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Abstract:

Motivation: Over the last years it has become evident that stochastic effects play
an important role in biological processes leading to an increase in stochastic modelling
attempts. Despite the availability of exact algorithms to numerically solve the chemical
master equation that entirely describes a stochastic system, stochastic simulations are most
of the times very computationally expensive. Hybrid methods that treat some processes as
in the deterministic framework and others as stochastic are a promising way to speed up
simulations for those cases involving different time scales, e.g., systems integrating metabolic
pathways and gene regulatory networks.

Results: We present a sound mathematical basis for hybrid stochastic and deterministic
models, and provide easy to handle algorithmic schemes for exact simulation of such hybrid
models. We finally show numerical results obtained for a model describing bacteriophage
T7 intracellular growth that illustrate the power of and the computational speed gained by
the presented hybrid modelling approach.

Availability: An implementation of the hybrid algorithm for the T7 model system is
available in Fortan 77 or C++ on request from the authors.
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Simulation exacte hybride stochastique-détérministe
pour systémes biochimiques

Résumé : La reconnaissance de I'importance des effets stochastiques en biologie a
donné lieu & un fort développement des modéles incorporant de 1’aléa. Malgré 'existence
d’algorithmes permettant de résoudre exactement ’équation maitresse d’un systéme de réac-
tions biochimiques, les simulations stochastiques restent trés cotiteuses en termes de temps
de calcul. Les méthodes hybrides consistant & considérer certains processus comme déter-
ministes et d’autres comme stochastiques, constituent une approche trés prometteuse pour
accélérer les simulations de modéles faisant intervenir différentes échelles de temps, comme
par exemple ceux décrivant des réseaux de régulation de génes.

Nous établissons dans cet article une formulation mathématique rigoureuse de ces mo-
déles hybrides et nous proposons des algorithmes numériques permettant de simuler ces
modéles. Nous illustrons 'efficacité de ces concepts par une application au cas du systéme
bactériophage T7.

Mots-clés : biologie moléculaire, couplage stochastique déterministe, bactériophage T7
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1 Introduction

Stochastic models have gained considerable attention when experiments conducted at the
level of single cells showed the existence of a non-negligible level of noise in intracellular
processes, like transcription and translation [7,(22, 23]. Although in most cases regulatory
circuits use feedback loops, redundancy and other mechanisms to be robust against inherent
fluctuations and give a deterministic outcome nonetheless |2,24,/30,/34], noise is, for instance,
used as source of phenotypic variability, which is favorable in evolutionary terms [21],27]. In
the past few years, therefore, a great number of stochastic models have appeared to correctly
deal with extremely low number of molecules and large fluctuations in reaction kinetics
[1, /15, 29, 131]. The dynamics of a stochastic system is described by the chemical master
equation which only seldom posses analytical solutions. Fortunately, Gillespie, back in 1976,
devised two exact algorithms to numerically simulate the stochastic time evolution of coupled
chemical reactions, which are equivalent to solving the chemical master equation [10, 11} 33].
Although a more efficient exact method has been proposed by Gibson and Bruck, based on
reuse of random numbers and intelligent data structures [9], purely stochastic simulation are
very computationally expensive, when there are many reactions, some molecular species are
present in relative large amounts and /or reaction rates are high. Only recently, modifications
to the original chemical master equation have been proposed to further speed up simulations.
These involve either averaging over fast reactions [18], application of quasi-steady-state
theory [26], or grouping together reactions that occur in fast succession (the so-called tau
leaping methods) [3, 4, (14, 28]. Another strategy is to model those processes that either
involve large number of particles or have fast rates, in a deterministic way, keeping stochastic
the remaining ones. Very recently, two algorithms to simulate biochemical systems in such
hybrid framework have been proposed |20, 32]. They are based on a prediction correction
type heuristics for the realization of the stochastic part. In both cases, the main idea is to
first predict the time in which a stochastic event should occur and then evolve the system
of ordinary differential equations. At specific instances in time, the system is updated, and
it is checked whether the stochastic event has to be performed or not. The algorithm, then,
proceeds recursively. Although these algorithms seem to give good results, provided the
time-step of the ODE solver is kept small, they lack a mathematical justification, on which
basis their accuracy could be judged. In the following, we propose a rigorous mathematical
ground for hybrid stochastic and deterministic modelling in a very elegant and natural way.
We also present three algorithms for its implementation and finally show first intriguing
numerical results for the bacteriophage T7 model system.

2 Purely stochastic or deterministic models
Consider N chemical species Si,...,Sy involved in M reactions Rq,...,Rp;. Chemical
species are modelled in terms of number of molecules X (¢) = (X (¢),...,Xn(t)). The reac-

tion rate for each reaction R; is specified by a so-called propensity function a; = a;(X (¢), 1),
which is equal to the product of a rate constant c¢; and the number of possible combina-
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4 Alfonsi, Cancés, Turinici, Di Ventura & Huisinga

tions of reactant molecules involved in reaction R;. For the most frequently used reaction
types, Sq — *, Sq + Sp — * and S, + S, — *, we get a; = ¢; X, (1), a; = ¢; X, (t)Xp(t)
and a; = ¢; X, (t)(Xa(t) — 1)/2, respectively [10, 11]. Once a reaction R; is performed, the
number of molecules for each species is updated according to the state change vector v, i.e.,

Deterministic model. Based on the law of mass action, a system of coupled ordinary
differential equations (ODEs) is established for the time evolution of the number of molecules
X(t) e RY (see, e.g.,[5,19])

q M

SX() = ve(X(0),0) 1)
j=1

with some initial value X (o) € RY. While the system should be described as a vector of

integers, this model needs real values for X (¢). This is however acceptable under the as-

sumption of large number of molecules (X;(¢) > 1) so that the relative error can be neglected.

Stochastic model. Based on physical laws and the idea that chemical reactions are
essentially random processes, the stochastic formulation of chemical reactions is given in
terms of a Markov jump process X (t) € NV [13,/33]. Tts characterization is based on the
probability a;(X(t),t)dt of reaction R; occurring in the next infinitesimal time interval
[t,t +dt]. Denoting by Tj;(¢) the time at which reaction R; first occurs after ¢, this amounts
to write that

P[T;(t) € [t,t 4+ dt] | X (t)] = a;(X(¢),t)dt.

It is usually assumed that reactions are locally independent implying that P[{T}(t),Tx(t)} €
[t,t 4+ dt] | X (8)] = a;j (X (t), t)ar (X (¢),t) (dt)>.

In order to establish an evolution equation for X (t) as well as justifying hybrid stochastic
and deterministic models, the following time transformation

(slt) = /:aj(X(r),T) dr

is of key importance. The function s — g;(s|t) is non-decreasing for s > ¢, since the
propensities a; are non-negative by definition. Denote by Exp(1) the exponential random
variable of parameter 1, i.e., { ~ Exp(1l) if P[¢ € [z, + dz]] = e ®dx for all z > 0
(here ~ denotes equality in law between two random variables); £ has survival probability
P[¢ > z] = e~ *. Now, let us consider a sequence ({;) of independent random variables
&k ~Exp(1), with j =1,..., M and k € N. Define the random variables S;(n) = >_;_, &
forj=1,...,M and

Ni(t) = s, (my<g, (tlto)}- (2)

n=1

INRIA



Hybrid stochastic and deterministic models 5

Then, it can be easily show that for all j € {1,.., M}
P[N;(t +dt) — N;(t) = 1| X (t)] = a; (X (), t)dt

so that the next jump-time of the processes N;(¢) have the same law than T (t). Therefore,
we get the important relation

Ti(t) ~ g; ' (Exp(D)t), (3)

and the law of the evolution equation of the number of molecules is given by:
M
dX(t) = > v dN;(). (4)
j=1

Note that N;(t) counts the number of times that reaction R; occurred from the initial time
to up to time ¢. Evolution equation (4) corresponds to the infinitesimal generator

Af@) = lim SEBIFX())1X(1) = 2]
M
= Z flx+vi)aj(z,t) —a;(z,t)f(z).

The dual point of view (Chapman-Kolmogorov) leads to the well-known chemical master
equation [12} 33]

d M
a [X(t)_x] = ;(aj(x—yj,t)P[X(t)—Vj:x]—

holding for all z € NV,

3 Hybrid stochastic and deterministic models

Fully stochastic simulations become quite slow when many molecules and fast reactions are
involved, due to the fact that the effort is proportional to the number of reactions performed.
However, for each time-changed Poisson process N;(t) we have

E[N;()] = E[(N;(t) - g;(t]t))*]

/0 Ela;(X(s), s)]ds

RR n° 5435



6 Alfonsi, Cancés, Turinici, Di Ventura €& Huisinga

for ¢ > ty. Since the relative fluctuation between N;(¢) and g;(t|to) is given by

E[(N;(1) — g;(t100))2]"? 1

E[N;(®)] B0/

it is reasonable to neglect it and approximate the stochastic dynamics by its continuous
counterpart g;(t|to) (as in the deterministic model) when the propensity a; is large and
the numbers of molecules involved in the reaction are not too small. This motivates mixed
stochastic and deterministic models.

Consider a partition of the reactions Ry, ... Rys into those modelled stochastically (with
index j € S) and those modelled deterministically (with index j € D). For a given model,
there are at least three options for getting such a partition: (i) run a fully stochastic re-
alization and analyze the frequencies/propensities of each reaction (note that the major
computational cost is in computing many realizations); (ii) use biological insight. It seems
reasonable, for instance, to model gene regulatory parts stochastically, while metabolic reac-
tions deterministically; (iii) for each reaction choose adaptively between the two approaches
using a criterion based on the number of molecules and its propensity function (see Sec-
tion[6). The evolution equation for X (t) € R is now given by the hybrid system

AX(t) = > wja(X(t),t)dt+ Y v;dN;() (5)

jeD JES

with initial value X (¢g) € Rf . Due to the partition of the reactions, a species can belong to
the stochastic as well as the deterministic part of the hybrid system. As a consequence, it
may theoretically happen that some X (¢) becomes negative. We note first that this situation
never occurred in our simulations, and it is rather due to an unsuitable modelling choice (the
deterministic equations should not act on small quantities). Secondly, this situation can be
solved by an adaptive state-dependent choice of the reactions to be modelled stochastically
or deterministically. Such an approach is currently under study.
The hybrid system (5) corresponds to the infinitesimal generator

Af@) = lim SBIFX()IX0) = a]
= Y a0 @) +
jeD
>+ vas(x,t) — a(z, 1) f(x).
jeS

The dual point of view (Chapman-Kolmogorov) leads to the chemical master equation cou-
pled to a Liouville type equation (cf. [§, Chap. 3.4]).

INRIA



Hybrid stochastic and deterministic models 7

4 Algorithmic realization of the hybrid models

At least three different algorithmic approaches for simulating the stochastic part in the hy-
brid model (5) are available: (i) the first reaction method [10, 11], (ii) the direct method
[10,[11] and (iii) the next reaction method [9]. In the following, we will discuss algorithmic
realizations of the hybrid model based on each of these.

To illustrate the basic idea, consider a single chemical species S; being involved both in
a reaction R, modelled stochastically and a reaction Rs modelled deterministically. Set the
initial time 7 = ¢; and the number of molecules X (7) = X;({p). Draw a random number
& ~ Exp(1) and initialize ¢g1(7]t) = 0. As long as ¢1(7]t) < & no stochastic event occurs
and the dynamics is simply given by the deterministic part

dX

3 (1) = reax(X(7),7) (6)

(cf. eq. (5)). In the course of the (deterministic) evolution, however, the value of g, (7|t)
increases following the differential equation

Lorl) = m(X(),7). @

Hence, algorithmically, we simply simultaneously solve the system of ODEs (6) and (7).
The numerical solution of such ordinary differential equations is very well documented (e.g.,
[5,16,(17,25]). We therefore suppose that we are able to compute the solution of the ODEs
up to any desired accuracy and neglect the discretization error in what follows. Due to
eq. (3), we know that the first stochastic reaction occurs according to the random variable
T (to). Consequently, we integrate the system of ODEs (6) and (7) until time 7 = s such
that ¢1(s[t) = &. Thus Ti1(ty) = s and the stochastic reaction is performed. The entire
procedure is then repeated until a specified final time.

The above algorithmic scheme requires the use of numerical integrators that allow to stop
integration when some so-called event function (in our case 7 — g¢;(7]t) — &) vanishes. A
few numerical ODE integrators already include event handling. However, the special nature
of our event function makes it easy to implement the event detection, since g;(7|t) — &
increases in 7 (it is negative before the event time and positive thereafter). Thus one
numerically integrates the system of ODEs until the first time 7, when the event function
91(74|t) — & becomes positive, while it is still negative at the previous time 7_ = 7 — §t
(6t being the time step). Then, a polynomial interpolation between (t_, g1 (7_|t) — &) and
(t+,g1(74+|t) — &1) can be used in order to evaluate the event time s € [r_, 74| at which
g(s|t) — & = 0. This procedure is the same used to generate a dense output [16,(17], and is
a well established method. Alternatively, with some additional computational cost, a finer
time step could be used to solve the ODE in the interval [7_, 7].

RR n° 5435
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4.1 The direct hybrid method

The direct method explicitly calculates which reaction occurs next and when it occurs |10,
11]. The reaction time is given by the jump of the Poisson process Ny (t) = > .. N;(t)
with intensity given by the cumulative time transformation g, (7[t) = 3 ;s gj(T(t). Thus
the algorithmic realization of the direct hybrid method is as follows:

1. Set initial time ¢ = ¢ and initial numbers of molecules X (¢o);
2. Generate a random variable £ ~ Exp(1);

3. Set g, (t|t) = 0 and solve the system of ODEs starting at time 7 = ¢

L = Y7 (®)
Jj€D

Yo i) = Y as(X(r)7) )
JjES

until time 7 = s such that g, (s|t) = &;

4. Generate a discrete random variable with values in S and probabilities (a; (X (s), 5)) jes
in order to determine the reaction R,, to be performed;

5. Update X(s) according to reaction R,,, hence set X (s) < X (s) + vi,; set ¢ «— s and
go to Step 2.

4.2 The first and next reaction hybrid methods

In the first reaction method, a putative reaction time is generated for each reaction; the
reaction corresponding to the smallest time is chosen to occur, the state vector X (¢) is
accordingly updated and the process repeated |10, 11]. The next reaction method is an
efficient and economic (from the point of view of use of random variables) variant of the first
reaction method. It is based on reuse of random variables and optimized data structures [9].
This reuse allows us to sample only one random variable at each iteration (instead of two
like in the direct method). The algorithmic realizations of the first and the next reaction
hybrid methods are very similar, thus we state them in a compact form:

1. Set initial time ¢ = ¢y and initial numbers of molecules X (¢¢);

2. Generate independent random variables (¢;),cs, one for each reaction R; in S, with
& ~ Exp(1);

3. Set g;(t|t) =0 for j € S;

INRIA
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No. | reaction propensity rate ( day 1) state change
R, | gen—> tem a1 = ¢ - gen c; = 0.025 r1=(1,-1,0)
Ry | tem—2 as = co - tem co =0.25 vs=(-1,0,0)
Rs | tem—2> tem+ gen a3z = c3 - tem c3=1.0 v3= (0,1,0)
Ry gen+strucc—4> "yirus” | a4 = c4 - gen - struc | ¢4 = 7.5-107° v4=(0,-1,-1)
Rs | tem—=> tem+struc as = c5 - tem cs = 1000 v5=(0,0,1)
Rg | struc—%> () ag = cg - struc cs = 1.99 v6=(0,0,-1)

Table 1: T7 model equations

4. Solve the system of ODEs starting at time 7 =¢
dX

X = S w0 (10
JjE€D
%(T‘t) = a;(X(7),7); jes (11)

until time 7 = s such that for the first time g,,(s[t) = &,, for some m € S;
5. Update X (s) according to reaction R,,, hence set X (s) «— X (s) + vpm;
6. Set t +— s and

(i) First reaction hybrid method: go to Step

(ii) Next reaction hybrid method: For reaction R,, generate a new random variable
&m ~ Exp(1) and set g, (t|t) = 0, while keeping all other values g;(t|t) for j # m
as initial values for the system of ODEs (10) and (11); go to Step [4l

For an alternative algorithmic realization of the hybrid next reaction method based on
rescaling of the random variables {;, we simply replace Step 6 by

[67 (ii) For reaction R,,, generate a new random variable &, ~ Exp(1); for the remaining
reactions R;, with j € S and j # m, rescale &; according to &; «— &; — g;j(s|t). Set
t «+ s and go to Step (3!

5 Numerical studies for the T7 model

We now wish to demonstrate the power of our hybrid method using a model derived by
Srivastava et al. [29] describing the intracellular growth of bacteriophage T7. We choose
this model since it clearly shows the difference between deterministic and stochastic mod-
elling (Figure[1) and thus allows to check whether the hybrid method is able to speed up
simulation without compromising the results.

RR n° 5435



10 Alfonsi, Cancés, Turinici, Di Ventura & Huisinga

The bacteriophage T7 test model comprises three chemical components: viral nucleic
acids classified into genomic (gen) and template (tem) and viral structural proteins (struc).
The infection process is modelled by six reactions (Table [I). In the sequel, we will focus
on the low infection level corresponding to the initial numbers of molecules tem = 1, gen =
struc = 0.

Do) S N — S ———————
[ fully stochastic e ]
| o e :

g [|--—- Eggngﬁ(lzzi 15 P

g osf|hmesty |- i .

° S

£

§ 10l i

: K //

.g 5L S ]

0 C L L L L L L L L L L L L L L L L ]
0 50 100 150 200
time (days)

Figure 1: Comparison of the deterministic model with the means of the fully stochastic and different hybrid
models (based on 10 realizations).

As was shown in [29], the deterministic model of the above system possesses two sta-
tionary points: (1) the point tem = gen = struc = 0, which is unstable (the system will
move away from it after small perturbations) and (2) the point tem = 20, gen = 200 and
struc = 10000, which is stable (the system will return to it after small perturbations) and
attractive (the system tends to reach this state, if possible).

As an analysis of the propensities (e.g., by running a single realization) reveals, reactions
Rs; and Rg happen much more frequently than the others, suggesting that we model them
deterministically, while treating the remaining ones stochastically. For our T7 model, this
can even be made more precise: The propensities at the stable steady state are:

a; = 5 ag = 5 az = 20 (12)
ag =15 a5 =20000 ag = 19900

which clearly show a separation of time scale between the two sets of reactions. The results
for 10? realizations of the corresponding hybrid model are shown in Figure[2l As in [29],
we display results related to the number of tem molecules. It can be seen that the distri-
butions obtained with the hybrid model are almost indistinguishable from those obtained
with the fully stochastic model. The advantage of the hybrid model is a considerable saving
of CPU time in numerical simulations. For the sake of comparison, we have simulated the
fully stochastic and the hybrid models based on either the direct method [10,[11] or the
next reaction method [9]. The observed CPU times are reported in Table 2. It appears
that the hybrid simulations are about 100 times as fast as the fully stochastic ones. The
hybrid simulation is based on a Runge Kutta integrator of order 4 with constant time step

INRIA
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Figure 2: Hybrid kinetics for the bacteriophage T7 model (reactions Ri, R2, R3 and R4 modelled stochas-
tically, reactions Rs, R¢ modelled deterministically) compared to the reference fully stochastic model: post-
infection distribution of tem molecules (based on 10* realizations).

ot = 0.01 day [5, 17, 16]. In order to verify the accuracy of the event detection, we ex-
ploit the existence of an analytical solution for hybrid equations for S = {1,2,3,4}. Hence
solving the event equations (9) or (11) can be accomplished by a few Newton iterations [6].
The results obtained are very similar suggesting that the event detection is performed with
sufficient accuracy.
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12 Alfonsi, Cancés, Turinici, Di Ventura & Huisinga

Model Direct method | Next reaction method
Fully stochastic 15600 s 21200 s
Hybrid model:

S=1{1,2,3,4} 183 s | 201 s |

Table 2: Comparison of fully stochastic and hybrid method in terms of CPU time (10* realizations, Fortran 77
code run on a Pentium 1.4 GHz processor).

It is instructive to perform simulations under different choices of S and D in order
to identify the reactions whose stochastic effects contribute most to the overall dynamical
behavior of the T7 model system (as was also pointed out in [4]). As can be inferred from
Figure[3 (left), reducing the number of reactions modelled stochastically to S = {1,2,3}
hardly changes the results in terms of distribution profiles. Interestingly, the simulation
times are somewhat longer, for the time step has to be reduced by a factor 10 to maintain
the desired accuracy. On the other hand, a further reduction of the number of reactions
modelled stochastically dramatically modifies the overall dynamical behavior of the system
(see Figure [3). However, the mean values are still closer to the fully stochastic than to
the deterministic model (Figure [1). Hence, the interplay of the three reactions R;, Rp
and R3, and the order of their occurrence seems to be an important part of the regulatory
network. Neglecting these stochastic effects induces (large) deviations from the reference
fully stochastic model.

6 Discussion

We presented a mathematical derivation for hybrid stochastic and deterministic modelling
and three exact simulation algorithms that are easy to implement. The power and applica-
bility of the hybrid modelling approach has been demonstrated on a model for bacteriophage
T7 model [29] that was especially designed to analyze the influence of stochastic fluctuations
on the overall dynamical behavior. As a result, we gained a speed up of the simulations by
two orders of magnitude without compromising the statistics.

In the past years several approaches have been proposed to speed up stochastic simula-
tions. Most of the times, the starting point is an approximation of the stochastic process
N;(t) (see eq. (2)) counting the number of times reaction R; occurs. In the case of tau-
leaping methods |3, 4, 14,128] N;(¢) is approximated by a Poisson process, while in the case
of [18,(26] averaging techniques are applied to those N;(t) that correspond to fast reactions.
Very recently, two algorithms to simulate hybrid models have been proposed [20,(32]. The
main difference to our approach is that they lack a mathematical justification and are not
exact algorithmic realizations of the hybrid system (5). They are based on a prediction
correction heuristic for the realization of the stochastic part that can be seen as an approx-
imation to the simultaneous solution of the system of ODEs (8) and (9), or (10) and of
our hybrid methods. Gibson and Bruck [9] already presented an exact solution to simulate
stochastic systems with a linear increase of the reaction volume (treated deterministically);

INRIA
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Figure 3: Results for different hybrid systems for the bacteriophage T7 model (solid lines) compared to the
reference fully stochastic system (dotted line) based on 10* realizations.

however, to the best of our knowledge, the general strategy presented herein has not be
considered before.

The first promising results of our hybrid approach indicate some further directions of re-
search. The numerical solutions of the hybrid system were obtained with some constant step
size integrator. Here, an adaptive step size control is likely to further speed up simulations,
which should be combined with a more detailed analysis of event detection. It was explicitly
not our aim to theoretically justify any partitioning of the set of reactions into stochastic
and deterministic ones. A mathematical analysis of the approximation error of the hybrid
model compared to fully stochastic one is needed, in particular when aiming at adaptively
partitioning reactions based on propensity functions and number of reactant molecules. For
the T7 model different partitions have been analyzed. Interestingly, the computational speed
up does not simply increase with the number of reactions modelled deterministically. This
interplay between speed up and partitioning also need further analysis that could eventually
lead to a rationale for setting up hybrid models.
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A Appendix

Stochastic model.

Here, we derive the infinitesimal generator and the chemical master equation for the Markov
jump process X (t) defined in (4). Consider the system X (¢) at time ¢ and consider a time
increment At > 0. We calculate

(i) the probability that there is no reaction between ¢ and t + At as

M
P[N;(t + At) — N;(t) = 0; j = 1,.., M] [ exp(—a;(X (1), t)At)

M

1= a;(X(1),t) At + O(A?);
j=1

(ii) the probability that only the reaction Ry occurs between ¢ and t + At

PNy (t + At) — Np(t) =1 and Nj(t+ At) — Nj(t) =0; j=1,..., M, j £ k| =
ar(X (1), ) At + O(At?).
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Therefore, the probability that there are two or more reactions between ¢t and t + At is
O(At?). Now, for any bounded function f : NV — R we obtain

M
E[f(X(t+AY))|X(®)] = f(X(t>)(1—Zaj(Xt t) At
) =
+) A () + v)ai (X (1), )AL+ O(A?),
j=1

so we get that X (¢) is Markovian, and
Tim SB[ (s) X Zf )+ 1)a (X0, 1) = e (XO,00(XW). (1)

The right hand side of the above equation gives us the infinitesimal generator

M

Af@@) = Y fla+wa(e,t) —aj(z,0)f(x)

j=1

of the Markov process X (t) which entirely characterizes it. Considering f(X(t)) = 1{x )=z}
in (13), we obtain the Chemical Master Equation

SPIX(0) =] = 3 PIX() = & — 1ylay (e — vy,0) — ay (e, OPLX () = o]

The hybrid model.

Consider the hybrid system X (¢) at time ¢ and consider a time increment At > 0. Consid-
ering a bounded, differentiable observable f : (R )™ — R we obtain

E[f(X(t+A0)1X@)) = f(x@0)+ z;)aj DAL+ O(A1)) x
(1- Zsaj(X(t),t)At)
+ Zj; ) + v + O(AL))a; (X (1), 1) At + O(AL?)
and thus a
Jim LBIF(X(9) [X(0)] = ;)aj<x<t>7t>%f<x<t>>
:;Sf £) +v5)a; (X (8),) — a; (X(2), ) f(X (#))
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implying the infinitesimal generator

Af@) = Y aylat) S5 + 0 o+ v)agla, ) — a0 f (),

JED JES

which fully characterizes the hybrid process X (t). Thus, we have SE[f(X,;)] = E[Af(X,)].
We can then take the dual point of view and get the Chapman-Kolmogorov equation for the
grand probability measure

d d
GPE® eda] = - EE; - (aj(x,t)P[X(t) € dx]) (14)

+ aj(@ — v, OP[X(t) — v; € dz] — a;(z,t)P[X (t) € da],
jeS

where the derivation with respect to = must be understood in the sense of distribution the-
ory. The second term of the right hand side is simply the fully stochastic Chemical Master
Equation, while the first term is due to the deterministic model.

Reuse of random numbers for the next reaction method.

Here we justify the reuse of the exponential random variables in the setting of the next
reaction method. Consider M’ independent exponential random variables £*,... &M of
parameter 1 and nondecreasing functions f,..., fM : Rt — R* with inverse (f7)~1(y) =
inf{z >0: fi(x) > y}.

Then, the law of (€', ..., =) conditioned to { fM (€M) = min,<;j<pr f7(€7)} is equal
in law to (€' + (f1) 7 M (M), M (PN T (EM)).

To prove this, consider M’ continuous bounded functions g¢',..,¢™ ". We have to calculate

E = B9 g™ I IME) = min (€))

1<<M/
M'—=1 jpj M- e
B E[Hj=1 1gj(5])151'2(f-7')‘1(fM/(5M'))} = 1E[gj<§J)1£f2(ff)‘1(fM'(éM'))}
N M'— o M'— 1 1 ’ ’
B[ osgn ey  TH5 P& 2 ()M (€4)]

using the independence. Using the lack of memory property of the exponential variable (i.e.
Vz > a, P& > z|¢? > a] = P[¢? +a > x]), we get

Elg/()1esirgorery] = E[o(€+ ) E@M]PE = ()0 (€)]
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and finally

M’ —1

B o= [ EBle©@+u) e €]

which proves the statement.

Analytical solution of the hybrid system for S = {1,2,3,4}.

Let us remark that for S = {1,2,3,4} and D = {5,6}, system of ODEs (8)-(9) reads

d
—tem = 0
dr
d
—gen = 0
dTg
d
—struc = c¢5-tem — cg - struc
dr
d—ga(7—|t) = ¢ -gen+ (co + c3) - tem + ¢4 - gen - struc
-

with initial conditions tem(t), gen(¢), struc(t) at 7 = ¢. It has the analytical solution

tem(r) = tem(t)
gen(r) = gen(t)
_ Cs5 —ce(T—1) Cs5
struc(r) = (struc(t)— = -tem(t))e 6 + — - tem(t)
Cg Ce
CyqC

go(rlt) = (ex-gen(t) + (cz + ¢5) - tem(t) + < - gen(1) - tem(t)) - (7 — 1)

o
ca - gen(t) - (struc(t) —a -tem(t))

+ (1 — e*CG(T*t)).
C6
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