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Abstract: This paper is concerned with numerical approximation of viability kernels. We
use a characterization of the viability kernel by the value function of an optimal control
problem. Since this value function is discontinuous, usual discretization schemes (such as
finite differences) provide poor approximation quality because of numerical diffusion.

We investigate the use of the ultra-bee scheme for its anti-diffusive property in the trans-
port of discontinuous functions. Numerical experiments, compared with the viability algo-
rithm [8], show the relevance of this scheme for computing viability kernels and capture
basins on several benchmark problems.
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Un schéma anti-diffusif pour les problémes de viabilité

Résumé : Dans ce travail, nous nous interessons au calcul numérique des noyaux de via-
bilité. Nous utilisons une caractérisation du noyau de viabilité & I’aide de la fonction valeur
d’un probléme de controle optimal avec contraintes sur I’état. Cette fonction valeur étant
discontinue, son approximation par les schémas de discrétisation classiques n’est pas satis-
faisante & cause des diffusions numériques.

Ici, nous utilisons le schéma wultra-bee connu pour ses propriétés anti-diffusives pour
I’approximation des équations de transport avec données discontinues. Nous comparons
ce schéma avec 1’algorithme de viabilité [8] sur plusieurs exemples.

Mots-clés : Noyau de viabilité, Bassin de capture, schéma ultrabee
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1 Introduction

We consider a control system, defined by the dynamics

y=f(y,u), uweU(y) (1a)
y(0) = xo (1b)

where f : R” x R? — R™ and U(y) is a compact subset in R™. We write F' the set-valued
map F(z) = {f(z,u),u € U(zx)}.
Following Aubin [2], we say that a trajectory y(t) is viable in a constrained set K € R™
if it remains in K forever:
Ju(),Vt > 0,y(t) € K (2)

The Viability Kernel of K under F', denoted by Viabp(K), is defined as the set of points
from which can start a viable solution, i.e.,

Viabp(K) := {29 € K, Ju(-),Vt > 0,y(t) € K} (3)

The viability kernel may be characterized in diverse ways through tangential conditions
thanks to the viability theorems (under usual assumption, e.g. that F' is a Marchaud Map
or F is Lipschitz [2]). We recall that F is said to be Marchaud if it is upper semi-continuous,
convex compact valued, and if 3¢ > 0, Va,u, ||f(z,u)|| < c(||z]| + 1).

The viability kernel algorithm, proposed by Saint-Pierre [8] computes for a given grid Gy,
a discrete viability kernel (of the discretized K NG}, under a time-discretized and augmented
dynamics) that converges to the viability kernel Viaby(K) when the grid resolution 4 tends
to 0.

We first characterize the viability kernel by the infinite time limit of the value function
of an evolutionary control problem.

This value function being discontinuous, usual discretization schemes such as those based
on interpolation techniques (as Semi-Lagrangian, finite differences) fail to provide accurate
approximations because of numerical diffusion.

Here, we propose to use the anti-diffusive Ultra-bee scheme extended to the resolution
of Hamilton-Jacobi-Bellman equations [3], which we believe is particularly relevant to the
specific shape of the value functions derived from viability problems.

So far, no convergence proof for this scheme is available. However, the numerical exper-
iments tested on several benchmark problems and compared to the viability algorithm are
very encouraging, in terms of the approximation error.

Extension to the computation of the capture basin of a target C C K (defined as the set
of initial states o € K such that C is reached in finite time before possibly leaving K by
at least one trajectory y(-)) is also treated and illustrated.

The paper is organized as follows. In section 2, we define value functions related to the
above problems, and give Hamilton-Jacobi-Bellman (HJB) equations satisfied by these value
functions. In section 3, we recall the Ultra-bee scheme adapted to treat HJB equations, and
also define an Ultra-bee scheme for computing a capture basin. In section 4 we compare on
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4 Olivier BOKANOWSKI , Sophie MARTIN , Remi MUNOS , Hasnaa ZIDANI

various examples the numerical results given by the Ultra-Bee scheme and by the viability
algorithm (we also thank deeply P. Saint-Pierre for allowing us to use his code).
For sake of completness we also recall the viability algorithm in an appendix.

2 Statement of the problem and basic results

Let K be a compact subset of R” and U a compact subset of RP. Let f: R" x U — R" be
a bounded continuous map. In the sequel, we suppose that f is locally lipshitz continuous
with respect to z uniformly in w.

2.1 Viability kernel

For any measurable control, we denote y.(t) the trajectory satisfying

Yo = f(Ya,u) uweU(y) (4a)

In view of the constraint given by (2), we set the following optimal control problem
(Pz) min {0, Ju(-), y.(t) € K for all ¢t >0, }
We define the value function associated to this problem by
V(z) := Inf(P,)

where the value of V() is supposed to be 400 if the set of constraints is empty. Of course
we thus have that V(z) = 400 if z ¢ K. Also, we have

0 if Ju(-), Vt > 0, y,(t) € K
+o0o  otherwise

V@) ={
Then the Viability Kernel is given by
Viab(K) = {z, V(z) =0} = {z, Ju(-), y.(t) € K Vt > 0}.
For each T' > 0, we introduce now the following optimal control problem:
(Pra) min {0, y,.(t) € K for all ¢t € [r,T]}

where y, , is a solution of

Yrw = f(yf,za u) ueU(y) (5a)
Yra(T) =2 (5b)

INRIA



An anti-diffusive scheme for viability problems 5

and we define also the value function associated to this problem by
V(T — 7,2) = min(P; 4).

We see that
0 if Ju(-), Yt € [0,T], yr(t) € K

+oo otherwise

V(T,z) = {

Lemma 2.1. For every x € K, V(T,z) converges towards V(z) as T — +oo.

Proof. We first remark that T — V(T,x) is non-decreasing. Indeed, suppose T' < T". If
V(T,z) = oo, for any control u(-), there exists ¢ < T such that y,(¢t) ¢ K. Since also
t <T', we obtain V(T",2) = co. If V(T,z) = 0, there is nothing to prove. Hence we have
V(T,z) < V(T',z) in all cases.

Now if V(z) = oo, there exists 71 > 0 such that y.(71) ¢ K. Hence, V (11, z) = oo, and
this implies that V (T, z) T2 % using the non-decreasing property. If otherwise V(z) = 0,
then Ju(-), ¥t > 0, y,(t) € K, and V(T,z) = 0 for all T > 0. Hence also V(T,z) " = 0. O

We then have the following (which proof is left to the reader):

Lemma 2.2. Let Qp := {z, V(T,z) = 0}. Then we have
(1) Qp C Qr C K, for every T' > T >0,
(Zl) OTHH,OQT = Viabg.
Now we propose to compute Qp for T large enough, and to approximate Viabg by Qrp.

We thus look for an approximation for V(-,T) in K. We know that the function V satisfies
an HJB equation of the following form:

W—Héilr}(f(;v,u)-ngV):Q t>0, z € K; (6a)
V(0,2) =0, z¢€K; (6b)
V(t,z) =400, t>0, x¢ K. (6¢)

If one of the two following assumptions are satisfied

(1) Ja >0,V € 0K, u e U, n, - f(z,u) < —«
(1¢) For all x € K, A(z) :={u, y. € K} #0

then V' is a continuous viscosity solution of (6). Here, however, the assumptions (i) or (%)
are not necessarily satisfied, since it would imply that Viabp(K) = K. Hence in general the
function V' is not continuous. It is shown to be a solution of (6) in a particular sense given
by Frankowska in [5]. In this paper, we propose to compute the function V' by using the so
called “Ultra-bee” scheme [4, 3| for the discretisation of (6).

The discretisation of equation (6) will be studied in section 3.
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6 Olivier BOKANOWSKI , Sophie MARTIN , Remi MUNOS , Hasnaa ZIDANI

2.2 Capture basin

Let the target C be a subset of R™. The subset of initial states z € K such that C is reached
in finite time before possibly leaving K by at least one trajectory y,(-) is called the capture
basin of C' in K and denoted Capt(C).

Let us introduce the set-valued map Fo which coincides with F' outside C, equals to
0 inside C' and equals to the convex hull of {0} U F(z) on 0C. If K is a repeller for
F (i.e. Viabp(K) = 0) then Captp(C) = Viabg,(K). Otherwise we have in general
Viabp, (K) = Capt(C) U Viabp (K).

For our purpose, let 7' > 0. Let xc be the caracteristic function of C, i.e. defined by
xc(z) :==0if z € C and xc(x) = +oo otherwise. Let Jr(¢,x) and Jr(t, z) be defined by

Ip(t,z) = Trergr%]{)(c(ym(ﬂ) Ut.0(8) € F(yr,x(s)) and y; »(s) € K for s € [t, 7]},

and

Or(t,z) = min{xc(y:,(T)); Yt.x(s) € Fo(yt«(s)), and y; »(s) € K for all s € [¢,T]}.
Now we define the capture basin before time 7" by
Captn(C;T) :={x € K, 97(0,z)=0}.

In particular, T'— Capt,(C;T) is increasing for the inclusion, and also we find the usual
capture basin as T' — oc:

Tlim Captp(C;T) = Captz(C).

It is not difficult to obtain (assuming F' is Marchaud, and in particular that F(x,U)
convex for all z), the identity of the previous value functions:

Ir(t, x) = Ir(t, x).

Hence we have also

Captp(C;T) :={z e K, 97(0,2) =0}.
The function 9 is a value function of an optimal control problem (more precisely, a Rendez-
Vous problem with state constraints). In particular we can state a dynamic programming
principle for ¢ (for ¢t + At < T))

Dr(t,x) = min Dt + At,y, . (t + AL)), (7a)
and
O (T, ) = xo(x). (7b)

where y; , are solutions of §; , € Fo(yi,) on [t, ¢t + At]. Under some technical asumptions,

V) satisfies also an HIB equation in a generalized sense (see [5]). In order to approximate
Capt(C;T), the last equations (7a)-(7b) will be discretized in the next section.

INRIA



An anti-diffusive scheme for viability problems 7

3 Ultra-bee scheme

We shall present the Ultra-bee (UB) scheme for the HJB equation (6) in space dimension 2,
using three steps: we first present the UB scheme for linear advection in 1d, then in 2d, and
finaly in 2d for the HJB equation. For practical purpose, the +oco value can be replaced by
+1, and in particular the condition (6c) can be replaced by

V(t,e)=+1 ifzx¢ K. (8)

UB scheme for 1d linear advection. We consider the discretisation of

ve+ f(x)vy, =0, t>0, z€eR
{ v(0,x) = vo(x) )

where © — f(z) is lipschitz-continous, and the initial condition vy is assumed in L, (R).

Let (z;) such that ;11 —x; = Az and ¢, = nAt be uniform space and time discretisations,
where Az, At are the mesh sizes. Let V/" denotes a numerical approximation to the solution
v(tn,2;), The UB scheme for (9) takes the following form:

n,L n,R
yrtl _yn Vii-Vol
JTtJ + f(xj)joxJQ =0, (10)
with the initialization:
1 Ti+d
VjO = A_x/ i vo(z)dz, (11)
wj_%

L : .
where z;, 1 = x;+ 5%, Here Vi1 and Vj’i’lf are numerical fluzes that will be defined below.
2 2

We write (10) in the equivalent non-conservative form:

n+l _ y/n n,L n,R
vt = - (Vi Vi), (12
where At
vj = Ef(xj)

is a “local CFL” number. We assume that |v;| <1 Vj. In the case v; = 0, we thus consider
V"1 = V", and the fluxes V;:If/ © need not to be defined.
2

We first set
. by = max(V]LVILy) 45 (V]! —max(VPL, VL)),
0 >0 4 BF = min(VA, V) + L (VP — min(V?, V) .
= g0 Vi—1) T o\ g tamr
o, <o |0 max(FLVIL) + g (V) — max(VEL VL), (14)
5 <0, By = min(V)", Vi) + o (Vi — min(V}", Vi),
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Now, we define the "fluxes" V"% and V"  as follows (see [3])

e If v; > 0 then define Vfifﬂ = mln(max(VJ’il, bj) ;
e If v; < 0 then define Vﬁuz := min(max(V;",b;), B;)
o If v; <0 and vjy1 > 0, then define
n,R n n,L . y/n
VJ+1 =V, and V;.Jr%.—Vj. (15)
o If vjvj 1 > 0, then define VJrl = Vle (if v; > 0) or Vﬁé = Vj’ilg (if vj41 <0).
For stability and convergence propertles of this scheme, we refer to [3]. Note that in the

case v; > 0 Vj, we have Vfﬁ = V” 1 and thus, denoting VJrl = Vfﬁ, the scheme (12)

takes the more simple form

vt = (Vi - V)

UB scheme for 2d linear advection. Now we consider the equation
v+ f1(@, y)ve + fa(z,y)vy = 0. (16)
’U(O7I7y) = ’U()(x,y) (]‘7)

We consider a cartesian mesh (x;, yx) with constant mesh sizes z;11 — x; = Az and yj41 —
y; = Ay, and assume the CFL condition

o (mae (o) 55 ol 57 ) ) <1 (19)
]

The UB scheme (12) is extended to (16) by using simply a Trotter splitting (see [6]). The
initialization step is

1
ViQ = / vol(x,y) dx dy 19
)=y, e (19)
where I; = [z; — 5%, 2, + &%) and J; = [y; — 2 Yoy + %] Then we first compute (Vlnjl)

from (V;";) by solving one time step of the UB scheme in the x direction for
vt + fl(xay)vw =0

for each given y = y;. Finaly we obtain (VZ"jH) from (Vl"Jl) by solving one time step of the
UB scheme in the y direction for

v+ fa(@,y)vy =0

for each given x = x;. The CFL condition (18) is natural because here we consider a Trotter
splitting. Also, for boundary conditions we choose the value V;"; = 1 if (z;,y;) ¢ K as in

®).

INRIA



An anti-diffusive scheme for viability problems 9

F. Lagoutiére [6] proved the very interesting property that the UB scheme advects exactly
a particular class of step functions, in the case of constant advection. For instance, for 2-
dimensional problems, let ug such that V;} initialized as in (19) belongs to the following
space S:
S :={(Vij), ¥(a,b) € {0,1,2}, Vaira3j4b = Vaiz;}-

Consider the UB scheme for v + f - Vo = 0 where f = (f1, f2) = const is a constant
advection vector of R2. Then, assuming the CFL condition max(|f1| &%, | fﬂﬁ—é) <1, we

have Vi, j and n > 0:
1

Vo= / u(t,x) dx
7 AzAy IixJ; )

where v(t,x) = vo(x — ft) is the exact solution (see also [6] for more general functions that
are exactly advected).

It is this exact tranportation property, which corresponds to an "antidissipative" behavior
of the UB scheme, which motivates us for using it in front propagation problems such as (6).
It is also numerically observed that if Vi?j does not belong to the class .S, then V}"; tends to
be very close to a function space such as S after a few time steps. We refer to Désprés and
Lagoutiére[4] for other interesting properties of the UB scheme.

HJB-UB scheme. We now consider the discretisation of an HJB equation of the form:

ve— min (f(z,y,u)-Vv)=0, t>0, (z,y) € K. (20)
uweU(x,y)

We assume the CFL condition (18). The initialization of V;°; is done as in (19). At time
t =t,, for a given (x;,y;) we consider (ug)r=1,.. n & given discretization of the admissible
set U(zi,y;). We denote by ViZH’UB(u) the UB scheme obtained from (V;";) by using the
advection f(-,u), i.e., one time step of the UB scheme for

ve — f(x,y,u) - Vo =0.

Then the HJB scheme is given by
Vit = min (V;Tl’UB(uk)) (21)

We refer to [3] for first applications of the “Ultra-bee” scheme to the resolution of HJB
equations with discontinous initial data. The scheme seems well adapted to treat discontin-
uous solutions and in particular when the value function takes only two values (0 and 1).
However, presently we do not have a convergence proof of the HJB-UB scheme for (20).

HJB-UB scheme for the computation of a capture basin before time T
The algorithm for computing a capture bassin Capty(C;T) before time T, for a given
target C, is the following in the 2d setting. Here we assume that 2 € R%2. Qur aim is to

RR n° 5431



10 Olivier BOKANOWSKI , Sophie MARTIN , Remi MUNOS , Hasnaa ZIDANI

discretise, for a given T > 0, the function V (¢, z) := d7(T — t,x) where J7 obeys egs (7).
The boundary condition is
V(t,ﬂi) =1, (.Z‘) ¢ K,

and the initial condition is
V(wa) = 1K\C(£)7 (33) € K7

i.e. the value fonction is 0 on C only.

We first remark that any absolutely continuous solution of the differential inclusion ¢ €
Fc(y) corresponds also to a solution of § = fo(y,u,v) for a given (u,v) € L*([0,T],U x
{0,1}), where

flz,u) ifxe K\C, and for u € U,
folz,u,v) :=< vf(z,u) forxzedC, ueU, and v € {0,1},
0 otherwise.

In order to discretise the dynamic f,, we define a radius p := (Az? + Ay?)'/? where Az and
Ay are the mesh sizes, and C, := {2 € K, d((z,y), K\C) > p}, where d is the Euclidian
distance (C, is a subset of C). Then we consider for v € U(z) and v € {0,1} the following
approximated dynamic f,:

flz,u) ifze K\C,
folz,u,v) = ¢ vf(x,u) ifzeC\C,, (22)
0 if x € Cp.

Note that we deduce from (7a) a dynamic programming principle for V:

V(t+ At,z) = Vit yea(t + AL), (23)

min
(u,v)eUx{0,1}

where y = vy, is the solution of y(t) = x and y = fo(y,u(s),v(s)) on [t,t + At]. In
the case we have only one given control (u(s),v(s)) for s € [t,t + At], the solution is
V(t+ At,z) = V(t, ye (t + At)) at time t,41 =t + At. It is thus approximated by the UB
scheme by a value denoted V{)?LLUB(U, v), obtained from the values V;"; at time ¢ = ¢,, (in
the cell centered in z; ;). Hence we propose the following scheme:

n+1 __ : n+1
Vvi’j o Uk, rlflelr{l(),l} <‘/;’j (Uk7 U)) ' (24)

(where (ug)k=1,...,n is a given discretization of the set U(z; ;)).

Note in fact that this scheme corresponds exactly to the HIB-UB scheme applied to the
following "formal" HJB equation:
(fo(z,u,v)-Vv) =0, t>0, z€K. (25)

Vg — min
ueU(x), v€{0,1}

INRIA



An anti-diffusive scheme for viability problems 11

This is why we shall also refer to this scheme as an HJB-UB scheme.

Stopping criteria. For the computation of a viability kernel or a capture basin using the UB
scheme, the principle is first to evolve in time and compute some approximation of V' (¢, x)
using the HJB-UB algorithm, (using a time step At > 0 satisfying the CFL condition 18).
Then we decide to stop the scheme when the values V}"; are numerically converging. This
means in particular that the capture basin Capt,(C) is approximated by Capt(C;T') for
some T' > 0. In practice, for the first two tests of the following section, the UB scheme is
stopped when the quantity ||[V" — V71|11 := AzAy 2o Vil — V;"J_1| satisfies:

V" =V | <1074

4 Numerical tests

In the following numerical tests, for the viability algorithm, we have used the basic version
as presented in [8].

Example 1 (consommation problem) We consider the problem of computing the via-
bility kernel for:

i(t) = x(t) — y(t), (26a)
y(t) € [—¢, ], (26b)

with ¢ = 1/2, and the constraints x(¢t) € [0,2] and y(¢) € [0,3]. This corresponds to a
consommation problem [8, 2]. Hence here K := [0,2] x [0,3] and the corresponding time
dependant 2d HJB problem is

Vi + max (= f(z,y,u) - Vo) =0, Vi >0,%(z,y) € K,

V(0,z,y) =0, V(z,y) €K,
V(t,z,y) =1, Y(z,y)¢ K, t>0,
-y

where f(z,y,u) = < . . We have replaced the +oco value by 1 for commodity, and

still have Q, = {z, V(¢t,z) = 0}.

We have plotted in Fig. 1 the results given by the viability algorithm and by the HIB-
UB scheme, for various mesh size (Pz = Py = 50 and 100). For the UB scheme we have
used time steps At ~ 0.013 and 0.007 respectively, and stopped the computation at time
t, = nAt = 5 approximatly. We have also used N,, = 2 (u € {—c¢,c}). The black lines
delimit the border of the exact solution.

Note that the viability algorithm computes values 0 or 1. In our algorithm, we compute
values which are 0 or 1, or some intermediary value. The intermediary values are observed
to be always on a "frontier" which bandwidth is about one or two mesh size. The error on

RR n° 5431



12 Olivier BOKANOWSKI , Sophie MARTIN , Remi MUNOS , Hasnaa ZIDANI

this frontier is not diffused by the scheme (to the contrary to most numerical methods as
Semi-Lagrangian or finite difference methods), but stays well localised in a small bandwidth.

In Fig. 1 and the following, the small black square regions represent the computed
viability kernel (or capture basin).

For the UB scheme, the black square regions are associated with the points where 0 <
Vi < ewithe= 10719 (the points from which we should be able to reach the target in time
lesser than or equal to t,); the grey points represents the mesh box with an intermediary
value of V", between 0 (black) and 1 (white). More precisely, these boxes are represented if

e < V]‘J <1 —e. This correspond to mesh boxes where the discontinuity is detected.

Example 2 (Zermelo problem). In this example, we compute the capture basin for a
"Zermelo Problem":

i(t) =1 — ay(t)? + ucos(h), (27a)
y(t) = usin(6) (27b)
in the domain (z,y) € K := [-6,2] x [-2,2], and for controls 0 < u < Upas = 0.44,

0 € [0, 2x], with @ = 0.1. The target is chosen here as the ball C := B(0,r) with r = 0.44.

The viability algorithm (see [9] in this case) and the UB scheme are compared in Fig.2,
with Px = Py = 100. For the UB scheme, we have used N, = 20 points and dt ~ 0.019.
the stopping criteria was ||[V™ — V"~ 1||,1 < 1074, which gave a stopping time ¢ ~ 7.

The circle delimits the border of the target, and the black lines also delimit the exact
capture basin (we have computed the limit trajectories by using the Pontryagin Principle,
see Bryson and Ho [1]).

Note that a good preliminary approximation is also obtained by the UB scheme even
with a small number of mesh points. For instance in Fig.3 we have used P, = P, = 20 (with
same number of controls, and At ~ 0.27).

Example 3. In this example, we compute the "capture basin" for the following 2d rotational

dynamic:
_ (Y
f($7yau) - < — )
on the domain K = [—1,1]%. The target is the ball centered in (0.5,0) and of radius 0.2,
i.e.,

C:={(z,y) € K, (x—0.5)>+y*> <0.2°}.

Note that in the dynamic f there is no dependency over a control u; however, the UB scheme
does use a dynamic that depend of a control v as in (22) (hence in practice we have N,, = 2).
In Fig.4 we compare the viability algorithm and the UB scheme at time 7' = 7 (half a
turn), with P, = P, = 100 (and At = 0.02) and P, = P, = 200 (and At = 0.01). The small
circle delimits the target and the black line reprensents the border of the exact solution.
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Viability Algorithm Viability Algorithm

Pz = Py =50 Pz = Py =100

Figure 1: Comparison of the viability algorithm and the UB scheme for the consommation
problem
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Viability Algorithm

o
it

Figure 3: Zermelo problem, P, = P, = 20
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In Fig.5 we show the results with the UB scheme at time 7' = 107 (five turns), with
P, = P, =50 and P, = P, = 100 (At = 0.04 and At = 0.02 resp.). We see that the
UB scheme present no visible diffusion, even on a long time period, whereas the viability
algorithm - not shown for the case 7" = 107 - has a tendency to diffuse more and more with
time.

This example well illustrates the problem of diffusion of some schemes. A diffusive
algorithm is going to create more and more errors as we go far from the target (or as time goes
on). However the anti-diffusive scheme well approximates the capture basin even for long
time as illustrated in Fig.5. (We have used P, = P, = 25,50 and 100 with At = 0.077,0.038
and 0.019 resp.)

Example 4. In this example we compute the capture basin for the following target problem

[l y,u) = ( Z )

on a domain K = [—1,1]?, with control u € [—1,1]. The target is a “thin target” C := (0, 0).
Numerically, the mesh for the UB scheme is chosen so that (0,0) be the center of a mesh box
of size (Az, Ay), and the initial data is V; ; = 0 if (z;,y;) = (0,0) and V; ; = 1 otherwise
(this corresponds to take vo(z,y) = 1jz|<Az/2,|y|<ay/2)- Here the problem is discretised with
three controls v € {—1,0,1}.

The results are given in Fig.6. As before, we obtain a small error and a small diffusion
with the UB scheme, compared with the viability algorithm.

Acknowledgments. The authors wish to thank P. Saint Pierre for useful discussions and
for help using his code.

A The viability Algorithm

The approach followed in Saint-Pierre [8] is to determine the viability kernel in a constructive
way by using discrete approximation. Also, Quincampoix and Saint-Pierre studied the case
of a Holderian differential inclusion [7]. In this case, the kernel is approximated by kernels of
discrete dynamical systems and then by finite kernels of finite discrete dynamical systems.

A.1 Introduction and Notations.

Let X a finite-dimensional vector space and let K be a compact subset of X. We consider
the differential inclusion:

(28)

z'(t) € F(z)  for almost all ¢ > 0,
z(0) =29 € K,

where ' is a Marchaud map defined from X to X.
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Viability Algorithm Viability Algorithm

Pz = Py =100 Pz = Py =200

Figure 4: points that can reach the target in time ¢t <7
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uB uB

Pz =Py =250 Pz = Py =100

Figure 5: points that can reach the target in time ¢ < 107 (UB scheme)

With this inclusion, for a fixed p > 0, we associate the discrete explicit scheme:

& (29)

2P oa” ¢ F(z™) foralln >1,
z =x9 € K.
We denote by G, the set-valued map G, = 1+ pF and the system (29) can be rewritten
as follows:

2"t e G,(2™) for all n > 0. (30)

The viability kernel of K under F is the subset of all elements z(y € K such that at least
a viable solution starting at x exists [2]. We denote it Viabp(K). As far as the discrete
dynamical system associated with G is concerned, we denote the discrete viability kernel of
K under G Viabg(K).

A.2 Approximation by Kernels of Discrete Dynamical Systems

Saint-Pierre [8] first addresses the problem of the approximation of kernels of discrete dy-

namical systems. Under some assumptions, Saint-Pierre [8] proves that, if the sequence
(K™),, (with K° = K) is defined as follows:

K™= {2 € K" such that: G(x) ﬂK" #0} (31)
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Viabilty Algorithm

Viabily Algorithm Viabillty Algorithm

HHE

UB

Px = Py =26

Pz = Py =52 Pz = Py =104

Figure 6: Cible problem, points that can reach the target in time ¢t < 1
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then Viabg(K) = 12 K.
He next proves the convergence of the following approximation process:

Theorem A.1. Let F be a Marchaud and (-Lipschitz set-valued map and K a closed subset
of X such that M := supyec x supycp(q)|lyll < +oo.
Consider F, := F + %ZpB and 'y := 1+ F,. Then

lirr(l) Viabr ,(K') = Viabp(K). (32)
p—

A.3 Approximation by Finite Set-Valued Maps

With any h € R we associate X}, a countable subset of X for instance a grid with step h. Let
Gy, : X, — X}, a finite set-valued map and a subset K} C Dom(Kj}). The finite dynamical
system associated with Gy, is

it € Gy () for all n > 0. (33)

Saint-Pierre first remarks that, if the sequence (K7'), (with K = K},) is defined as
follows:
K"t = {x € K}! such that: Gy (z) ﬂ Ky # 0} (34)

then Viabg, (K) = 2% K7'. Moreover, there exist p finite such that Viabg, (K5,) = K?.

n=0

Let G" : X — X such that Vo € X, G"(z) = G(x) 4+ rB. The following proposition links
finite discrete viability kernels and discrete viability kernels:

Proposition A.1. Let G : X — X be an upper semicontinuous set-valued map with closed
values and K a closed subset of Dom(G). Let r > 0 be such that for all v € Dom(G") () X,
G"(x) Xn # 0, then

Viabgr(Kp) C Viabar (K) () Xn

Furthermore, for a good choice of 7, these sets coincide.

Gathering the preceding results Saint-Pierre proves the following convergence properties
of approximations of viability kernel of K under F' with finite viability kernels computable
in a finite number of steps:

. . Mlp®\ _ 1,:
lim sup Vzabszpz (K, ) =Viabp(K)
p,h—0 ph
with G,%MZPQ : X — X and Giﬁ“”z : Xj, — X}, defined as follows :

GﬁME”Q = x + pF(x) + 2M(p*B

2Mep? 2Mp?
Gph P ::Gph P N Xy.
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KM = (K + Mp?) 0 X),.

This viability kernel algorithm allows to compute the exact discrete and finite viability kernel
of the associated discrete problem defined on a finite grid.
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