
HAL Id: inria-00070599
https://inria.hal.science/inria-00070599

Submitted on 19 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hybrid scheduling for the parallel solution of linear
systems

Patrick Amestoy, Abdou Guermouche, Jean-Yves L’Excellent, Stéphane Pralet

To cite this version:
Patrick Amestoy, Abdou Guermouche, Jean-Yves L’Excellent, Stéphane Pralet. Hybrid scheduling for
the parallel solution of linear systems. [Research Report] RR-5404, LIP RR-2004-53, INRIA : Institut
national de recherche en sciences et technologies du numérique; LIP : Laboratoire de l’Informatique
du Parallélisme, ENS Lyon. 2004, pp.1-28. �inria-00070599�

https://inria.hal.science/inria-00070599
https://hal.archives-ouvertes.fr

IS
S

N
 0

24
9-

63
99

 IS
R

N
 IN

R
IA

/R
R

--
54

04
--

F
R

+
E

N
G

ap por t

de r ech er ch e

Thème NUM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Hybrid scheduling for the parallel solution of linear
systems

Patrick R. Amestoy — Abdou Guermouche — Jean-Yves L’Excellent — Stéphane Pralet

N° 5404

December 2004

Unité de recherche INRIA Rhône-Alpes
655, avenue de l’Europe, 38334 Montbonnot Saint Ismier (France)

Téléphone : +33 4 76 61 52 00 — Télécopie +33 4 76 61 52 52

Hybrid scheduling for the parallel solution of linear

systems

Patrick R. Amestoy, Abdou Guermouche, Jean-Yves L’Excellent, Stéphane

Pralet

Thème NUM — Systèmes numériques
Projet GRAAL

Rapport de recherche n
�

5404 — December 2004 — 28 pages

Abstract: In this paper, we consider the problem of designing a dynamic schedul-
ing strategy that takes into account both workload and memory information in the
context of the parallel multifrontal factorization. The originality of our approach
is that we base our estimations (work and memory) on a static optimistic scenario
during the analysis phase. This scenario is then used during the factorization phase
to constrain the dynamic decisions. The task scheduler has been redesigned to take
into account these new features. Moreover performance have been improved because
the new constraints allow the new scheduler to make optimal decisions that were for-
bidden or too dangerous in unconstrained formulations. Performance analysis show
that the memory estimation becomes much closer to the memory effectively used
and that even in a constrained memory environment we decrease the factorization
time with respect to the initial approach.

Key-words: sparse matrices, parallel multifrontal method, dynamic scheduling,
memory.

This text is also available as a research report of the Laboratoire de l’Informatique du Paral-
lélisme http://www.ens-lyon.fr/LIP and as a technical report from ENSEEIHT-IRIT.

Stratégies d’ordonnancement hybrides pour la

résolution parallèle de systèmes linéaires

Résumé : Nous proposons des stratégies d’ordonnancement bi-critères, qui s’inté-
ressent à la fois à la performance et à la consommation mémoire d’un algorithme
parallèle de factorisation de matrices creuses, basé sur la méthode multifrontale.
L’originalité de notre approche est que nous basons nos estimations mémoire sur un
scénario optimiste (simulation lors de la phase d’analyse), qui est ensuite utilisé lors
de la factorisation pour contraindre les décisions dynamiques d’ordonnancement. Un
nouvel ordonnanceur a été implanté, qui prend en compte ces nouvelles contraintes.
De plus, la performance a été améliorée parce que notre nouvelle approche permet
à l’ordonnanceur de prendre des décisions meilleures, qui étaient interdites ou trop
dangereuses auparavant. Une analyse de performance montre que les estimations
mémoire sont beaucoup plus proches de la mémoire effectivement utilisée, et que le
temps de factorisation est amélioré de façon significative par rapport à l’approche
initiale.

Mots-clés : matrices creuses, méthode multifrontale, ordonnancement dynamique,
mémoire

Hybrid Scheduling for the Parallel Solution of Linear Systems 3

1 Introduction

We consider the direct solution of large sparse systems of linear equations Ax = b on
distributed memory parallel computers using multifrontal Gaussian elimination. For
an unsymmetric matrix, we compute its LU factorization; if the matrix is symmetric,
its LDLT factorization is computed. Because of numerical stability, pivoting may
be required.

The multifrontal method was initially developed for indefinite sparse symmetric lin-
ear systems [8] and was then extended to unsymmetric matrices [9]. It belongs to the
class of approaches which separates the factorization into two phases. The symbolic
factorization looks for a permutation of the matrix that will reduce the number of
operations in the subsequent phase, and then computes an estimation of the depen-
dency graph associated with the factorization. Finally, in an implementation for
parallel computers, this phase partially maps the graph onto the target multiproces-
sor computer. The numerical factorization phase computes the matrix factors. It
exploits the partial mapping of the dependency graph and performs dynamic task
creation and scheduling to balance the work performed on each processor [1, 2, 4].
The work in this paper is based on the solver MUMPS, a MUltifrontal Massively Par-
allel Solver [1]. For an overview of the multifrontal method we refer to [7, 8, 16].
The work presented in [12] has shown how to use memory-based dynamic scheduling
to improve the memory management of a parallel multifrontal approach. However,
the authors also noticed that they can significantly improve the memory behaviour
but at the cost of an increase in the factorization time. Another important issue
concerns the overestimation of the memory needed for parallel factorization. Indeed,
even if in [4] the authors have shown that with the concept of candidate processors
the memory estimates can be significantly reduced, there is still an important and
unpredictable gap between real and estimated memory. Hence another target will
be to decrease the memory estimates of the analysis and to respect them during the
factorization.

In this paper, we propose a scheduling approach that uses both memory and work-
load information in order to obtain a better behaviour in terms of estimated memory,
memory used and factorization time in the context of the parallel symmetric and
unsymmetric factorization algorithms. The main principle of our approach is to use
an optimistic scenario during the analysis that is then relaxed to offer flexibility for
the factorization phase.

This paper is organized as follows. In Section 2, we briefly describe the parallelism
involved in MUMPS. In Section 3, we then describe the constraints and objectives
of our work. Section 4 introduces the quantities that will influence the dynamic

RR n
�

5404

4 P. Amestoy, A. Guermouche, J.-Y. L’Excellent, S. Pralet

decisions. Section 5 describes our dynamic scheduling algorithm in the context of
unsymmetric matrices. Section 6 explains why the symmetric case is more com-
plicated and shows how we extended our algorithms to this case. In Section 7 we
present experimental results on large symmetric and unsymmetric matrices on 64
and 128 Power 4 processors of an IBM machine.

2 Scheduling and parallelism in the sparse solver

In this section, we describe the tasks arising in the factorization phase of a multi-
frontal algorithm and how parallelism can be exploited. The so called elimination
tree [8, 15] represents the order in which the matrix can be factored, that is, in
which the unknowns from the underlying linear system of equations can be elimi-
nated. This graph is in the most general case a forest, but we will assume in our
discussions, for the sake of clarity, that it is a tree. One central concept of the mul-
tifrontal approach [8] is to group (or amalgamate) columns with the same sparsity
structure to create bigger supervariables or supernodes [8, 17] in order to make use
of efficient dense matrix kernels. The amalgamated elimination tree is called the
assembly tree (see Figure 2). The work associated with an individual node of the
assembly tree corresponds to the factorization of a so called frontal matrix, or front.
Frontal matrices can be partitioned as shown in Figure 1.

fully summed rows -

partially summed rows -

fully summed columns

?

partially summed columns

?
[

F11 F12

F21 F22

]

Figure 1: A frontal matrix.

Here, pivots can be chosen only from within the block of fully summed variables
F11. Once all eliminations have been performed, the Schur complement matrix F22−
F21F

−1
11 F12 is computed and used to update later rows and columns of the overall

matrix which are associated with the parent nodes. We call this Schur complement
matrix the contribution block of the node.

The notion of child nodes which send their contribution blocks to their parents
leads to the following interpretation of the factorization process. When a node
of the assembly tree is being processed, it assembles the contribution blocks from
all its child nodes into its frontal matrix. Afterward, the pivotal variables from

INRIA

Hybrid Scheduling for the Parallel Solution of Linear Systems 5

P3
P0
P1
P2

P0
P1
P2

P3P2P1

P0 P1

P3

P0 P1

P0

P0

P3

P0

SUBTREES

P3

P2 P2

P0

P2
P2
P3
P0

Type 2

Type 3

Type 2

P0

Type 2

P0

Type 1

Figure 2: Different types of parallelism in the assembly tree.

the fully summed block are eliminated and the contribution block computed. The
contribution block is then sent to the parent node to be assembled once all children
of the parent (which are the siblings of the current node) have been processed. If
some variables are not eliminated because of numerical issues, they are delayed and
sent to the parent node.

A pair of nodes of the assembly tree where neither is an ancestor of the other can be
factored independently from each other, in any order or in parallel. Consequently,
independent branches of the assembly tree can be processed in parallel, and we refer
to this as tree parallelism or type 1 parallelism. It is obvious that, in general, tree
parallelism can be exploited more efficiently in the lower part of the assembly tree
than near the root node.

Additional parallelism is then created using distributed memory versions of blocked
algorithms to factor the frontal matrices (see, for example, [2, 6]). The contribution
block is partitioned and each part of it is assigned to a different processor. The
so called master processor is responsible for the factorization of the block of fully
summed variables and will also decide (only during the numerical phase) how many
and which processors (the so called slave processors) will be involved in the parallel
activity associated with this node (see Figure 3). A slave receives the computation
of a part of the factors (entries that intersect the fully summed column) that it
will store and of a part of the contribution block (entries that intersect the partially
summed column) that it will send for the computation of the parent node. We refer
to this approach as type 2 parallelism and call the nodes concerned type 2 nodes

RR n
�

5404

6 P. Amestoy, A. Guermouche, J.-Y. L’Excellent, S. Pralet

Master (P0) Master (P0)

Slave 1 (P1)

Slave 2(P2)

Slave 3 (P4)

Unsymmetric

Master (P0)

Symmetric

Master (P0)

Slave 1 (P1)

Slave 2(P2)

Slave 3 (P4)

npiv

nfront

nrow

Figure 3: Distribution of slave tasks in symmetric and unsymmetric case.

(see Figure 2). The work distribution depends on the asymmetry of the matrix.
This point explains why our algorithms are simpler in the unsymmetric case than
in the symmetric case (see Section 6). Note also that in the unsymmetric case,
all communications are performed from the master to the slaves whereas in the
symmetric case slaves have to communicate between each other (see [1]).

Of course, if the node is not large enough, it will not be split and will be a type 1
node. Finally, the factorization of the dense root node can be treated in parallel
with ScaLAPACK [5]. The root node is partitioned and distributed to the processors
using a 2D block cyclic distribution. This is referred to as type 3 parallelism (see
Figure 2).

2.1 Partial task mapping during the symbolic factorization phase

The selection of slaves for type 2 nodes during the factorization phase is an attempt
to detect and adjust a possible imbalance of the workload between the processors at
runtime. However, it is necessary to carefully control the freedom given to dynamic
scheduling (see [4] for a detailed analysis). Our sparse solver, MUMPS, addresses these
issues by using the concept of candidate processors. This concept originates in an
algorithm presented in [18, 19] and has also been used in the context of static task
scheduling for sparse Cholesky factorization [13]. Each type 2 node is associated,
during the symbolic factorization phase, with a limited set of candidate processors
from which the slaves can be selected during numerical factorization. The candidate
concept can be thought of as an intermediate step between fully static and fully
dynamic scheduling. While we leave some freedom for dynamic decisions at runtime,
this is directed by static decisions on the candidate assignment.

INRIA

Hybrid Scheduling for the Parallel Solution of Linear Systems 7

The assignment and the choice of the candidate processors is guided by a relaxed
proportional mapping (see Pothen and Sun [18]). It consists of a recursive assignment
of processors to subtrees according to their associated computational work. The
assembly tree is processed top-down, starting with the root node. Each node gets
its set of so called preferential processors which guides the selection of the candidate
processors. A second bottom-up step maps not only the master tasks of type 2 nodes
but also chooses the candidates for slave tasks of type 2 nodes using the previously
computed preferential processors.

2.2 Dynamic task scheduling during the factorization phase

During the factorization, each processor maintains a local pool of ready tasks that
corresponds to nodes of the tree statically assigned to it (type 1 and type 2 master
tasks). Each time all children of a given parent node have been factored, the parent
is inserted in the pool of the processor on which it was statically mapped. Tasks are
then extracted from the pool and activated.

We associate to each processor, say pi, its workload, referred to as loadi, that corre-
sponds to the computational work (number of floating-point operations) associated
with:

� each task in the pool of ready tasks, and

� each ongoing task (active tasks not yet finished).

For a better balance of the actual computational work during factorization, both
the number and the choice of the slaves of type 2 nodes are determined dynamically.
In an approach that is purely based on the workload (see [1, 2]), the master decides
of a regular (balanced) distribution of the slave tasks (ie, each slave is assigned
approximatively the same amount of work). The slaves involved in the factorization
are selected based on their current workload, the least loaded processors being chosen
from among the candidate processors of the node.

In [12], the authors developed an approach with irregular partitions to decrease
the memory usage. We will also use this capability (actually we need it) to offer
more flexibility to our new scheduling strategy. Remark that this flexibility can
be exploited only if the memory constraints guide us to control the size of the
overall memory (communication buffers, factors, working memory) per processor.
If we wanted to use irregular partition without any memory constraint, the overall
memory per processor would have to be severely overestimated.

RR n
�

5404

8 P. Amestoy, A. Guermouche, J.-Y. L’Excellent, S. Pralet

2.3 The four zones

The mapping algorithm by Geist and Ng [10] allows us to find a layer, so called
layer 0 or L0, in the assembly tree so that the subtrees rooted at the nodes of this
layer can be mapped onto the processors with a good balance of the floating-point
operations associated. Initially, the assembly tree was separated into two zones, the
upper part of the tree (above layer 0) and the bottom part of the tree (below layer 0)
where each subtree is mapped onto a unique processor (type 1 parallelism).

We decided to separate the tree into 4 zones instead of 2 (see Figure 4). Zone 4
corresponds to the bottom of the tree. It was suggested in the conclusion of [4] that
the mapping of the upper part of the assembly tree could be separated into two zones.
The first zone (zone 1) would correspond to a relaxed proportional mapping whereas
the second zone (zone 2) would correspond to a stricter proportional mapping. Hence
the flexibility offered at the top of the tree would enable the master processors to
correct the mistakes or the unbalance due to the variations of the load of the machine.
Guided by this remark, zones 1 and 2 have been implemented.

Zone 2

Zone 1

Zone 3 Sx

Sx Sy

Sy

Sy

Sy Sy

Sx

L

Zone 4

0

Relaxed proportional mapping

Strict proportional mapping

Fully dynamic on clusters of processes

Figure 4: The four zones of the assembly tree. Sx and Sy are sets of preferential
processors.

INRIA

Hybrid Scheduling for the Parallel Solution of Linear Systems 9

Moreover we decided to add another zone (zone 3) in which each child inherits all the
preferential processors from its parent. This choice was motivated by the following
experimental observations:

� on a small number of processors the fully dynamic code is very competitive,

� increasing the number of candidate processors near layer 0 makes the memory
management easier (if a node with few candidates and a large contribution
block appears, memory problems can occur),

� with more candidates above zone 4 we have more freedom to balance the work
between processors while respecting the proportional mapping on layer 0,

� on clusters of SMPs, this will naturally take into account the memory locality.

The limit of zone 3 depends on a parameter procmax which corresponds to a number
of processors. During the top-down approach of the proportional mapping, if the
number of preferential processors of a node x is smaller than or equal to procmax

then x and all its descendants (above zone 4) belong to zone 3 and have the same
set of preferential processors (see sets Sx and Sy in Figure 4).
The extra freedom given in zone 1 does not perturb too much the memory estimation
of the standard version of MUMPS (version 4.3), although it is based on a worst case
scenario. It is not the case for zone 3. In this zone, the memory estimates behave
like the fully dynamic code which has shown to severely overestimates the required
space. That is why the four zones approach cannot be considered for the standard
version of the experimental section (Section 7). We will give more details about
memory estimates in Section 4.1.

3 Our constraints and objectives

When the target is time reduction, the master processor of each node determines a
partition of the frontal matrix in order to “balance as much as possible the workload”
between the processors. In our context, we have the same objective, but also have
to respect additional constraints. In this section, we first present the memory con-
straints taken into account during scheduling. Then, we give a generic formulation
of this new constrained problem.
The different criteria used to estimate the memory constraints are presented below:

� Amount of available memory. It corresponds to the remaining memory
that can be used to store the contribution blocks and the factors. It varies

RR n
�

5404

10 P. Amestoy, A. Guermouche, J.-Y. L’Excellent, S. Pralet

during the factorization. For each processor pi, memi will refer to this quantity
(see Section 4.1 for more details).

� Maximum factor size. It corresponds to the maximum size of the factors
that a master can assign to a slave processor pi. It will be denoted by facti.
This quantity is related both to the static scenario used to estimate the memory
during analysis and to the dynamic information obtained during factorization
(see Section 4.2).

� Maximum buffer size. Let us consider a type 2 node. In the worst case,
each slave will receive/send a block corresponding to the size of its share of
the front. Assuming that the send and receive buffers are of the same size,
it is therefore sufficient to ensure that the size of the slave task (front size
multiplied by number of rows) is smaller than the size of the buffer. For each
processor pi, bufi will denote the size of its buffer.

We now define some of the notations used to describe our algorithms. Let us consider
a node of the assembly tree of order nfront with npiv variables to eliminate (see
Figure 3, left). The expressions below correspond to the unsymmetric case where the
memory size of a slave task is given by the number of rows times nfront (see Section 6
for the symmetric case). For each slave processor pi and for each corresponding
constraint bufi, memi, facti, we define a function nb row by

nb row(bufi) =
bufi

nfront
, nb row(memi) =

memi

nfront
, and nb row(facti) =

facti
npiv

,

respectively. Furthermore for a maximum number of floating-point operations flop i

that we want to assign, we define

nb row(flopi) =
flopi

npiv(2 × nfront − npiv)
.

(The number of operations to factor a strip of nbrow rows is nbrow × npiv × (2 ×
nfront − npiv).)

If the master of a node is aware of the above constraints, it can determine the
maximum number of rows that it can assign to each candidate. During the factor-
ization, each master has to “balance as much as possible the workload” between its
“slave” candidates. For each slave pi, the master processor gives ni rows such that
ni ≤ min{nb row(bufi),nb row(memi),nb row(facti)}.

INRIA

Hybrid Scheduling for the Parallel Solution of Linear Systems 11

Even if the problem of finding the best workload balance which respects the memory
constraints is easy to solve theoretically using linear programming, in practice, com-
munication schemes, granularity and the topology of the assembly tree need to be
considered to answer this question. That is why we do not give, in this section, more
details about the meaning of “balance as much as possible the workload”. Note also
that the above problem may not have a solution because the memory constraints
are too restrictive. These points will be examined in Section 5.

4 Static and dynamic estimates

This section describes the metrics used by our scheduler. Some of these quantities are
computed during the analysis (the memory estimations, the size of the buffers, the
size of the area reserved for factors), some are also adjusted during the factorization
(the memory available to store contribution blocks, the memory available to store
factors). We have already described in Section 3 how the buffers are estimated; as
for the memory estimation, a relaxation parameter is then used to increase freedom
and allow for numerical pivoting.

4.1 Memory estimates and available memory

We first explain how we decrease the total memory allocated compared to the stan-
dard version of MUMPS. After choosing the candidates, the memory estimates are
computed thanks to a bottom-up, depth-first traversal of the assembly tree, that
simulates the actual factorization. (Note that the depth-first traversal may differ
from the traversal occurring during the actual factorization.) For each processor,
master or candidate, involved in the computation associated to a node, the mem-
ory estimate for the processor is decreased when a contribution block is assembled
and discarded, and it is increased when assemblies, activation of tasks, or storage
of factors occur. For type 2 nodes our new estimates, computed during the analysis
phase, are based on an average optimistic scenario instead of the worst case as in [4].
In both cases, the estimation assumes regular partitions of the contribution block,
that is, each slave is assigned the same amount of work.

In the worst case scenario corresponding to the standard version of MUMPS, we first
compute the minimum number of slaves, min needed, to perform all the work for
the slaves (this number depends on internal parameters and algorithmic aspects
that fix the maximum granularity and it is smaller than the number of candidates).
Then, for our simulation, each candidate receives a block of size nfront(nfront −

RR n
�

5404

12 P. Amestoy, A. Guermouche, J.-Y. L’Excellent, S. Pralet

npiv)/min needed, where nfront and npiv are respectively the size of the front and
the number of variables to eliminate, as defined earlier.

In the optimistic case, we now assume that work can be assigned to all available
slaves and so each candidate receives a block of size nfront(nfront − npiv)/ncand
where ncand is the number of candidates of the type 2 node. Since nfront(nfront −
npiv)/min needed ≥ nfront(nfront − npiv)/ncand, the estimates will be smaller in
this optimistic scenario.

For example, let us consider a type 2 node that has 5 candidates and that has a
block of 200 MBytes to be distributed over the slaves. We suppose that at least
2 slaves are needed. Then the worst case will give 100 MBytes to each candidate
processor whereas the optimistic scenario will give 40 MBytes to each slave. So we
save 60 MBytes per processor.

These estimates are then relaxed by a percentage (by default equal to 20%) to offer
more flexibility to the scheduler. The resulting supplementary memory enables us to
take into account extra fill-in due to numerical pivoting and to offer more freedom to
the dynamic decisions. It will also reduce the amount of data compressions involved
in a parallel environment because of the irregular access to the contribution blocks
(garbage collection). The memory available on each processor is then dynamically
updated as proposed in [11].

4.2 Maximum size of factors

The maximum size of factors is used by the scheduler to determine the largest portion
of the factors that can be given to a candidate processor. It is composed of two terms.
For each node J of the assembly tree, the first term fact anali(J) is estimated during
the analysis. It corresponds to the size of the factors given to processor pi with the
optimistic scenario (with the convention that if a processor pi is neither the master
nor a candidate of node J , fact anali(J) = 0). Thus, according to the analysis
scenario, a processor pi will store the quantity fact anali =

∑

J fact anali(J) of
factors.

The second term, the flexibility ∆i, is initialized to the supplementary memory
given to store the factors. It enables the dynamic decisions to deviate from the
optimistic analysis scenario. Using Algorithm 1, ∆i is adjusted dynamically during
the factorization phase. Hence, after having updated information about workload
and memory during the selection of the slaves of a node J , the master knows that
it should not give more than facti(J) = fact anali(J) + ∆i factors to the candidate
pi. Obviously, if there are no numerical problems and if ∆i = 0 for each processor

INRIA

Hybrid Scheduling for the Parallel Solution of Linear Systems 13

Algorithm 1 Update of the supplementary memory for the factors.

Initialization on processor pi:

Let ∆i be the initial supplementary memory for the factors.
Include (pi, ∆i) in a message msg sup mem.
Asynchronous send of msg sup mem to the other processors.

After the selection of a set S of slaves by processor pi for the node J:
for all candidate processor pk do

if pk ∈ S then /*pk has been selected*/
δk = fact analk(J) − Actual size of the factor assigned to pk

else

δk = fact analk(J)
end if

Include (pk, δk) in a message msg sup mem.
end for

Asynchronous send of msg sup mem to the other processors.

At the reception of a message msg_sup_mem:

for all (pi, δi) included in the message do

∆i = ∆i + δi

end for

pi, then the factorization will respect the same partition of the factors that was
predicted during the analysis phase.

4.3 Workload and anticipation

The dynamic scheduling decision taken by the master processor of a type 2 task is
guided by its view of the workload of its candidate processors. The workload for a
processor pi is referred to as loadi and it represents the sum of the computational cost
of all its ready and active tasks (see Section 2.2). For each processor pi, loadi and
its variations are made available to master processors thanks to the asynchronous
communication mechanism described in [11]. Experiments in [12] have shown the
positive effects of anticipating the memory variations. Algorithm 2 describes this
mechanism for the workload. The basic idea is to anticipate the arrival of a costly
task and take its workload into account slightly before the task is effectively inserted
in the pool of ready tasks. Note that a task becomes ready once all its children have
been processed. Thus, if every processor treating a child sends (when it starts the
task) a message to the one in charge of the parent node, the processor in charge of
the parent knows that this task will become ready in a relatively small amount of
time. It can then send the cost of the corresponding task to all the processors to

RR n
�

5404

14 P. Amestoy, A. Guermouche, J.-Y. L’Excellent, S. Pralet

make them aware of this new load just arriving. Note that when a predicted task
effectively becomes ready (i.e. is inserted in the pool of ready tasks), the workload
of the processor is not updated since this has already been done.

Algorithm 2 Anticipation of the tasks.

Initialization on processor pi

for all nodes J for which pi is the master do

Set nb children(J) to the number of children of J .
end for

Emission of a message child_OK when task J starts on the master pi:

Let K be the parent of node J .
Let pk be the master in charge of task K.
Include K in a message child OK.
Asynchronous send of child OK to the processor pk.

At the reception of a message child_OK on processor pi:

Extract task K from the message child OK.
nb children(K) = nb children(K) − 1.
if nb children(K) = 0 then

Let WK be the work associated with the task of the master of node K.
Include (pi, WK) in a message msg load update.
Asynchronous send of msg load update to the other processors.

end if

At the reception of a message msg_load_update containing (pi, W):
loadi = loadi + W

5 Hybrid dynamic scheduling

In this section, we describe the algorithms used to balance the workload while taking
into account the memory constraints. Let us first define the notations used in our
algorithms. For a node J just extracted from the local pool of ready tasks (by the
master processor of J), we define:

� ncand: the number of candidates,

� {p1, . . . , pncand}: the set of candidate processors initially sorted by increasing
workload,

� Wmaster: the computational cost (number of floating-point operations) of the
master task,

INRIA

Hybrid Scheduling for the Parallel Solution of Linear Systems 15

� Wslaves: the computational cost associated with the sum of all the slave tasks.

For each candidate processor pi, we know/compute:

� the quantities memi, bufi and facti (see Section 3),

� its workload loadi (see Sections 2.2 and 4.3).

Algorithm 3 presents the main steps of our hybrid dynamic scheduling approach.
Note that since violating a constraint related to bufi or memi would lead to a
failure we never relax them during the algorithm. At Step 1, we compute an advised
maximum number of slaves nlim used during a first attempt to balance the work
over a subset of the nlim least loaded processors. nlim is designed to limit the
number of slaves by considering that the work given to each slave should be related
to the master’s work (see Algorithm 4). Step 2 of our algorithm is performed only
when Step 1 did not succeed in distributing all work because of memory constraints.
Processors are then added one by one during Step 2 with the objective of mapping the
remaining work on up to ncand processors, while saturating the memory constraints.
At Step 3, we then suppress the memory constraint relative to facti and redistribute
the remaining work.

Algorithm 3 Main steps of our hybrid scheduling strategy.
Receive information related to workload and memory.

1 Try to balance the workload on a maximum of nlim processors (see Algorithm 4).
2 If Step 1 did not succeed (the nlim processors are saturated in memory and work remains to be

mapped) then add new slaves one by one.
3 If Steps 1 and 2 did not complete the mapping then suppress the memory constraint on the size

of the factors, facti, and try to balance the remaining work onto the candidates.

All steps, although based on different algorithms, use similar techniques. In this
section, we focus on Step 1, described in Algorithm 4, since it is the most complex and
critical one for performance. Algorithm 4 is iterative. Starting from an initial value
of ntry, we try to find a partition of the frontal matrix (inner loop in Algorithm 4)
on a maximum of ntry slaves. If this attempt fails, we increase ntry and repeat the
previous process to map the remaining work Wr until nlim is reached (outer loop in
Algorithm 4). Furthermore note that in the algorithm we use the convention that
loadnlim+1 = +∞, so that if ntry = nlim, only memory constraints may prevent us
from finding a mapping of the slave tasks on the nlim slave processors. Obviously,
during Step 2, the real value of loadnlim+1 will be used.
The ri term represents the number of rows assigned to processor pi at each iteration
of the algorithm. It corresponds to the minimal value between the number of rows

RR n
�

5404

16 P. Amestoy, A. Guermouche, J.-Y. L’Excellent, S. Pralet

necessary to reach the workload of the current reference processor (pntry+1), the
memory constraints of pi, and another term (Wb = nb row(Wr/(ntry − nsat))).
This last term corresponds to a balanced distribution of the remaining work among
unsaturated processors. Moreover, since at each point of the algorithm the workloads
of the already selected slaves (pi)1≤i≤ntry have been well-balanced (in the previous
iterations of the algorithm), the order in which the ntry slaves are processed is not
important. The ntry slaves are then sorted from the most constrained processor
with respect to memory bounds to the least constrained one. Doing so we ensure
that a single pass is sufficient to produce a balanced partition of the matrix that
respects all the memory constraints. Indeed each time the memory constraints of a
processor are saturated, the remaining load Wr is updated together with the number
of saturated processors nsat. These two quantities are then used to reevaluate the
term Wb = Wr/(ntry − nsat) and the corresponding constraint.

One can also notice that, in Algorithm 4, the initial values of ntry and nlim depend
on the location in the assembly tree. Since in zone 3 the tree parallelism is sufficient,
we expect to improve the performance and limit the volume of communications by
allowing the algorithm to select less slaves. This is done by setting both nlim = ncand
and ntry = ncand − 1. The workload of each processor will then be adjusted to the
most loaded candidate processor during the first attempt of the “while” loop. Since
the reference load loadntry+1 is equal to loadncand and since α = +∞ inhibits the
limitation relative to the nb row(Wb) term, more work will be assigned to the first
slaves and less slaves will normally be chosen. Furthermore, when the node belongs
to zone 3 we do not sort the list of ntry processors in the inner loop because we do
not expect, in that case, the workload between the slaves to be balanced.

To illustrate our discussion let us assume that the workload is very well balanced
on entry of Algorithm 4 among the processors and consider a relatively small type 2
node not in zone 3. For the sake of simplicity, we assume that Wb will be large enough
and is not the constraining factor. In that case, the role of nlim is to maintain a
minimum granularity relatively to the work of the master. Indeed, the first loops with
ntry < nlim− 1 do nearly nothing since loadnlim ≈ loadi for all candidate processors
pi. When ntry becomes equal to nlim, the reference load loadntry+1 becomes infinity
so that we will try to saturate the memory before to consider adding new slaves at
Step 2 of Algorithm 3. We now consider the example of Figure 5 to illustrate the
behaviour of the first steps of Algorithm 3. Let us assume that at Step 1 the advised
maximum number of processors nlim is set to 3. Work is assigned at Step 1 to these
three processors. At the end of the while loop for ntry = 2, we show in Figure 5(b)
that all the work has not been fully distributed. At the end of the next iteration

INRIA

Hybrid Scheduling for the Parallel Solution of Linear Systems 17

Algorithm 4 Step 1: Slave task mapping for a node Inode
OUTPUT:

Wr: workload not yet mapped;
assigned rows: number of rows assigned per processor;

nsat = 0 (number of saturated processors);
(assigned rowsi)i=1,...,ncand = 0;
(buf loci = bufi)i=1,...,ncand;
if Inode in zone 3 then

α = +∞ (to inhibit the constraint on nb row(Wb), see below);
ntry = ncand − 1; nlim = ncand;

else

α = 1; ntry = 1; nlim = min(ncand, max(Wslave

ρ Wmaster
, 1));

end if

Wr = Wslaves; loadnlim+1 = +∞
while ntry ≤ nlim do

Wb = Wr/(ntry − nsat) (balanced distribution of the remaining work among first ntry − nsat

unsaturated processors)
if Inode not in zone 3 then

sort the sublist of the ntry least loaded processors in increasing order of
min{nb row(memi), nb row(buf loci), nb row(facti)};

end if

for i = 1 to ntry do

if processor pi not already saturated then

ri = min{nb row(loadntry+1 − loadi), α × nb row(Wb), nb row(memi),
nb row(buf loci), nb row(facti)};

Let w, m, f be the workload, the memory, the size of the factors (respectively) correspond-
ing to ri rows;
Assign ri rows to processor pi and update its configuration:

loadi = loadi + w, memi = memi − m, facti = facti − f , assigned rowsi =
assigned rowsi + ri,

and buf loci = buf loci − m;
Wr = Wr − w;
if processor pi saturated then nsat = nsat + 1 and Wb = Wr/(ntry − nsat)
if Wr = 0 then return;

end if

end for

ntry = ntry + 1;
end while

(ntry = nlim = 3) we see in Figure 5(c) that the memory constraints of the three
first processors are saturated. This is due to the fact that loadnlim+1 = +∞. (Note
that in our example, the constraint on Wb is never attained.) Finally, in Figure 5(d),
the remaining work can be assigned at Step 2 when p4 is added to our set of slaves.

RR n
�

5404

18 P. Amestoy, A. Guermouche, J.-Y. L’Excellent, S. Pralet

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���

���
���
���
���
���
���

	�	
	�	
	�	
	�	
	�	
	�	
	�	

�

�

�

�

�

�

�

P1 P2 P3 P4 P5 Slave task

workload

maximum workload imposed by memory constraints

not yet distributed

(a) Initial state

���
���
���
���
���

���
���
���
���
���

�

�

�

�

�

�

�

�

�

���
���
���
���
���
���
���
���
���

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

P1 P2 P3 P4 P5 Slave task

workload

maximum workload imposed by memory constraints

not yet distributed

(b) Step 1 (ntry = 2)

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

� � �
� � �
� � �
� � �

! ! !
! ! !
! ! !
! ! !

" " "
" " "
" " "

#
#
#

P1 P2 P3 P4 P5 Slave task

workload

maximum workload imposed by memory constraints

not yet distributed

(c) Step 1 (ntry = 3)

$�$
$�$
$�$
$�$
$�$

%�%
%�%
%�%
%�%
%�%

&�&
&�&
&�&
&�&
&�&
&�&
&�&
&�&
&�&

'�'
'�'
'�'
'�'
'�'
'�'
'�'
'�'
'�'

(�(�(
(�(�(
(�(�(
(�(�(
(�(�(
(�(�(
(�(�(
(�(�(

)�)�)
)�)�)
)�)�)
)�)�)
)�)�)
)�)�)
)�)�)
)�)�)

��*
��*
��*
��*
��*
��*

+�+
+�+
+�+
+�+
+�+
+�+

,�,
,�,
,�,
,�,
,�,
,�,
,�,

-�-
-�-
-�-
-�-
-�-
-�-
-�-

. . . .
. . . .
. . . .
. . . .

/ / /
/ / /
/ / /
/ / /

0 0 0
0 0 0
0 0 0

1 1 1
1 1 1
1 1 1

P1 P2 P3 P4 P5 Slave task

workload

maximum workload imposed by memory constraints

not yet distributed

(d) Step 2

Figure 5: Example of hybrid scheduling on 5 processors of a node not belonging to
zone 3.

6 Extension to symmetric matrices

The hybrid scheduling strategies have also been adapted to the symmetric case. The
additional difficulties come from the fact that in the symmetric case, the relations
between the memory, the computational cost (number of operations) and the number
of rows inside a front is not straightforward; these relations actually depend on the
choices done for the previous slaves of the node (see the partition of a type 2 node in
Figure 3). In our dynamic approach to hybrid scheduling, the slave tasks are mapped
in increasing order of the workload of the candidates. Hence, the evaluation of the
function nb row of the ith candidate depends on the rows assigned to the i − 1
previous candidates. In particular, let us consider the ith and the jth candidate with

INRIA

Hybrid Scheduling for the Parallel Solution of Linear Systems 19

i < j. An equal memory size corresponds to more rows given for pi than to pj .
In this context, linear programming no more provides a theoretical answer to our
problem.

Algorithm 4 needs to be revisited. In particular each time we increase ntry, the
partition of the matrix needs to be fully recomputed. Also, if we want to add rows
to the ith candidate processor, then the assignment needs to be revised for all the
candidates with position j > i. The nb row functions are then difficult to evaluate
and are not explicitly known since the relation between memory and floating-point
operations depends on the position in the frontal matrix of the first row assigned to
processor pi.

7 Experimental results

In this section we analyse the effects of our hybrid approach. We first describe our
test environment. In Section 7.2, we analyse the behaviour of our algorithms in
terms of estimated memory and memory effectively used during factorization. The
influence on the factorization time is discussed in Section 7.3.

7.1 Experimental environment

In this section, we focus on four large symmetric and unsymmetric matrices, de-
scribed in Table 1:

� AUDIKW 1 comes from Automotive crankshaft model with over 900,000 TETRA
elements and is available at http://www.parallab.uib.no/parasol/data.html,

� CONESHL comes from a 3D finite element problem (cone with shell and solid
element connected by linear constraints with Lagrange multiplier technique).
It was created by SAMCEF and provided by the SAMTECH company. It is
available on request.

� CONV3D64 has been provided by CEA-CESTA and was generated using
AQUILON (http ://www.enscpb.fr/master/aquilon),

� ULTRASOUND80 comes from propagation of 3D ultrasound waves and has
been provided by Masha Sosonkina.

We use METIS [14] during the reordering phase for all our experiments. Note that
for the matrix CONESHL, the numerical behaviour of the current release of MUMPS

RR n
�

5404

20 P. Amestoy, A. Guermouche, J.-Y. L’Excellent, S. Pralet

is sensitive, because of numerical pivoting, to the number of processors. This results
in a number of floating-point operations and a size for the factors that varies (al-
though only slightly) when the number of processors changes. Since we do not want
to be perturbed by such effects in the experiments of this paper, the matrix was
made diagonal dominant to have the factorization cost independent of the number
of processors. All results have been obtained with this modified matrix, referred to
as CONESHL mod.

Order nnz nnz(L|U) × 106 Ops×109

Symmetric matrices
AUDIKW 1 943695 39297771 1368.6 5682

CONESHL mod 1262212 43007782 790.8 1640

Unsymmetric matrices
CONV3D64 836550 12548250 2693.9 23880

ULTRASOUND80 531441 33076161 981.4 3915

Table 1: Test set. nnz: number of nonzeros in the matrix. nnz(L|U): number of
nonzeros in the factors. Ops: total number of operations during factorization.

Our target machine is the IBM SP from IDRIS1. It is composed of clusters of SMP
nodes. In our experiments, we use a maximum of 2 clusters of 16 SMP nodes of
4 processors each (Power 4/1.7Ghz P655). Each node shares 8 GBytes of memory.
A Federation switch interconnects the SMP nodes. We will compare the following
versions of MUMPS on 64 and 128 processors:

� The standard version with proportional mapping and candidates will be re-
ferred to as MUMPS cand. It corresponds to the version used in [4] except that
the mechanism described in Algorithm 2 to anticipate the workload has also
been included. A master selects its slaves among the candidate processors and
balances the workload using regular partitions.

� The hybrid version will be referred to as MUMPS hyb. It corresponds to a candi-
date version implementing all the algorithms described in the previous sections.
In particular, the separation of the tree in four zones (see Section 2.3), the
estimation of the supplementary available memory for the factors (see Algo-
rithm 1) and the hybrid scheduling (see Section 5) are included. To compute
the advised number of processors nlim in Algorithm 3 we set ρ = 50% for
unsymmetric matrices and ρ = 70% for symmetric matrices. The fact that

1Institut du Développement et des Ressources en Informatique Scientifique

INRIA

Hybrid Scheduling for the Parallel Solution of Linear Systems 21

the relative cost of a master with respect to a slave is larger on unsymmetric
matrices justifies this difference in the setting.

7.2 Estimated and effective memory

In this section, we analyse the memory behaviour of both versions of our solver.
We look at both the predicted memory peak and the memory actually used. We
are interested in both the average memory per processor and the peak between
processors.

MUMPS cand MUMPS hyb

Matrix Estim Real Estim Real

AUDIKW 1 Max 118.96 50.08 74.80 62.53
Avg 76.24 31.19 49.32 33.54

CONESHL mod Max 64.05 37.04 31.81 24.22
Avg 25.20 16.79 22.05 16.82

CONV3D64 Max 102.94 93.04 88.73 87.46
Avg 68.66 60.95 61.24 62.41

ULTRASOUND80 Max 42.98 38.02 34.17 32.11
Avg 26.19 22.82 24.01 22.65

Table 2: Estimated and effective memory (millions of reals) for the factorization
on 64 processors. Max: maximum amount of memory. Avg: average memory per
processor. Memory in millions of entries. Memory allocated is 20% more than
estimated.

We recall that with the MUMPS cand version memory estimates are based on a worst
case scenario whereas the MUMPS hyb version uses a more optimistic scenario. Note
that for all cases we relax the memory estimated by 20% to run the factorization
(except for the MUMPS cand version on CONV3D64 and AUDIKW 1 with 64 pro-
cessors for which this percentage is reduced because of memory limitations on the
machine). This leads anyway in all cases to a much larger memory allocated for
MUMPS cand than with MUMPS hyb strategy.

Tables 2 and 3 show the memory estimated and the memory used on 64 and 128
processors respectively. We notice that the hybrid version significantly reduces the
estimated memory (both average and peak). We can also see that the gap between
the hybrid strategy and the standard one grows with the number of processors.
This is due to the fact that on a larger number of processors we have less memory
limitations so that we can offer more freedom to dynamic decisions. The worst

RR n
�

5404

22 P. Amestoy, A. Guermouche, J.-Y. L’Excellent, S. Pralet

MUMPS cand MUMPS hyb

Matrix Estim Real Estim Real

AUDIKW 1 Max 107.09 33.49 59.54 29.22
Avg 48.37 15.60 27.74 16.92

CONESHL mod Max 40.23 16.44 17.32 14.52
Avg 14.90 8.44 12.16 8.69

CONV3D64 Max 74.30 56.17 49.86 47.35
Avg 39.14 31.93 35.02 33.20

ULTRASOUND80 Max 45.95 23.90 21.26 17.47
Avg 17.47 12.55 13.44 11.84

Table 3: Estimated and effective memory for the factorization (millions of reals)
on 128 processors. Max: maximum amount of memory. Avg: average memory
per processor. Memory in millions of entries. Memory allocated is 20% more than
estimated.

case memory estimates of the standard strategy then converts this freedom into
memory overestimations which is not the case with the new strategy. The same
observation explains why on the large CONV3D64 matrix, the gap between the
hybrid strategy and the standard one is relatively small on 64 processors. Indeed
there is no over-estimation, even with worst-case memory estimates, for the large
type 2 nodes because both strategies have to consider all the candidate processors
as slaves to avoid too large slave tasks.
Concerning the effective memory occupation, we can observe that the hybrid strategy
gives a maximum memory peak that is generally smaller than the one of the standard
strategy (except for the AUDIKW 1 problem on 64 processors). In addition, we can
see that the average effective memory size over the processors is close between the
two strategies and that the hybrid one tends to give slightly higher average memory
occupation over the processors. Finally, notice that the gap between the estimated
memory size and the effective one is smaller with the hybrid strategy and tends to
be very small for most problems. The difference is generally due to the fact that
the estimate is computing with the tree processed in a special order (depth-first
traversal) which is not the one occurring during factorization.

7.3 Factorization time

In this section, we analyse the factorization time. We expect two different effects.
First, irregular partitions offer the flexibility to balance the workload better, and this
should improve the factorization time. Second, memory constraints may prevent the

INRIA

Hybrid Scheduling for the Parallel Solution of Linear Systems 23

master from making a perfect decision in terms of balancing the workload, and this
should moderate the benefits from irregular partitions.

64 processors 128 processors
Matrix MUMPS cand MUMPS hyb MUMPS cand MUMPS hyb

AUDIKW 1 99.95 78.50 59.51 43.51

CONESHL mod 49.31 24.80 20.98 14.98

CONV3D64 304.90 239.62 240.02 168.59

ULTRASOUND80 46.02 42.52 35.96 33.85

Table 4: Factorization time in seconds with 64 and 128 processors.

Table 4 shows the impact of our new strategy on the factorization time. For all cases,
the hybrid approach improves the factorization time on both 64 and 128 processors.
In other words the memory constraints do not prevent the scheduling from balancing
the workload well. We can see for example on problems like CONV3D64 or AU-
DIKW 1 a very significant improvement in terms of factorization time (near to 30%
reduction for matrix CONV3D64). Even, for problems requiring less computation,
we can see that the new strategy is very efficient in comparison to the standard one
(see CONESHL mod), except for ULTRASOUND80 for which gains are relatively
minor. Our results show that thanks to the new hybrid dynamic scheduler and to
the fact that it can be combined with a modified and improved static approach,
we have freedom to schedule/manage better parallel tasks even under much tighter
memory constraints.

Finally, concerning the scalability of the factorization time, we can observe that for
symmetric problems, the relative speed-up between 64 and 128 processors is not
too far from 2 (1.80 for AUDIKW 1 and 1.65 for CONESHL mod). Furthermore,
we could factorize the symmetric matrices on one processor (3401 seconds for AU-
DIKW 1 and 1195 seconds for CONESHL mod) and obtained ratios between the
sequential and the parallel factorization time on 128 processors of 78.18 and 79.80
for respectively AUDIKW 1 and CONESHL mod. This illustrates the good scalabil-
ity of our scheduling strategies with symmetric matrices. Concerning unsymmetric
problems, the speed-ups between 64 and 128 processors are not as good (1.45 for
CONV3D64 and 1.25 for ULTRASOUND80). This is mainly due to the fact that
for unsymmetric problems, the size of master tasks is relatively bigger than for
symmetric ones (see Figure 3) and may become a bottleneck, since increasing the
number of processors does not decrease the size of master tasks. Even if a splitting
mechanism [1] is available in MUMPS to reduce the size of such tasks, it induces a lot

RR n
�

5404

24 P. Amestoy, A. Guermouche, J.-Y. L’Excellent, S. Pralet

of extra communications and some stronger synchronisation that affect the perfor-
mance. Improving the splitting strategy is possible but is out of the scope of this
study.

 160

 180

 200

 220

 240

 0 10 20 30 40 50
 25

 30

 35

 40

 45

 50

 55

 60

T
im

e
(s

ec
on

ds
)

M
em

or
y

(m
ill

io
ns

 o
f e

nt
rie

s)
Relaxation (percentage)

Factorization time
Total memory peak

(a) with strict memory constraints

 160

 180

 200

 220

 240

 0 10 20 30 40 50
 25

 30

 35

 40

 45

 50

 55

 60

T
im

e
(s

ec
on

ds
)

M
em

or
y

(m
ill

io
ns

 o
f e

nt
rie

s)

Relaxation (percentage)

Factorization time
Total memory peak

(b) with relaxed memory constraints

Figure 6: Influence of the memory relaxation on the factorization time and on the
memory effectively used for matrix CONV3D64 on 128 processors.

To conclude this section, we report in Figure 6 the influence of relaxing the memory
allocated (memory estimated × percentage of relaxation) on the factorization time
and on the memory effectively used to factor the matrix CONV3D64 on 128 pro-
cessors. This study will also give us the opportunity to comment on the effect of an
algorithmic tuning not yet introduced but already used in all previously presented
results. The algorithmic modification results from the following observation. The
memory constraint relative to the deviation of the size of the factors (see Section 4.2)
makes sense only when the processor still has master tasks to process. Otherwise, all
tasks that will be treated by the processor are slave tasks managed by our dynamic
scheduler, and if there is enough redundancy between the candidate processors, the
dynamic scheduler will be able to avoid choosing a processor that has no more mem-
ory available. It is then possible to deviate from the analysis for those processors
and assign them more factors than authorized by our memory bounds.
Figure 6(a) shows that with strict memory constraints the memory relaxation pa-
rameter (whose default value is 20 %) influences both factorization time and the
memory effectively used. We can observe that with no relaxation (i.e., relaxation
parameter equal to 0), both the factorization time and the memory peak increase

INRIA

Hybrid Scheduling for the Parallel Solution of Linear Systems 25

because the scheduler has no freedom for its slave selection: all candidates processors
are chosen and are assigned a task of the same size, following exactly the predictions
from the analysis. It is interesting to notice that, in this case, the factorization
time (230 seconds) is comparable with the time obtained with the MUMPS cand ver-
sion (240 seconds). We also see in Figure 6(a) that for all values of this relaxation
greater than 5 %, the scheduler has enough freedom since the curves have no sig-
nificant variations. Note that the memory peak is even less sensitive to the value of
the relaxation parameter.

Figure 6(b) shows that relaxing the memory constraints improves the performance
obtained with small values of the relaxation parameter. Although a strategy with
no memory relaxation at all should not be advised, we see that the behaviour is
quite good. This is mainly because, in that case, several processors have not been
assigned any master task intitially. Thus, the dynamic hybrid scheduler can give
more work to those processors, creating in this way extra freedom for the other
processors. Furthermore, the number of processors with no incoming master tasks
increases while processing the tree and will provide extra freedom to the schedulers.
The curves of Figure 6(b) thus shows that with this simple modification of the
management of memory constraints it is possible to make the factorization less
sensitive to the memory relaxation parameter.

8 Concluding remarks and future work

We presented in this paper a hybrid approach to dynamic scheduling that takes
into account information about both the workload and the memory availability of
the processors in the context of the parallel LU and LDLT multifrontal factoriza-
tions. We proposed modifications concerning the static mapping of computational
tasks, as well as a new scheduler combining workload and memory constraints for
its dynamic decisions. We have shown the benefits of our approach on four large
test cases (symmetric and unsymmetric) on 64 and 128 processors. For our future
work, we plan to further improve the parallel behaviour of our approach following
two directions.

Firstly, the candidate version of MUMPS has been adapted to clusters of SMPs in [3].
We want to adapt our hybrid approaches to better exploit this feature of the com-
puter architecture. In our context, it seems already natural that the size of the SMP
nodes will give a criterion to define the size of the clusters in zone 3. The information
about the SMP nodes could then be used to influence the dynamic scheduler in its
decisions (i.e., try to select as slaves processors belonging to a same SMP node).

RR n
�

5404

26 P. Amestoy, A. Guermouche, J.-Y. L’Excellent, S. Pralet

Secondly the task selection strategy that manages the ready nodes on each processor
(see Section 2.2) can be improved. Indeed, the current strategy is local and greedy.
It can be improved by designing more sophisticated strategies based on workload,
topological and memory criteria. An example of such a strategy could be to select
among all ready tasks on the most costly (in terms of computation) branches of the
assembly tree the one that is best at reducing the current global memory peak.

References

[1] P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent. A fully asynchronous
multifrontal solver using distributed dynamic scheduling. SIAM Journal on
Matrix Analysis and Applications, 23(1):15–41, 2001.

[2] P. R. Amestoy, I. S. Duff, and J.-Y. L’Excellent. Multifrontal parallel dis-
tributed symmetric and unsymmetric solvers. Comput. Methods Appl. Mech.
Eng., 184:501–520, 2000.

[3] P. R. Amestoy, I. S. Duff, S. Pralet, and C. Vömel. Adapting a parallel sparse
direct solver to architectures with clusters of smps. Parallel Computing, 29(11-
12):1645–1668, 2003.

[4] P. R. Amestoy, I. S. Duff, and C. Vömel. Task scheduling in an asynchronous
distributed memory multifrontal solver. SIAM Journal on Matrix Analysis and
Applications, 2004.

[5] J. Choi, J. Demmel, I. Dhillon, J. Dongarra, S. Ostrouchov, A. Petitet, K. Stan-
ley, D. Walker, and R. C. Whaley. ScaLAPACK: A portable linear algebra li-
brary for distributed memory computers - design issues and performance. Com-
puter Physics Communications, 97:1–15, 1996. (also as LAPACK Working Note
#95).

[6] J. J. Dongarra, I. S. Duff, D. C. Sorensen, and H. A. van der Vorst. Numerical
Linear Algebra for High-Performance Computers. SIAM Press, Philadelphia,
1998.

[7] I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices.
Oxford University Press, London, 1986.

INRIA

Hybrid Scheduling for the Parallel Solution of Linear Systems 27

[8] I. S. Duff and J. K. Reid. The multifrontal solution of indefinite sparse sym-
metric linear systems. ACM Transactions on Mathematical Software, 9:302–325,
1983.

[9] I. S. Duff and J. K. Reid. The multifrontal solution of unsymmetric sets of
linear systems. SIAM Journal on Scientific and Statistical Computing, 5:633–
641, 1984.

[10] A. Geist and E. Ng. Task scheduling for parallel sparse Cholesky factorization.
Int J. Parallel Programming, 18:291–314, 1989.

[11] A. Guermouche and J.-Y. L’Excellent. Coherent load information mechanisms
for distributed dynamic scheduling. Technical Report RR2004-25, LIP, 2004.
Also INRIA report RR5178.

[12] A. Guermouche and J.-Y. L’Excellent. Memory-based scheduling for a parallel
multifrontal solver. In 18th International Parallel and Distributed Processing
Symposium (IPDPS’04), 2004.

[13] P. Hénon, P. Ramet, and J. Roman. PaStiX: A High-Performance Parallel
Direct Solver for Sparse Symmetric Definite Systems. Parallel Computing,
28(2):301–321, January 2002.

[14] G. Karypis and V. Kumar. MeTiS – A Software Package for Partitioning
Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing Or-
derings of Sparse Matrices – Version 4.0. University of Minnesota, September
1998.

[15] J. W. H. Liu. The role of elimination trees in sparse factorization. SIAM Journal
on Matrix Analysis and Applications, 11:134–172, 1990.

[16] J. W. H. Liu. The multifrontal method for sparse matrix solution: Theory and
Practice. SIAM Review, 34:82–109, 1992.

[17] J. W. H. Liu, E. G. Ng, and W. Peyton. On finding supernodes for sparse matrix
computations. SIAM Journal on Matrix Analysis and Applications, 14:242–252,
1993.

[18] A. Pothen and C. Sun. A Mapping Algorithm for Parallel Sparse Cholesky
Factorization. SIAM Journal on Scientific Computing, 14(5):1253–1257, 1993.

RR n
�

5404

28 P. Amestoy, A. Guermouche, J.-Y. L’Excellent, S. Pralet

[19] P. Raghavan. Distributed sparse matrix factorization: QR and Cholesky decom-
positions. Ph.D. thesis, Department of Computer Science, Pennsylvania State
University, 1991.

INRIA

Unité de recherche INRIA Rhône-Alpes
655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

	1 Introduction
	2 Scheduling and parallelism in the sparse solver
	2.1 Partial task mapping during the symbolic factorization phase
	2.2 Dynamic task scheduling during the factorization phase
	2.3 The four zones

	3 Our constraints and objectives
	4 Static and dynamic estimates
	4.1 Memory estimates and available memory
	4.2 Maximum size of factors
	4.3 Workload and anticipation

	5 Hybrid dynamic scheduling
	6 Extension to symmetric matrices
	7 Experimental results
	7.1 Experimental environment
	7.2 Estimated and effective memory
	7.3 Factorization time

	8 Concluding remarks and future work

