N

N

Numerical Investigations of Turbulent Flow Past a
Generic Airship

Kamal El Omari, Eric Schall, Bruno Koobus, Alain Dervieux

» To cite this version:

Kamal El Omari, Eric Schall, Bruno Koobus, Alain Dervieux. Numerical Investigations of Turbulent
Flow Past a Generic Airship. [Research Report] RR-5455, INRIA. 2006, pp.22. inria-00070551

HAL Id: inria-00070551
https://inria.hal.science/inria-00070551
Submitted on 19 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://inria.hal.science/inria-00070551
https://hal.archives-ouvertes.fr

ISRN INRIA/RR--5455--FR+ENG

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Numerical I nvestigations of Turbulent Flow Past a
Generic Airship

Kamal El Omari — Eric Schall — Bruno Koobus — Alain Dervieux

N° 5455
Janvier 2005

Théme NUM

apport
derecherche







% I N R I A

SOPHIA ANTIPOLIS

Numerical Investigations of Turbulent Flow Past a
Generic Airship

Kamal El Omari*, Eric Schall* , Bruno Koobus' , Alain Dervieux!

Théme NUM — Systémes numériques

Projet Smash

Rapport de recherche n°® 5455 — janvier 2005 — 22 pages

Abstract: Turbulent separated flows around an airship-like geometry (a prolate
spheroid 6:1) are investigated using three turbulence modelings based on statistical
and Large Eddy Simulation (LES) approaches. The turbulence models used in the
simulations are a standard high Reynolds k—¢ model, a Smagorinsky LES model
and a variational multiscale LES one. The flow of interest is characterized by a
relatively low Mach number (Mach = 0.15), an angle of attack set to 20° and
a Reynolds number fixed to 4 x 10%. The three-dimensional compressible Navier-
Stokes equations equipped with the previous turbulent models are discretized by a
mixed finite element/finite volume method. The simulations show that the primary
longitudinal vortex is predicted by the three models, but only the VMS-LES model
predicts a secondary vortical flow structure that is observed in experimental studies.
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Modélisations Numeériques de ’Ecoulement Turbulent
Autour d’un Dirigeable Générique

Résumé : Les écoulements turbulents décollés autour d’une géométrie générique de
dirigeable (ellipsoide allongé 6 : 1) sont étudiés ici a ’aide de trois modéles de tur-
bulence basés soit sur une approche statistique soit sur des simulations des grandes
échelles (LES). Les modéles utilisés sont : le modéle standard haut Reynolds k—,
le modéle LES Smagorinsky et un modéle LES variationnel multi-échelles (VMS-
LES). L’écoulement étudié est caractérisé par un nombre de Mach relativement bas
(Mach = 0,15), une incidence de 20° et un nombre de Reynolds de 4 x 10%. Les
équations tridimensionnelles et compressibles de Navier-Stokes, munies des modéles
précédents, sont discrétisées par une méthode mixte éléments finis/volumes finis.
Les simulations montrent que les trois modéles sont capables de prévoir le vortex
longitudinal primaire, mais, que seul le modéle original VMS-LES a été en mesure
de capturer numériquement le vortex secondaire observé dans le cadre d’études ex-
périmentales de la littérature.

Mots-clés : Turbulence, modéle statistique RANS, simulation des grandes échelles,
simulation variationnelle multi-échelles, ellipsoide allongé, volumes finis, maillage
non structuré
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1 Introduction

In the context of an airship development program, we consider the numerical study of
the flow around a flying generic airship. We are specially interested in flows involving
rather large angle of attack around three-dimensional smooth bodies and in the phe-
nomena induced by such flows, like separation-induced turbulent vortices. Problems
involving flow separation in three-dimensional configurations is a very challenging
topic in fluid dynamics research.

The investigated geometry is a prolate spheroid. It represents the closest shape
to an airship geometry that can be found in the literature [1, 2]. Detached flows
around prolate spheroids were the subject of several numerical studies [3, 4, 5, 6],
principally in the aim of CFD codes assessments, specially when the flow separation
is not induced by a geometrical feature as it is the case of submarine vehicles, aircrafts
fuselages and ogives.

Most of the previously cited studies concerned by turbulent flows aroud prolate
spheroids, and specially experimental ones [1, 2], have considered high Reynols num-
ber flows (Re > 10°). A numerical study in these conditions demands the usage of
very fine meshes and large CPU resources. In the scope of this first study we consider
a less important Reynolds number Re = 4 x 10* to be able to rapidly compare the
results given by three different turbulence models: RANS k — ¢, LES (Smagorinsky)
and VMS-LES.

The Reynolds Averaged Navier-Stokes (RANS) two-equations statistical mod-
els are designed for providing steady mean flow fields. They generally rely on a
Boussinesq turbulent viscosity. But this viscosity may be too large and may damp
important steady and unsteady vortical flow structures. Non-equilibrium flows, as
those arising close to leading edge at high angle of attack, are generally not accu-
rately modeled. Our study starts with a set of results obtained with a standard
two-equations model (k — ¢) [7] combined with the Reichardt wall law [8].

In contrast to statistical models, Large Eddy Simulation (LES) ones are designed
to the numerical simulation of the smallest details with respect to the grid size. Two
LES models are applied to the calculation of this low-Reynolds flow: a Smagorinsky
model which has been already applied with the same numerics in previous studies
[9], and a Variational MultiScale (VMS) model [10, 11| which has the advantage to
bring modeling only to the finest resolvable scales.

INRIA
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2 Turbulence modelings

2.1 The k — ¢ two-equations turbulence model

The compressible Reynolds averaged Navier-Stokes (RANS) equations are expressed
as follows (in a two-dimensional form for sake of briefness, the three-dimensional
expression is straightforward):

oW
v +V.F(W) =V.R(W) where W = (p, pvy, pva, E)” (1)
where W is the mean fluid state vector, F and R are respectively the convective and

diffusive fluxes given by

Fi(W) ) ( R1(W) )
f W = 9 R W = 9
(W) ( Fo(W) W) =1 ry(w)
in which
pU1 pU2
2
pvy +p pU1Y2
Fi(W » F2(W) = ’
1(W) pUL: 2(W) pv3 +p
(E+p)u (B+p)va
0
0 2 \
o1 011 — ngRt
L o 1 1
Ru(W) = 22 12 + = 12
2 7
Re U10117+ 7526012"' Ry v1011 + V2012 — gpkleH‘
Proor 0 9e
Pr; 0z
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0 0
012 0122 LR
1 022 — 3 PRIt
Ry(W) = L 722 + = 3
Re | wvio12 + v2022+ R; v1012 + V9092 — —pkvy R+
lﬁ v Oe
Pr 0xy Pr, 01,
with:
E=pe+ipllv|>+pk ., v=(v1,02)" ,
2
p= (7_1)pe 9 UZVU"‘VTU— gv.’l}Id ,
y=2.
Cy

The closure of system (1) is achieved here by a two-equation high Reynolds k — ¢
model governed by the following equations

oW,
ot

+ V.F(W,) = V.R(W,) + Q(W,) ,

with

where, for a two-dimensional flows, the fluxes F,(W;) and R;(W}) are given by

v = (Zatwy ) R0 = (Riws )

in which:

INRIA
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1 n 1 ok I n 1 ok
Re dz1 Re R, ) 0z
Ri1(Wy) = Ize aklRt 83:? ; Ria(Wy) = 'ue Ukl ’ 3%;2
Re " o.R, ) o Re " 0.R, ) 0
and
—pe+P
QW,) = pe? € )

T teag?

’

_ 2 1 2 2 ov; 2 ov; 81}]'

4,7=1,2

P is the turbulent energy production. The turbulent Reynolds number R; is obtained
from the eddy viscosity ps:

r pk?
R =

and the closure coefficients oy, o, c.1, ¢z2 and ¢, are set to their standard values:
or =103 0. =135 ¢y =144 c.9=192; ¢, =0.09.

2.2 Large Eddy Simulation with Smagorinsky model

LES models are based on a spatial filtering of the Navier-stokes equations with
respect to a filter width A. Only the large scales corresponding to the filtered flow
variables are directly simulated, and modeling is introduced to take into account the
effect of the unresolved subgrid scales on these large scales. In this study, the well
known Smagorinsky model is used.

RR n° 5455
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The filtered field of a quantity f in a given space domain D is obtained by
convolution with a filter function Ga(x) and is defined by

TQJFjAfWJWAQ—ywy 2)

This quantity can then be written as f = f + f’ where f' is the fluctuations of this
function at scales smaller than the filter width A.

In addition, for compressible flows, a density-weighted filter (Favre filter) is intro-

pf

duced as f = —. The filtered Navier-Stokes equations become after the application

of Smagorinsky modeling:

op  Opiy;
bl - 0
at " oz, 3)
opis) | dpiuty) _ _om 2 [+ ) (2815 — 3Su6is )] "
ot 8:Ej (9."Ej 3l‘j
. . . ~ g.._ 24,5
o) , dlipe + Wiy _ 2 [m (285 - 365 5
8t 8.%']' 8.%']'
8 [(Comt 0
i j7d e
N O [( Pr, ) %} (6)

and the constitutive equations are

1( 8112' 811j )
2°0x;  Ox;"

pe = p(CsA)*4/25i5, (7

where p; is the eddy viscosity introduced by the Smagorinsky model (Eq. 7). The
complete definition of p; needs the definition of the filter width A and the Smagorin-
sky constant Cs. This constant is set to 0.18 and the filter width associated to a

tetrahedron Tj is defined by
a; = /vol(T)). (®)

The details of the derivation of the previous equations can be found in [12].

1
II=pRO é=Cv@+§(||ﬁ||2) , Sij=
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2.3 The Variational Multiscale modeling of turbulence

Unlike the classical LES approach, the variational multiscale LES (VMS-LES) model
is not based on a spatial filtering of the Navier-Stokes equations but on a variational
projection of these equations on a coarse-scales space and a fine-scales space [10].
The VMS-LES method separates the scales a priori, that is before the simulation
is started. Furthermore, the VMS-LES method models the effects of the unresolved
scales only in the equations governing the finest resolved scales and not on the equa-
tions governing the whole resolved scales as the LES method does.

Let Q be the flow domain discretized by a tetrahedral mesh, from which a dual
finite-volume mesh is derived [14]. Convective fluxes are treated here by a finite
volume method in which a variable w is approximated first by a constant in each
control volume as w = ), w; X, where X; is the characteristic function corresponding
to the control volume C; associated with node ¢, and w; denotes the constant value
of w in this control volume. Next, this first-order approximation is transformed into
a higher-order spatial discretization by a MUSCL approach [13]. The diffusive fluxes
are treated by a finite-element method in which a flow variable w is approximated by
a continuous piecewise linear function. This can be written as w =), w; ®;, where
®; is the P1 shape function associated with node i, and w; denotes the value of w at
this node.

The semi-discretization of the compressible Navier-Stokes equations by the mixed
element volume method with mass lumping leads to the following system of equations

.
o Ot SupX;
dpu
B(X;, 9, W) = [ —X,dQ + pu®und;dl
o Ot OSupX;
< + / PnX;dl + / FV; 49 = 0 )
ISupX; Q
oF
C(X,’,@i,W) = —AX;dQ + (E-I—P)u.nXi dl’
Q ot OSupX;
+ / ou.V®,dQ) + / AVT.VO;dQ =0
\ Q Q

RR n° 5455



10 K. El Omari, E. Schall, B. Koobus, A. Dervieux

where W = (p,u, T)T and dSupX; denotes the boundary of the support of X;, and
n is the outward normal to this support.

Let Vpy and Vpg denote respectively the space spanned by the the characteristic
functions {A%}, and that spanned by the P1 shape functions {®x}. In order to
separate a priori the coarse and fine scales, these spaces are decomposed as follows

Vv = Vry & V}rv , VrE= Vrig @ V}rE. (10)

Here the overline refers to the coarse scales, and the ’ superscript to the fine scales.
Hence, consistently with Eqgs. (10), W is decomposed into a coarse scale component
W and a fine scale part W' as W = W + W'. This decomposition relies on coarse
finite-volume cells which are built by agglomeration of a small number of fine dual
control volumes.

From this decomposition, the problem (9) is transformed into the two following
subproblems

A(X;, W + W) =0 A(X! ;W + W) =0
B(X;,®;,W+W') =0 B(X/,®.,W+W') =0 (11)
C’(Yl,@,w + Wl) =0 C(X,L!, QQ,W—F WI) =0

Without giving the details of the model derivation — that the reader can find in
[11] —, we can say that this decomposition gives two sets of equations, one governing
the coarse resolved scales and the other one the fine resolved scales. These sets of
equations are coupled. Some terms that appear in the fine resolved scales equa-
tions require some modeling (unless all scales are resolved by means of DNS). This

INRIA
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is achieved through a compressible generalized Smagorinsky eddy viscosity model
involving only the fine resolved scales. Then, the final form of these equations writes

where
/
7'2']'
!/

it
15|

( dp
—X; dQ + pu.nd; dI’ =0
Q ot ISupX;
dpu
—X; dQY + pu®und; dl' + PunX; dT
o Ot dSupX; dSupX;
{ + / oV®; dQ) + 7'V, dQ =0
Q Q
OF
—X; dQ + / (E + P)u.nd; dU' + / ocu.VP; dQ
o Ot OSupX; / Q
+ / AWV, i + [ LT ve! ao =0
\ Q a Pry

2
Sy~ 28iuy)
_ 1(3u2 611;-)

2°0x;  0x;
= ACa)s)

(12)

C! = 0.1 and A’ denotes the local grid size. In this work, A’ has the same

definition as in Eq. (8).

2.4 Wall law

In all the simulations presented in this study, the flow domain is extended only up
to a wall boundary located at a distance ¢ from the surface of the prolate. In the

RR n° 5455
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evaluation of the viscous fluxes, the wall shear stress is computed as 7, = pu% where
the friction velocity u is determined from the non-linear Reichardt’s law

U

+
T =25log(1+0.416") + 7.8 (1 —e ST %6_0'335+) (17)

in which N
+_ (v.n )|6.
1)

6+:u—f(5 and U,
v uf

3 Numerical issues

In this work, the spatial discretization of the Navier-Stokes equation is achieved
on unstructured tetrahedral meshes by a mixed element/volume formulation [16, 8],
where the convective terms are discretized by a finite volume method and the diffusive
terms are approximated by a Galerkin method using P; shape functions. The scheme
described below applies for the three turbulence models, provided that the equations
are written in the generic form of Eq. (1).

3.1 Convective fluxes

The convective fluxes are approached by the Roe’s scheme [15] which is used together
with a MUSCL linear reconstruction method [13, 14] to obtain a higher order of
spatial accuracy (second-order was used in the scope of this paper).

Let V(i) be the set of neighboring nodes to a vertex i. The convective fluxes
through the dual cell boundaries surrounding the vertex ¢ wrote:

F(W).n dl = /6 o F(Wimr (18)

oC; FEV (i)

where the boundary 0C; N 9C; is located between the two cells centered at nodes ¢
and j. The fluxes of Eq. (18) are approximated by the numerical fluxes

Z CI)(WZ-j,WjZ-,nZ-j) with Il,'j:/ n dl’
]EV(’L) 8Cir180j

INRIA
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and, following the Roe’s scheme:

F(Wij,m55) + F (Wi, ny;
®(Wij, Wi, n;j) = (Wij, nij) + 7 (Wi, nij)

—vs d(Wij, Wi, ng;). (19)

2
The upwind term is given by
d(W;j, Wy, n;;) = |R(Wijawjianij)|% : (20)
where R is the Roe Matrix:
OF (=
R(Wj, Wj;,n;;) = W <W7 nij) (21)

W is the Roe average of the vector W. The amount of numerical viscosity introduced
by the the upwind term is controlled by the multiplicative coefficient ~;.

The state vectors W;; and W ; are reconstructed values of W at the boundary
oC; N 8Cj as

1
Wij =W, + —(VW)ij.ij

1

Wi =W; — 2 (VW);i.ij.
2

The gradients (VW);; and (VW);; are computed by a (-scheme which blends cen-
tered and upwind gradients:

(VW);.ij= (1- 2ﬂ)(VW)§.ij +26(VW)! ij
(VW),iij= (1 —28)(VW)S.ij + 28(VW)Y ij

Jr J

(22)

where

(VW){.ij = W; — W, : centered gradient
(VW)ZU : volumetric average of the P1-Galerkin gradients of the tetrahedra sur-

1
rounding the vertex i. ( is taken equal to 3

Because of the low Mach number value of the studied flow, no flux limitation was
used here.

RR n° 5455
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3.2 Diffusive fluxes

Diffusive fluxes are approximated by a Galerkin method using P1 shape functions
@i SO

R(W).Vg;idD, = > Area(T)R(T).Ve,
T@t),ieT(t)’ TV T(t),i€T(t)

L (23

R(T) denotes the constant value of R on the tetrahedron 7. The effect of the
diffusive fluxes on the far-field is neglected.

Temporal scheme is implicit, second-order accurate and the computer code is
parallelized using a non-overlapping domain decomposition. More details on the
numerical approach of the used code (AERO3D) can be found in (8, 12, 9, 11].

4 Description of the test-case

We are interested in a flow around a 6:1 prolate spheroid of length L = 1.37m, at
20° angle of attack. The flow has the following far-field characteristics

e Mach number M., = 0.15;

Voo L
Reynolds number Re = ——— = 4 x 10%;
v

density poo = 1.1 kgm™3;

e pressure po, = 101300 Pa.

The laminar-turbulent transition is fixed at /L = 0.2.

The three-dimensional unstructured mesh used in the simulations is displayed
in Fig. 1. It contains approximately 160000 nodes and 950000 tetrahedra. The
computational domain dimensions are 7.2m x 4.8 m x 4.8 m. These dimensions were
judged sufficient by other authors of previous numerical studies [3]. The part of the
mesh that is adjacent to the prolate surface is pseudo-structured, so that the heights
of the first elements from this surface were fixed below 7 x 1073m. These values
result in ¢y values that lie between 4 and 23. The numerical viscosity coefficient
(Eq. 19) is set to 0.1 in the scope of this work.

INRIA
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Figure 1: View of the whole domain with a mesh cut in the vertical symmetry plane
(top) and zoom of the prolate (bottom)

RR n° 5455
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5 Results

Figure 2: Trajectories and Mach number around the prolate (VMS-LES model)

Three runs were performed corresponding to the three turbulence models pre-
sented in this paper. We give first, in Fig. 2, an idea of the fluid trajectories
encountered in such a flow as well as the Mach number distribution obtained by the
VMS-LES model. We compare the three models afterwards.

Fig. 3 displays the isovalues of the streamwise velocity obtained with these models
in cross-planes located on the rear part of the prolate. We can notice that the vortices
predicted by LES and VMS-LES models are better captured, and that the VMS-LES
calculation shows more flow details than the LES and RANS models. Indeed, these
two last models tend to introduce a too large amount of turbulent viscosity which
damps the turbulent structures.

Fig. 4 depicts the fluid velocity vectors and streamlines in the cross-plane located
at £ = 1.2m. It confirms the previous observations, and we also notice that the VMS-
LES model is able to capture a secondary vortex that is not predicted by the two

INRIA
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-
..

40.6

RANS LES VMS-LES | 239

7.21

. -9.47

x=12m

U, max = 49 ms~1

Figure 3: Streamwise velocity isovalues on cross-planes at t =1mand z =12 m

others models. Such a vortical flow structure is effectively observed by experimental
and numerical studies with higher Reynolds number [2, 3].

We have seen that the three models exhibit perceptible differences concerning the
longitudinal vortices, but the comparison of the behavior of pressure at the prolate
surface shows that this quantity remains almost the same, specially on the symmetry
line as shown in Fig. 5. At the x = 1.2m position of the prolate surface, the
examination of this quantity shows again that the VMS-LES exhibits some features
not observed by the two other models like the negative pressure coefficient on the
leeward.

Aerodynamic lift (C;) and drag (Cy4) coefficients relative to pressure and viscous
forces are given in Tab. 1. They are respectively based on the reference surfaces
S, = m(L/12)? and S, = wL?/24. This table values show that the calculated drag is
the lower when the turbulence model introduces less amount of numerical viscosity
as it is the case of the VMS-LES model.

RR n° 5455
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Figure 4: Velocity vectors and streamlines on cross-plane at x = 1.2m : RANS
(top), LES (center), VMS-LES(bottom)

INRIA
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Figure 5: Pressure Coefficient C, on the prolate surface at z

x =1.2m (bottom)

Table 1: Aerodynamic coefficients of the prolate at 20° angle of attack
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6 Conclusion

We have investigated the simulation of a low Mach compressible flow around an
airship-like geometry using three turbulent models based on statistical and LES
approaches. With this geometry, the flow separation is due to adverse pressure
gradients in the azimuthal direction and not to geometry singularities, in contrast
to many vortex shedding simulations achieved with the VMS-LES model in previous
works. The study shows that, for flows with high angle of attack and strong boundary
layer separation, low viscosity models like the VMS-LES model, are more suitable
for capturing the main vortical flow structures. With this low Reynolds case, the
three models are not very CPU consuming and of about the same cost. But the use
of LES based models may be prohibitive for high Reynolds number flow calculations.
Then a good compromise would be a blend of VMS-LES and classical RANS models.
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