vh- u] dwd) + / hy' U (T, ) (Adiv u + Ao — f)dwdA—
Q' XRy, Q' XRy,
/ haf U (D 1) (1m0 + AM ) ndad\ < — / 0’ (D edad .
Q/XR)\ Q/XR)\

Since n” < 0 and m + AM > 0, we have

/ ' U (Tgn)(m 4+ AM) . pdzd) < I[IllI]l p’ / hn'(m + AM )y ndxd) |
0,1
Q' XR) Q' XR)

which yields

/ \I/(Fkyn)n{ah —Vh- u} dzd) + / iy U (D) ONdiv u + A — f)dzd\—

Q/XR)\ Q/XR/\

min ¥’ / hn'(m + AM )y pdxd\ < — / hn®' (T )edzdX . (120)

Q' xRy Q' xRy

Now our task is to show that the right side tends to 0 as k,n — co. Fix an arbitrary n > 0.
Since the mapping (x, \) — u(x), which does not depend on ), belongs to L>=(Ry, H*(1)),
it follows from Lemma 2.3 in [8] that vo — 0 in L} (2 x R) when k — oco. Obviously, the
sequence t3 — 0 converges in L7 (Q x R) when k — oo. It follows from this that for each

fixed n,
klirgo hnW' (T, )edzd\ = / h¥' (T oo n)ne1dzd) .
Q' xRy Q/XRx
It is easy to see that

ON(AD)oo,n — Aloo n](x, ) = k/RG(k()\ — p)T(x, w)dp, 6(s) = 5911(5) +6'(s).

Since 0 is compactly supported and [ 0(s)ds = 0, the sequence IA[(AT)so,n — Aloo,n](, A)

converges to 0 in Lj, (2 x R) for each < co. Hence t; — 0 in Lj, (€2 x R), which implies

lim lim hn®' (T, )edzdA = 0.

n—oo k—oo

Q' xRy
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Letting k — 00, n — oo in ([Z0) we conclude that the inequality

h (T)dad — / 7U(D)Vh - udzd) < (121)
Qx[—o0,t—1) QxR
—(t+1) / hn’(\IJ(I‘)(|divu|+2a)+M)d:cd)\—(t+1) / i A" Ldm(z, ) .
QxR QxR

holds for all ¢ > 2a~!| f|| L= () + 2 and all non-negative h € C§°(2). Now choose a sequence
of functions h; € C5°(2) such that h; — 1 as j — oo in Q and |Vh;(z)| < jdist (x, 0Q).
Substituting h = h; into (1), letting j — oo, and noting that [[Vh; - ullp1q) — 0 we
finally obtain (ITI7) which completes the proof O

The proof of equality T'(1 —T') =0 The last part of the proof is based on the following
lemma
Lemma 8.3 Under the above assumptions,
/ n' (A M (z,\)d\ = — / " AV (z)d | (122)
- [0,50)
where V), is defined by (D).

Proof. It is easy to see that

—(2+V)/RA77’()\)M(JC,)\)d/\_ /(/ o' (s)ds) ( / (7~ B)T () dA =
(

[0,00) [A,00) A, 00)
/n//(s)(/d)\ / (tv_p)dtr(z,t))ds: /77”(5)(/ min{t,s}(t'y—ﬁ)dtI‘(z,t))ds:
[0,00) [0,s) [X,00) [0,00) [0,00)

7" (s)(min{g, s}p — min{p, S}ﬁ)) ds.
[0,50)

On the other hand, Lemma [[3 yields min{p, A\}p — min{o, A\}p = (2 + v)Vx(z), and the
lemma follows . O
Take ¥ in the simplest form ¥(I') = I'(1 —T') with o = 1. Since n’(\) vanishes for A < 1,
we have
- / 7' U (T)(|divu| + 2a)dzd\ = / 7" (N)dA / U(T(z, s))(|divu(z)| + 2a)dzds,
QxR [1,00) Qx[1,A)
— / N A tdm(z, \) = / 0" (N)dA / s~ tdm(z,s) ,

QxR [1,00) Qx[1,))
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Substituting these identities along with (IZ2) into (IId) implies the inequality
W(0)dzdA < (1+ 1) / 7 (Vp(VdA | (123)
Qx[—co,t—1) [1,00)
in which the function e : [1,00) — R is given by
p(A) = / (T (z, s))(|divu(z)| + 2a)dxds + /V)\(:c)dx + / s~ tdm(z,s) .
Qx[1,)) Q Qx[1,X)

It follows from Lemma [ZH that for A > 1,

eV < e(l + [[ullgr2@)[9llL2@) + WAl @) + ¢ / (L+X) " dm(@,\) < c

Qx[1,00)
where a constant ¢ does not depend on \. Next set n(\) = [ w(s—t)ds, where w is a smooth,
A
even, non-negative function supported on the interval ( 1,1) and such that [, w(s)ds = 1.
Then inequality ([23)) can be rewritten in the form
d
U(T)dzd) < (1+ t)a(w * ) (t), (124)

Qx[—o00,t—1)

Since the smooth function (w * p)(¢) is un1f0rm1y bounded on the interval [1,c0), then there
is a sequence t; — oo such that hm (tk +1) & (wxp)(t) < 0. Substituting t = ¢, into ([24)

and letting £k — oo we conclude that U(T) =0 a.e in Q x Ry, which completes the proof of
Theorem
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