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Estimations d’erreur pour des jeux différentiels
stochastiques : le cas de ’arrét adverse

Résumé : Nous obtenons des estimations d’erreurs pour des schémas d’approximation mo-
notones d’une équation d’Isaacs particuliére. Ceci constitue une extension de la théorie des
estimations d’erreurs pour ’équation de Hamilton-Jacobi-Bellman.

Le majorant de l’erreur est obtenue par la méthode de “régularisation de Krylov”, qui per-
met la construction d’une sous-solution approchée du schéma. Le minorant est obtenu en
étendant la méthode de Barles and Jakobsen [2], qui consiste en 'introduction d’un systéme
a commutation dont les solutions sont des sursolutions locales de ’équation d’Isaacs.

Mots-clés : Equation d’Isaacs, équation de Hamilton-Jacobi-Bellman, jeux différentiels
stochastiques, différences finies, estimations d’erreur.
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1 Introduction

The aim of this paper is to give error bounds for approximation schemes of a particular non
convex Isaacs equation. More precisely we consider the following equation

min{sup L*(z, Du(x)); u(z) — (x)} =0, zeRY, (1)
acA
where
L%(x,Du(x)) = L%x,u(x), Du(z), D*u(x)),
L@ t,p, X) = —trfa®(@)X] = 0% (2)p + c*(2)t — f*(2).
Here A = {ay,...,ap} denotes the set of controls, assumed to be finite; the case of a

compact set will be dealt with in section 4.3. The coefficients (a®, b, c®, f*) are, for each
a € A, bounded and Lipschitz functions RY — S¥ x RY x R x R, where SV denotes
the set of N x N symmetric matrices; 1 is a bounded Lipschitz function from R” into R.
Under classical assumptions, (1) has a unique bounded viscosity solution, denoted u. The
regularity of u depends on the properties of the coefficients a, b, c, f.

This problem is a particular case of stochastic differential games, called the adverse stopping
case. In fact, we can note that in (1) we have two players, A and B. Player A has a set of
controls and wants to minimize the gain. Player B can only decide to stop the game with
the objective of maximizing the gain.

Then we consider monotone approximation schemes of (1), of the following form:

min{S(h, z, up(x), up); un(x) —P(x)} =0, reRY, (2)

where S is a consistent, monotonic and uniformly continuous approximation of sup,c 4 L®.
We will note uj, € Cy(R™) the solution of (2), which is the approximation of u, and h the
mesh size. This abstract notations was introduced by Barles and Souganidis [3] to display
clearly the monotonicity of the scheme: S(h,z,r,v) is non decreasing in r and non increasing
in v. Typical approximation schemes that we will consider are Classical Finite Differences
[15], Generalized Finite Differences [5] and [4], and Markov Chain Approximations [15].

Until now, results on convergence rates for monotone approximation schemes of the
equation with one player have been obtained; i.e. for the following equation:

sup L*(z, Du(zx)) = 0, z eRVN, (3)
acA

and the scheme
S(h,z,up(x),us) =0, r e RN, (4)

Error estimates for this equation have been obtained by Krylov [13],[14] and these results
were extended by Barles and Jakobsen [1],[2].

During the redactions of this paper we learned that also Jakobsen was working on the
convergence rate for monotone approximations of (1) (see [11]). He obtains error estimates
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4 J. Frédéric BONNANS , Stefania MAROSO , Housnaa ZIDANI

in the case of finite differences scheme with matrix a independent of z, using a penalization
approach.

By using the methods introduced by Barles and Jakobsen [2], we give convergence rate
for monotonic approximation schemes of the two player equation. The upper estimate of
u — up, is easier to obtain than the lower. The proof involves a “Krylov regularization” of
(1), i.e. the perturbed equation

min{ sup L*(x + e, Duf(z));us(z) —p(z)} =0, =RV, (5)

a,le|<e

and its viscosity solution u°. A regularization of u® by convolution gives an approximate
smooth sub-solution of (1), denoted u. which is also an approximate sub-solution of (2). So,
by using the consistency property, we obtain the upper bound, after choosing an optimal
parameter of regularization. Unfortunately we can’t proceed in a similar way to build a
smooth super-solution of (1) which would lead to the lower estimate on u — uy. Instead of
a smooth super-solution we build a sequence of local smooth super-solution. In particular
we introduce the following switching system which approximates (1)

min{max{ L% (z, Dv;(x)); v;(x) — rJn#l{UJ () + k}}vi(z) —¢(2)} =0, (6)

for z € RY, and i € T = {1,..., M}. For literature on the switching systems, see [6], [§],
[9] and [10]. We consider the viscosity solution v = (vy,...,vas) of this system, and give an
estimate of the rate of convergence of v to u. Then we consider a perturbed system

min{mase( inf L (¢ -+ e, Dof ()10 (a) — min{oj («) + k) o (2) — ()} =0, (7

for alli € 7 and = € RY, and its viscosity solution denoted v® = (v§,...,v5,). We regularize
v¢ by convolution obtaining v., and this function allows to build a local super-solution of
(1). Then by applying the consistency and the monotonicity of the scheme we obtain the
desired bound. With our result, we can prove an upper bound of h'/2 and a lower bound of
h!/® for classical finite differences scheme and for generalized finite differences scheme.

The paper is organized as follows: section 2 introduces the assumptions on equation (1)
and scheme (2). Section 3 obtains the rate of convergence of the solution v of (6) to u. The
first part of section 4 obtains an upper bound of v — uy, and the second part of this section
uses the rate obtained in section 3 for giving the lower bound of u — uy. Section 5 applies
our results to the generalized finite difference scheme taken from [5], and studies conditions
under those a general Markov chain approximation give better estimates than this scheme.
Finally the Appendix gives some auxiliary theorems which are used throughout the paper.
We conclude this introduction with some notations. In the sequel C' is a positive constant
independent on parameters € and h. By | - | we mean the standard Euclidean norm in any
RM type space. In particular, if X € SV, then |X|? = tr(XX ), where X ' is the transpose
of X, i.e. | X| is the Frobenius norm. If g is a bounded function from R" into either R, RM,
or the space of N x P matrices, we set

l9lo == sup |g(z)|.
TERN

INRIA



Error estimates for stochastic differential games: the adverse stopping case 5

If g is also Lipschitz continuous, we set

lg(z) — g(y)|
lgh == sup Ty lgl1 = lglo + [g]1-
x,yER
zH£y

We denote by < the component wise ordering in R, and by = the ordering in the sense of
positive semidefinite matrices in S(V). The space Cy(RY) (resp. Cp;(RY)) will denote the
space of continuous and bounded functions (resp. bounded and Lipschitz functions) from
RY to R.

2 Well-posedness of the Isaacs equation and of the scheme

Throughout this paper, we suppose that the following assumptions are satisfied:

(A1) There exist A, K such that, for all € RY and o € A, a®(z) = 20°(2)(c"(2))7,
where 0%(z) is, for each z, a N x P matrix, and

P >A>0; o+ b+ [+ [ S K,

(A2) min{1,A} > sup, {[c*]1 + [b*]:1}.

Definition 1 The function u € C(RY) is called a viscosity sub-solution (resp. super-
solution) of (1) if, for every v € RY,

min{sup L (z, u(x), Dp(x), D*¢(z)); u(x) — ()} <0, (resp. >0),
for each o € C*(RN) such that u — ¢ has a local mazimum (resp. a local minimum) at x.
Finally we call u a viscosity solution of (1) if it is both a sub-solution and a super-solution.
We refer to [11, lemma A.1] for the proof of the following result.
Proposition 2 Assume (A1) and (A2). Then the following statements hold:

(i) If u1 and us are respectively viscosity sub-solution and viscosity super-solution of (1),
uy,uz € Cp(RY), then up < ug in RY.

(i) There ezists an unique viscosity solution u of (1), in the space Cy, (RY). O

Consider the scheme (2), with & > 0 and S : R x RY x R x C,(RY) — R. We make
the following assumptions:

(S1) Monotonicity: for all h > 0, r € RY, m > 0, € RY and bounded and continuous
functions u, v such that v < v in RY,

S(h,z, 7 +m,u+m)>Am+ S(h,z,r,v).

RR n° 5441



6 J. Frédéric BONNANS , Stefania MAROSO , Housnaa ZIDANI

(S2) Regularity: for all h > 0 and ¢ € Cy(RY), 2 — S(h,z,¢(x),¢) is bounded and
continuous; r — S(h,z,r,¢) is uniformly continuous for bounded r, uniformly with
respect to z € RV,

(S3) There exist n,k; > 0, i € J C {1,...,n} and a constant K, > 0 such that for all
h > 0 and x in RY, and for every smooth ¢ € C"™(RY) such that |Di¢|y is bounded,
for every i € J, the following holds:

|Sl;pLa({E,'D¢) - S(h71'7¢($),¢)‘ < KCQ(¢)7

where Q(¢) := Y;c s [D'¢loh*.

Remark 3 (S1) and (S2) imply that S is decreasing w.r.t. v (take m = 0), and increasing
w.r.t. r (take v =u+m).

In the following, we say that a function v € Cy(RY) is a sub-solution (resp. super-
solution) to the scheme (2) if

min{S(h, z,v(z),v);v(z) —¥(x)} <0, (resp. >0), forall zcRY.

Under assumptions (S1) and (S2), we have the existence of a comparison principle for
bounded continuous solutions of (2); i.e.

Theorem 4 Let uy, (resp. vi) be a bounded, continuous sub-solution (resp. super-solution)
of (2). Then we have up(x) < vy(x), for all x € RV

Proof. The proof is an easy extension of [1, lemma 2.3]. We assume that m := sup,, (up(z)—
vp(z)) > 0 and obtain a contradiction. Let {z,}, be a sequence in R such that &, :=
up(xy) — vp(x,) converges to m as n — oco. Then §,, > 0 for large enough n. By using
the notion of sub and super-solution, and the fact that min(4, B) — min(C, D) > min(A —
C,B — D), get

0 > min{S(h, zpn, un(zpn), un) — S(h, Tn, vp(Tn), vn); un(zn) — vp(zn)}
Since up (zy) — vp(zn) = 6, > 0, by using (S1), we have

0 S(hy Xy, up(xn),up) — S(h, xpn, vp(Tn), vn)

S(hy Xy, vp(xn) + 0p, v +m) — S(h, 2, vn(Tn), vn)

S(hy Xy, vp(xn) + myvn +m) +w(m — 0,) — S(h, Tp, vp(xn), vp)
1)

Am + w(m — d,),

where w(t) — 0 when ¢t — 07 is given by (S2). Letting n — oo yields m < 0 which is a
contradiction. O

VIV IV IV

INRIA



Error estimates for stochastic differential games: the adverse stopping case 7

In all the sequel we will use a sequence of mollifiers (p.). defined as follows:

pe(z) = e Vp(a/e), (8)

where p € C(RY), [ox p =1, supp{p} € B(0,1) and p > 0. If g is a continuous function
of RV to R, then we define the mollification of g as follows:

g () :=/ 9(x — e)pe(e)de. 9)

RN

Moreover, if g is a Lipschitz function, then
l9(x) — ge(z)| < g[g)r- (10)

If g € CJ(RYN) (resp. Cy(RY)), then

|Dig5(9c)| < Ce_i|g|o, (resp. Csl_i|g|o), Vi=1,...,n. (11)

3 Switching system

Consider the following switching system approximation of (1):
min { max <Lo‘i (x, D (x)); v (x) — m;n{vj(x) + k}) svi(x) — @[J(x)} =0, (12)
JFi

forie€Z=1{1,...,M} and x € RM. In particular we have an equation for every control. A
viscosity solution theory for the switching system can be found in [9], [10], [16]. We recall
here the definition of viscosity solution for a general switching system of the form:

Fy(x,v, Dv;, D*v;) = 0, i=1,..., M, (13)
where F; : RV x RM x RN x SN - R.

Definition 5 The function v = (vy,...,vp) € C(RN)M s called a viscosity sub-solution
(resp. super-solution) of (13) if, for every i € T and v € RV,

Fy(,v(z), Dp(x), D*(x)) <0, (resp- = 0),

for each ¢ € C?(RY) such that v; — ¢ has a local maximum (resp. a local minimum) at x.
Finally we call v a viscosity solution of (13) if it is both a sub-solution and a super-solution.

Lemma 20 implies a comparison principle for (12), and then the existence of a unique
viscosity solution of (12) in Cp(RV)M, denoted v = (v1,...,vn).
We perturb the system (12) and build the following auxiliary system
min{max(sup L (x + e, Do (x)); vf (r) — min{v5 (@) + K}); v (@) — ¥(@)} =0 (14)
J#

le|]<e

Lemma 20 applied to (14), implies the existence of a unique viscosity solution of (14),
denoted v¢ = (v§,...,v5,), in Cp (RM)M. The following lemma is consequence of theorem
21.

RR n° 5441



8 J. Frédéric BONNANS , Stefania MAROSO , Housnaa ZIDANI

Lemma 6 Under assumptions (A1) and (A2), we have that
lv; — vf| < Ce, (15)
where C' only depends on K, \ and [¢];. O

For every i, let v;. the mollification of v, defined as in (9). Since v is a Lipschitz
function, uniformly w.r.t ¢ > 0 sufficiently small, (10) implies

V5 (%) — vie ()] < max[v;]ie; (16)
lemma 20 implies that max;[v{]; remains bounded when ¢ | 0 (this argument will be used
several times in the paper).

Lemma 7 The function v;e — R is, for all i, sub-solution of equation (1), for some
k
RZ=C<I<J+€+€—2>, (17)
where the constant C' depends only on K, \ and [¢];.
Proof. Let R satisfy (17). We have to prove that, for large enough C,
min{sup L®(z, D(vic (z) — R);vic(x) — R —(x)} <0, VacRY, (18)
for all i € Z. Since v;. € C°(RY), the definition of viscosity sub-solution is equivalent to

the notion of classical sub-solution. Therefore we have to prove that one of the following
statements holds for all z € RY:

vie(x) — R < ¢(x), VieTL, (19a)
sup L*(z, D(ve(x) — R)) <0, Viel. (19Db)

For every = € RV, set
I(x) o= {i € T | vE(2) = ()}, (20)

Let # € RY. Denote by B(%,2¢) the ball centered on 7 with radius 2¢. Then we have the
two following possibilities:

CASE A: There exists y € B(Z,2¢) such that I°(y) # &. We claim that (19a) holds.
We have vf, (y) = ¢ (y), for some ig € I*(y). Let i ¢ I°(y). The function v§(z) — |z —y[*/e1
has, for sufficiently small €; > 0, a local maximum at a point z. such that |z. —y| < e.
Since v° is the viscosity solution of (14), one of the following statements holds:

v;(ze) < (ae), (21a)
2 21
max { sup L% (z. + e, v5 (ze), — (ze — y), —);
le|]<e €1 €1

IN
o

0£(e0) - min{u5(e0) + )} (21D)

INRIA
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If 5 (z.) < 9(x.), since v§ and ¢ are Lipschitz, we obtain

vi(y) <d(y) + ([Wh + max[vi])e. (22)
Otherwise, with (21b), we have

() < maxfofie + o (@) + b < 2maxfeile + o5, (4) + . (23)

Since either (22) or (23) holds, we deduce that

vi(y) — Ce — k < (y), VieZ, (24)
where C' depends on [¢0]; and max;[v5];. Since y € B(Z,2¢), and ¢ and v are Lipschitz,
this implies v$(Z) < (%) + k + Ce, for all 4 € Z. Applying (16), obtain v;.(Z) < (%) + R,
for all ¢ € Z, which implies (18).

CASE B: For all y € B(%,2¢), we have that I°(y) = @. We claim that, for all e € B(0,¢),

(vi(- —e),...,v5,(- —e)) is a viscosity sub-solution of the following system
max { L% (x, Dw;(x)); w; (z) — m;ién{wj(a:) +k}} =0, xe B(ie). (25)
JF

Fix e; € B(0,¢) and i € Z. Let ¢ € C*(RY) be such that v(- — e1) — ¢(+) has a local
maximum ., in the ball B(Z,¢). Then v;(-) — ¢(- + e1) has a local maximum at x., — €.
Since x., — e1 € B(%,2¢), we have that v§(xz., —e1) > ¥(ze, — €1), and since v° is the
viscosity solution of (14), we obtain

e { sup L (20, — €1+ €,05 (26, — €1), Dp(xe, ), D2 (e, ));
le|<e

V5 (Te, —€1) — H_;in{v;(a:el —e1)+ k’}} <0.
JF
Taking e = e;, obtain

L (x81 ) v:is(xﬁ - 61)7 D@(xﬁ)ﬂ DQSD(xﬁ)) <0,
i (e = 1) — min{o5 (e, — 1) + 4} < 0.
J#

This being true for an arbitrary e; € B(0,¢) and ¢ € Z, we obtain that, for all |e| < ¢,
(vi(- —e),...,v5(- —e)) is a viscosity sub-solution of (25). Applying [1, lemma A.3 and
lemma 2.7], since v () is limit of convex combination of v5(- — e), for e € B(0,¢), then
(v16(+), - - -, vpre(+)) is a viscosity sub-solution of (25). Moreover, since it is a smooth function,
it is a sub-solution of (25) in the classical sense, and we have

L (%, Duvic(#)) <0, Viel (26)

RR n° 5441



10 J. Frédéric BONNANS , Stefania MAROSO , Housnaa ZIDANI

We know that [vf (y) — v (y)| < k for all i, j € 7 and y € B(%,¢). Consequently

Ck
D" (%) — D" (%) < o VYn > 1,

where C' depends only on p defined in (8). It follows that

LY (&, Dvje(Z)) — L(Z, D (T)) < Ck

g2’

Vijel.

Combining with (26), get L% (&, Dv;- (%)) < Ck/e?, for all i and j in Z, for some C depend-
ing on p and K, and hence, sup,, L%(%, Dv;- (%)) < Ck/e? for all i in Z. Since L* is uniformly
Lipschitz, we have that for all i in Z, sup,, L*(%, Dv;:(Z) — Ck/(A\e?)) < 0. Therefore (18)
also holds in this case.O

Theorem 8 For every i € T and for all x € RY we have
0<v; —u<CkY3, (27)
where C' depends only on A and K from (A1).

Proof. a) We prove the first inequality of (27). Let w = (u,...,u) be the vector whose
M components are equal to u. We claim that w is a viscosity sub-solution of (12). Let
¢ € C?(RY) be such that u — ¢ has a local maximum at zo € R". Since u is a viscosity
sub-solution of (1), either u(xg) < 9(z0), or sup, L*(zo,u(xo), De(xo), D*p(w0)) < 0. If
the latter holds, then

L™ (xo,u(xo),Dgo(xo),DQ@(gco)) <0, Viel.

Combining both cases, obtain

min { max <Lo‘i (w0, u(x0), Dp(xo), D*p(x0)); u(xo) — rjn;gl{u(ajo) + k});

u(xg) — 1/)(3:0)} <0, Viel.

Therefore w is a viscosity sub-solution of (12). By the comparison principle (lemma, 20), the
first inequality of (27) holds.

b) We now prove the second inequality in (27). By lemma 7 and proposition 2, we have
that v;e — R < wu, for all i € Z, and = € RY, where R satisfies (17). Applying (16) and (15),
obtain

k
vi—ug|vi—vf|—|—|vf—vis|+|vi€—u|SC’(E—Q—FS—Fk), VieZ, VzeRY,

where C depends on K, A, max;[v§]y, [¢)];. Minimizing with respect to e, we obtain the
desired upper bound, with e = k'/%. O

INRIA



Error estimates for stochastic differential games: the adverse stopping case 11

Remark 9 We obtain the same estimate that in the case of only one player, (see [2, theorem
2.3]), by extending the same methods.

4 Bounds on u — uy,

We state in this section our main results: the upper and lower bounds on v — uy,.

4.1 Upper bound on v — uy,
Perturb the equation (1) so as to obtain
min{ sup LYz + e, Duf(z)); u®(x) — w(x)} =0, zcRV. (28)
a,le|<e

Under assumptions (A1) and(A2), by proposition 2, (28) has a unique viscosity solution
u® € Cp (RY). In view of Theorem 21 with k = 0, we have that |u — u®| < Ce, for some C
depending on A, K and [¢)];. Define the contact domain of u® as

X () = {o € RN u(2) = v (a)}.

Let u. be the mollification of u¢, defined as in (9). Since u® is a Lipschitz function, uniformly
w.r.t € > 0 sufficiently small, (10) implies

|u(2) — ue(2)| < [ulie, (29)
where [uf]; remains bounded.

Theorem 10 Assume that (A1), (A2), (S1)-(S3) hold and let the approzimation scheme
(2) have a unique solution uy, in Cy(RN). Then, for sufficiently small h > 0, we have

uw—up < ChY, VzeRY, (30)

where £ := min;c j{k;/i}, C depends only on )\, K, [¢]; and K., the constants k; and K¢
being defined in (S3).

Proof. We claim that
min{S(h, z,u:(x) — Ry, uc — Ry);u-(x) — Ry —¥(2)} <0, VzecRY, (31)

for some R; > 0 of the form R := A1Q(u.) + Ce, where Q(-) was defined in (S3) and
C depends only on [¢)]; and [uf];. Indeed, we will prove a slightly stronger result: for any
x € RV, one at least of the following two statements holds:

us(z) — Ce < (x), (32a)
S(h,z,ue(x) — KeA7'Q(ue), ue — KeA™'Q(ue)) < 0. (32b)

RR n° 5441



12 J. Frédéric BONNANS , Stefania MAROSO , Housnaa ZIDANI

Fix an & € RY. We have the following alternative:

CASE A: There exists y € B(%,2¢) such that y € X (u®), i.e. u®(y) = ¢¥(y). Since u®
and ¢ are uniformly Lipschitz, for some C depending only on [¢)]; and [u®];, we obtain
(32a) at point x = 7.

CASE B: One has X (u®) N B(Z,2¢) = @. We claim that u®(- — e) is, for all e € B(0,¢), a
viscosity sub-solution of

sup L*(z, Dw(z)) =0, x € B(Z,¢). (33)

Fix e; € B(%,¢), and let p € C?(R") be such that u®(- — e1) — ¢(-) has a local maximum
at a point z., € B(%,¢). Then u®(-) — (- + e1) has a local maximum at z., — e;. Since
Te, — €1 € B(Z,2¢), and hence, z., — e1 ¢ X (u), we have, whenever |e| < ¢,

sup La(mm —e1+e, ua(xel - 61), D(p(mﬁ)v D2‘p(m81)) <O0.

ale|<e -
Taking e = e;, we have

sup L (we, , u (e, — e1), Dip(xe, ), D*p(xe,)) < 0.

This proves our claim that u®(- — e;) is a viscosity sub-solution of (33). Since e; is an
arbitrary point of B(0,¢), u®(- — ) is a viscosity sub-solution of (33), for all |e] < . Since
ue(+) is a C* function, and it is limit of convex combination of u°(- — e) (see [1, lemma A.3
and lemma 2.7]), hence, applying ([1, lemma 2.7]), we can say that u.(-) is a sub-solution of
(33) in the classical sense. This implies

sup L*(&, Du.(%)) < 0. (34)

By consistency, S(h, &, us (%), u:) < KcQ(ue). Applying (S1) with u = v = u.—KcA~1Q(u.),
r = u.(%) — KcA 'Q(ue), and m = KcA~1Q(u.), obtain (32b) at point z = 7. Combin-
ing cases A and B we obtain (31). So u. — Ry is a sub-solution of (2). By theorem 4,
ue — Ry < up, ie., u—up < KeA7'Q(u:) + Ce, where C depends on [uf]; and [¢];. Using
Quc) = Y, |Duclh*, and (11), obtain Q(u:) < C'Y, ., e ~*h*i. The result follows by

setting ¢ = max;cy h¥/?. O

4.2 Lower bound on u — uy

We perturb the switching system (12) as follows

min{max( inf LY (z + e, Dv5(x)); v (x) — Ijn#l{vf(x) +k});vi () — (o)} =0, (35)

le|]<e

INRIA



Error estimates for stochastic differential games: the adverse stopping case 13

for all i € Z and 2 € RY. By lemma 20, this system has a unique viscosity solution
v = (vf,...,v5) in Cp (RYV)M. Consider v., the mollification of v¢, defined as in (9).
Since v® is a Lipschitz function, uniformly w.r.t. € > 0 sufficiently small, applying lemma
(21) and (10) we have

|v; — 05| < Ce, |v; — vie| < max[vf]se, (36)
where C' depends on A, K and [¢];, and max;[v$]; remains bounded.

Lemma 11 Let zg € RY, ig € argminjez vjc(20), and assume that

e < (12sup[vj]1) k. (37)

Then the following statements hold
v (y) <v5(y) +k, forallj€Z, andy € B(zo,2e), (38)

sup L®(x0, Dvjye(20)) > 0. (39)

Proof. We follow the method of (|2, Lemma 3.4]).
a) Let us prove (38). Since iy € argminjez vje(zo),

Vige (T0) — ﬁigg{vje(%) +k} = g&%ﬁi{vioa(%) —vje(wo) — k} < —k. (40)

Since for every 4, v$ is Lipschitz, we apply (10) and we have that

v, (z0) — n;in{v?(a:o) +k} < —k + 2emax(vf];,
J7Fr0 7

and, for all y € B(xo, 2¢),

v, (9) = min{v5 () + b} < —k + 4maxfef]a (e + oo — yl) < —k -+ 12emaxfef]s.
J7%0 2 [

Taking ¢ < (12max;[v{];) "1k, obtain (38).
b) We prove (39). We claim that v (- —e) is, for all |e|] < ¢, a viscosity super-solution of

L% (z, Dw(x)) =0, x € B(xo,¢). (41)

Fix e; € B(0,¢), and let ¢ € C?(R") be such that vf, (- —e1) — ¢(-) has a local minimum at
Te, € B(20,€). Then v; (-) — (- + e1) has a local minimum at z., —e; € B(xo,2¢). Since
v;() is a viscosity solution of (35), and v§ (o) — min,, {v5(zo) + k} < 0 by (38), we have
that

Ii‘n<f L% (ze, — e1+ €, 05, (ze, — €1), Dp(e, ), D*@(xe,)) >0, Ve| <e.

e|<e
In particular, for e = e;, we obtain that v (- —e;) is a viscosity super-solution of (41). Since
e1 is an arbitrary point in B(0, ¢), we obtain that v; (- —e) is, for all e € B(0,¢), a viscosity
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14 J. Frédéric BONNANS , Stefania MAROSO , Housnaa ZIDANI

super-solution of (41). Being a limit of convex combinations of v§ (- — ¢), and a smooth
function, v;,.(-) is a classical super-solution on (41), and hence L% (xg, Dv;,e(z0)) > 0;
relation (39) follows.O

Define the two following sets:
X :={z e RN up(z) =¢(2)}; Y :={x € RN|S(h,2,up, [un).) = 0}.

Proposition 12 Under assumptions (A1), (A2) and (S1)-(S3), and assuming that (2) has
a unique solution uy, in Cy(RY), we have that, if x € Y, the following holds:

up(x) — u(z) < ChY, (42)

where ¢ ;= min;e ;{k;/(3i — 2)} and C depends only on \, K and K..

Proof. Consider the switching system (35), its solution v® = (v5, ..., v$,;) and mollification
Ve = (V1e, -+ -, Une)- Let w(y) := min; vi(y). Define
m :=sup{un(y) —w(y)} = sup {un(y) —vic(y)}. (43)
yey i€T,yey

Let ¢(y) := (1 + |y|?)*/2. An approximation of m is, for k > 0, given by

my, := sup{un(y) —w(y) — ko(y)}- (44)

yey

Since uj, and w are bounded, ¢ is coercive and Y is a closed set, the supremum in (44) is
attained at some point xg € Y. By the definition of w, we also have

Ty € arg r;leag{w(y) — Vige(y) — ko(y)}, (45)

when i € argmin;ecz vj-(20). In particular,
Mk > un(y) — vige(4) — ko(y), forall yev. (46)

Let ¢ be such that (37) holds. Applying lemma, 11, and since the first and the second order

derivatives of ¢ are bounded, we have sup, L*(zo, D(vi,e + k¢)(z9)) > —Ck. Combining

with (S1), (S3), (44) and z € Y, get
—Ck — KcQ(vige + ko) S(h, o, (Vige + k) (20), Vige + ko)

S(h, xo,un(zo) — mp, up, — my)

—Amy + S(h, ko, up(xo), up) = —Amy.

VAIVANIZAY

We obtain Amy < KcQ(viye + k¢) + Ck. Passing to the limit, get

m < KeQ(viye)- (47)
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Error estimates for stochastic differential games: the adverse stopping case 15

In conclusion, we can say that for x € Y and for every i € Z,

sup{un(y) —u(y)} < m+sup{w(y) —u(y)}

yey yey
< m+sup{w(y) — vie(y)} + sup{vic(y) — v (y)}
yey yey
+§1elg{vf () —vi(y)} + Sgg{vi(y) —u(y)}. (48)

Applying (36), (27), and the fact that w(y) < v;.(y) for all i € Z, we obtain

sup{un(y) — u(y)} < m+ Ce + CkY3. (49)
yey

where C' depends on K, A, [¢]; and max;[v$];. Using (47) and lemma 1, we obtain

uw—up < KeQuye) +Ce+CkY3, Vaey.

The result follows by setting ¢ = max;c s h5=2 and using (37).0

Theorem 13 Under assumptions (A1), (A2) and (S51)-(S3), and assuming that (2) has a
unique solution uy, in Cy (RY), we have that

up, —u < ChY, VzeRY, (50)
where { = min;e j{k;/(3i — 2)} and C' depends only on \, K and K..

Proof. If z € X we have that up(z) = ¥(z) < u(x), therefore (50) holds. If z € Y, then by
theorem 4, we have that uy,(r) — u(x) < Ch®. Since X UY = R¥, the conclusion follows. O

4.3 Extension to the case of a compact control set

In this section we show that our results extend to the case of a precompact set of controls.
We endow the set of controls with the distance d(a,a’) = [®* — ®'|y, where & :=
(@™, b%,c*, f*). We suppose that sup,¢c 4 |2%|1 < +00. Precompactness of A is equivalent
to the following condition:

(A3) for every § > 0, there are M € N and {o;}M, C A, such that

: f o (o7} ba _ bai (e PN e 7) (e (073 < 5.
sup  Jnf (lo® = oo +| o+ [e® = ™o+ |f* = f*o) =

Consider the viscosity solution u of

min{ngLa(a},Du(aj)); u(z) —(x)} =0, z € RV,
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16 J. Frédéric BONNANS , Stefania MAROSO , Housnaa ZIDANI

Existence, unicity and Lipschitzness of u are proved in [11, lemma A.1]. Fix ¢ and consider
ws the viscosity solution of

min{ sup L% (x, Dws(x)); ws(z) — ¥(z)} =0, r € RN,

1€

where Z)s :={1,..., M}, M given by (A3). Asin ([2, lemma 3.3]), we can show, by adapting
the methods, that
lu —wslo < C9, (51)

where C' depends only on K and . If we note uy, the approximation of v and wy, s the approx-
imation of ws, then we have u;, < wy, s, and wp s —ws < Ch7, where ¥ = min;e s {k;/(3i—2)},
k; given by (S3). From the proof of proposition 12, we can see that C is independent of the
size of Zp;. Then we have that

—ChY <wup—u<wup—whs+wps —w+w—u<ChY + 14, (52)
where v = min;es{k;/i}, 7 = min;es{ki/(3i — 2)}, k; given by (S3). All constants being
independent of the size of Z,s, then we can choose § of the order of k7 and we obtain the

same result as in theorem 13.

Remark 14 It may happen that only wy, 5 is actually computed, and in that case it is useful
to estimate u — wy 5. Since |u — ws| < C9, it follows from previous discussion that

—C(6+h") < whs —u < C(S+ h7).

5 Specific approximation schemes

In this section we apply our previous results to some specific discretization schemes.

5.1 Finite differences, one dimensional problem
Let x be in R, ¢ in C™(R), h in R and define

¢z +h) — ¢(x)
h )

In particular, by a Taylor expansion, we obtain

oz +h) —2¢(x) + oz — h)
h? '

dro(x) = Ag(x) =
1 2 2 1o
0:6(z) — De(x)| < ShID"¢,  [And(z) — D ¢(x)| < 57| D7¢|.
Consider the finite difference scheme in R:
S(h7 x? T? ¢) ::

= sup{—a®(2)A¢(z) — b3 (2)d4 ¢(z) + 0% (2)0-¢() + c*(@)r — f*(2)}, (53)
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Error estimates for stochastic differential games: the adverse stopping case 17

where b () = max(b*(x),0), and b (r) = max(—b*(x),0). For the consistency hypothesis
(S3), we obtain, from the above Taylor expansion, Q(¢) = |D?¢|h + |D*¢|h?, i.e. ko =1
and k4 = 2. Then, by (30) and (50), we have

—ChY® <u—wuy, < ChY2, (54)

Remark 15 Consider a general scheme S : Rt x RY x R x Cy(RY) — R, which satisfies

(S1), (S2) and (S3), for some k; > 0, i € J. To obtain equal or better estimate than (54)

we must have: ko1 % )
M in——t >

mpTZ 3 Wy 575 (3)

In particular, the k; which give an equal or better estimate than (54) are
(i) k; >1i/2, fori<4; (i) ks > (3i—2)/5, fori> 4. (56)

Indeed, leti < 4. If k; > i/2, then we have also k; > (3i —2)/5. Moreover, if i > 4, we have
k; > (3t — 2)/5 and also k; > i/2. Hence we obtain (55).

If the inequalities in (56) are strictly satisfied, then also the inequalities in (55) are strictly
satisfied and we obtain o better estimate.

5.2 Markov chain approximation

The scheme (53) may be viewed as a particular Markov chain approximation of (1). We
consider now a general Markov chain approximation of (1) in a regular grid, and we want to
find conditions on the probabilities of transition to obtain estimate as in (54). We consider
a discretization step h € R and a regular grid of discretization G". With the coordinate
k= (ki,...,kn) in ZV, is associated the point z € R of the form zy := (kih, ..., kxh).
Let {th,q > 0} the states of the Markov chain at time ¢, with transition probabilities
p(zk,yla), o being the control value. Let At" an interpolation interval satisfying At" — 0
as h — 0, and let E 1 be the conditional expectation of X}, given {X} = a3} and the
control value a. A p0531ble adaptation for the cost function to this Markov chain is the
following;:
W) = A | SO0 ) ad) ot

q>0

Applying the dynamic programmic principle for the controlled chain {X él, g > 0}, at state
2k € Gp, we obtain the following relation:

1

Uh(xk) max{lnf(m

Zp (zk, yla)un(y) + f () AL") ) (ax)}. (57)
Since 1 + ¢®(zx)At" > 0 for all o, (57) may be written in the form (2), with

St ax,r,0) = sup - tthxk,ym - )+ g eorf. 69
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18 J. Frédéric BONNANS , Stefania MAROSO , Housnaa ZIDANI

With the above definition for S, the assumptions (S1) and (S2) are satisfied. Suppose that
(S3) is satisfied and we want to look for simple conditions on the probabilities p(xy,y) and
on the k; defined in (S3), under those we obtain equal or better estimate than (54). We
note P, , = > p(z,y|a). Using remark 15, we obtain the following:

Theorem 16 Let S defined as in (58). Suppose that (S3) is satisfied for some k;,i € J.

(i) We have an equal or better estimate than (54) if and only if
1 (e}
(1) || g B ) ~ (@) = Kch®,
b1 L p 2 a%(x)|| = Koh*
(1) | gxzrPealy — 2 — a® (@)l = Kch',

1 ; . .
(c1) IsomPaaly — @) = Kb, for i =3,4,
with ) 5
k12§, ko > 1, k3257 ky > 2. (59)
(5) Moreover we have a better lower bound if and only if, in addition, k4 satisfies strictly

(59).

(i) We have a better upper bound if and only if all the inequalities in (59) are strictly
satisfied.

Proof. Fix 2 € R, and let ¢ € C"(RY), such that D¢ is bounded for i = 1,...,n. Set
A? := |sup, L%(x,D¢p(x)) — S(h,z,(x), ¢)|. An upper bound of A? is

up -~ tla®(@) D26()] ~ 4 (£)Doo) + 55 3wl yla) 6(0) — 9a) )

From the Taylor expansion of ¢(y) up to order 4, we deduce that

AP < AT+ AT+ AT+ A], (60)
where
AP = sup| — b (@)DOL) + 5 irPry DOy — o),
AZ: = sup| — trla® (@)D26(a)) + 5 Pay Do)y — 27,
ATs = suplar e, Do)y — a)il i =34
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Error estimates for stochastic differential games: the adverse stopping case 19

Suppose now that conditions (al)-(d1) and (59) are satisfied. Then J = {1,2,3,4}, and
applying remark 15, we obtain the result. Moreover, if k4 > 2, then k;/(3i — 2) > 1/5 for
all i. Hence we obtain a strictly better lower bound. Since k;/i > 1/2 for all 4 in J, if all k;
satisfy strictly (59), we have a better upper bound.

Suppose now that we have a better or equal estimate than (54). Then we have

A? < KoY |D'glh*, (61)

=
with min;ey k; /i > 1/2 and min;e s k; /(3¢ — 2) > 1/5, and here J = {1,2,3,4}. From (61),
(60) and remark 17, we have that (al)-(d1) are satisfied with k; as in (59). If the lower
bound is strictly bigger that 1/5, since k; /(3¢ — 2) > 1/5 for ¢ = 1,2, 3, then we must have

k4 > 2. If the upper bound is strictly bigger than 1/2, since k; > i/2 for all 4, then we must
have k; > i/2 for all .0

Remark 17 (i) We have that conditions (al) and (b1) imply the consistence in the sense
of Kushner (see [15]), i.e.

|E(y — x) — b%(2)Ath|| < Athry,  ||Cov(y) — 2a%(z)|| < Athry.

In [15] we have r; = o(1), for i = 1,2. Our error estimate need the more restrictive
conditions r1 = h* and ro = h¥2 + Athh2kr 4 Ath,
(i) We remark that to obtain (al)-(d1), we use the inequality

A? < |Dig|- |E(y — )’ —d’l, (62)

for some a' and for all ¢. This inequality is sharp, since |[E(y — x)" — a'| is the optimal
constant for which we have this upper bound (for any function ¢). Indeed, let B an i-linear
symmetric form. The optimal constant C' for which

|Dig(x)B| < C|D'¢|, Vo € C™(RN) such that D'¢ is bounded V i,

is C' = |B|. Indeed, we may identify a’ and E(y — x)* with i-linear symmetric forms, and the
above display reduces to the Cauchy-Schwarz inequality for i-linear symmetric forms.

(iii) Let A? := | E?:l Dig(z)E(y — x)* — a'Di¢(x)|, for some a'. We have that the optimal
constants C; such that

4
A <Y CiD'¢(B(y — z)" — d’|, V¢ € C™(RY) such that D'¢ is bounded ¥ 1,
=1

are C; = 1, for all 1.
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5.3 A counter example

We give here an example of a finite difference scheme for which the k; do not satisfy conditions
given in remark 15, and we will show that we obtain a estimate worse than (54). Consider
the following equation

sgp{— trfa®(x) D*u(x)] + c*(x)u(z) — f*(x)} =0, =€ R? (63)
with
b%(x) = 0,a%(x) = ( (1) (2) ), YV, a.

Let h the discretization step and At" the interpolation interval. We consider the following
probabilities of transition:

1
p(x,x — hesla) = 5 p(z,x + hey + hesla) = 1

In particular, if we choose At" = 1h?, we have that these probabilities verify

_ 55 — 1 h + 1 —h — 0
T2\ —-h h 4 h —\o0 )
1 h? A2 1 h?  —h2
2 Z B2 B2 + 1\ n2 2

and

(&
Ey —z)* = %(
h

We have that

Zp ) D3 () — 2)°

wy) 3 ¢ i _
- ;p izy |:; airllaxg—z (x)(yl - 1'1) (y2 _ x2)3
1 63¢ 1 83¢ 83¢ i

- 6 ¢
=3+ 3 (G0 + g+ g Son+ )
9°¢
+

1/ 9% ¢ 0°¢

+1<fa—x:;»(x)h+ax—%x2(m>" T O @)
1 9%

= (z)h.

T 2042,

Hence we can write (S3) in the following way

|SgpLa(wa¢($)aD¢($)aD2¢(9C)) = S(x, h, ¢(x), ¢)| <
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1, 03¢ 1,0% 1, 0% 0*¢
i I A i il D h2.
2|3x%8$2 @)l + (2 | oz} (@) + 2|8m%3x§ () + |3x‘21 |(;v)>

So, we have ks = 1 and k4 = 2, and by applying theorem 3 and theorem 4 we obtain

—ChY" <u—wuy, < ChY3, (64)

5.4 The generalized finite differences scheme

We consider the generalized finite differences scheme defined in [5]. Let ¢ = {¢x} be a real
valued function over Z"V. Let £ € Z" and consider the finite difference operator

Acpr := Prye + Ph—g — 20k
In ¢ belongs to C?(RY), and ¢y := ¢(z1) for all k, then we have

Agpr = d(rre) + d(wr—e) — 26(2).

Then we consider

Up(Thte; ) — un(Tk)
(Drun(zk)); = _h
kUR\LE up (k) :h(ﬂck—ei) if b2(xp) < 0.

if b3 (xx) >0,

Let S be a finite set of Z\ {0} containing {e,...,en}. We consider the following probabilities

of transition
(b ()|
(e% _ h 7
p*(zk, zp|a) = 1 — At Z§1< W —|—2§ ak,g),

¢es
by
*(x, Tp £ eihla) = Ath % + Qe; |

p
p*(zk, xp + Eh|a) = Athak@ for £ €8, £ # ey,
p*(k,yla) =0 fory ¢ wpqs.

Then we can write (58) in the following way:
S(hyzg,r,¢) = Sup{ — > akeAeh(xr) — b () Di(r) + ¢ (wp)r — fa(xk)}- (65)
* ¢es
We make the strong consistency hypothesis on the matrix
a®(x) = Y h*&i&onceie), VkeZ.
2

The scheme defined in (65) satisfies (S1) et (S2). We consider a function ¢ € C?(R"Y). By
applying a Taylor expansion, we obtain
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(S3) Isgg L*(x,¢, D¢, D*¢) — S(x, h, ¢(x), 9)| <

sup [6*[o| D*¢loh + sup|a®|3| D ploh”.
acA acA

So we can say that ko = 1 and k4 = 2. Applying theorems 3 and 4, obtain the same estimate
as in the case of one player (see [2]).

Theorem 18 Assume (A1)-(A4), (S1)-(S3). If u and uy are solution of (1) and (2), with
S defined as in (65), then for h sufficiently small we obtain

—ChY5 <wu—wuy <ChY? O

A Well-posedness of the switching system

In this appendix we prove the well-posedness of the switching system (12), for £ > 0, under
assumptions (A1) and (A2) on the coefficients (stated in section 2). Well-posedness of the
original equation (1) will follow by setting k& = 0. Let us start by stating a technical lemma
which is an easy extension of (|2, lemma A.2]):

Lemma 19 Let v be a bounded and continuous sub-solution on (12) and v be a bounded and
continuous super-solution of another equation (12), where L is replaced by L*, satisfying
the same assumptions with coefficients (7%,b%,¢c%, f*). Let g € C*(RY x RN). Consider

m = sup{v;(z) — U;(y) — g(z,y)},

and suppose that the “sup” is attained at some point (ig,xo,yo). Set
A= {i € Z|(i,xg, yo) realizes the sup}; I(xo) := {i € Z|vi(xo) < ¢(z0)}.
If AnI(zg) = @, then there exists i € A such that

vi(yo) < 131,1;11,1{@(2/0) +k}. (66)

Proof. We proceed by contradiction. Let j in A. If (66) does not hold, there exists
¢ € T such that

v;(yo) > vi(yo) + k- (67)
Since AN I(zg) = &, then for all i € A,

max{L (w0, vi(0), Dug(wo), D2,9(0)); vi(w0) — min{v;(zo) + k}} <0,
Hence we obtain v;(zo) < v;(x0) + &, and then with (67),

vj(z0) — V;(yo) < vi(zo) — Vi (yo)- (68)
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Therefore [ € A, and equality holds in (68). Then @;(yo) = 7;(yo)+ k. Since A is a finite set,
this proves that there exists a finite sequence ji, ..., jx € A such that o, (yo) = 0j,,, (vo) +k
fori=1,...,K —1,and j; = jx. So we obtain

K-1

0= 3" (53.50) — 0502 (00)) = (K — Dk >0,
=1

and we have a contradiction. Therefore (66) holds. O
Now we can state the following lemma about comparison, existence, uniqueness and the
bounds on the solution v = (vy,...,vpr) of (12). This is an easy extension of ([2, theorem

A1)).
Lemma 20 Under assumptions (A1) and (A2), the following statements hold:

(a) If v and w are respectively sub-solution and super-solution of (12), such that v;, w; €
Cy(RN) for all i € Z, then v < w in RV.

(b) There exists a unique viscosity solution v of (12), such that v; € Cp, (RY) for alli € .
This solution satisfies

mlax|vi|0 < max {A_lsup|fo‘|o; |w|0}, (69)
[cifvilo + [f*Tn
max[v;]; < max {S;lfmin{l, N -l = [@0]1}. (70)

Proof. (a) This is a consequence of the comparison principle [10, theorem 3.1].
(b) Existence and uniqueness follow from the comparison principle; they are proved in [10]
for the Dirichlet problem on a bounded domain. To extend the result to an unbounded
domain, we have only to modify the test functions of [10] in the standard way. Let M :=
max{sup, A" f%|o; [¥|o}. It is easy to see that M and —M are respectively super and sub-
solution of (12). Hence, by the comparison principle we obtain the bound on max; |v;]o.
To obtain the bound on max;[v;];, we set

m = sup ¢;(w,y) := sup{vi(z) — vi(y) — dlz — yI* — (ol + |y|*)},

i,y 2,y
where § > 0 and € > 0. The supremum is attained at a point (ig, zo, Y0), SO
m =iy (20) = vig (y0) — 8|0 — yo|* — e(|zo|* + [yo[*)-
Define the following sets:

A = {i € Z|(i, xg, yo) realizes the sup}, I(xg) := {i € Z|vi(zg) = ¥(x0)}.
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The maximum principle for semi-continuous functions (see [7]), and the definition of viscosity
solutions imply that, for i € A, there exist X,Y € SV such that

min{max(L* (2o, vi(w0), Pz, X); vi(z0) — Ijn;gl{vj (z0) + k});vi(z0) — (20)} <0,

min{max (L (yo, vi(yo), py, Y); vi(yo) — rjr_gl;{vj(yo) +k});vi(yo) — ¥ (yo)} >0,

where p, = 26(zo — yo) + 2ex0, py = 26(xo — Yo) — 2€yo, and there exists £ > 0 such that

X 0 I I I 0
(58 Y 1 A )] ) vom
CASE 1: There exists i € ANI(xg), i-e., v;(x9) = ¥ (xo). Since T;(yo) > ¥(yo), for all i € A,

we have
vi(70) — Vi(yo) < ¥(x0) — ¥ (yo) < [Y]1]7o — yol.

CASE 2: The set AN I(xg) is empty. Then

max{ L (zo,vi(z0), Pz, X );vi(T0) — rjxl;iéril{vj(xo) +k}} <0, VieA (71)

Since max{ L% (yo, Vi, (Y0), Py, Y); Vi, (Yo) — min,z;, {v;(yo) + k}} > 0, applying lemma 19,
obtain
L% (330, (%7 (mo)apzv X) S 0 S L% (Z/07 Vig (yo)apyv Y)

Now we can proceed as in the standard situation (see [12, lemma A.1]).
Combining cases 1 and 2 we obtain the result.O

By using ([1, theorem A.1]), we prove the following theorem.

Theorem 21 Let v and v be solutions of (12) with coefficients o, b, ¢, f and &, b, ¢, f
respectively. Suppose that assumptions (A1), (A2) are satisfied for both sets of coefficients
with the same X\, and max; |v;|; + max; |0;|1 < M < co. Then

Amax|v; — Tilo < M (sup{|o® — %o + [b% = 0o + [¢* = o + [f* = f¥]o}),
? [eY
where M depends on K, sup, |v;|o, sup; |0i]o-
Proof. We set

m := sup ¢;(z,y) := sup{vi(x) — vi(y) — oo — y|* — e(j=* + )},

4L,T,Y 4T,y

where § > 0 and € > 0. The “sup” is attained at a point (4, zo, yo), SO

m = v;(x0) — U;(y0) — 8lzo — yol* — e(|o|* + |yo?).
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Let
A= {i € I|(i, o, yo) realize the sup}, I(xg):={i € Z|vi(zo) = ¥(x0)}.

The maximum principle for semi-continuous functions (see [7]), and the definition of viscosity
solutions imply that, for i € A, there exist X,Y € SV such that

min{max (L (zo, v;(x0), Pz, X ); vi(To) — IjIl;‘gl{vj (o) + k});vi(xo) — (x0)} <0,

min{max (L (yo, 0i(yo), py, Y); Vi(yo) — rjn;gl{@j (yo) + k}); 0i(yo) — ¥ (v0)} >0,

where p, = 26(zo — yo) + 2ex0, py = 26(x0 — Yo) — 2eyo, and there exists £ > 0 such that

X 0 I -1 I 0
(58 Yeu( 1 ) ee(] ) om
We have to study two different cases.
CASE 1: If there exists i € AN I(xg), then v;(xg) = ¥(xp). Since v;(yo) > ¥ (yo), then we
have
vi(zo) — Vilyo) < ¥(xo) — ¥(yo) < [Wilzo — yol.
CASE 2: If An1I(x¢) = @, then

max{ L (zo,vi(z0), Pz, X );vi(T0) — rJn;iéEl{Uj(xo) +k}} <0, VieA (72)

Since, max{L* (yo, Vi, (Y0), Py, Y ); Uiy (Yo) — min,.;,{0;(yo) + k}} > 0, applying lemma 19,
we obtain )
L% (330, Vi (mO)apzv X) S 0 S L% (yﬂv 61'0 (yo)apyv Y)v

and then -
0 < —tr[a®o (yo)Y] + tr[a®o (zo) X] — 00 (yo)py + b0 (x0)pz+

&0 (y0) g (y0) — ™0 (0)viy (x0) — F¥0 (o) + [ (20)
— (1) + (I) + (IIT) + (IV)).

As in [1], we analyze each term separately:

trfa” (o) X] ~nfa” ()Y
206{|0%0 (29) — 5% (o) + |5 (z0) — 5% (yo) |’}
b0 (zp)? + [ (yo)l2),
(b%0 (z0) — b0 (y0)) (w0 — Yo)
2[b%0 () — b0 (z0)? + 2|0 — yol?
5% (20) — 5% (o) | 0 — vol,
¢ (yo)u(yo) — ¢ (580) (w0)
a6 () = &% )] -+ o) [ Ga0) =27 o)
oo (ne) — Foo(w) )
200 (0) — 20 (20)] + |0 (0) — o (30)] |20 — sl

IA

IA I IA

IA
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Hence we obtain B
A < 205{|0%0 — 50 3 4 b0 — 53} +

+{|vig[o]e¥0 — c¥io]g + | f0 — f¥io|o}+
+26{([g 0]} + [b¥0]1 + 2}|zo — yol*+
{1Bio lo[e*]1 + [f*]1}|zo — yol + Ce(1 + |zo| + |yol)-

We sum the bounds obtained in the two cases to have a general bound of m. So we obtain

Am < 205{|o%0 — g%io

+H{[vilo[e™0 — Moo + | f¥i0 — fo]o}+
+20{¢[5%0]F + [b%0]; + 2} |0 — yo|*+
{loilo[e™0]u + [F*0]1 + A1 o — yol + Ce(1 + |zol* + [yo] ).

We set k1 := {20[5%0]3 4 2[b%0 ]y + 4}, ko := {|V;y|o[c¥0]1 + [f*0]1 + A[t]1}. From now on
we proceed as in ([1, theorem A.1]). Noting that 2¢(zo,yo) > (0, o) + ¢(yo, yo), we have

G+ [b%0 — b0 3} 4

|20 —yo| < 671, (73)
where C' depends K. The inequality (73) implies that

|20 — yol* < C62, (74)
where C' depends on K. So we obtain

Am < {[vig o]0 — c¥0fo + | Y0 — fFolo}+
+205{|o%0 — %0 [§ 4 [b¥0 — b0 [§} + C(k1 + k)0~ + Ce(1 + |zo|* + [yol?).

We know that v;, (x) — 9, (z) — 2¢|z|*> < m, and so
o+ [f¥0 — fHolob+
+205{|g %0 — 5o S+ C(k1 + k2)d ! + 2¢|z|> + Ce(1 + |xo|® + |yol?).

This inequality holds for all §, and hence we minimize with respect to d, by noting that for
>0,

Vig () — Vig () < {[vig o]0 — Yo

2 b0 — p™io

min(16 + 05~ 1) = C1Y/2,
6>0
Hence, by sending ¢ to zero, we obtain

o+ [f¥i0 — o

B,

Vi (%) — Uiy () < {Jviplole™0 — Mo

o+
C{|oi0 — g*0|3 + [b>0 — b0

where C' depends on K, |v;, |0, |7i,|o and [1]1. Since (s24t2)'/2 < |s|+|t|, we can conclude. O
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