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Abstract: An M/M/1 queue whose server rate depends on the state of an independent
Ornstein-Uhlenbeck diffusion process is studied in this paper by means of a regular pertur-
bation analysis. Specifically, if (X (¢)) denotes the modulating Ornstein-Uhlenbeck process,
then the server rate at time ¢ is ¢(X (¢)), where ¢ is some given function. After establishing
the Fokker-Planck equation characterizing the joint distribution of the occupation process
of the M /M /1 queue and the state of the modulating Ornstein-Uhlenbeck process, we show,
under the assumption that the server rate is weakly perturbed by the diffusion process, that
the problem can be solved via a perturbation analysis of a self-adjoint operator defined in
an adequate Hilbert space. We then perform a detailed analysis when the perturbation
function is linear, namely of the form ¢(x) = 1 — 2. We compute in particular the different
terms of the expansion of the solution in power series of ¢ and we determine the radius
of convergence of the solution. The results are finally applied to study of the integration
of elastic and streaming flows in telecommunication network and we show that at the first
order the reduced service rate approximation is valid.
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Etude de perturbation d’une file M /M /1 dirigée par une
diffusion
Résumé : On étudie le processus du nombre de clients d’une file d’attente M /M /1 dont le

taux de service est fonction d’un processus d’Ornstein-Uhlenbeck. Une analyse de pertur-
bation est conduite pour ce modéle.

Mots-clés : File M/M/1. Opérateur auto-adjoint.
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1 Introduction

We study in this paper an M /M /1 queue whose server rate is time varying. We specifically
assume that the server rate depends upon a random process (X (t)) so that the server rate
at time ¢ is ¢(X (¢)) for some function ¢. The study of this model is motivated by the follow-
ing problem related to bandwidth sharing in telecommunication networks. Consider a link
carrying elastic traffic corresponding to long file transfers together with a small proportion
of traffic, which does not adapt to the level of congestion of the network, referred to as un-
responsive traffic. On the one hand, long flows are usually controlled by TCP, which adapts
the transmission rate of long flows according to the level of congestion of the network. If we
consider the bottleneck link, then a reasonable assumption consists of using the processor
sharing discipline for modeling how bandwidth is shared among long file transfers. More-
over, long flows are assumed to arrive according to a Poisson process. Under these classical
modeling assumptions, we thus have an M/G/1 processor sharing queue (see for instance
Massoulié¢ and Roberts [12]).

On the other hand, unresponsive traffic is usually due to short file transfers, which are
too small to achieve some bandwidth sharing within the network. It is however worth
noting that with the emergence of multimedia applications in the Internet, unresponsive
traffic may also be generated by streaming applications. This type of traffic is carried by
the uncontrolled UDP protocol, which is not able to adapt to network conditions. As far as
responsive flows are concerned, everything happens as if the transmission capacity seen by
responsive long flows were reduced up to the aggregated bit rate of short flows.

Queueing systems with time varying server rate have been studied in the literature
in many different situations. In Nufez-Queija and Boxma [I6], the authors consider a
queueing system where priority is given to some flows driven by Markov Modulated Poisson
Processes (MMPP) with finite state spaces and the low priority flows share the remaining
server capacity according to the processor sharing discipline. By assuming that arrivals are
Poisson and service times are exponentially distributed, the authors solve the system via
a matrix analysis. Similar models have been investigated in Nufiez-Queija [14}, [[5] by still
using the quasi-birth and death process associated with the system and a matrix analysis.
The integration of elastic and streaming flows has been studied by Delcoigne et al [, where
stochastic bounds for the mean number of active flows have been established. More recently,
priority queueing systems with fast dynamics, which can be described by means of quasi
birth and death processes, have been studied via a perturbation analysis of a Markov chain
by Altman et al [2].

In this paper, we assume that the process modulating the server rate is a diffusion process
and more precisely an Ornstein-Uhlenbeck (OU) process. This assumption is motivated by
the following facts.

1. An OU process reasonably represents the aggregated bit rate of the superposition of
a large number of short flows. In particular, when those flows have exponentially
distributed duration, then exact heavy traffic results show that the aggregated bit
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4 Fricker, Guillemin and Robert

properly rescaled converges in distribution to an OU process, see Iglehart [10] for
example.

2. An OU process has only two parameters (namely the mean and the variance), which
can be empirically identified in practical situations. Furthermore, the impact of these
parameters on the performance of the system will be much easier to understand, when
compared with the case of MMPP environment where these variables are somewhat
hidden in the numerous parameters of the MMPP environment.

In a first step, we establish the Fokker-Planck equations of the system and we show that
these equations can be seen as an eigenvalue problem for a self-adjoint operator defined in
some adequate Hilbert space. This last property is closely related to the time-reversibility
properties of the M/M/1 occupation process and of the Ornstein-Uhlenbeck process. We
then show that when the interaction between the OU process and the M/M/1 queue is
weak and depends upon a small parameter ¢, the problem of computing the generating
function of the number of customers in the M/M/1 queue can be solved by means of a
regular perturbation analysis. It is possible to completely compute the coefficients of the
expansion in power series of ¢ of the solution. Also, the radius of convergence is determined.
By taking into account the first order only, the above analysis shows that a reduced service
rate pertains.

This paper is organized as follows: In Section Bl the Fokker-Planck equation is estab-
lished. This equation can be interpreted as an eigenvalue problem for a self-adjoint operator
is given in Section @l When the interaction between the M/M/1 queue and the OU process
is weak, the formulation as a perturbation problem is presented in Section B, where the case
of a linear perturbation function is completely solved.

2 Problem formulation

2.1 Model description

We consider a single link with transmission capacity equal to unity. We suppose that two
classes of customers are multiplexed on this link and that the first class has priority over
the second class. More precisely, if there are N(t) customers of the first class in the system
at time t, we assume that the service rate for the customers of the second class is equal to
@(N(t)) for some function ¢(z) which is decreasing and such that ¢(0) = 1. Moreover, we
assume that the number of class 1 customers is sufficiently large so that the process N (t)
properly rescaled converges in distribution to an OU process (X;) satisfying the stochastic

differential equation
dX(t) = —a(X(t) — m)dt + cdB(t), (1)

where (B(t)) is a standard Brownian motion and a and o are positive constants.

This situation typically occurs when class 1 customers arrive according to a Poisson
process with rate u, require exponential service times with unit mean and have a peak
bit rate which is negligible with respect to the link transmission capacity. Since class 1

INRIA



Perturbation analysis of an M/M/1 queue 5

customers have priority over class 2 customers and contention for those customers can be
neglected, the process describing the number of class 1 customers then corresponds to the
occupation process of an M /M /oo queue. When u tends to infinity, classical heavy traffic
results (see Borovkov [4] or Iglehart [10]) then yield

N(t)—u i
<T’t > 0) (X(t),t>0),

where the OU process (X (t)) satisfies Equation () with o = —1 and o = /2.

With the above assumptions, the server rate for class 2 customers is a function of X (t),
which is denoted by ¢(X (¢)) (with ¢(0) = 1). We now assume that class 2 customers arrive
according to a Poisson process with intensity A and require exponential service times with
mean 1/p. If L(t) =1 denotes the number of class 2 customers in the system and X (¢) =«
at time ¢, then the transitions of (L(t)) are given by

1 [+ 1 with rate ),
-1 with rate ué(x).

The process describing the number of class 2 customers is thus equal to the occupation
process of an M/M/1 queue, which server rate depends upon a diffusion process. In the
following, the function ¢(x) will be referred to as perturbation function.

Throughout this paper, we assume that the diffusion process (X (t)) is in stationary
regime. Its stationary distribution is a normal distribution with mean m and variance
02/(2a); its density function on R is therefore given by

o) 2 [ L (ALY ®)

Let us note that the stability condition for the system reads

p i % < E[(X(0))]

and will be assumed to hold throughout the paper. Under this assumption, it is straightfor-
ward to show the existence of a stationary probability distribution for the Markov process
(X (t),L(t)). See Meyn and Tweedie [13] for example.

2.2 The independent case and its perturbation

When ¢(x) = 1, the processes (X (¢)) and (L(t)) are clearly independent one of each other.
In this case, at equilibrium, for ¢ > 0, the variable L(t) has a geometric distribution with
parameter p and we consequently have the relation

(1-p)

E (1o (X(0) = 7

p(z)dz. (3)
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6 Fricker, Guillemin and Robert

As it will be seen in Section Bl when ¢ is not constant, it is extremely difficult to get
some explicit results on the equilibrium distribution of (L(t)). For this reason, this paper
addresses the case when the queue is almost independent with respect to the OU process.
More precisely, it is assumed that the function ¢(x) is given by 1 — ez for some small
€ > 0. The goal of this paper is to derive an expansion of the distribution of the stationary
distribution of (L(t)) with respect to e. In particular, the following theorem will be proved.

Theorem 1. For ¢ sufficiently small, the first order expansion of the generating function
of the stationary distribution of (L(t)) is given by
1—p  p(l—u)

E (uL) =1 poRm i pu)QmE + o(e).

Therefore, E[u’(")] ~ E[u”<], where L. has the stationary distribution of the number of
customers in an M /M /1 queue when the server rate is 1 — em. This shows a principle of
reduced service rate approximation.

3 Fokker-Planck equations

The goal of this section is to establish the Fokker-Planck equation for the process (X (t), L(t))
in the stationary regime, i.e., the evolution equation for the probability density function
p(z, ) for z € R and ¢ € N. By construction, it is easily checked that the process (X (¢), L(t))
is a Markov process taking values in R x N. The following result gives its infinitesimal
generator.

Lemma 1. The process (X (t), L(t)) is a Markov process in RxN with infinitesimal generator
G defined by

(,0) — a(z — m)%(x,ﬁ)

+AS (@, 0+ 1) = [z, 0] + po(@) f(2) Loy [f (2, £ = 1) = f(2, )], (4)

for every function f(x,€) from R x N in R, twice differentiable with respect to the first
variable.

262

Proof. According to Equation (), the infinitesimal generator of an Ornstein-Uhlenbeck
process applied to some twice differentiable function g on R is given by

o? ? 9]
T s (@) — ale = m) 52 (a).

The second part of Equation (@) corresponds to the infinitesimal generator of the number

of customers of a classical M/M/1 queue with arrival rate A\ and service rate pu¢(z), when
the OU process is in state x. O

INRIA



Perturbation analysis of an M/M/1 queue 7

Let P denote the stationary probability distribution of the couple (X (t), L(¢)),
Pz, 0)=P(X <z,L=1{),

the probability density function p(z, ¢) is

oP
p(z,l) = 8—:6(1,[)
and the generating function is given by
gu(x) =Y pla, O)u’ ()
=0

for u € (0,1) and = € R.
The equation of invariant measure for the Markov process (L(t), X (t)) is given by

Gf(x,0)P(dz, ) =0,
3y

for a twice differentiable function f with respect to the first variable. By choosing convenient
test functions, one readily gets the Fokker-Planck equations.

Lemma 2 (Fokker-Planck equations). The function p(x,{) satisfies the relation

2 92 0
220, alx — m)a—i +ap(x, £) + AN ysoyp(z, £ — 1)

2 912
— (A + po(x)Lges0y) p(a, 0) + pd(x)Lps0yp(x, £ +1) = 0. (6)

An easy consequence of the above Fokker-Planck equation is the following equation for
the function g,,.

Proposition 1. The generating function g, (z) is such that

%2%2;; +a(m_m)% + ()\(u— D+a+p (% — 1) ¢(:v)> Gu ()

(5 1) i) @)

4 Operator theoretic analysis of the Fokker Planck equa-
tion

4.1 Notation

By definition, the function g,(z) is twice weakly differentiable with respect to the variable
x and is analytic in variable u in the open unit disk and continuous in the closed unit disk.
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8 Fricker, Guillemin and Robert

Hence, the function g,(x) can be seen as an element of the tensor product H%(R) @ S(U),
where H?(R) is the Sobolev space of functions which admit a second order weak derivative
and S(U) is the set of functions which are analytic in the unit disk and continuous in the
closed unit disk.

From the previous section, the function g : (u,2) — g.(z) defined by Equation (H)
satisfies the relation

Qg(u,z) =0
where (Q is the operator defined as follows: for a function f € H*(R) ® S(U)
o2 0% f of
Qf(u,x)—gﬁ—i—a( )%

+(Mu-n+asn(2-1)6@) fwn) - (1 -1) s@s 0.0 ©)

In the following, we refine the domain of definition of {2 so as to obtain a self-adjoint operator
defined in an appropriate Hilbert space.
By construction, the function g, (z) is given by

) = 2 Lo (-2 Y gt | x =

The function g,(x) of the variable u is analytic in the open unit disk and is continuous in
the closed unit disk. Moreover, the function g,(z) is such that for all |u| <1,

LE [ (2522 e

This clearly implies that for fixed u with |u| < 1, the function g, () is in the Hilbert space

H defined by )
H:{f:R—MC:fexp(%)eHz(R)}, 9)

This Hilbert space is equipped with the scalar product defined by: for all f,¢g € H,

)2
<f,g>= / f(z exp( (xazm) )doc7

where g(z) is the complex conjugate of g(x); the norm of an element f € H is

HE \/ / ) exp <O‘(U;m>) ar.

Now, for fixed z, we identify g,(x) with the sequence (p(x,¢),l > 0). By definition,

(@, 0) = %\/gexp (—C“(%me) P(L=0| X =a),

INRIA



Perturbation analysis of an M/M/1 queue 9

and clearly
= « 2a(x — m)?
> (e O < g exp (220
=0 o g

it follows that the sequence (p(x, ), ¢ > 0) is in the Hilbert space L?(N) composed of square
summable sequences in C, that is,

LA(N) = {f — (f) e C": S ful < oo},
n=0

equipped with the scalar product defined by

<fr9> = faln, (10)

n=0

for two elements f = (f,) and g = (g,). The norm of an element f of L?(N) is given by

£l = (11)

The operator €2 can be seen as an operator defined in the tensor product H ® L?(N), that
we still denote by €2 and given by

Q=AxI1+I1B+V,
where
e The symbol I denotes the identity operator in the appropriate Hilbert space.
e The operator A is defined by
a2 9% f af

the domain of definition of A is denoted by D(A) and is given by

D(A) = {feH:x2fexp (M) eHQ(R)}.

202

e The operator B is defined by the infinite matrix

- I 0 .

A=A+ p) o 0 .o

0 A —(A+p) [ 0 . (12)
0

0 A —A+p) p

the domain of B will be determined in the following.

RR n° 5422



10 Fricker, Guillemin and Robert

e The operator V is equal to ® ® C, where ® is the operator defined on L?(R) by the
multiplication by ¢ — 1, i.e.

(f)(x) = (¢(x) — 1) f(z),

and C' is the pure death operator, defined by the infinite matrix

0 u 0

0 —u p o . . .

0 0 —p w O . . (13)
0 0 0 —p w O

4.2 Self-adjointness properties

In this section, we examine the properties of the operators A and B. We specifically deter-
mine under which conditions these operators are self-adjoint. The self-adjointness property
will be crucial in subsequent sections to carry out a perturbation analysis. To prove self-
adjointness, we use the classical tools of spectral analysis (see Dautray and Lions [6], Dunford
and Schwartz [8], Reed and Simon [I7] or Rudin [I8] for basic elements of spectral theory).

The operator B defined in L?(N) is not symmetric. However, by reducing the underlying
Hilbert space, we can obtain a symmetric operator as follows. Let us consider the Hilbert
space L2(N) defined by

Li(N) = {f =(fu) € cN: Z |fn|2p_n < 00} )

n=0

where p = A/ < 1. The scalar product in L2(N) is defined by

o0
<fog>p =D faGup "

n=0

and the norm by

11l =

Since p < 1, the space L2(N) is clearly a subspace of L?(N). The operator B induces in
L2(N) an operator, that we still denote by B and that is defined by the infinite matrix given
by Equation (). In the following, the symbol B refers to that operator defined in L2(N)
by the infinite matrix (I2).

Let D(B) denote the domain of the operator B, i.e., the subset of L?)(N) composed of
those elements f € L2(N) such that Bf € L2(N). The adjoint of the operator B is denoted

INRIA



Perturbation analysis of an M/M/1 queue 11

by B* and is defined by: for f € D(B) and g € H by <Bf, 9>, = <f,B*¢>, and D(B*)
is the domain of B*.

In the following, the operator B is shown to be self-adjoint, i.e. B = B*, which requires
in particular that D(B) = D(B*). To get this property it is sufficient to prove that the
operator B is

— symmetric: for all f,g € D(B), <Bf,g9>, = <f,Bg>,;
— bounded: the quantity
IBll, = it {|<Bf, f>| : f € Ly(N), || f]7 = 1}
is finite.
Lemma 3. The operator B is symmetric and bounded with
1B, < (VA + va)?, (14)
the operator B is consequently self-adjoint.

Proof. The symmetry of the operator B is straightforward. For f € Lf,(N),

o0

<Bf, f>p = Z (()\ + Ml{nZO})fn = AMfn-1— an-i—l) ﬁp_na

n=0

consequently

> tifnifap™"

n=0

[<BF, 1>l < O+ w1 + ¥

o0
> Afnlg—np-"| :
n=0

by using Schwarz inequality, we get

Z ffns1fnp " < \/EHf”i,

n=0

> Moafap™"
n=0

< VAullf11,

and Equation () follows. O

The spectrum o(B) of the operator B is defined by
o(B) ={z € C: (B —zI) is not invertible},

since B is self-adjoint, o(B) C R. Moreover, Equation ([d) implies the relation o(B) C
[~ (VX + /R)?, oc]. Standard spectral theory shows that the spectrum o(B) can be decom-
posed as follows:

o(B) = 0,(B) Uo(B),

RR n° 5422



12 Fricker, Guillemin and Robert

where 0,(B) is the closure of the set composed of the eigenvalues of B, referred to as point
spectrum, and o.(B) is the continuous spectrum. The point spectrum is purely discrete and
z € 0p(B) if and only if there exists some f € L2(N) such that Bf = zf. From spectral
theory, the following proposition holds.

Proposition 2. There exists a measure di(z), referred to as spectral measure, whose support
is o(B), and a family of spaces {H.}, z € o(B), such that

o the Hilbert space L%(N) is equal to the direct sum of the spaces H., that is,

(&)
H:/ Hadip(2), (15)

i.e. every f € Li(N) can be decomposed into a family (f.,z € o(B)), where f, € H,
and [ || f.|I2¢(2) < co. Moreover,

<fag>p = /<fzugz>pd¢(2)~
e The operator B is such (Bf), = zf. for z € o(B), where (Bf). is the projection of

(Bf) on the space H,.

Note that z is an eigenvalue of the operator B if and only if ¢)({z}) > 0 and that the space
H. is a subset of L2(N) if and only if z is an eigenvalue. The next result gives the explicit
representation of the spectral measure and the spaces H, appearing in Decomposition ([IH).

Proposition 3. The spectral measure dip(x) is given by

/ F@)di(w) = (1= p)£(0)

5 —(VA= i)’ f(x)\/l_ (:v—l—)\-i-,u

AVONT

2

for any non-negative Borelian function f.

The operator B has a unique eigenvalue at 0, and the associated eigenvector is up to a
multiplicative constant the sequence e(p) whose nth element is equal to p™. The space Hy is
the space spanned by the vector e(p).

For z € (—(VA+ )2, — (VA = /R)?), the space H. is the vector space spanned by the
sequence (Qn(z)) defined by the following recursion:

Qo(2) = 1,Q1(z) = (= + A)/
MQn-l—l (Z) - (Z +A+ :U’)Qn(z) + :uQn—l(Z) =0, n>2

The sequence (Q,(2)) for z € (—(VA+ /)%, — (Vi — VA)?) forms an orthogonal family.

INRIA



Perturbation analysis of an M/M/1 queue 13

Proof. To determine the spectrum of the operator B, we consider the equation Bf(z) =
2f(2), where f(z) = (fn(2)) € CN. By assuming that fy(z) = 1, the sequence f(z) satisfies
the recurrence relation:

fo(2) =1, fi(2) = (2 + A) /1,
an-l—l(z) - (Z +A+ /J')fn(z) + )‘fn—l(z) =0, n>2 (17)

The above three-term recurrence relation implies that f,(z) is a polynomial in variable
z with degree n and that the polynomials (f,(z)) form an orthogonal polynomial system
since Favard’s condition is obviously satisfied (see Askey and Ismail [3] for details). The
orthogonality measure of these polynomials is precisely the spectral measure of the operator
B since B is self-adjoint.

To determine di(x), we compute the limiting value as n tends to infinity of the ra-
tio f(2)/fn(2), where f*(z), n = 0,1,2,... are the associate polynomials, which satisfy
recurrence relation (7)) with the initial conditions

fo(z) =0and f1(2) =1/p.
Straightforward computations yield that, for z ¢ [— (VA + /&), —(VA — /R)?],

(A—i—z—u—kx/&(z)) Zn+ <—)\—z+u+\/5(2)> Zn

2u 2u

1
CZi—7_

fa(2)

)

7. 2+ A+ pt\/d(2)
+ = o
+ X+ u)? — 4 u. Moreover, the associated polynomials f(z) are given by:
for = & (VA + Vi), —(VA — V7))
1
fa(z) = ————= 2} - Z2].
) /L(Z+—Zf)[+ )

Stieltjes theory [9] states that the measure di)(x) has a support included in (—oo, 0] and
that 0
dy(x
oo 2T

where x(z) is the continued fraction whose nth approximant is f;(z)/f.(z). The function
x(z) for z ¢ (—o0,0] is given by

_ [a(2)
x(z) = lim .
It is easily checked that for z > 0, Z, > Z_ > 0 and then for z > 0,
2

A W &
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14 Fricker, Guillemin and Robert

The function on the right hand side of Equation ([I¥) can be analytically continued to the
complex plane deprived of the segment [—(v/A + /i)2, —(vV/A — \/f1)?] and the origin. More
precisely, the function y(z) has a unique pole at z = 0 and its residue is equal to (1 — p).
The eigenvector associated with the eigenvalue 0 is the vector which nth component is p”.
(This vector clearly belongs to L2(N).)

From Perron-Stieltjes inversion formula, see Askey and Ismail [3] and Henrici [9], the
continuous spectrum of the measure di(z) is given by

d 1
Zf) = lim ﬁ(X(z —ig) — x(x + ig)).

It is easily checked that the above limit is non null only for = in the interval (—(v/A +

VA —(VA — /R)?) and, in that case,

dip(z) = —g\/l - Ww.

It is worth noting that diy(z) is very close to that the corresponding spectral measure
associated with Chebyshev polynomials. In fact, the polynomials under consideration here
differ from Chebyshev polynomials only through the initial conditions (see Chihara [5] for
an exhaustive treatment of classical orthogonal polynomials).

It is easily checked that

/(\ﬂx/ﬁ)2 (@) NV /1 S
x) = T
7r 1A= 2V A ux + i

~(VAtvm?
20 !
=5 p"/2/ Un(2)V'1 — a2 dz = p,
™ -1
n=0

where U, (z), n = 0,1,2,... are the Chebyshev polynomials of the second kind, which are
orthonormal with respect to the weight measure w(x)dz with

w(x) = V1—2% 1y 1)(v).

It follows that the total mass of di(x) is

0
/ dy(x) = 1.

The orthogonality of the sequences (Q,(z)) for z € [—(VX + )%, —(VA — /f)?] and

Equation (I8) are therefore established. O

It is worth noting that the point spectrum of the operator B contains only one point and
that the continuous spectrum is the interval (— (VX + /5)%, —(VA — \/10)?).

INRIA



Perturbation analysis of an M/M/1 queue 15

Let us now examine the properties of the operator A. This operator is closely related to
the harmonic oscillator in quantum mechanics (see Reed and Simon [I7] for details). Indeed,
for f € D(A) and h(z) = f(x)expla(z — m)?/(20?)] we have

o2 9%h 1 alz—m)? az —m)?
Af = — —————h —_— .
f=a (2a ox? + (2 202 ) ) b ( 202 )
We then have the following result, where we use the Hermite functions H,(z), the Hermite

polynomials H,,(z), as well as the parabolic cylinder functions D, (z), also referred to as
Whittaker functions, see Abramowitz and Stegun [I] or Lebedev [T1].

Proposition 4. The operator A is self-adjoint in H. Its spectrum is purely discrete, com-
posed of the numbers of the form —2an for n > 0. The eigenvector associated with the
eigenvalue —am is the function

az —m)? alz —m
o () = Y exp <_(72)) H, (M) : (19)
(o (o
where H,(x) is the nth Hermite polynomial and
s A
Tonploy/m

The sequence () forms an orthonormal basis of H.

Proof. The Hilbert space H defined by Equation (@) and H?(R) are obviously isomorphic.
Let x denote canonical isomorphism from H into H?(R). By construction, this isomor-
phism preserves the scalar product. The image of the operator A by the isomorphism x is
the operator a(—A + 3I) where the operator A is the harmonic oscillator operator defined
by
A — o? 9%h n alx — m)Qh.

20922 202

The domain of definition of the operator A is
D(A)={he€ H*(R) : 2°h € L*(R)} .

It is well known that the operator A is self-adjoint. The functions h,(z) = D, (vV2a(z —
m)/o), n > 0, where the functions D,, are Whittaker parabolic cylinder functions [I1],
satisfy

1

Since the functions D,, for n > 0 form an orthogonal basis of H?(R), the spectrum of —A is
purely discrete and composed of the numbers n+1/2 for n > 0. It follows that the operator
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16 Fricker, Guillemin and Robert

A is self-adjoint in H. Its eigenvalues are the numbers —an, n > 0 and the eigenvectors
associated with the eigenvalue —an is

a(z —m)?
202

fule) =ewp (- ) DulVEa(e ~ m) o).

By using the relation between Whittaker and Hermite functions [T}, p. 284] and by normal-
izing, Equation ([ follows. O

The main Hilbert space H used in this paper is defined as the tensor product of the
spaces H and L2(N), that is, H = H @ L2(N). In view of the above results, an element of
this Hilbert space is defined by a sequence (¢, ;) and can be written as

oo oo
Z Z Cn,k¥n X e,

n=0 k=0

where ey, is the sequence with all elements equal to 0 except the kth one equal to 1 and ¢,
is defined by Equation ([I9).
The Hilbert space H is equipped with the scalar product <-,-> defined by: for f = (f 1)

and g = (gn k) in H
o0 o0
<fag> = Zz.fnykgn,kpin;

n=0 k=0

AP =D sl

n=0 k=0

the norm is defined as

Note also that, as a consequence of Proposition B, an element f € H can also be repre-
sented as

en(y)en @ Qy) dv(y) + > cn(0)n @ e(p),

/—(\/X—\/ﬁ)2
n>07 —(VA+ym)? n>0

where the measure di(y) and the sequence Q(y) are defined by Proposition Bl and the
function ¢, : R — C is such that

—(VA—ym)? )
3 / e (9) 2 dib(y) < oo.
n>0 -(VA+ym)?

If we consider the equation (A®I+I® B)f = 0 for a non-zero function f of H represented
by
= Z Cnon @ 9,

n>0
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Perturbation analysis of an M/M/1 queue 17

for some g = (g,) € L2(N) and (c,) a sequence of C, then we have for all n > 0,
cn(—ang + Bg) = 0.

Since the single eigenvalue of B is 0, we have ¢, = 0 for n > 1. Now, if we want that ¢y # 0,
then g = ke(p) for some k£ > 0. If we impose that the sum of the g, is 1, then kK = 1 — p.
This shows that, for ¢ = 1, the unique non-null solution to the equation (AQI+I® B)f =0
is proportional to o ® e(p).

To conclude this section, let us examine the properties of the operator V.

Proposition 5. If the function |¢ — 1| is upper bounded by a constant K, then the operator
V is bounded and its norm ||V|| < Kpu.

Proof. For g € L2(N), <Dg,g>, < pllg||>. Hence, for any element f = (f,(z)) € H,

o a(x —m)?
i s [~ o= tn X @l e (L) ar < i

- n>0
and the result follows. O

The above result indicates that when the function ¢(z)—1 is bounded, then the operator
V appears as a nice self-adjoint perturbation of the operator A®I+1® B. In the following,
we have to deal with a more complex perturbation function of the form ¢(z) = 1 —ex. The
multiplication by x is clearly not bounded in H and the above result can not be applied.

In the remainder of this paper, an element f = (f, ) is identified with the function in
‘H defined by

ful®) = Z Z Cn,kuk@n(x)'

n=0 k=0

5 Perturbation analysis

In this section, we assume that the perturbation function ¢ is of the form 1 — ex for some
€ < 1. The operator V thus appears as a small perturbation of the self-adjoint operator
A®I+1® B. We then perform a classical perturbation analysis by studying the modification
of the function g, (z) given by Equation (@) due to the perturbation.

In the following, we search for a solution to the Fokker-Planck Equation (@), which
belongs to the reference Hilbert space H. We specifically assume that the solution can be
expanded as

Gue(@) = g0 (2) +egM (@) + 29D (x) + -, (20)

where the functions g&") (z) for n > 0 belongs to the Hilbert space H. The function g&o) (z)

corresponds to the case ¢ = 0 and is given by Equation (3.
The ultimate goal of this section is to prove that the elements g™ has to satisfy a
recurrence relation of the form ¢ = @(xzg(®~1) for n > 1 and for some linear operator
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18 Fricker, Guillemin and Robert

© whose norm is finite. This shows that the expansion (Z0) actually defines for sufficiently
small ¢ an element which is in H and that by construction, this is the unique solution to
the perturbed Fokker-Planck equation.

In the following, we assume that the expansion 0 is valid and we investigate the
conditions which have to be satisfied by the elements ¢(™). In a first step, we prove the

following property satisfied by the functions (g&”) (2)).

Lemma 4. For n > 0, the function g&")(:c) in Expansion ) can be expressed as a linear

combination of g, ..., pn. In particular, for N > n,

lim — g0 (z) exp (M) = 0. (21)

z—+oo gV u o2
Proof. The proof is by induction. The result is true for n = 0 since gfto) (z) is given by
Equation @).

If the result is true for n, then for fixed w, g,(z) belongs to the vector space spanned
by the functions ¢; for i = 0,...,n, denoted by span(yy,...,¢,). From Fokker-Planck
Equation (), we have

(ART+1® B)g™+t) = @ Dg™,

where the operator W is the multiplication by « in the Hilbert space H. By using the recur-
rence relation satisfied by Hermite polynomials, it is easily checked that the image by the
operator U of the vector space span(yy,...,¢n) is the vector space span(pq, ..., QYn41)-
Therefore, since by assumption g(™ belongs to span(yo,...,¢n) ® L%(N), we immedi-
ately deduce from the uniqueness of the decomposition on the basis (¢,) that g(**!) is
in span(go, . .., ¢nt1) ® L2(N) and the result follows. O

5.1 First order term

In a first step, we pay special attention to the derivation of the first order term because it
gives the basic arguments to derive higher order terms. Moreover, the explicit form of the
first order term will be used to examine the validity of the reduced service rate approximation
(see Theorem [II).

On the basis of the domination property given by Lemma B, we explicitly compute the
function g&l)(a:). From Equation (), it is easily checked that the function g&l)(a:) satisfies
the equation

(1)
a(z - m) ag; +a(v(u) + 1)gi) (z) (22)

iy (1 - 1> (68" (@) — 26 @) — o (=)

(1) (s 2 [T o (2l

o2 52951)
2 02
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Perturbation analysis of an M/M/1 queue 19

where the constant v(u) is given by

o) = pd —w)(A — pu)

In a first step, we search for a particular solution to the ordinary differential equation

% %giu +a(r — m)% + a(v(u) + 1)&u(z)
z [apu(l —u)(1 - p) ex ol m)’
AR (1 - pu) P ( ’ ) )
of the form ?
6.(2) = (alw) + bupa)exp (-0 )

Straightforward manipulations show that

oL 1 pp(l —u)(1 —p) ox _afz—m)? nd a(u) = ——2
b( )_O' om'(y(u)—l)(l—pu) P( o2 ) and () V(U)

b(u).

Noting that & (x) = 0, it follows that if we write g&l)(z) = &u(x) + ¥y (zx), then the
function 4, (z) is solution to the equation

o2 8%, "
5 aa;é + alx —m) 6(,;[; + a(v(u) + 1)y (z) = p (% - 1) Yo (). (24)

By using the domination property of Lemma B we can determine the form of the function

Yo ().

Lemma 5. The function 1o (z) is given by

o) = (a0 e, VI g (lr )

for some constants cq and c;.

Proof. By introducing the function k,(z) defined by

a(z —m)?
ky(z) = exp (*202 ) () (25)
and then the change of variable
L Va(x — m), (26)
(o
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20 Fricker, Guillemin and Robert

Equation (4)) becomes

O () 4 1= ) = 2 (1 1) o). 0

The homogeneous equation reads

9%k,
022

+ (2v(u) +1 - 2%k, = 0,

which solutions are parabolic cylinder functions (see Lebedev [I1] for details). Two inde-
pendent solutions v;(u; z) and va(u; z) of this homogeneous equation are given in terms of
Hermite functions as

vi(u;z) = 6_22/2H,,(u) (z2) and wa(u;z) = ez2/2H,y(u),1(iz). (28)
The Wronskian W of these two functions is given by
W(Z) — 67(v+1)7ri/2'
By using the method of variation of parameters, the solution to Equation () is given
by
ku(z) = 71 (uw)vr(us 2) + 72 (w)va(u; 2)

= 2L 1) e [ s ) = o1 2Jon ()] Koo

where 1 (u) and ~2(u) are constants, which depend upon w.
The function v, (z) enjoys the same domination property as function g&l)(:zr), given by
Lemma Ml Hence, for N > 1

1
lim —Nezz/Qku(z) =0. (29)

z—+oo 2z

From Lebedev [I1], we have the following asymptotic estimates
H,(z) ~ (22)" (30)

when |z| — oo and |arg z| < 37/4 — 6 for some ¢ > 0. Moreover, when z — —o0

ﬁ —v—1 2>
H e, véN
H,(z) ~ I(-v)
(22)¥, veN.
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Perturbation analysis of an M/M/1 queue 21

From the above asymptotic estimates and Lemma (Z9), we deduce that for v € (0,1) such
that v(u) € N with v > 1, we have

Yi(u) = 2 <l—1> <”“)”/2/OO 2(u; y)ko(y) dy

« u

— _2_’u l _ V+1)7m/2/ ’U, Ly kO )d
(6% u
2:“ 1 v+1)mi
Y2(u) = E(Z > +1) // 1(w;y)ko(y) dy

— 2_:“ l v+1)7rz/2
« u

The latter equation implies that for all n > 1

and
(u; y)ko(y) dy.

/_Oo e V"o (y) Hu(y) dy = 0, (31)

where H,(x) is the nth Hermite polynomial. Property [29) implies that the function y —
exp(y?/2)ko(y) is in L*(R, exp(—y?) dy), which is the Hilbert space of the functions square
integrable with respect to the measure exp(—y2) dy, i.e.,

oo

L*(R,exp(—y®) dy) = {f : / f@)Pe ™ dy < 00},

—00

equipped with the scalar product

<f,g>2 = / F)gly)e " dy.

Since Hermite polynomials form an orthogonal basis in this Hilbert space, equation (BI))
entails that the function y — exp(y?/2)ko(y) is orthogonal to all Hermite polynomials H,,
with n > 1 and then that this function belongs to the vector space spanned by Hy and H;.
Hence, function kq(z) should be of the form

ko(2) = (co + clz)efz2/2
for some constants ¢y and ¢; and the result follows. O

By using the above lemma, we are now able to establish the expression of g&l) (x).
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22 Fricker, Guillemin and Robert

Proposition 6. The function g&l)(a:) is given by

) = (=Dl )

Ju urtiy (u — a1)(1 — pug)(1 — pu)?

(1_p)(1_u) T l Eea(zfm)Q/#
i (u— )1 = pur)(1 — pu) ) a\/7 , (32)

where u1 and U1 are the two real solutions to the quadratic equation

3

pu2—<1+p+g)u+1—0
"

with 0 <uy <1<y

Proof. By taking into account Lemma [, the function K, (z) defined by

Ku(z) = o0 (&) exp (M>

202

and the change of variable (2H), satisfies the equation

K,

57 + (2uv(u) +1 - 2%) K, (2)

2u (1 1 Japu(l—0p) (oz 22
= — __1 —_ - >~ 7 _ z .
- <u )(CO‘FClZ‘FU\/; T \/a—i-m e (33)

We search for a particular solution of the form
Ku(z) = (a(u) + b(u)z) e =2,

Straightforward computations yield

_ (1-u) oy Pull=p)
40 = S (O TR

It follows that the general solution to the above equation can be written as

K. (2) = (a(u) + b(u)z) e # /2 4 y1(u)vy (u; 2) + Y2 (uw)ve (u; 2), (34)

where the functions v; and ve are defined by Equation ([£8) and the constants 7, (u) and
~2(u) depend upon w.

By differentiating once Equation (B4) with respect to z and using the fact that the
Wronskian of the functions vy (u; z) and ve (u; 2) is exp[(v(u) + 1)7i/2], we can easily express
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Perturbation analysis of an M/M/1 queue 23

~v1(u) and 72(u) by means of K,(z), a(u), and b(u). This shows that 71 (u) and ~2(u)
are analytic in the open unit disk deprived of the points 0 and wu;. From the asymptotic
properties satisfied by the functions v; and vy, we know that v1(u) = 0 and v2(u) = 0 for u
such that v(u) > 1. It follows that v (u) = vy2(u) = 0 for |u| < 1.

By using the fact that g&l)(x) has to be analytic in variable u is the unit disk, we
necessarily have

o = pui(l —p)
V(L= puy)
and then,

V(u— 1) (1 — pur)(1 — pu)’
(1)

Moreover, since g; *(z) = 0, we have

and then,
1 Ja plu—1)
a(w) = U\/;(l - pu)Qm

By using the expressions of a(u) and b(u), the result follows. O

5.2 Higher order terms

We assume that g&”) (z) can be expressed as

g (@) =Y enn(w)pr (), (35)
k=0

where the function ¢,, is defined by Equation ([3) and the coefficients ¢, ; are analytic
functions in variable u. From previous sections, this representation is valid for n = 0,1. If

it is valid for n — 1, then the function g&") (x), n > 1, satisfies the equation

0,2 8291(]1) 891(]1) "
5 o2 + a(z —m) oz +a(v(u) + 1)g{" (x)

—u <l _ 1) (957 (@) = a(g8" V(@) = g V(@) . (36)

u
First note that by using the recurrence relation

Hy1(z) — 22Hp(z) + 2nH,—1(x) =0
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satisfied by Hermite polynomials, it is easily checked that

n

2(g" V(@) — g8 V(@) = Y du(w)gr (@),
k=0

where
g

dn,n(u) = 2\/5(071—1,71—1(”) - cn—l,n—l(o))a

and for 0 <k <n-—1,

k(1) (en—1,k—1(u) = cn—1,k=1(0)) + m(cn—1,k (1) — cn—1,%(0))

+ W—T;)O—(CH—LIHJ(U) — en—1,k+1(0)).

- (o
2y

By using the above notation, we have the following result.

Proposition 7. The coefficients c, ;, appearing in the representation [B3) of g&n) (x) are
recursively defined as follows: we have

1 jal—p
CO’O(U):; w1l —pu’

and forn >1,

cno(u) =

o) = W (l B 1) dn ke (w) — dp g (ur) l<k<n,

where for k > 1, ui and 4y are the two real solutions to the quadratic equation v(u) = k,
i.e.

k
pu2—<1—|—p—|——a>u+1—0
I
with 0 <wug <1 < .

Proof. As in the previous section, we first search for a solution to the equation

0.2 62&([1) 6&(]1) N
T g Hale —m) =i +a(w) + DEP (@)
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Assuming that the function £ (z) is of the form

n

&M (@) =Y bna(wenl@),

k=0

and we have, by using the fact that the functions ¢, (z) are eigenfunctions of the operator
A associated with the eigenvalues —an and that these functions are linearly independent,

for k=0,...,n,
b= (1) ste)

a\u viu) —k’
It is easily checked that & (x) = 0. We can then decompose g\ (x) as
9 (x) = o (@) + €0 (@),

where the function z/z&") (x) is solution to the equation

2 524(m) o™ 1
% 61;/;2 + a(z —m) gw + a(v(u) + 1)1/’1(]1)(56) = <a - 1> Yo ().

By using the same arguments as in the proof of Lemma Bl we can easily show that g(x)

has the form .

do(@) = 3 erpnla),
k=0

where the coefficients ¢, € C for k =0, ...,n. It follows that the function g&")(:c) is solution

to the ordinary differential equation

0,2 82978") 897(]1)
2 0a2 +al@—m) ox

+a(v(u) + 1)g{M ()

1 n
(5 1) Llen t dunlwen o)
k=0
By using the same arguments as in the proof of Proposition B, we come up with the
conclusion that g\ (x) is of the form (BH) with the coefficients ¢,, x(u) given by

" (1 1> i+ dni(u)

Cn (1) = a viu) —k

U
Since the function g&n)(:v) has to be analytic in the open unit disk, we have for k£ > 1
¢ = —dn i (uk)

In addition, since g%n) (x) =0, we have ¢y = —d,, 1 (1). O
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5.3 Radius of convergence

In this section, we examine under which conditions the expansion [0 defines an element

of H. In a first step, note that as a consequence of Proposition [, the function g&")(:c) can

be written as
94 (@) =20 (g5 V() = © (290" V()

where the operator O is defined in H as follows: for f € H, which gives rise to the function

fu(z) = Z cn(u)pn (),
n=0

the element h = O f is defined by the function

()= u (3 -1) 2oty ),

v(u) —n

It is easily checked that for n > 0,0 < u, <1 <1/ /P < iy,. Moreover, the function
cn(u) appearing in the expression of f, is analytic in the disk D, = {z : |z] < 1/,/p} and
continuous in the closed disk D, = {z : |z| < 1//p} for n > 0. Similarly, for all n > 0, the

function ) (w)
(1) e

on(T)

is analytic in D, and continuous in D,. With the above notation, we can state the main
result of this section.

Proposition 8. The operator © is bounded and if ¢ < 1/(m|©]), where ||O] denotes the
norm of ©, then the sequence defined by Equation 0) is in H.

Proof. Let f € 'H be defined by the function
ful@) = ch(uwn(x)
n=0
For (c,) € L2(N) associated with the generating function

0 1 2 1 )
c(u) = cpu” then ||c|? = —/ ¢ (—e“g>
nzzo "2 o VP

and define the sequence (¢,) associated with the generating function

=Gy T

2
do,
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Assume first that n > 1, then

Hu) = 1(1 W) 1 c(u) —c(un)'

and then

c(e ) /p) — eluy) |
eie/\/ﬁ—un

de.

1212 < 1 <1+ 1 >2 1 1 /%
¢ — — | =5
o=@\ ) -1 )y
Simple manipulations show that
12" (e /p) — c(un)
eie/\/p — Uy,

It follows that ||¢||, < knl|c||,, where

2 1 1 2
do < ||c|]}—— — | .
_WMWW—MVG+1—WQ

27 Jo

1 1 1
M:;O+%>%fUﬁmNW%JG+1—WQ

1+ - 1
Ty =2 )

It is easily checked that the sequence (x,,) for n > 1 is decreasing.
When n = 0, we define

é(u) = £

(0%

u

v(u) 1—pu

(1 1) e(w) = (1) _ efu) = c()

It is then easily checked that ||é]|, < kollc||,, where

“:vi@O+V;;)

Define x = max{xo, #1}. The above computations show that for all f € L2(N), [|©f] <

k|| f||- It follows that the operator © is bounded; its norm is denoted by ||O|| def. inf{k >0:

VieH, [|©f] <k|f|l}- The above computations shows that

o= 5= (45

We immediately deduce that the sequence ¢(™) = (ngng ) associated with the function

ggn)(x), in the sense that

91(]1) (z) = Z Z Ck,eu%k (),

k=0 £=0
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is such that
™ < [[O]™|©*|

where the sequence ¢(9*" is associated with the function
1—p .
T oa” p(x),

where the function p(x) is defined by Equation (&).
Straightforward computations show that

2n
HC(O)*nHQ — <L> H,, (\/am) ,
2\/a o

where H,,(z) is the nth Hermite polynomial. Using the asymptotic estimate (B0), we have

HC(O)*nH ~m"

when n — oo. Tt follows that ||c™| < a, with a, ~ (||©|m)™ as n tends to infinity. It
follows that the sequence defined by the expansion Q) is convergent in H if ¢||©||m < 1. O

By using all the above results, we are now ready to prove the validity of the reduced
service rate approximation given by Theorem [

Proof of Theorem [l From the above result, we deduce that, under the assumption ¢ <
1/(m||®]]), the first order expansion of the generating function of the stationary distribution
of (L(t))
l1—p  p(l—u)
E (u") = — .
(u®) - (1_pu)2m5+0(5)

holds. Theorem [Mlis proved. O

6 Concluding remarks

The perturbation results presented in this paper have been obtained for a particular form
of the perturbation function ¢(z). Of course, the same approach could be extended to more
complicated perturbation functions of the form ¢(z) = 1—ep(z) for some function p(z). The
key point consists of determining how the operator corresponding to the multiplication by
p(x) acts on the basic functions ¢,,. For computing explicit expressions, however, the main
difficulty is in solving the differential equations satisfied by the coefficients of the expansion.
When p(x) is a polynomial, a particular solution to the equations similar to Equations (22)
and (BH) is obtained in the form of a polynomial times the function exp(—a(x — m)?/0?)
and in that case, explicit computations can be carried out.

The perturbation function ¢(x) = 1 —ex correspond to the case when unresponsive flows
have a peak bit rate € much smaller than the transmission capacity of the link. The results
of this paper show that the reduced service rate approximation yields accurate results for
the performance of responsive flows.
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