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Analyse probabiliste des algorithmes en arbre

Résumé : Le comportement asymptotique d’une classe générale d’algorithmes en arbre est
analysée. Cette approche donne une approche unifiée de toute une classe de résultats

Mots-clés : Algorithmes diviser pour régner. Théoréme de renouvellement.
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1 Introduction

A splitting algorithm is a procedure that divides recursively into subgroups an initial group
of n items until each of the subgroups obtained has a cardinality strictly less than some
fixed number D. These algorithms have a wide range of applications.

— Data structures. These are algorithms on data structures used to sort and search.
They are sometimes referred to as divide and conquer algorithms. See Cormen et
al. [0 and Knuth [22] for a general presentation and Flajolet and Sedgewick [B8],
Mahmoud [27] and Szpankowski [39] for their analysis with analytical methods.

— Communication Networks. These algorithms are used to give a distributed access to
a common communication channel that can transmit only one message per time unit.
See Capetanakis [4], Tsybakov and Mikhailov [A0] and Ephremides and Hajek [9].

— Distributed systems. Some algorithms use a splitting technique to select a subset of a
group of identical communicating components. See Janson and Szpankowski [I7] and
Raz et al. [35].

— Statistical tests. A test, performed on a group of individuals, indicates if at least one of
these individuals has some characteristics (like a disease if this is blood testing). The
purpose is to minimize the number of tests to identify individuals with the specified
characteristic as quickly as possible. See Wolf [42]

Formally, a splitting algorithm can be described as follows:

SPLITTING ALGORITHM S(n)

— TERMINATION CONDITION.
Ifn<D — STOP.

— TREE STRUCTURE.
If n > D, randomly divide n into ni,..., ng, with n; + --- + ng = n where G is a
random variable with some fixed distribution.
— APPLY S(nl), 8(”2), . 8(ng)

1.1 Description

The algorithm starts with a group of size n items. This set is randomly split into G sub-
groups, the distribution of G is given by P(G = ¢) = py, where (p;) is a probability distri-
bution on {2,3,...}. Now, conditionally on the event {G = ¢}, for 1 < ¢ < {, an item is
sent into the ith subgroup with probability V; ¢, where V; = (V; ;1 < i < ¢) is a random
probability vector on {1,...,¢}. It can also be seen as a vector of random weights on the ¢
arcs of the branching procedure on which each of the n items perform a random walk.
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4 Mohamed and Robert

If N; is the cardinality of the ith subgroup then, conditionally on the event {G = ¢}
and on the random variables Vi ¢, Vo, ..., Vi, the distribution of the vector (Ny,..., Ny)
is multinomial with parameter n and (Vi ¢, Vay, ..., Vie),

P((Nl,...,Ng)Z(ml,...,mg)):m1'm2 ) m£|H ng N

for (m;) € N™ such that my + --- + my = n. If the ith subgroup, 1 < i < n, is such that
N; < D, the algorithm stops for this subgroup. Otherwise, it is applied to the ith subgroup:
a variable GG;, with the same distribution as G, is drawn and this ith subgroup is split into
G, subgroups, and soon ...

Such a random splitting has been introduced by Devroye [7] where the asymptotic ex-
pansion of the depth of the associated tree is investigated.

Examples.

— Knuth’s Algorithm. When P(G =2) =1, D =2 and V; 2 = Va2 = 1/2, this is one of
the oldest algorithms of this kind. It has been analyzed by Knuth in 1973.

— Symmetrical Splitting Algorithm. This is the case where V; ,, = 1/n for any n > 2 and
1< <n.

— Q-ary algorithm. If P(G = @) = 1 and D = 2 this is the Q-ary resolution algorithm
with blocked arrivals analyzed by Mathys and Flajolet [29].

See also Devroye [7] for other examples. Quite naturally, such an algorithm can be graphi-
cally represented with a tree as shown by Figure [l

Splitting Measure

As it will be seen in the following, the key characteristic of this splitting algorithm is a
probability distribution W on [0, 1] defined with the branching distribution (the variable G)
and the weights on each arc (the vector (Vi ¢g,..., Vg ¢)). The asymptotic behavior of the
algorithm is expressed naturally in terms of the distribution W.

Definition 1. The splitting measure is the probability distribution W on [0,1] defined by,
for a non-negative Borelian function f,

G oo £
[ o -2 (S vievio)) = 323 piG - m0icsin
i=1 —9 =1

Throughout the paper, it is assumed that, almost surely G > 2, and that there exists some
0 > 0 such that the relation

sup sup Vi <0 <1 (A)
0>21<i<t

INRIA



A Probabilistic Analysis of Some Tree Algorithms 5

ABCDEF

Figure 1: Splitting Algorithm with D = 2, two sets of random weights (V1 2,V22) and
(Vi3,Va3,Vi3), G a random variable with values in {2,3} and the initial items are A, B,
C, D, E and F.

holds almost surely, in particular W([0,6]) = 1. These conditions imply in particular the
non-degeneracy of the splitting mechanism.

Definition 2. A splitting measure YV is exponentially arithmetic if, there exists some A > 0
such that
w ({e_"k n > 1}) =1,

the largest A satisfying this relation is defined as the exponential span of W.

If A is some random variable with distribution W, then W is exponentially arithmetic
with exponential span A if and only if the distribution of —log(A) is arithmetic with span
A. See Section B

Examples.

— Knuth’s Algorithm, P(G=2)=1,D =2 and V12 = Va2 =1/2.
In this case
W(dl’) = 61/2

where ¢, is the Dirac distribution at x, W is exponentially arithmetic with exponential
span log 2.

— Symmetrical Splitting Algorithm.

W(dz) = P(G = n)di/y,

n>2

RR n° 5420



6 Mohamed and Robert

the exponential span is log D where D is the largest integer p such that the support
of the random variable G is contained in pN.

— Q-ary algorithm, P(G=Q) =1, D =2, Vi g = p1,..., V0,0 = Pg-

W(dl‘) = p15P1 +p26102 +- +pQ5PQ7
the distribution W is exponentially arithmetic if and only if all the real numbers
logp;/logp;, 1 <i < j < Q, are rational.
The Cost of a Splitting Algorithm

For such an algorithm, an important quantity is the number of operations required until the
algorithm stops, i.e. when all the subgroups have a cardinality less or equal to D. Denote
by R, this quantity when the number of initial items is n, then clearly

— R, =1 when n < D;

— Forn > D,

R, 14 Rinp + -+ Ra,na, (2)
where conditionally on the event {G = ¢} and the random variables Vi 4, Vay, ...,
Vioes

1. The vector (N7',...,N;) has a multinomial distribution with parameter n and

Vi,es Vo, .o, Vs
2. For (p;) € N*, the variables Ry ., ..., R p, are independent;
3. For 1 <14 </, the variable R; ,, has the same distribution as R,,.

The variable R,, is simply the number of nodes of the associated tree, see Figure [l

1.2 Unusual Laws of Large Numbers

Note that, since the splitting procedure is random, the variable R,, is a random variable.
With the language of communication networks, this quantity can be thought as the total
time to transmit n initial messages. If E(R,,) is its expected value, E(R,,)/n is the average
transmission time of one message among n. From a probabilistic point of view, it is natural
to expect that the sequence (R,,) satisfies a kind of law of large numbers, i.e. that (E(R,)/n)
converges to some quantity «. The constant « is, in some sense, the asymptotic average
transmission time of a message. Curiously, this law of large numbers does not always hold.
In some situations, the sequence (E(R,,)/n) does not converge at all and, moreover, exhibits
an oscillating behavior.

When the splitting degree is constant and equal to 2 and V; 5 = V, 2 = 1/2 (the items are
equally divided among the two subgroups), these phenomena are quite well known. They

INRIA



A Probabilistic Analysis of Some Tree Algorithms 7

have been analyzed using complex analysis techniques, functional transforms (and their asso-
ciated inversion procedures) by Knuth [22], Flajolet et al. [T2], Louchard and Prodinger [26]
and many others. See Hofri [15], Mahmoud [27] and Flajolet and Sedgewick [38] for a com-
prehensive treatment of this approach. See also Devroye [8] for a survey of the domain.
Robert [36] proposed an alternative, elementary, method to get the asymptotic behavior of
some related oscillating sequences without using complex analysis.

When the splitting degree is constant and equal to @ but the items are not equally
divided among the subgroups, studies are quite rare. Using complex analysis techniques,
Fayolle et al. [I1I] obtains the asymptotic behavior of the associated sequence (E(R,)).
Mathys and Flajolet [29] gives a sketch of a generalization of this study when @ is arbitrary.

Some alternative approaches.

— Some laws of large numbers have been proved by Devroye [8] in a quite general frame-
work for various functionals of the associated trees. Talagrand’s concentration inequal-
ities are the main tools in this study. In our case, it would consist in proving that,
the distribution of the random variable R, /E(R,) is sharply (with an exponential
decay) concentrated around 1. Results on limiting distributions such as, central limit
theorems, do not seem to be accessible with this method.

— Clement et al. [6] analyzed related algorithms in the more general context of dynamical
systems. By using an Hilbertian setting, they show that the first order behavior of the
algorithms is expressed in terms of the spectrum of a functional operator, the transfer
operator. Getting explicit results in this way requires therefore a good knowledge of
some eigenvalues of the transfer operator.

A dynamic version of this class of algorithms is investigated in Mohamed and Robert [32].
The splitting procedure is the same but, in the language of branching processes, an immi-
gration occurs at every leave of the associated tree, i.e. new items arrive every time unit.
This dynamic feature complicates the problem. In this case, an additional probabilistic tool
has to be used: an autoregressive process with moving average plays an important role.

1.3 Related Problems

Fragmentation Processes.

A continuous version of a splitting algorithm could be defined as follows: an initial mass of
size z is randomly split into several pieces and, at their turn, each of the pieces is randomly
split, ... A class of such models has been recently investigated. The fragmentation of each
mass occurs after some independent exponential time with a parameter depending, possibly,
of its mass. See Bertoin [3], Miermont [31] and references therein. The problems considered
are somewhat different: regularity properties of associated Markov processes, duality, rate of
decay of individual masses, loss of mass, asymptotic distributions, ... A splitting algorithm is
just a recursive fragmentation of an integer into integer pieces until each of the components
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8 Mohamed and Robert

has a size less than D. In a continuous setting, an analogue of the algorithms considered
here would consist in stopping the fragmentation process of a mass as soon as its value is
below some threshold € > 0.

Random recursive decompositions.

As it will be (easily) seen, a splitting algorithm can also be described as a random recursive
splitting of the interval [0, 1]. For example in the case of a dyadic splitting, starting from
the interval [0, 1], two subintervals I;, > are created and each of them is split at its turn
and soon ...

These random recursive decompositions have been considered from the point of view of
the geometry of the boundary points by various authors, to express the Hausdorff dimension
of this set of points in particular. Mauldin and Williams [30], Waymire and Williams [4T]
consider decompositions of the interval [0, 1] which are not necessarily conservative, i.e. when
|I:] + |I2] < 1 holds with positive probability in the dyadic case.

Hambly and Lapidus [T4] or Falconer [10] consider decompositions of the interval [0, 1]
from the point of view of the lengths of the associated subintervals. The interval [0, 1] is
represented by a non-increasing sequence (L,,) whose sum is 1. For n > 1, L,, is the length
of the nth largest interval of the decomposition. This description is similar to the classical
representation of fragmentation processes. See Pitman [33].

In this setting, multiplicative cascades and martingales introduced by Mandelbrot [28§]
and Kahane and Perriére [I8] show up quite naturally. They have been analyzed quite
extensively, see Liu [24], Barral [2] and references therein.

1.4 An Overview

The purpose of this paper is twofold. First, it considers splitting algorithms with a random
(and possibly unbounded) degree of splitting generalizing the previous studies in this domain.
Secondly, and this is in fact the main point of the paper, it proposes a probabilistic approach
that simplifies much the analysis of these algorithms. Moreover, as a byproduct, a new direct
representation of the asymptotic oscillating behavior is established.

The analysis proposed in this paper also starts from Equation (@), but its treatment is
significantly different from the analytic approach. After some transformation, Equation (&)
is interpreted as a probabilist equation which is iterated by using appropriate independent
random variables. Following the method of Robert [36], the next step is to perform a
probabilistic de-Poissonnization and, by using Fubini’s Theorem conveniently, to represent
the quantity E(R,) by using a Poisson point process on the real line. The final, crucial,
step which differs from Robert [36], consists in using the key renewal Theorem to get the
asymptotic behavior of the sequence (E(R,,)).

The approach is elementary, its main advantage on the analytic treatment lies certainly
in the use of the renewal Theorem which gives directly the asymptotic behaviour.

INRIA
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Results of the paper

Section 2 gives a useful representation for the average cost of the algorithm. The main result
of the paper for the asymptotic cost is the following theorem in SectionBl This is a summary
of Propositions @ and [[1]

Theorem 3 (Asymptotics of the Average Cost). For a splitting algorithm, under the
condition

1
1
| ) < o, )
0 Y
— if the splitting measure W is not exponentially arithmetic, then
i 20 _ E(G) 4)

ntee n (D 1) 1| log(y)| W(dy)

— If the splitting measure VW is exponentially arithmetic with exponential span \ > 0, as
n gets large, the equivalence

holds, where F' is the periodic function with period 1 defined by, for x > 0,

o) = s s [ (2 e ) e

and {z} = z — | z] is the fractional part of z € R.

Condition (@) is not really restrictive since the variable G is bounded in practice. This
theorem covers and extends some of the results in this domain: for Knuth’s Algorithm,
Knuth [22] and for Q-ary algorithms with blocked arrivals, Mathys and Flajolet [29], see
Corollaries [[ and

Furthermore, when there are asymptotic periodic oscillations, the periodic function F
involved is expressed directly and not in terms of its Fourier coefficients as it is usually the
case. The expression of F' generalizes the representation of Robert [36] obtained for Knuth’s
Algorithm.

The distribution of the sequence (R,,) (and not only its average) is investigated in Sec-
tion @l For simplicity, only the case where the variable G is constant and the variables V. ¢
are equal to 1/G is considered. The purpose of this section is to show that the distribution
of the Poisson transform of the sequence and more generally, the distribution of most of
the functionals of the associated tree, can be expressed quite simply in terms of Poisson
processes and uniformly distributed random variables.

RR n° 5420



10 Mohamed and Robert

Two representations of the distribution of the Poisson transform as a functional of Poisson
processes are derived. As a consequence, a law of large numbers is proved when the number
of initial items has a Poisson distribution (Poisson transform). Moreover, the asymptotic
oscillating behavior of the algorithm is proved as a consequence of a standard law of large
numbers. These unusual laws of large numbers are, in the end, in the realm of classical laws
of large numbers.

The central limit theorem is also proved with a similar method in this case. This is a
classical result, see Mahmoud [27], it is usually proved with complex analysis methods via
quite technical estimations. It is proved here as a consequence of the standard central limit
theorem for independent random variables. At the same time, a new representation of the
asymptotic variance is obtained.

Section [ recalls briefly some results and definitions concerning the renewal theorem.

2 General Properties

Throughout this paper, (MV(]0,z])) denotes a Poisson process with intensity 1, equivalently
it can also be described as a non-decreasing sequence (t,,) such that (¢,1 —t,) is a sequence
of i.i.d.random variables exponentially distributed with parameter 1. For z > 0, the variable
N ([0, z]) is simply the number of ¢,,’s in the interval [0, z]. See Kingman [I9] for basic results
on Poisson processes.

Equation () and the boundary conditions for the sequence (R,,) are summarized in the
following relation, for n > 0,

Ry 14 Rinp + -+ Rang — Glinepy.
therefore,
«a
R, 1 it Z (Ri,N{‘ —1)+Glispy (6)

i=1
Definition 4. The Poisson transform of a non-negative sequence (a,,) is defined as
" _,
> an-re " =E (ano.2))) - (7
n>0 ’

The following proposition gives useful representations of the Poisson Transform of the
sequence of (E(R,,)).

Proposition 5 (Poisson Transform of the sequence (R,)). For z >0,

+oo
1
E (Ruon)) =1+ EGE S ———1 i . 8
(Bn((0.a])) (@) (;_0: TR {thmnklwk}> (8)

where (W;) is an i.i.d. sequence of random variables with distribution WV .

INRIA



A Probabilistic Analysis of Some Tree Algorithms 11

Proof. If n is a Poisson random variable with parameter x, the splitting property of Poisson
variables (see Kingman [I9] for example) shows that, conditionally on the event {G = ¢}
and on the variables Vi 4, ..., Vi ¢, the variables N*, 1 <i <[ are independent and N;* has
a Poisson distribution with parameter zV; ;. Consequently, for > 0, if

det E (R (j0,a)) — 1
P(x) = TLRG) 9)

it is easily checked that E(G)®(z) — R1 — Ro =0 as = \, 0.
Since {N([0,z]) > D} = {tp < z}, Equation (@l gives the relation
‘

+o0
O(x) = P(G=0E <Z Vi,gcb(xvi,g)> + é]P’(tD < ). (10)
=2

=1

Equation () can then be rewritten as

1
b(z) = E(®(zW7)) + E (El{th}) . (11)
The iteration of Equation ([l shows that, for n > 1,
n n—1 1
o) =E(o(z][W. || +E — 1 o .
< ( kl;[l )) <; xl—[k:1 W, {tDS | - Wk})

The assumption on the variable G and the sequence of vectors (V},) implies that, almost
surely, the sequence ([];_, Wi) converges to 0. The function ® can thus be represented as

+oo
1
( ) <§xnl_1 W {tDSIHklwk}>

The proposition has been proved. (]

From now on, throughout the paper, (W;) will denote an i.i.d. sequence of random variables
on [0, 1] with distribution W.

Proposition 6 (Probabilistic de-Poissonnization). For n > D, then

T(Uf,))-1 1
n) — G i <.
E(R,) =1+E(G)E ; TR (12)

where, for 0 <y <1, ‘
T(y)zinf{iEl:HWk<y}
k=1

and U(?l) is the Dth smallest variable of n independent, uniformly distributed random vari-
ables on [0, 1] independent of (W;).

RR n° 5420



12 Mohamed and Robert

Proof. For x > 0, by decomposing with respect to the number of points of the Poisson
process (N (t)) in the interval [0, z], one gets, for 0 < o < 1,

+oo
P(tp < za) = Y _ P(tp < za, N([0,2]) = n)
n=D

+o0
= Z P(tp < za | N([0,z]) = n) PN([0,2]) =n).

n=D

For n > D, conditionally on the event {N([0,z]) = n}, the variable {p has the same
distribution as the D smallest random variable of n uniformly distributed random variables
on [0,x]. When 2 = 1, denote by U, (’?z) a variable with this conditional distribution. Clearly,

by homogeneity, the variable (tp | N ([0, z]) = n) has the same distribution as zU, (131 )- Finally,
one gets the identity

P(tp < za) Z ]P’( ) - <Z ]l{U(n)<a} 1) .

By using the independence of the sequence (W;) and tp in Equation (), the last identity
gives the relation

+oo +oo
1 @
E (Ry(o.ap) = 1 +E(G)E (Z; T Z L, <ITj_, we) 7 © ) :

By Fubini’s Theorem and writing 1 = exp(x) exp(—x), this expression can be rewritten as
y g

D—1 " +oo “+o0 1 "
ey 1+E(G)E S P p— e,

The identification of Representation [{@) of E (RN([O:D ) and the last identity gives For-

mula (I2) O

Corollary 7 (Symmetrical Q-ary Algorithm). When P(G = Q) =1 holds and V; g =
1/Q, fori=1, ...Q, then forn > D,
E(R,) =1+ % (E (Q[_ logq Ufiﬂ) - 1) (13)
with, for 0 <z <1,
D=1,
P (U(?I) > x) = Z (k>xk(1 —z)" 7k,
k=0
From Equation (3), by using the fact that nU(lz ) converges in distribution as n tends
to infinity, it is not difficult to get the asymptotic behavior of E(R,). The general case,

Equation ([[3), is slightly more complicated. One has to study the asymptotics of the series
inside the expectation.

INRIA



A Probabilistic Analysis of Some Tree Algorithms 13

A Functional Integral Equation

If R(x) = E(Rar(jo,»])) denotes the expected value of the Poisson transform of the sequence
(R,), then Equation (@) gives the relation

+o0 £
R(z)=1+) P(G=0E <Z R(z%,ﬂ) —E(G)P(tp > z),
(=2 =1

by denoting
+o0 D-1
u
(D —1)!

it is easy to see that the above identity can be written as the following integral equation

hz) = 1 - E(G) / du,

x

u

o0 n
Rlz) = /0 Riaw) 29 4 . (14)

Recall that W is some probability distribution on the interval [0, 1]. For the Q-ary protocol
considered by Mathys and Flajolet [29], this equation is

Q

R(z) = Z R(xp;) + h(x).

i=1

It is analyzed by considering the Mellin transform R*(s) of R(x) on some vertical strip S of

C,
+oo

R*(s) = ; Rwu*tdu, se€S

which, in this case, is given by

N
R*(s):h*(s)/<1—2E>.

The analytical approach consists in analyzing the poles of R*(s) on the right hand side of
S, basically the solutions with positive real part of the equation

Pt Dyt g =1

Then, by inverting the Mellin transform and using complex analysis techniques, the asymp-
totic behavior of (R(x)) at infinity is described in terms of these poles. The final step, an
analytic inversion of the Poisson transform together with technical estimates, establishes a
relation between the asymptotic behaviors of the function z — R(z) and of the sequence
(Ry).

RR n° 5420



14 Mohamed and Robert

In the general case considered here, Equation ([d]) gives the following expression for the
Mellin transform of (R(x))

R*(s) = h*(s) / (1 - /O+OO ﬁ W(du))

An analogue of the analytic approach would start with the study of the roots s € C, R(s) > 0,
of the equation

+oo 1

and, if possible, proceeds with successive inversions of Mellin transform and Poisson trans-
form.

As it will be seen, our direct approach reduces to the minimum the technical apparatus
required for such an analysis. The Poisson transform of (R,) is also used in our method,
but it is conveniently represented, see Equation (&), so that it can be right away inverted to
give an explicit expression [[Z) for E(R,,) which will give directly the asymptotic behavior
of the sequence (E(R,,)).

Interestingly, if (L, ) denotes the non-increasing sequence of the lengths of the subinter-
vals of [0, 1] associated to the splitting procedure (see Section [[J). The Zeta function of the
string (L,,) is defined as the meromorphic function

((s)=> L seC,

n>1

see Hambly and Lapidus [T4] and Lapidus and van Frankenhuysen [23]. It is not difficult to
see that the relation

E(¢(s)) :/(J+OOuSW(du)/(1—/O+OO uSW(du)>

holds. In particular, the poles of the Zeta function of the associated random recursive string
can be expressed in terms of the solutions of Equation (IH).

3 Analysis of the Asymptotic Average Cost

An Associated Random Walk. If (W) is an i.i.d. sequence with common distribution W
defined by Equation (), the sequence (B;) = (—log(W;)) is an ii.d. sequence of non-
negative random variables. The random walk (S,,) associated to (B;),

As it will be seen, the asymptotic behavior of the splitting algorithm depends much on the
distribution of (B;). For x > 0, the crossing time v, of level x by (S,,) is defined as

vy = inf{n : S, > z}.

INRIA



A Probabilistic Analysis of Some Tree Algorithms 15

For 0 < y < 1, the variable T'(y) of Proposition B is simply v_og(,). Section H recalls the
main results concerning Renewal Theory used in the following.

If W is defined as
ve—1 %
W(m)zE(Zexp( Bk>>, x>0
i=0 k=1

E(R,) =1+ E(G)E [\If (— log (U(’g)m . (16)

then by Equation (),

It is clear that —log(U(’?l)) converges in distribution to +o0co as n goes to infinity. The
asymptotic behavior of ¥ at infinity is first analyzed, this function can be rewritten as

U(zx)e " =E (UIZ esi:”> =E (i eS”Ii:’:) . (17)
i=0 i=1

3.1 The Non-Arithmetical Case

In this part, it is assumed that the distribution of W7 is not exponentially arithmetic. See
Definition

Lemma 8. Under the condition

| log(W1)| _/1 | log ()|
E ( W =, - W(dx) < +o0,
the relation

sup E (es"f_w) < +00
x>0

holds.

Proof. Lorden’s Inequalities, see Lorden [25] and Chang [5], show that, for any p > 0,

p p+2 P
SUpE((Sy. —0)") < —Fpp e (B1)

thus, one gets the relation

1 Foo
E (e5v=~%) < 2)e"P(By > u)d
sup (e )_E(Bl)/o (u+2)e" P(By > u) du
—log(W1) + 1
_E((Bl—i-l)eBl)—l_E(%)—1<+oo.
1
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16 Mohamed and Robert

For ¢ > 1, Theorem shows that, when x goes to infinity, the variable S, ,_; — =
converges in distribution to —(7* 4+ 7 + 72 + - - - 4+ 7;_1), where the variables (7,,) are i.i.d.
distributed as B; and independent of 7* whose distribution is given by

—+o00
E(f(r")) = ﬁ / JWEBB: > ) du,

for any non-negative Borelian function on R. By Assumption (B]), the increments of the
random walk (S,,) are bounded below by —log(d), therefore one gets the relation, for 1 <

K < u,,
K

From Lemma B and Equatlon (@), one deduces then

zgr}rloo \IJ <Z GXp -7 = L= T2 — - Til))

1 E(exp(—m)) | N
=T Em) T Elea(m) | EGegim) Y

since, by Equation (BI)), the density of 7 on R is given by
P(ry > z)/E(r1), x>0.

Proposition 9 (Convergence of Averages). If the distribution of W1 is not exponentially
arithmetic and such that
E (|log(W1)|

< +o0,
W1>+OO

then the following convergence holds

i EBn) _ E(G)
noteo  m (D — 1)E(—log W)

Proof. Equation ([f) gives that, for n > 1,

@ - % +E(G)E ( [~ tog (UF) | exp (108 (U))) %53) |

As n goes to infinity the variable nU(’?l ) converges in distribution to a random variable tp
which is a sum of D i.i.d. exponential random variables with parameter 1, furthermore,

. 1 1
B <W(D)> =E(/tr) = 5=

INRIA



A Probabilistic Analysis of Some Tree Algorithms 17

For ¢ > 0, there exists K such that, for z > K, |¥(z)exp(—z) + 1/E(logW1)| < ¢, if C
denotes the supremum of x — ¥(z) exp(—z) on R, then

e (o[-t (02)] e (16 (02)) st ) - (=g

1 . )
< ¢k Cr—0  VEf1 1
. ("Ué)z)) +< +]E(—10gW1)) < {U<’i>>exp<—K>}nU£)>

1 E 1 1
E(—log W1) nU(?l) D-1|

+

(19)

For Ky > 0,
limsupE | 1 L
1m su
oy {vh, > eXP(—K)}nU(’?l)
< limsupE [ 1 ! e (1 1
im su = o —
- n—>+<x1)3 {”U(]Z) > Ky eXP(—K)}nU(’Z {tp>K2 exp(—K)} i)’

)

and this term goes to 0 as K5 tends to infinity. One concludes that the right hand side of
Relation (@) is arbitrarily small as n goes to infinity. The proposition is proved. O

Corollary 10.

1. Q-ary protocol with blocked arrivals.
When D =2, G = Q and Vig = p; for 1 < i < Q then, if at least one of the real
numbers logp;/logp1, 2 < i < Q is not rational, the convergence

E(Rn) Q

lim = .
notee om0 —p;logp;

holds.

2. Symmetrical case.
If G is not a degenerated random variable such that E(log G) < +oo and, for £ > 2
and 1 <i</{, V;p=1/L, then

lim E(R,) E(G)

3.2 The Arithmetical Case

It is assumed that the distribution of W; is exponentially arithmetic with exponential span
A > 0. The law of —log(W7)/X is a probability distribution on N. For ¢ > 1, one defines
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18 Mohamed and Robert

C; = B;/\ = —log(W;)/\. In the arithmetic case, the integer valued random walk associated
to (C;) plays the key role, much in the same way as for (S,,) in the non-arithmetic case. By

denoting
k
Tn—inf{k21tzci2n},

i=1

Equation () can be rewritten as, for x > 0,

Tla /A1 Tra/A1 %

U(z)e Me/A =R Z exp | A Z Cr — [z/X] ,
i=1 k=1

where [y] = inf{n € N: n > y} for y > 0. By using Theorem Il and its notations, for
i > 1, as n goes to infinity, the variable C; + --- + C;,, _; — n converges in distribution to
—(Cy4+Cy+ -+ C;). With the same method as in the non-arithmetic case, if the variable
|log(W1)|/ W1 is integrable, then

lim W(z)e M/ = ! A
z— 00 E([log(Wy)]) 1 —e

Proposition 11 (Asymptotic Periodic Oscillations). If the distribution of W1 is ex-
ponentially arithmetic with exponential span A\ > 0, and such that

g (Llosti)

W > < 400,

then, as n gets large, the equivalence

E(R) (10gn>

n A

holds, where F is the periodic function with period 1 defined by, for x > 0,

F@) = B T /om o (A= -5 }) <DyD—i>!“dy

and {z} =z — |x].

Proof. For n > 1, if [z] = |z] + 1,
Lo o (-vuc)]

—log U?l 1
=E|U (—10gU(?l)) e A= 1og(UG) /M) A exp (_)\{ ( ( )) })

)

D
A nU(n)
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A Probabilistic Analysis of Some Tree Algorithms 19

since nU(?l ) converges in distribution to ¢tp as n goes to infinity, with the same method as
in the proof of Proposition @, one gets the equivalences

Lg o (~10a(UE))]  B( lox(w)) L=
g

log(n) 1og(nU(?l)) 1
P (‘A{ ) nUD

VR

One concludes by using Equation (IH). O

~F

Corollary 12 (Q-ary protocol with blocked arrivals). When D = 2, G = @ and
Vio = pi for 1 <i < Q then, if all the real numbers logp;/logpi, 2 < i < Q are rational,

the equivalence
E(R,) ~F <1ogn>
n A
holds, where F is the periodic function with period 1 defined by, for x > 0,

+oo
F(z) = QQ )\7)\/ exp (—)\{x—loﬂ}) e Ydy,
— X1 pilogpi L€ o A

where {z} =z — |z] and A =sup{y >0:Vie {1,...,Q},logp; € yZ}.

4 The Distributions of the Symmetrical ()-Ary Algorithm

From now on, it is assumed that the branching degree of the splitting algorithm is constant,
ie. P(G = Q) =1, and uniform, V; o = 1/Q for 1 < i < Q. A group of n > D items is
randomly, equally divided into @) subgroups. From Proposition [ it is known that

E(Ry)/n ~ Fi (loggn)

as n goes to infinity, with

2 +00 D—2
Fi(z) = QQ_ - /O Q—{z—logQ u}h eV dy. (20)
This is a, typical, case where a regular law of large numbers does not hold.

The purpose of this section is to strengthen the above convergence. The distribution of
the Poisson transform of the sequence (R, ), i.e. the random variable R (o .)), is investigated
and not only its average as before. In particular it is shown that, for the Poisson transform, a
standard law of large numbers can be used to prove the oscillating behavior of the algorithm.
In other words, these uncommon laws of large numbers can be, in the end, expressed in a
classical probabilistic setting.
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20 Mohamed and Robert

Notations
Throughout the rest of the paper it is assumed that

1. N is a Poisson process with intensity 1 on R, . Another Poisson process will be used
but in the two dimensional space [0, 1] x R.

2. The variable M denotes a Poisson process on [0,1] x Ry with intensity 1, this is a
distribution of random points on [0, 1] x R with the following properties: if M(H)
denotes the number of points that “fall” into the set H C [0,1] x Ry,

— For z € [0,1] x Ry, M({z}) € {0,1}

— If G and H are disjoint subsets of [0, 1] x R, the variables M(G) and M(H) are
independent.

— The distribution of the variable M([a,b] X [y, z]) is Poisson with parameter (b —
a)(z—y)for0<a<b<land 0<y <z

Note that the random variables N(]|0, z]) and M([0,1] x [0, z]) have a Poisson distri-
bution with parameter x.

3. The Poisson transform of the sequence (R,,) is denoted by R(z), © > 0,

dist. dist.
R(z) “F Rao.a)) = Baa([o,1]x[0,2])-

Its expectation is given by Equation (). This section is devoted to the study of the asymp-
totic behavior of the distribution of R(x).

4.1 Laws of Large Numbers

In this section, it is proved that the Poisson transform of the sequence (R, ) satisfies a
strong law of large numbers. A nice representation of this transform as a functional of
Poisson processes is first proved in the following proposition.

Proposition 13. The distribution of the Poisson transform R(x) of the sequence (Ry,)
satisfies the following relations,

. Q-1
Ria) 2 Ra(@) L 1+Q Y 7 ow (ak/Q"al(k+1)/Q"). (21)

p>0 k=0
where, for 0 < a <b ¢n(a,b) =1 if N(Ja,b]) > D and 0 otherwise,
Q-1
dist.

R S Role) Z 14 QD 3 Mm@z, (ke +1)/@) x e = D) (22

p>0 k=0
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A Probabilistic Analysis of Some Tree Algorithms 21

Note that the function x — Ro(z) is clearly non-decreasing. In particular, if f is some
non-decreasing function on R, the same property holds for

z — E[f(R(z))].

Representation (ZI]) will be useful to get a strong law of large numbers on subsequences and
Representation (ZII) will be used to get the full convergence in distribution of R(x)/z as x
tends to infinity.

Proof. By the splitting property of Poisson random variables, the recurrence relation (@) for

the sequence (R,,) can be expressed as

Q
dist.
Ryoa)) = 1+ D Rin(e(i-1)/Quri/ql) — QLN (0.2))<D}»
=1

for z > 0. If, for 0 < a < b,
1
(I)(a’a b) = G(R./\/(]a,b]) - 1)a (23)

the last equation can be rewritten as

Q . .
®(0, ) :Zq” <%xéx> + o (0, ), (24)

with an obvious notation with the subscripts i for ®. By iterating this relation, one gets
that, almost surely, the expansion

Q-1
®(0,2) = Z Z ON (%x, %x) , (25)

p>0 k=0

holds. The function ®(0,z) is just the sum of the function ¢ on the Q-adic intervals of
[0, z].
Equation [22) is proved in the same way. O

Representation of some of the functionals of the associated tree

When N ([0, z]) items are at the root of the associated tree, the total number of node of the
tree R ([0,2)) is not the only quantity that can be represented, by Equation (1)) in terms of
the Poisson process .

The mazimal depth M (x) of the associated tree when there are ([0, z]) items at the top of
the tree can be expressed as a functional of the Poisson process

M(z) =max{p>1:3k0<k< QP ' —1,N(k/Q" ', (k+1)/Q""']) > D}
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The quantity
F(z) =max{p>1:Yk,0 <k < Q"' = LN(k/Q"", (k+1)/Q"""]) > D}

is the number of full levels of the tree. See Knessl and Szpankowski [21]. Note that these
quantities are directly related to classical occupancy problems. The number of nodes at level
p > 1 is given by

QP -

Q Z NORQP (k +1)/Q7) = D}

This is not, of course, an exhaustlve list of the possible representations in terms of the
Poisson process.

It is quite useful to think splitting algorithms either in terms of trees or in terms of
Q-adic subintervals of [0, 1]. In a more general case, i.e. when the splitting algorithm is not
symmetrical, a representation similar to Representation (ZIl) can be obtained by using the
associated random decomposition of the interval [0, 1] instead of the Q-adic decomposition.
See Falconer [10].

A strong law of large numbers. Equation 24 shows that, if N > 0, the quantity
® (0,yQ"N) is the sum of the ® on the intervals [yp,yp +y], 0 < p < QV, and of ¢
on the intervals [ykQ™, y(k + 1)Q"] contained in [0, yQ"], that is

QN -1 N QN -1
(0,4QY) = > wp.yp+uy)+ >, Y. on WkQMy(k+1)Q"). (26)
=0 n=1 k=0

By the independence properties of Poisson process, the classical strong law of large numbers
shows that, almost surely,

V-1
lim 1N > (yp.yp+y) =E(®(0,y)) = >_ Q" E(¢n (0,5/Q")
N—+4o00 Q =0 70
=Y Q"P(N(0,y/Q") > D),
p2>0
by using Equation (ZH), and for n > 0,
QN n__
G o QN Z m (ykQ",y(k +1)Q") = @E(dw(o yQ™)-
Note that, for 0 < K < N,
L N 1
Y X evhQna 100 Y e s
k=0 n=K
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The three last identities and Decomposition (28] give that, almost surely,

lim (O yQN) Z

N—too yQN =

PWN(]0,yQ"]) = D).

1
yQ"
Proposition 14 (Strong Law of Large Numbers). With the same notations as in
Proposition I3, for 0 < y < Q, almost surely,

R (yQY) n
ylim = o Q% Qn (10.yQ")) > D) (27)
Q%an/ e "du = Fi(logyy),

where Fy is the periodic function defined by Equation (20).

As a byproduct, the proposition establishes the intuitive (and classical) fact that the
sequence (E(R,)/n) and the function 2 — E(Rx([0,2)))/= have the same asymptotic behavior
at infinity. Note that if G(y) is defined as the second term of Equation (1), then the function
x — G(Q7) is clearly periodic with period 1.

Proof. Clearly, only the relation Fi(logg y) = G(y) has to be proved. For n € Z, if tp is the
Dth point of the Poisson process A then

qul

+oo

By summing up these terms, with Fubini’s Theorem one gets

+o00 Z Dfl
=Q / = Liu<yon e " du
nez Q ( )
Q2 oo 1 uP-1
0= 1/ JOMeaGT (D11
Q2 +oo 1 UD_2

“0-1), Q@ UswwmiD_1)1°¢ du = Fi(logg y).

The proposition is proved. |

The following proposition establishes a weak law of large number for the Poisson trans-
form of the sequence (R,,). Devroye [8] obtained related results in a more general framework
by using Talagrand’s concentration inequalities.

RR n° 5420



24 Mohamed and Robert

Theorem 15 (Law of Large Numbers). The following convergence in distribution holds,
R(x)

’07 any g > 0,
h.IIl IED < 1 > E = O
>0 ( l} 1(1CgQ ) ‘ ) ’

where Fy is the function defined by Equation @0).

Proof. For z > 0, one defines N, = |logg ], uy = #/QN and, for p > 1, z, = [up|Q™" /p.
Note that sup,; |z/z; — 1| converges to 0 as p tends to infinity, hence by continuity of 7,

zFy (logg )

li _
oo S0k 2 I (logg 22)

P—=+00 >

—1‘_0.

Proposition [ shows that for p > 1, almost surely, for &k, 0 < k < p,

lim Rim@Y)
N—+o0 yx QN F1(logg yi)

with yr = k/p. Therefore, if p > 1 is fixed, almost surely,

im ————— =
a—+oo 2, Fy (logg 22

The monotonicity of the function z — Ra(x) gives the relation
Uy
Ro (MQM> < Ro(x),
p
one finally gets
zFy (logg @) zF1 (logg @)

<P <%I)) <1 —5> _]P>< Rulz) zoFi(logg z) <1 —s) ,

rFi(logg = 21 (logg z:) Fi(logg )
therefore,
mli»g—loop (% <1 —5) =0.
The analogous inequality is obtained in the same way. The theorem is proved. O

4.2 Central Limit Theorems

For N > 1 and 0 < z < @, with ® defined by Equation (Z3), the variance of the variable
®(0,x) is first analyzed. The expansion ([ZH) gives

@-1

@'
[2(0,2) —E(@O,2)* =" > > > Akp(@)Awp(2),

p>0 k=0 p'>0 k'=0
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with

st (e 5) (o0 )

The expected value of the variable A ,(x)Ag () is non-zero only if p < p’ and ka,*p <
k' < (k+1)Q¥ P — 1 or the symmetrical condition by exchanging (p, k) and (p/, k).

QP -1

E{(@(O,z)—( )} SN E[A

p>0 k=0

QP -1 k+1)QF -P_1

+2) 3 Y Y ElAg@Avy ().

p>0 k=0 p'>p k/=kQr P
By using the elementary identities
E [Arp(2)?] = E[on(0,2/QP)] (1 — E[oa(0,2/QP)))
=P(tp <z/Q")P(sp > z/Q"),
E A1 (0) A ()] = E [6x(0,2/Q")| (1 = E[6(0,2/Q")])
= P(tp < 2/Q")P(sp > z/Q"),

where tp and sp are independent random variables with the same distribution as the Dth
point of the Poisson process A, one gets the relation

E [(@(O,x) - E(@(O,x)))? =Y QUB(tp < 2/Q" < sp)

p=>0

+2 Z QY P(tp < z/Q" ,x/QP < sp).

p'>p>0

By switching again the series and the expected values, one finally obtains,

2
@15 |(20.0) - E@0.0))
=QE ((Qllogg(z/to)J _ QLlogQ(m/SD)J) ]l{LlogQ(w/tD)J>LlogQ(m/sD)J})
+2QE ((UOgQ(fC/tD)J — llogg(@/sp)] —1)" QUOgQ(I/tD”)

Q 1 +
_9 % R ( llogq (z/tp)] _ LlogQu/sD)m) (28
7= ((e Q (28)
where a™ = max(a,0) for a € R. This identity gives the following proposition. A similar
proposition has been proved by Jacquet and Régnier [16] and Régnier and Jacquet [37] in
the case where Q = D = 2 but without symmetry conditions as it is the case here. See also
Mahmoud [27] Chapter 5.
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Proposition 16 (Asymptotic Variance). The variance of the Poisson transform of the
sequence (R,) satisfies the following equivalence, as x goes to infinity,

% Var (R(z)) ~ Fa(logg(z)),

where Fy is the continuous periodic function with period 1 defined by, for y > 0,

R = [ ({o=10zglu)}. (v~ orq )} u.0)
qul ,UDfl

“ -1 (D-1)
with {z} = z — |z] for z € R and for u >0, v >0 and y € R,

e W) dudv,  (29)

Q (Q* @
fz(a,bﬂlav):m o~ Ltog, (v/u)+b>a}

+ QQ—& (logg (v/u) —a+b—1)" -

where 2 = max(z,0).
Note that a more detailed expansion of the variance could be obtained with Formula 28]).

Proposition 17 (Central Limit Theorem for Poisson Transform). For 0 < y < Q,
as N tends to infinity, the variable

1

/QN
converges in distribution to a Gaussian centered random variable with variance yI(logg v),
where Fy is defined by Equation (29).

(R(yQ™) — E(R(yQ™)))

Proof. Tt is enough to prove the proposition for the variable ®(0,x) defined by

®(0,7) = _(R/\/ q0,2) — 1),

@

Equation Z8) gives, for K > 1,
V-1
©(0,5Q") —E (@ (0,yQY)) = > [®(yp,yp +y) — E(®(0,y))]

K
Z [en (WkQ™,y(k 4+ 1)Q™) — E (¢n (0,yQ™)] + Ak
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where A is the residual term of the series. By using the method to compute the variance,
it is not difficult to establish that, for any € > 0 there exists some K > 0 the expected value
of (Ax/QN)? is less that ¢, for N sufficiently large.

By regrouping the terms of the above equation according to the Q-adic intervals [yk/Q, y(k+
1)/QX] for 0 < k < QN~K and by using the independence properties of the Poisson pro-
cess NV, the quantity @ (0,yQ™) —E (@ (0,yQ")) — Ak can be written as a sum of Q¥
independent identically distributed random variables. Therefore, the classical central limit
theorem can be applied. The proposition is proved. O

4.3 The Distribution of the Sequence (R,)

The following proposition describes the distribution of the variableR,, in terms of n i.i.d.
uniformly distributed random variables on the interval [0,1]. This characterization is gen-
erally implicitly used to get various asymptotics describing the depth of the associated tree.
See Mahmoud [27] and Pittel [34].

Proposition 18. For n > 0, the random variable R,, has the same distribution as

. Q-1
Ry 1403 3 du, (k/Q7. (k+1)/Q7), (30)

p>0 k=0

where, for 0 <a <b <1, ¢y,(Ja,b]) =1 ifU,(Ja,b]) > D and 0 otherwise. The variable U,
is the point measure on [0,1] defined by

Un = 0y, +0u, + - + 00,

(U, ...,Up) are i.i.d. random variables uniformly distributed on [0, 1], in particular, U, (]a, b])
is the number of U;’s in the interval |a,b].

Proof. Assume that N is a Poisson process with parameter 1, by definition

(RN(]O,I]) | N(]0,2]) = n) dist. R..

Due to Proposition [, the distribution of the Poisson transform R ,]) is expressed as a
functional of the points of the Poisson process on the interval [0, z]. But, as in the proof of
Proposition B conditionally on the event {N(]0,z]) = n}, these points can be expressed as
a2U;, 1 <4 <n where (U;) are i.i.d. uniformly distributed random variables on the interval
[0,1]. Equation (B0) is thus a direct consequence of Relation (Z1)) O

5 Some Results from Renewal Theory

Some definitions and results from renewal theory are briefly recalled. See Grimmett and
Stirzaker [13] for example.
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Definition 19. Arithmetic Distributions. A distribution p on R is arithmetic if there
exists some A > 0, such that p({n\:n € N}) = 1. The largest \ with this property is the
span of the distribution.

5.1 Continuous Renewal Processes

If (7;) is an i.i.d. sequence, for x > 0, the variable v, is defined as the hitting time of the
set [z, +oo[ by the random walk associated to (7;),

vy, =inf{n: S, >z},

with, forn >0, S, =+ 71+ + Ta-

The variable t§ = S, — x is the overshoot of level x by the random walk. For k& > 0,
one defines t7 as the location of the kth point before z, ti = S,,_r — =, with the convention
that S; = —oo for ¢ < 0.

Theorem 20 (Continuous Renewal Theorem). If the distribution of Ty is non-arithmetic,
then the random variables

((ti - tiJrla k Z l)atfa tﬁ)
converges in distribution to a sequence ((7;,1 > 2),7y,7"), where the sequence (7;,i > 2)
is i.i.d. with the same distribution as 70 and independent of the variables (77,7*) whose
distribution is given by

* * 1 ™
B, = gor® ([ fum = uau). 51)
E(ro) 0
for any non-negative Borelian function f on R?.

5.2 Discrete Renewal Processes

If (C;) is an i.i.d. sequence of integer valued random variables such that P(C; = 1) > 0 and

k
Tn—inf{k:ZCiZn},
i=1

Theorem 21 (Discrete Renewal Theorem). The random variables

Trn—1
<(O‘rnk71 S k S Tn) , b — Z CZ)
i=1

conwverges in distribution to ((Cy,i > 2),C}), where the sequence (Ci,i > 2) is i.i.d. with the
same distribution as C1 and independent of the variable C; whose distribution is given by

P(Cy =n)= E(Cl)P(Cl >n), n>1.
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