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Abstract: The chronotherapy concept takes advantage of the circadian rhythm of cells physiology
in maximising a treatment efficacy on its target while minimising its toxicity on healthy organs. The
object of the present paper is to investigate mathematically and numerically optimal strategies in
cancer chronotherapy. To this end a mathematical model describing the time evolution of efficiency
and toxicity of an oxaliplatin anti-tumour treatment has been derived. We then applied an optimal
control technique to search for the best drug infusion laws.

The mathematical model is a set of six coupled differential equations governing the time evolution
of both the tumour cell population (cells of a Glasgow osteosarcoma, a mouse tumour) and the ma-
ture jejunal enterocyte population, to be shielded from unwanted side effects during a treatment by
oxaliplatin. Starting from known tumour and villi populations, and a time dependent free platinum
Pt (the active drug) infusion law being given, the mathematical model allows to compute the time
evolution of both tumour and villi populations. The tumour population growth is based on Gompertz
law and the Pt anti-tumour efficacy takes into account the circadian rhythm. Similarly the enterocyte
population is subject to a circadian toxicity rhythm. The model has been derived using as far as
possible experimental data.

We examine two different optimisation problems. The eradication problem consists in finding the
drug infusion law able to minimise the number of tumour cells while preserving a minimal level for the
villi population. On the other hand, the containment problem searches for a quasi periodic treatment
able to maintain the tumour population at the lowest possible level, while preserving the villi cells. The
originality of these approaches is that the objective and constraint functions we use are L criteria.
We are able to derive their gradients with respect to the infusion rate and then to implement efficient
optimisation algorithms.
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Stratégies de perfusion optimales en chronothérapie des cancers

Résumé : La chronothérapie consiste & utiliser le rythme circadien de la physiologie cellulaire pour
maximiser l'efficacité d’un traitement sur sa cible tout en minimisant sa toxicité sur les organes sains.
L’objet de ce papier est la recherche de stratégies mathématiquement et numériquement optimales en
chronothérapie des cancers. Nous avons & cette fin développé un modéle de efficacité et de la toxicité
d’un traitement antitumoral par ’oxaliplatine. Nous avons ensuite appliqué une technique de controle
optimal pour obtenir les meilleures lois de débit de perfusion du médicament.

Le modeéle mathématique est constitué de six équations différentielles couplées qui gouvernent
I’évolution de la population des cellules tumorales (cellules d’ostéosarcome de Glasgow, tumeur murine),
et la population des entérocytes matures des villosités jéjunales, population & préserver des effets
toxiques non désirés d’un traitement par ’oxaliplatine. Partant de populations initiales connues pour
la tumeur et les entérocytes des villosités, et d’une loi temporelle pour le débit d’injection du Pt
libre (le médicament actif), le modeéle permet de calculer I’évolution des deux populations, tumorale et
villositaire. La croissance de la population tumorale suit une loi de Gompertz et ’efficacité antitumorale
du Pt tient compte d’une rythmicité circadienne. De méme, la population des entérocytes est sujette
4 une toxicité circadienne. Autant que faire se pouvait, les paramétres du modéle ont été fixés d’apreés
des données expérimentales.

Nous avons examiné deux problémes d’optimisation distincts. Le probléme d’éradication consiste
& trouver la loi de débit de perfusion du médicament qui minimise le nombre de cellules tumorales
tout en préservant un niveau minimum pour la population des entérocytes villositaires. D’autre part,
le probléme de stabilisation recherche un mode de traitement quasi-périodique capable de maintenir
la population tumorale au niveau le plus bas possible, tout en préservant la population des cellules
villositaires. L’originalité de ces approches est d’utiliser pour les fonctions objectives et de contrainte
des critéres L°>°. Nous calculons leurs gradients par rapport au débit de perfusion et nous en déduisons
des algorithmes d’optimisation efficaces que nous implémentons effectivement.

Mots-clés : Systémes dynamiques, contréle optimal, rythmes circadiens, thérapeutique, cancer.
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4 Basdevant, Clairambault & Lévi

1 Introduction

An important issue in the treatment of cancer is its tolerability by patients. Drugs that show good
therapeutic effects by killing tumour cells are always limited in their use by their toxicity on healthy
tissues. Such unwanted toxicity usually depends on the particular drug in use, but since they all act
by hindering cell proliferation, the most exposed healthy cell populations are found in normal fast
renewing tissues, such as intestinal mucosa or bone marrow, where cell proliferation is as active as in
tumour tissues -though under control.

It is thus of the greatest importance to find differences in the behaviours of healthy and cancer cells
towards agression by antitumour treatments. In this respect, to our knowledge, no clear molecular
mechanisms have been documented as yet on these differences. But various observations at the macro-
scopic, cellular or molecular levels have been made and used to try and propose improved chemotherapy
treatments in patients with cancer. In particular, according to these observations, the mean cell cycle
time is often different between healthy and cancer cells, and even if it is the same, its variance should be
higher in cancer cells, due to lack of synchronisation between cells in the cycle; this has led to propose
pulsed chemotherapies of cell-cycle phase-specific drugs with the aim to destroy electively proliferating
cancer cells[T}, [7, 8, B2, 9]. More recently, it has been proposed that the ability to undergo apoptosis
(programmed cell death) induced by cytotoxic drugs could be higher in tumour cells than in normal
healthy cells, thus explaining the already observed good therapeutic index (anti-tumour efficacy vs.
unwanted toxicity) of these drugs|[I].

But another fact, which has also been observed for a rather long time at the experimental and
clinical levels, is that a circadian rhythmicity of the pharmacosensitivity to these drugs (as for most
drugs) exists, it depends on the particular drug in use, and it is different in cancer and in healthy
cells[24]. A molecular basis supporting the influence of circadian clock genes on the expression of genes
involved in cell cycle progression and apoptosis has recently been found[T3], 14} 26], and chronobiological
research is at the present time very active on this topic, even if until now no molecular mechanism has
been evidenced for circadian rhythm differences between normal and cancer cells.

The chronotherapy concept thus takes advantage of these observed circadian rhythmicity differences
by maximising therapeutic efficacy on a tumour while minimising undesirable toxicity on healthy
tissues[24]. One should point out that unlike pulsed therapies with an artificial external period, which
may eventually present the drawback of resynchronising a desynchronised population of tumour cells
according to this artificial period[25], circadian chronotherapy uses a natural synchronising period
(circa 24 h), which is present in healthy cells[I8] and to a lesser extent in tumour cells[B], to deliver
cytotoxic drugs to treat cancer.

The object of the present paper is to investigate mathematically and numerically optimal strategies
in (circadian) cancer chronotherapy. To this end a mathematical model describing the time evolution
of efficiency and toxicity of intravenous oxaliplatin, one of the few drugs active on metastatic colorectal
cancer, has been derived [6]. We have then applied an optimal control technique to obtain the best
law for the drug infusion flow.

Many authors have previously addressed optimal control problems, often with L' or L? criteria,
for anticancer chemotherapy. They did so mostly by taking into account acquired resistance of tumour
cells to cytotoxic drugs, with or without cell cycle phase specificity (reviews in [B1, T2, 2T]), but
usually without pharmacokinetic-pharmacodynamic (PK-PD) modelling. We address here neither
drug resistance nor cell cycle phase specificity, but rather focus on a balance between anti tumour
efficacy and healthy tissue toxicity of cytotoxic drugs, as has also been done in [19, 20]. In this limited
setting, we consider our approach original inasmuch as it a/ uses pure L criteria (though using a
nonlinear conjugate gradient method); b/ includes PK-PD modelling; and c/ takes into account drug
circadian effects.

Section 2 will be devoted to the study of mathematical models for the cell populations submitted to
drug infusion. We will first consider the healthy tissues and then the tumour cells. We will show that

INRIA



Optimisation of cancer therapeutics 5

the minimal (or maximal) cell population during a given time interval happens to be a differentiable
function of the drug infusion law, the gradient of which can be derived. In section 3 two different
optimisation problems are addressed; the eradication problem consists in finding the drug infusion law
leading to the smallest, and possibly vanishing, tumour population; the containment problem looks
for a treatment that forces the number of tumour cells to remain at the lowest possible level while
preserving an acceptable level for the healthy tissues. In section 4 numerical results are presented;
discussion and conclusion follow in section 5.

2 The model

2.1 Experimental and pharmacological background

Given the scarcity of long followup human data on untreated tumour growth, we used animal experi-
mentation. Oxaliplatin, one of the few drugs active on metastatic colorectal cancer, is also known to
be active on Glasgow osteosarcoma in mice. This murine tumour, transplanted under the skin of the
animal, is easily measurable at the laboratory with a caliper, which allows the obtention of tumour
growth curves, with or without treatment, in whole living animals[T5] (animals in which tumours had
reached 10% of their total body weight were sacrificed for ethical reasons).

The main toxicities of oxaliplatin in Man are on bone marrow, peripheral sensory nerves, and
the jejunum|23]. In mice, the main toxicity is on the jejunum (producing extended necrosis of the
mucosa)[2, B], which led us to design a simple model for jejunal mucosa proliferation and homeostasis,
which one may take as a paradigm of fast renewing healthy tissue behaviour subject to drug toxicity,
within a global model designed to represent both therapeutic efficacy and toxicity.

Plasma pharmacokinetic parameters for oxaliplatin (a drug which binds covalently, i.e. irreversibly
to its targets or to detoxicating molecules in living cells) have been taken from published data[2, 3] and
input to a simple first order model; tissue pharmacokinetic parameters (measuring the decrease of drug
quantities in both types of tissues, tumour and jejunal mucosa) were identified either from published
data[2, 3], or by an overall estimation when data were not available. The efficacy or toxicity function
describing the cell kill effect was chosen of the Hill type, taking into account pharmacological uses and
recent published studies [28], [10)], its maximum being modulated by a 24 h-periodic cosine representing
circadian pharmacosensitivity. Tissue pharmacodynamic parameters -including maximal and minimal
pharmacosensitivity phases- were identified as much as possible from laboratory curves[I5] (comparison
between treated and untreated tumour growth) or else only estimated on the basis of likeliness after
other drug or tissue data when no relevant data were available.

2.2 The healthy tissue: jejunal villi cells

We chose for the representation of jejunal mucosa homeostasis a simple damped linear model, which
mimics in a satisfactory way what is known of the recovery behaviour of enterocytes subject to ra-
diotoxic or cytotoxic insult[29]. It may be thought of as the linearisation of a more complex nonlinear
model[d] about a very stable equilibrium point representing tissue homeostasis. The drug toxicity effect
was supposed to be only on the compartment representing the influx of young cells to the jejunal villi,
since mature cells are unable to proliferate in the jejunal mucosa.

RR n°® 5407



6 Basdevant, Clairambault & Lévi

2.2.1 Mathematical model for villi population

The mathematical model for the villi population A(t) at time ¢ consists in a set of four coupled
differential equations:

P i(t)

PR Pl W
% = —,LLC + fCP (2)
dz

= {-a—f(CH}Z - BA+y 3)
dA

=7-2, (4)

where P and C stand for drug concentrations in the plasmatic and target cell population (plasma
and the jejunal mucosa, target of toxicity, i.e. of unwanted side effects of the drug) compartments
respectively, Vs is the distribution volume, i.e. the volume of the central (plasmatic) compartment,
in which the active drug is infused. A is the number of mature (villi) jejunal enterocytes, Z is the
instantaneous flow to villi from crypts, rate of renewal to make up for natural elimination of villi
enterocytes in the intestinal lumen, ®(¢) is given, equal to 1 during authorized infusion periods and
0 elsewhere and i(t) > 0 is the time dependent drug infusion law. Function f represents the drug
toxicity on the healthy jejunal mucosa, assumed to be periodic, more precisely here to have circadian
variations with period Ty; it is given by:

[0RZ
Cyg + Ca

fCt)=F (1 + cos(2r” ;jf‘ )>

A, &y 0 B,y Zeg, Fopa, 74, Csp are positive constants. These equations represent drug diffusion and
elimination by first order pharmacokinetics for concentrations in the plasmatic and target cell compart-
ments (P and C), and normal jejunal mucosa homeostasis by a linear system showing a stable focus

at (Zeg, Aeq = B~y — aZey)), perturbed by the drug toxicity function which comes to strengthen the
natural autoregulation coefficient .

Classical ODE theorems demonstrate that, initial conditions at time ¢; been given for X 4(t) =
(P(t),C(t), Z(t),A(t)), and a piecewise continuous infusion profile i(¢) been prescribed, system ()
has a continuous, piecewise C'!, solution for t € [to,t ¢] (for any t; > t9). Moreover:

i € L*([to, t;]) — A€ H*([to, ty))

is a continuous, weakly continuous, differentiable application, A(t) being a C?3, piecewise C4, function
of time.

Remark 1 Functions P,C,Z, A and most functions in the following will be considered as functions of
time t and of i the infusion law (which is also itself a function of time), however we will omit to note
the i-dependency whenever there is no ambiguity, hence writing A or A(t) rather than A(i,t).

Remark 2 Functions P and C are drug concentrations and thus positive quantities; equations ([Il) and
@) ensure they remain positive. Unfortunately equations B))-H) do not ensure the positivity of A, a
population count; however, when A(t) reaches zero the animal (or the patient: it is noteworthy that in
clinical settings severe jejunal depletion may yield diarrhoeas which may be fatal) is already dead and
the model is no longer valid!

INRIA
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In order to find optimal infusion laws by means of descent algorithms, we need to know the gra-
dients with respect to the infusion law of objective or constraint functions, that is, if W (i) is such a

differentiable real function of i € L?([t,ts]), and 38_1/:/ € L(L*([to,ts]), R) its differential with respect
to i, the gradient V;W (i) is the element of L?([tg,t¢]) such that:
%—I:/.di =< V,W(i),di >
where < V;W (i), di > is the scalar product of L?([to,t]):
ty
< VW (i), di >= 5 VW (i) (7)di(r)dr

This will be done in the following paragraphs.

2.2.2 A first function of the villi population

Let us define, for n a given time in |t,¢f[, a function F of the drug infusion law by

= An)
Fa(i,n) =74 — —=

(i) o
where A, is a reference level for the villi population and 74 €]0, 1] a tolerable fraction of this reference
level. We know that F is a continuous, weakly continuous, differentiable function of i € L*([to,t/]).
To obtain its gradient, we will demonstrate the following lemma;:

Lemma 1 The gradient V;Fa of Fa with respect to the infusion profile i is defined in L2([t0,tf]) by:

o(t)
. Pa(t) Vi€ [t
ViFa = Vaist 1(f) to. 7] (5)
0 vVt >n
where P,1 is given by the adjoint system, defined for to <t < n:
dP,
= APy — &cFan (6)
dPa2 af
= uP, P37 —
dt /’[/ a2 + a3 ac (C7t) (7)
dP,
== ={a+ f(C,1)} Pay — Pus (8)
dPa4
= BP,
o = P (9)

with initial conditions at time n:

1
Aeq’

Pa1(n) = Pa2(n) = Pa3(n) =0 and  Pau(n) = —

The proof of the lemma can be obtained by mere identification. Indeed, one has to verify that for any
di € L*([to,ts]):
OF A tr .
OFa 4= _ AW _ [V G B dir) dr (10)
01 Aeq t

RR n°® 5407



8 Basdevant, Clairambault & Lévi

- 0A
where A = ——.di, the differential of A whith respect to ¢ applied to di, is obtained by solving the
i
following linear tangent system, defined for ¢ > tg:

Cil—]; = AP+ “Z/Z—Zi@(t) (11)
% = —uC +&cP (12)
% :{_a_f(C’,t)}Z—g—é(C,t)CZ—BA (13)
% _ 7 (14)

with vanishing initial conditions at t = ¢g.
The calculation then goes as follows; if V;Fy is defined by (H), then:

i Ea () ditrydt = [ Ea(r) di(r) dr
to to
_ [ o(7)
_ /m Par(7) G di(r) dr
and using equations ([THIZ):
K dP _ dC ~ _
= /to {Pal(T) <E + )\P) + Pag(T) <% +/J,C — §CP>
+ Paln) (52 + (0 + 1€} 2+ S50 0 24 5A)

+Pas(T) <C;—f - Z> } dr

doing one integration by parts, the result (I{) is obtained using equations (BHY) and the boundary
conditions at tg for the P,C, Z, A and at 7 for P,1, Pyo, Pa3, Paa.-

2.2.3 The minimal villi population
Now consider the constraint:

. A(t)
2 _ . .
A(Z) A ter[rtl(}yrgf] Aeq

<0,

where again A., is a reference level for the villi population and 74 €]0,1] a tolerable fraction of this
reference level. We know that F is a continuous, weakly continuous, real function of i € L?([to,t/]).
The following theorem tells us that in most cases the gradient of F4 exists and can be computed using
the adjoint system (EHJ).

Theorem 1 If in the vicinity of infusion i the minimum of A(t) is unique, belongs to |to,ts[ with a
strictly positive second derivative, then F4 is a differentiable function of i. If we denote by t (i) the
time at which A reaches its minimum, then the gradient V;Fy4 is given by:

ViFa(i,ta)(t) Vit € [to,ta]
0 Vit >ty

ViF4(i)(t) = {

Let us show first that, under these hypothesis, ¢4 is a differentiable function of 7. In fact t4 is
OA(i, ta(1)) O*A(>i:ta(D) _

locally in time defined by the equation 5 9

= 0. With the hypothesis that

INRIA



Optimisation of cancer therapeutics 9

and the property that A is a differentiable function of 4, the implicit function theorem gives the result.
Then the computation of the gradient relies on the differentiation chain rule: as F4(i) = Fa(i,t4a),

3FA(i) . 3FA(i,tA) . 3FA(i,tA) ota ..
5 di = 5 .di + BN i .di
aFA(i,tA)

The minimum of A(t) been reached at time ¢4 it follows that = 0 and the results follows.

ot

2.3 The tumour cell population

Tumour growth was modelled according to a Gompertz law, which is one of the simplest laws classically
used for this purpose. The variable B which stands for tumour cell population number (see equations
below) is in this model bound to eventually reach a plateau By, after an initial exponential growth,
following an S-shaped curve. The accuracy of the Gompertz model for tumour growth has often
been questioned, but also justified on refined modelling grounds (using quiescent and proliferative
subpopulations inside the tumour); it is generally accepted at least as a first intention simple modelling
approach for this purpose, and we decided to use it in this sense.

2.3.1 Mathematical model for the tumour cell population

The mathematical model for the tumour cell population B(t) at time ¢ consists in a set of three coupled
differential equations:

dpP i(t)

— = AP+ ———P(¢ 1
o + v, 2 (15)
aD

dB

e —aB ln(Bma:v) —g(D,t)B (17)

where equation ([[H) is the same as (I}, D stands for drug concentration (assumed to be homogeneously
diffused) in the tumour and B is the number of tumour cells. Function g, which represents anti-tumour
drug efficacy, is assumed (as is function f for toxicity) to present circadian variations with period Tp;
it is given by:

— DB
g(D,t)=H <1 + cos(27rt S0B)>

Tg Dgg + DB
where A\, v,€p, a, Bz, H, 0,78, D5o are positive constants.
Initial conditions at time ¢ been given for Xp(t) = (P(t), D(t), B(t)), and a piecewise continuous

infusion profile i(t) been prescribed, system (IGHIT7) has a continuous, piecewise C!, solution for ¢ €
[to,ts] for any ty > to. Moreover:

i€ L*([to,t;]) — B € H>([to, t7])

is a continuous, weakly continuous, differentiable application, B(t) being a C2, piecewise C?, function
of time. The demonstration is similar as the one for A (note that equation ([I7) is a linear equation
for the unknown In(B)).

Remark 3 Fquations ([[H)-(7) ensure the positivity of P,C and B. Nevertheless we will consider
that the tumour has been completely destroyed if B(t) < 1, thus integration of equation () has to be
stopped when this arises.

RR n°® 5407



10 Basdevant, Clairambault & Lévi

Remark 4 Equation (1) is made of the Gompertz law for the tumour cell population growth and of a
linear destruction law (modulated by the circadian effect) for the anti-tumour efficacy. The latter has
at least two drawbacks. First, the drug is less and less efficient when the tumour gets smaller, one may
wonder if this behaviour is realistic. Conversely, the drug is more and more efficient when the tumour
gets larger. These two extreme behaviours explain why the numerical results are in practice nearly
independent of the initial size B(0) of the tumour. An alternative modelling assumption could be to

B
5B in equation (7). But in the absence of

experimental or clinical data supporting this hypothesis, we decided to keep the growth inhibition term
in its linear form.

replace —g(D,t)B by a non linear term such as —g(D,t)

2.3.2 A first function of the tumour cell population

Let us define, for 1) € [to,t], a function Fjp of the drug infusion law by:

Fg(i,n) = B(n).

We know that Fjp is a continuous, weakly continuous, differentiable function of i € L?([to,ts]). We
will demonstrate the following lemma:

Lemma 2 The gradient V;Fg of Fg with respect to the infusion profile i is defined in L2([t0,tf]) by:
o(t)

ViEp = { Viist
0 vVt >n

P (t) vt € [to,n]

where Py is given by the adjoint system, defined for tg <t < n:

dP
7&;1 = APy —&pP (18)
d Py Jg
—= =vP PasB—=—(D
o V Py + Py OD( ,t) (19)
P,
s _ by ( In( =) +a - g(D,t>> (20)

with initial conditions at time n:

Py(n) = P(n) =0 and Py(n) =1.

As it has been done for F, the proof of the lemma can be obtained by mere identification. For
any di € L*([to, ty]):
OF _ b -
—.di = B(n) = ViFp(r)di(T)dr
di to

_ 0B
where B = F'di’ the differential of B whith respect to ¢ applied to di, is obtained by solving the
i
following linear tangent system, defined for ¢ > to:

dpP _di(t)

— = AP+ —=®(t 21
T 2!
dD _ _

— =—vD P 22
@~ Pt (22)
dB _ _ - Og _

E = —aB hl(Bmax) — aB — g(D,t)B — 8—D(D,t)DB (23)

with vanishing initial conditions at t = ¢.

INRIA
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2.3.3 The maximal (or minimal) tumour cell population

Now consider the objective function:

Jp(i) = max B(t),
teft1 ty]

where t; is a given time after the initial phase of the treatment. We know that Jp is a continuous,
weakly continuous, real function of i € L?([t,ts]). The following theorem tells us that in most cases
the gradient of Jp exists and can be computed using the adjoint system (ISHZ).

Theorem 2 If in the vicinity of infusion i the mazimum of B(t) in |t1,ts] is unique with a strictly
negative second derivative, then Jp is a differentiable function of i. If we denote by tp(i) the time at
which B reaches its maximum, then the gradient V;Jp is given by:

ViFB(i,tB)(t) Vit € [to,tB]
0 Vt>tp

ViJp(i)(t) = {
The proof of the theorem is similar to the one for the villi population and relies on the differentiation
chain rule as Jg(i) = Fg(i,tp).

Remark 5 A similar result is valid for Gp(i) = I[nin }B(t).
te t07tf

3 Two optimisation problems

3.1 The eradication problem

Let us consider the problem of finding the infusion law leading to the smallest, and possibly vanishing,
tumour population while preserving a minimal villi population. Mathematically this can be written:
find the infusion law i € L?([t,ts]), i(f) > 0, that minimises the objective function:

Gp(i) = min B(t
B(7) Join (t)

subject to the constraint

Fa(i) =74 — min Alt)

<0.
t€ftoty] Aeqg —

As F4 is weakly continuous, the ensemble of admissible solutions
U={ieL*[to,ty])|i>0, Fa <0}

is weakly closed in L?([to,tf]); as the infused drug destroys the villi population U is also bounded;
G being weakly continuous, this ensures the existence of an optimal infusion law for the eradication
problem. However neither the objective function, nor the constraint are convex functions of the in-
fusion law. The optimum may not be unique (indeed i(t) remains undefined where ®(¢t) = 0) and,
moreover, it may exist local minima. Nevertheless the results from previous sections allow us to define
descent algorithms to find quasi-optimal strategies. A Uzawa like saddle-point algorithm for solving
the eradication problem is:

1. Start with a Lagrange multiplier a% > 0
2. Find %, minimising J(i) = Gp(i) + X Fa(i) in L%([to, ts]) N {i > 0}

3. Define o™ by o¥! = max {Oéffx + pFa(i*), 0}
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4. Until Fa(i*) =0

In step (3) the coefficient p > 0 as to be chosen adequately. Alternatively, step (3) can be replaced
by a bisection or a sequant algorithm to find the Lagrange multiplier oy associated to the active
constraint F'4 = 0.

Remark 6 If other constraints are to be imposed on the infusion law, such for example a bound for
the total infusion or a mazimum instantaneous infusion rate, these constraints can be treated either in
step (2) or using more Lagrange multipliers.

3.2 The containment problem

Unfortunately there may not exist a treatment that destroys up to a sufficiently low level the tumour
cells while keeping a sufficiently high level of villi cells. As the number of villi cells is of primary im-
portance for the patient’s life, one has then to reduce the infusion rate and consequently the treatment
course will end with a non negligible number of residual tumour cells. Due to the Gompertz law, the
tumour will then grow up rapidly after the end of the course. In that context one has to look for a
containment treatment, that is a treatment repeated periodically in time that forces the number of
tumour cells to remain at the lowest possible level while preserving an acceptable number of villi cells.
Mathematically this can be written: find the infusion law i € L%([to,tf]), i(t) > 0, that minimises the
objective function:
J5(0) = Zex BEO)

subject to the constraint

Fa(i) =74 — min Alt)

<0.
t€lto,ts] Aeqg —

In that case function ®(t), that defines infusion periods, should for example take the value 1 during
two days, then 0 during five days (no treatment), and then repeatedly until ¢s; as for ¢; it can be taken
to be 1 or 2 days after ¢y in order to allow the initial infusion to reduce significantly the tumor.

In the same way as for the eradication problem, Jp is a weakly continuous function on a bounded
weakly closed ensemble, thus the optimal infusion exists, however the minimum may not be unique
and local minima may also exist.

The Uzawa like algorithm defined previously can be applied similarly to the containment problem:
1. Start with a Lagrange multiplier a% > 0

2. Find %, minimising J (i) = Jg(i) + o Fa(i) in L%([to,t]) N {i > 0}

3. Define O/XH by O/Z‘H = max {afﬁ‘ + pFA(i%), O}

4. Until Fa(i*) =0

3.3 A descent algorithm

We will briefly describe a descent algorithm designed to solve the minimisation problem in step (2) of
the Uzawa procedure for the containment problem (or the eradication problem).

1. Start from an initial infusion profile ig.

2. Given the infusion profile iy, integrate the dynamical system ([Hf) and (TEHID) from ¢ until ¢;
to obtain villi and tumour populations.

INRIA



Optimisation of cancer therapeutics 13

3. Search for t4 and tp and compute the value of Jp, F4 and J. (Note: if accidentally an extremum
value is reached at multiple times, choose the largest).

4. Integrate the adjoint system (BHd) of F4 from ¢4 down to tp and the adjoint system (ISHZ) of
Jp from tp down to ty, to obtain the gradient of J.

5. Determine a descent direction dj, using the gradient of J and previous descent directions (non-
linear conjugate gradient).

6. Determine ix1 by minimising J(iy + sdy) along direction dj (one dimensional search) under the
constraint 7 > 0.

7. Loop to step 2 until convergence.

Remark 7 The one dimensional search of step [ ) asks for one or several evaluations of J and even-
tually its gradient (Wolfe’s search), that is integrations of the dynamical system and of the adjoint
systems.

Remark 8 During the one dimensional search of step (Bl), several infusion profiles are tested with
respect to the minimum of J. But incidentally one of them may be a good solution for the containment
problem. It is then worthwhile (and costless) to compare, on the fly, with respect to Fa and Jp, these
infusion profiles to the best profile already encountered.

Remark 9 It is in practice efficient to take for ig in step 1 of the descent algorithm a combination of
i®=1)  the last obtained infusion in the Uzawa procedure, and a constant infusion rate. Also a small
random perturbation may be applied to ig in order to improve the exploration of the phase space.

3.4 Optimisation with respect to the infusion period

Let us suppose that the authorised infusion period is a single interval, thus ®(t) = X[, ,(t). Then,
in the eradication problem, the objective function GGg and the constraint F4 can be considered as
functions of i and of ¢;; the optimisation can be conducted on the product space L*([to,ts]) X [to,tf]-
The only difference with the previous developments is that we need to compute the gradient of the
various functions with respect to ¢; (gradients are in fact simple derivatives in this case). These are,

. . A()
for F t;) = — :
o A(Z’ ) TA ter[rtl(}gf} Aeq

, 2 it <t
vtiFA(’L, ti) = Aeq !

0 if not

with A(t4) = min A(t), and A given by the linear tangent system, defined for ¢ > t;:

[to,t ]
P o i(t) '
AU et ) (24)
dc . 3
—r = —nC +é&P (25)
az . Of . §
%—{—a—f(C’,t)}Z—%(C,t)CZ—BA (26)
dA .

RR n°® 5407



14 Basdevant, Clairambault & Lévi

where §(t) is the Dirac function at origin and with vanishing initial conditions at t = ¢;.

And for Gp(i,t;) = teI[ItliI% }B(t):
0,tf

B(tg) ift;<tp

ViuGp(i t) = {0 if not

with B(tp) = miny, ) B(t), and B given by the linear tangent system, defined for ¢ > t;:

dP 10

— = _)\P _t. 2
= AP () (28)
dD § Ny

— =—vD P 2
7 vD +&p (29)
dB . . . 0g .

E = —aB hl(Bmax) —aB — g(D,t)B — 8—D(D,t)DB (30)

with vanishing initial conditions at ¢ = ¢;.

4 Numerical experiments

We conducted several numerical experiments for both the containment and eradication problems. These
experiments used the following data:

e For drug infusion:
A=6h"" Vi =10 cm? (distribution volume for oxaliplatin in a mouse).

e For the villi population:
p=0015h"" ¢ =1h"", A, = 10° cells, Ze, = 16500 cells/h, a = 0.0153 h~", All=0.002 h~2,
v = BAegtaZe, = 22138 cells/h, F=0.5h"! o4 =10h, Ty =24 h, y4 = 1, C5p = 10 ,ug/cm3.

e For the tumour population:
vy=003h"! ép=1h"1 a=0.015h"", Bae = 5.310 cells,
H=2h"' op=21h,Tg=24h, yg =1, Dsg = 10 pg/cm”®.

These numerical data have been deduced from laboratory experiments; however, a large uncertainty
remains on most of them, thus the goal of the subsequent numerical results is only to prove the
feasibility of our approach rather than to obtain clinical pertinent results.

All the experiments start with initial conditions : Py = Cy = Dy = 0 ug/ cm?, Ay = 10 cells, By =
10° cells, Zy = 16500 cells/h. The initial time t; was noon and the time step 0.1 hour.

4.1 Eradication problem

The results presented were obtained in the framework of the eradication problem when optimising
with respect both to ¢, the injection rate, and t;, the infusion period. Together with the constraint of
preserving a given level 74 of the villi population, a constraint was also imposed on the instantaneous
infusion rate, namely i(t) < 10 pg/h. Experiments started with a treatment duration of 48 hours
(t; — to = 2 days), and they converged to a treatment of almost 32 hours.

Figures [M to Bl display respectively, as a function of time, the best infusion rate i(t), the villi pop-
ulation A(¢) and the tumour cell population B(t) for three different values of the minimal admissible

'a= %13, 8= (%)*+ (25)? these values correspond to coefficients of a damped harmonic oscillator of period 6

days and dampening coefficient % over one period, a behaviour estimated after literature data.
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fraction of the villi population 74 = 0.4, 0.5 and 0.6. On Figure[l the impact of the different circadian
rhythms for the villi and tumour populations is clearly seen as they impose a strong chronomodulation
on the infusion rate. This impact is enhanced when the constraint of preserving the villi population is
stronger. Note also the effect of the limitation of the instantaneous infusion rate. The chronomodula-
tion is also seen on the villi population behaviour displayed on Figure 21

Table 1 presents the best treatment duration ¢; — tp and objective function min B(t), for the three
experiments.

(days) (hours)
TA ti — to ti — to Intil’l B(t)

04 1.33 31.9 3.4
0.5 1.32 31.7 114
0.6 1.38 34 2374

Table 1. Treatment durations and residual tumour cell numbers (eradication).

The tumour population is strongly reduced when 74 decreases, however, with the data we used, the
complete eradication of the tumour (B < 1) would require to diminish the villi population lower than
39% of the reference number, whatever the duration of the treatment, a level that is not admissible
for the patient. Thus, for the experiments presented, a few tumour cells remain after the end of the
treatment (see Figure Bl), and, due to its exponential growth the tumour population will, without
treatment, rapidly recover and overtake its initial level. This is why we studied the containment
problem that should be applied to control the tumour growth when the complete eradication is out of
reach.

4.2 Containment problem

Figures B to Bl present the results for the containment problem with a weekly scenario of an infusion
period of 2 days followed by 5 days of recovery, and an acceptable fraction 74 = 0.5 for the villi
population. The calculation was performed on a five weeks time interval. Figure H presents the
infusion law, some details of which are shown on Figure Bl The infusion law is, as expected, strongly
chronomodulated, also it evolves toward a periodic treatment after the initial decrease of the tumour.
The tumour and villi population, displayed on Figure [, have also this periodic tendency ensuring that
the treatment can be repeated while controlling the tumour growth. Table 2 presents the best objective
function, max B(t), after an initial treatment period of 3 days, and the minimal tumour population
reached, for infusion cycle experiments of 2+5 days and three different values of the minimal admissible
fraction of the villi population 74 = 0.4, 0.5 and 0.6.

TA  max B(t) mtin B(t)
0.4 36000 21
0.5 119000 390

0.6 352000 5900
Table 2. Tumour cell population (containment) for a treatment of 2+5 days.

While the tumour population can be brought to a very low level, due to the exponential growth of
the tumour, the maximal number of tumour cells, after a initial period of 3 days, remains quite high,
though under control.

Table 3 corresponds to experiments performed in a four weeks course, with an infusion cycle of 2.5 days
followed by 4.5 days of recovery. In this particular setting, we also assessed here the gain obtained
by the chronomodulated scheme as compared to an equivalent constant infusion scheme: the best
objective function, max B(t) after a 3 days initial treatment period, is given for the chronomodulated
infusion law and for a constant infusion law (applied during the 2.5 days infusion periods) with an
infusion rate equal to the mean of the corresponding chronomodulated instantaneous infusion flow.
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16 Basdevant, Clairambault & Lévi

TA max B(t) max B(t)
infusion chronomodulated constant
0.4 18400 38500
0.5 75300 129600
0.6 247000 367000

Table 3. Tumour cell population (containment): 2.5 days of treatment + 4.5 days of recovery,
chonomodulated and equivalent constant treatment.

One should not be surprised that for the same chronomodulated scheme, a weekly containment treat-
ment with an infusion period of 2.5 days leads to a lower level of tumour cells than the same with an
infusion period of 2 days: the longer the rest period, the higher the tumour can grow up. A trade-off
has to be found between the length of the necessary rest period and the admissible maximal level for
the tumour. Furthermore, Table 3 also shows the net gain obtained by the chronomodulation strategy:
the number of tumour cells is significantly reduced when the treatment takes benefit of the circadian
rhythm.

5 Discussion and conclusion

5.1 Optimisation method

In this paper, we have detailed an optimisation procedure taking into account objective and constraint
functions that are optimised in an L°° manner, and not according to a quadratic L?, or L' criterion,
as has already been done before in the literature. To our knowledge, this approach is original, as are
the differentiability results stated here. This approach is intended to stick to the actual clinical or
experimental problem, and in this respect extreme values are of uppermost importance as they may be
fatal for the patient, our L> approach controls them whereas L? or L' integrated criteria don’t. It is
clear however that our mathematical model is still too simple as it should take into account different
toxicities (other than the intestinal, such as bone marrow toxicity or sensory neuropathy, as is the case
with oxaliplatin in clinical settings). This would lead to more equations and more constraints, with
possible weighting -left to the clinician- between them, but our approach extends easily to such far
more complicated cases.

From the algorithmic point of view, although we cannot assert that our optimisation algorithm reaches
a global minimum, the multiplicity of iterations and the storing of the best solution at each iteration,
together with the use of some random walk to explore the phase space gives us hints of its actual
optimality and robustness.

5.2 Limits of this model

The model we used addresses the optimisation of cancer chemotherapy using pharmacokinetic-pharmadynamic
and circadian modelling with a toxicity constraint. It does not address the problem of drug resistance
and its evolution in tumour cell populations, which is also an important limitation in cancer chemother-
apy, and has been studied by various authors already[3T), 12, 21]. Nor does it address the fact that
most anticancer drugs (but not oxaliplatin, to our knowledge) are known to show cell cycle phase
specificities. The former should be taken into account by an extension of our simple model to subpop-
ulations for tumour growth, quiescent, proliferative drug-sensitive and proliferative drug-resistant. The
latter implies future modelling of cell cycle progression and apoptosis at the tissue level for tumour cell
populations, with coupling to local circadian clocks -a coupling which has been shown experimentally
to be unidirectional, i.e. control of cell proliferation by the clock, at least for the regenerating liver in
mice[26], B0]. These approaches are complementary, and according to the particular tumour and drug
involved, partial or extended models should be used for chemotherapy optimisation.
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5.3 Model identification and future clinical applications

We must stress that the numerical results presented are highly dependent on the values of parame-
ters used, some of which had to be grossly estimated in our dataset -besides, the dataset should be
completely different for other tumours and other cytotoxic drugs-, so that any generalisation of these
results to clinical conclusions would at this stage be completely hazardous. Yet, as far as equivalent
modelling equations and their parameters may be identified in other settings, the same optimisation
procedure could be successfully applied.

We will not hide that identifying cell and tissue pharmacokinetics and pharmacodynamic dose-
effects (even if these two aspects are merged together) means acquiring knowledge of hidden mecha-
nisms which are not easily accessible in everyday clinical routine, and this remains today a shortcoming
of the method proposed here. Nevertheless, we have reasonable hopes that such data, provided by the
development of modern pharmacokinetics-pharmacodynamics (PK-PD) and molecular biology tech-
niques, will become more and more available in the next future.

This in our meaning justifies developing such optimisation methods which make it necessary to
model intimate tissue mechanisms for drug efficacy and toxicity effects. Whole organism modelling
and PK-PD development could lead us to use other observables than cell population numbers -for
instance, as far as oxaliplatin is concerned, peripheral sensory neuropathy has recently been proposed
to be linked to insults to nucleoli in nerve ganglia|27]|, not measurable by cell kill evaluations-, but such
future, more detailed, models will still be liable for the optimisation method we presented here.

Finally, one may notice that it gives a rationale, not only for circadian chronotherapy theoretic
studies which first motivated it, but also, using optimisation in the product space L?([to,]) X [to, ],
for so-called intensive therapies, in which the stress is put on the best treatment course and between
coures durations making possible a necessary increase in the delivered dose when classical therapeutic
schemes have failed.
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Figure 1: One week eradication treatment with 1.5+5.5 days cycle: optimised infusion flows for 74 =
0.4, 0.5 and 0.6.
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Figure 2: One week eradication treatment with 1.5+5.5 days cycle: villi population for 74 = 0.4, 0.5
and 0.6.
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Figure 3: One week eradication treatment with 1.545.5 days cycle: tumour cell population for 74 = 0.4,
0.5 and 0.6.
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Figure 4: Five weeks containment treatment with 2+5 days cycle: optimised drug infusion flow for
74 = 0.5.
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Figure 5: Five weeks containment treatment with 245 days cycle: optimised drug infusion flows for
74 = 0.5, according to the week of treatment.
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Figure 6: Five weeks containment treatment with 245 days cycle: cell populations for 74 = 0.5.
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