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Abstract: The Kochen-Specker theorem is one of the fundamental theorems in quantum
mechanics. It proves that the non-contertuality hypothesis that assumes that the values of
observables are independent of the context, i.e., of the way that measurements are performed
on the system and therefore predetermined, does not hold for quantum systems. The proof
is provided by any counterexample to the assumed pre-existence of values of observables
in quantum mechanics (such as the spin of a system). The theorem not only characterizes
quantum systems but is also one of the major arguments against hidden variables theories
that assume that the ambiguity of the measurements of observables may be ascribed to
hidden variables that are not measured.

We give a constructive and exhaustive definition of Kochen-Specker (KS) vectors in a
Hilbert space of any dimension as well as of all the remaining vectors of the space. KS
vectors are elements of any set of orthonormal states, i.e., vectors in n-dim Hilbert space,
‘H™, n > 3 to which it is impossible to assign 1s and Os in such a way that no two mutually
orthogonal vectors from the set are both assigned 1 and that not all mutually orthogonal
vectors are assigned 0. Our constructive definition of such KS vectors is based on algorithms
that generate linear MMP diagrams corresponding to blocks of orthogonal vectors in R™, on
algorithms that single out those diagrams on which algebraic 0-1 states cannot be defined,
and on algorithms that solve nonlinear equations describing the orthogonalities of the vectors
by means of interval analysis. To demonstrate the power of the algorithms, all 4-dim KS
vector systems containing up to 24 vectors were generated and described, all 3-dim vector
systems containing up to 30 vectors were scanned, and several general properties of KS
vectors are found.
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Enumération exhaustive des systémes de vecteurs de
Kochen-Specker

Résumé : Le théoréme de Kochen-Specker est un des théoréme fondamentaux de la méca-
nique quantique. Il montre que ’on ne peut pas supposer que les valeurs des observations
sont indépendantes du contexte, c’est-a-dire de la maniére dont sont mesurées les observa-
tions. La preuve en repose sur l’existence de contre-exemples qui montre qu’il n’est pas
possible d’assigner des valeurs déterminées aux observations d’un systéme quantique (par
exemple le spin d’un systéme). Ce théoréme est un des arguments majeurs de réfutation
de la théorie des variables cachées, qui suppose que I’ambiguité des mesures sur un systéme
quantique est attribuable & I’existence de variables cachées qui ne sont pas mesurées.

Nous proposons un processus constructif qui permet une énumération exhaustive des
contre-exemples. Pour cela nous définissons les systémes de vecteurs de Kochen-Specker
comme un ensemble de vecteurs d’un espace de Hilbert H™ de dimension n, n > 3, pour
lequel il est impossible d’assigner un état 0 ou 1 & chaque vecteur de facon & ce que les
vecteurs de toute paire de vecteurs mutuellement orthogonaux n’aient pas simultanément
un état 1 et que tous les vecteurs appartenant & un ensemble de vecteurs mutuellement
orthogonaux n’aient pas simultanément un état 0.

Le processus constructif repose sur une énumération exhaustive de toutes les séquences
constituées de n groupes de vecteurs parmi un ensemble donné de a vecteurs. Dans cette
énumération on retient ensuite seulement les séquences pour lesquelles on ne peut pas as-
signer un état 0 ou 1 aux vecteurs constitutif de la séquence. Les séquences obtenues con-
stitueront alors un systéme de vecteurs de Kochen-Specker s’il est possible d’attribuer aux
vecteurs des composantes réelles. Examiner cette possibilité revient & résoudre le systéme
d’équations résultant des conditions d’orthogonalité entre les vecteurs, dont les inconnues
sont les composantes des vecteurs. Pour cela une approche reposant sur la propagation de
contraintes et ’analyse par intervalles est utilisée.

La puissance de ce processus est illustrée par la génération de tous les systémes de
vecteurs de Kochen-Specker en dimension 4 contenant jusqu’a 24 vecteurs ainsi que ceux
contenant jusqu’a 30 vecteurs en dimension 3. On en déduit plusieurs propriétés générales
des systémes de vecteurs de Kochen-Specker.

Mots-clés : mécanique quantique, calcul formel, résolution de systémes, analyse par
intervalles



Solving Kochen-Specker vector systems 3

1 Introduction

The Kochen-Specker theorem is one of the fundamental theorems in quantum mechanics.
It proves that the non-contextuality hypothesis does not hold for quantum systems. This
hypothesis assumes that the values of observables are independent of the context, i.e., of
the way that measurements are performed on the system and therefore predetermined, what
holds for observables of classical systems. The proof is provided by any counterexample to
the assumed pre-existence of values of observables in quantum mechanics (such as the spin
of a system). The theorem not only characterizes quantum systems but is also one of the
major arguments against hidden variables theories that assume that the ambiguity of the
measurements of observables may be ascribed to hidden variables that are not measured.

Recently proposed experimental tests of the Kochen-Specker (KS) theorem [7, 28], dis-
putes on feasibility of such experiments [18, 12, 17, 27, 4] and its first experimental verifica-
tion [9] prompted a renewed interest in the theorem.

To prove the Kochen-Specker theorem, one chooses projectors P;, i = 1,...,n to vectors
(orthonormal states) in n-dim Hilbert space, H™. For them Kochen and Specker [15] showed
that there is no function f : H — R satisfying the Sum Rule: Y | f(P) = f(>C 1, P) =
f(I) for all sets of projectors P;. If one chooses f(P;) € {0,1} (f(I) = 1) it follows that it is
impossible to assign 1s and 0s to all vectors in such a way that (1) no two mutually orthogonal
vectors are both assigned 1; (2) mutually orthogonal vectors cannot all be assigned 0.

We recognize that a description of a discrete observable measurement (e.g., spin) in H"
can be rendered as a 0-1 measurement of the corresponding projectors along orthogonal
vectors in R™ to which the projectors project. Every set of such vectors that satisfy the
Kochen-Specker in the sense of violating the Sum Rule we call a Kochen-Specker set and their
elements Kochen-Specker vectors. Kochen-Specker vectors correspond to experiments having
no classical counterparts. In our previous paper [23] we determined the class of all Kochen-
Specker vectors using several algorithms following the ideas put forward in [20, 19, 21]. Our
constructive definition of such KS vectors is based on the algorithms that generate linear
MMP diagrams corresponding to blocks of orthogonal vectors in R™, on algorithms that filter
out diagrams on which algebraic 0-1 states cannot be defined, and on algorithms that solve
nonlinear equations describing the orthogonality of the vectors by means of polynomially
complex interval analysis and self-teaching programs. In this paper we present the details of
the algorithms with special attentions to methods of solving nonlinear equations obtained
by means of the algorithms.

We shall denote Kochen-Specker vectors by 1,2,...,9,A,B,...Z,a ... and their number
within a Kochen-Specker set in R by a. It is necessary to assume that all the vectors in this
set are independent i.e. no pair of vectors in the set should be identical or opposite, otherwise
if we have m collinear vectors we will measure the spin along only a —m + 1 directions. This
constraint will be called the non-collinearity constraint.

All vectors in the set will be mutually orthogonal with at least n — 1 other vectors in
the set while a given vector may be mutually orthogonal with more than one family of
n — 1 vectors. These vectors will be assembled in a system of b groups of n elements such
that all the vectors in a group are mutually orthogonal (this will be called the orthogonality
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4 Povicié, Merlet, Megill

constraint) and the system may be described using the following notation: each group is
written in turn, each group being separated by comma as for example:

1234,4567,789A,ABCD ,DEFG,GHI1, 35CE, 29BI, 68FH

which denotes a system with ¢ = 18,b = 9. Note in this example that several vectors appear
in different groups and that a description of a given measurements system is not unique
as an exchange in the lettering will lead to the same measurements system. Systems that
correspond to the same measurement arrangements will be called isomorphic systems.

This system may be represented graphically as a diagram with vertices representing
vectors and edges representing groups of vectors. The loop size of a diagram is the number
of edges of the minimal polygon that may be found in the diagram.

The components of a vector in such system will be denoted asj with ¢ in [1,q] and j in
[1,n].

Since a vector in a group represents a measurement axis for a quantum system, a mea-
surement gives either result 1 (a “click”) or 0 (no “click”). In a given group, we get 0
along n — 1 vectors and 1 along the remaining one. However, we cannot assume that the
system possessed these values for the measured observable prior to its measurement and
this means that we get the Kochen-Specker vectors—as examples of this no-go feature of
quantum systems—as a set of vectors to which it is impossible to assign 0-1 states in the
aforementioned way.

Let us first see what constraints should be imposed upon vectors before we try to verify
whether they are Kochen-Specker vectors or not:

¢ all vector components should be real (for measurement purposes we are interested only
in real Kochen-Specker systems)

e all vectors in a group are mutually orthogonal

e 1o vector in the solution set should be collinear with another vector in the solution set.
This constraint is imposed by the measurement devices that cannot measure exactly
in the same direction. Hence it may be somewhat relaxed as we will see later on.

Investigating Kochen-Specker systems is important from two view points:

e for a given n obviously the smaller a is, the easier it is to carry out the experiment.
Even more so as recently a single qubit KS scheme was formulated [5] by means of
auxiliary quantum systems (ancillas) of the measuring apparatus and subsequently
connected with the original KS formulation [1].

e experiments may involve various n and we must be able to exhibit Kochen-Specker
vectors for any n

There are known Kochen-Specker vector systems that have solution and subsequent
attempts to reduce the number of vectors are usually called records.
For example the system with ¢ = 18,0 =9:

INRIA



Solving Kochen-Specker vector systems 5

1234,4567,789A,ABCD,DEFG,GHI1, 35CE, 29BI, 68FH

known as Cabello’s system [6] with loop of size 3 has a solution (see figure 1 for a graphical
representation of this system).

Figure 1: Cabello’s system, the smallest 4-dim Kochen-Specker real system (a = 18,b = 9)

Another system with solution is:
1234,1256,1378,149A ,BCDE ,BDF8,CDOG,DESH, AGIJ,6HIK,F7KJ

known as the Kernaghan system [13] with 20 vectors and loops of size 2.
In dimension 3 known systems are the Peres system [25]:

123,39R,89A,47D,56E,DRE,EFG,CBD,NML,LKE,DJQ,QST,PJI ,HKO,RVX,RUW, 14Y, 1Z5,
4aA,5b8,8gB,AhF,7cH,6dI,Ci0,GjP,7eM,6fS,C1N,GkT,NgX,PsV,0rU,MmU,SnV, HoX,
IpW,TtW,2uB, 2vF

with 57 vectors while Conway-Kochen’s has 51 vectors [26, p. 114]. Another system with 49
vectors is Bub’s system [2]:

123,345,167 ,AB6,AC4 ,DEG,DFH,F90,E8V,5JI,7MN,GIa,HNh, 7LT,5KR,DAe, UTS,
PRS, 1GP,3HU,3Vj,Pgh,Uba,10i,VZg,0Yb,6Xk,4Wn,Sde,dci,dfj,imn, jlk,akQ,hnQ,eQ2

The reasons for referring to these systems as 57, 51, and 49, and not 33, 31, and 33 vector
systems are given in [21].

There are several solutions for larger spaces. One of them is Kernaghan’s solution in 8
dimensional space [14].

RR n° 5388



6 Povicié, Merlet, Megill

Prior to our approach [20, 19, 21] no general method for constructing sets of KS vectors
was known and the KS vectors were constructed either by means of partial Boolean algebras
and orthomodular lattices [15, 29, 30, 31], by direct experimental proposals [7, 3, 28], by
combining rays in R™ [25, 13, 2] or by geometric intuition [24]. These approaches had
two disadvantages: first, they depended on human ingenuity to find ever new examples
and “records,” and secondly, their complexity grew exponentially with increasing number
of dimensions and vectors. E.g., lattices of orthogonal n-tuples have 2" elements (Hasse
diagrams) [10] and, on the other hand, the complexity of nonlinear equations describing
combinations of orthogonality also grows exponentially.

Our purpose was to develop a method that will be able to exhibit all Kochen-Specker
systems in arbitrary dimensions with a reasonable number of vectors.

This problem issues from a contact of one of us (M. Pavi¢i¢) with a former member of
the Galaad project, Ioanis Emiris. M. Pavi¢i¢ was looking for algorithms that would enable
a realistic implementation of his constructive definition of arbitrary Kochen-Specker vectors
he put forward [19] combining McKay-Megill-Pavici¢ diagrams (MMP), states defined on
them [22], and nonlinear equations of the inner products they should correspond to. I. Emiris
was consulted as a well-known specialist of algebraic sparse systems that appear when looking
at the orthogonality constraints. Emiris (and other specialists such as D. Manocha) did not
believe that sparse resultant or other algebraic geometry methods such as Grébner basis
were powerful enough to be able to deal with the large number of equations of such systems
(without mentioning the difficulty of dealing with the non-collinearity constraint). I. Emiris
mentioned that an alternate approach was to use interval analysis and advised M. Pavi¢i¢
to contact the COPRIN project.

2 Generating Kochen-Specker systems

Our approach is to determine all possible Kochen-Specker systems for given a, b, n. For this
purpose we will proceed along three steps:

1. determine an exhaustive list of MMP diagrams that are not isomorphic,

2. among these systems determine the ones for which we cannot assign dispersion free
0-1 states,

3. determine among the remaining systems the ones satisfying the orthogonality and
non-collinearity constraints.

2.1 Generation of non-isomorphic MMP diagrams

We start with describing vectors as vertices (points) and orthogonality between them as edges
(lines connecting vertices) thus obtaining MMP diagrams [19, 16, 21], which are defined as
follows:

1. Every vertex belongs to at least one edge;

INRIA



Solving Kochen-Specker vector systems 7

2. Every edge contains at least 3 vertices;

3. At least one vertex within each edge must share two edges;

4. Edges which intersect each other in n — 2 vertices contain at least n vertices

Powerful software developed by Brendan D. McKay [16] in cooperation with M. Pavi¢i¢
and N. D. Megill serves us to produce all MMP diagrams for given a,b,n, filtering out
the isomorphic one. For given a,n this software produces systems incrementally by adding
groups so that the non-isomorphic condition is satisfied.

But the number of generated systems is usually extremely large: for example for a =
10,b = 12 there are 197 885 058 systems. This number grows exponentially with a. For
a = 11,b = 12 we stopped the calculation after ten hours although the generation was not
completed and over 630 000 000 systems were already generated.

2.2 Filtering out MMP diagrams admitting 0-1 states

The only MMP diagrams of interest are those that cannot be assigned a 0-1 (dispersion free)
state. The next step after generation of non-isomorphic MMP diagrams is to process them
with a filter program called states01.c, which was written by N. Megill. This program
efficiently identifies whether a 0-1 state can be assigned to an MMP diagram.

The criterion for assigning 0-1 states is that each group must contain exactly one vector
assigned to 1, with the others assigned to 0. As soon as a vector in a group is assigned a
1, all other vectors in that group become constrained to 0, and so on. The algorithm in
statesO01.c performs exhaustive assignment attempts to an MMP diagram, backtracking
when there is a conflict.

The algorithm scans the groups then the vectors within each group in some order, trying 0
then 1, skipping vectors constrained by an earlier assignment. When no assignment, becomes
possible, the algorithm backtracks and tries the next possible assignment until either all
possible assignments are exhausted (no solution) or a valid assignment is found.

We will illustrate several examples of the algorithm. The first line of each example shows
the MMP diagram, and the lines under it show successive iterations of the group-by-group
assignment attempts. A “?” means that a vector has no state assignment yet. When a 0
or 1 state is tentatively assigned to a vector, all instances of that vector are populated with
the assignment.

The first example is Cabello’s MMP diagram, which has no 0-1 state. For brevity we
show only the first few and last few iterations.

1234,1256,1378,149A ,BCDE ,BDF8,CD9G, DESH, AGIJ , 6HIK ,F7KJ
1000,1077,1077,1077,7777,7777,7777,7777,7777,7777 , 7777
1000,1000,10?7,1077,7777,77?7,7777,7707,7777,0777, 7777
1000,1000,1000,1077,?777,7770,7777,7707,77?7,0777,7077
1000,1000,1000,1000,?777,7770,7707,7707,07?7,0777,7077
1000,1000,1000,1000,1000,1070,0007,0007,07?7,07?7,7077

O WwWN -

265 0001,0001,0001,0100,0100,0071,1007,0007,0777,1777,7077
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8 Povicié, Merlet, Megill

266 0001,0001,0001,0100,??77,7771,7707,7707,0777,1777,707?
267 0001,0001,0001,0100,0001,0071,0007,0107,0777,1777,7077
268 0001,0001,0001,0100,0001,0001,0007,0107,0777,1777,0077
269 0001,0001,0001,0100,0001,0001,0001,0107,0177,1777,0077
270 0001,0001,0001,0100,0001,0001,0001,0100,0177,1077,0077
271 0001,0001,0001,0100,0001,0001,0001,0100,0100,1007,0070
272 0001,0001,0001,0100,0001,0001,0001,0100,0177,1077,0077
273 0001,0001,0001,0100,0001,0001,0001,0107,0177,1777,0077
274 0001,0001,0001,0100,0001,0001,0007,0107,0777,1777,0077
275 0001,0001,0001,0100,0001,0071,0007,0107,0777,1777,7077
276 0001,0001,0001,0100,7777,7771,7707,7707,0777,1777,7077
277 0001,0001,0001,01?7,?777,7771,7777,7707,7777,1777,707?
278 0001,0001,0077,0177,7777,77?7,7777,7707,7777,1777,7777
279 0001,0077,0077,0177,7777,7777,7777,7777,7777,7777,7777
280 5388,7777,7777,7777,7777,7777,7777, 7777, 7777 ,7777, 7777

At iteration 266 a conflict occurs, and the algorithm backtracks. After partially recovering,
the algorithm starts to backtrack again at iteration 272, finally backtracking all the way
to the beginning and exhausting all possible assignments. Of the 280 iterations, 141 are
backtracks.

The next example shows the same MMP diagram with the second group removed. Again
we omit some of the iterations for brevity. This MMP diagram can be assigned a 0-1 state
as is shown by the last iteration.

1256,1378,149A ,BCDE,BDF8,CD9G,DESH, AGIJ,6HIK,F7KJ
1000,177?7,1?77,?727,?2?2?7,7?777,?2?07,7777,07??,??77
1000,1000,17%?7,7?7?7,???0,7777,7707,77?7?7,0777,7077
1000,1000,1000,777?7,??70,7707,7707,0??7,0777,7077
1000,1000,1000,1000,1070,0007,0007,0???,0777,7077

B W N =

89 0100,0100,0100,?77?7,7770,7707,7707,0777,0777,7077
90 0100,0100,07?7,77?7,7770,7777,7707,7777,0777,7077
91 0100,0100,0010,?7?7,?770,7717,7707,0777,0777,7077
92 0100,0100,0010,1000,1070,0017,0007,0777,0777,707?
93 0100,0100,0010,1000,1000,0017,0007,0777,0777,0077
94 0100,0100,0010,1000,1000,0010,0007,0077,0777,0077
95 0100,0100,0010,1000,1000,0010,0001,00?7,0177,0077
96 0100,0100,0010,1000,1000,0010,0001,0001,0107,0071
97 0100,0100,0010,1000,1000,0010,0001,0001,0100,0001
98 0100,0100,0010,1000,1000,0010,0001,0001,0100,0001

The algorithm iterated 98 times in this case, including 44 backtracks. Recovery from the
last backtrack is shown starting at iteration 91, and the last iteration shows a successful 0-1
state assignment.

INRIA



Solving Kochen-Specker vector systems 9

An optional feature of the program, called cluster presorting, attempts to speed up the
state assignment search. A sorted list of groups is constructed as follows. A group chosen
that has the most vectors in common with the remaining groups, and it is placed at the
beginning of the list. After a group is placed on the list, the remaining groups that are not
yet on the list are scanned, and for each such group we compute the number of vectors it
has in common with the groups already in the list. One with the most vectors in common
is selected for placement at the end of the list.

When the main algorithm runs, it scans the groups in the order that they appear on
this list.. Thus it will process next the group that has the most vectors in common with the
groups already processed. The hope is that by processing the most severe constraints first,
conflicting assignments that lead to backtracks will be resolved early.

In most cases, the cluster presorting algorithm reduces the number of iterations. The
previous MMP diagram provides an example of best-case behavior:

1256, 1378, 149A ,BCDE , BDF8,CD9G, DESH, AGIJ , 6HIK , F7KJ
5388,7777,7777,1000,1077,0077,0077, 7777, 7777, 7777
5388,7770,7777,1000,1000,0077,0077, 7777 ,7777,0777
5388,7770,7717,1000,1000,0010,0077,7077,7777,0777
??717,7770,7717,1000,1000,0010,0010,70?7,7077,0777
?717,7770,7710,1000,1000,0010,0010,0010,7017,0770
7710,7770,7710,1000,1000,0010,0010,0010,0010,0700
?710,7710,7710,1000,1000,0010,0010,0010,0010,0100
0010,0710,0710,1000,1000,0010,0010,0010,0010,0100
0010,0010,0710,1000,1000,0010,0010,0010,0010,0100
0010,0010,0010,1000,1000,0010,0010,0010,0010,0100

© 00N U WN =

[ury
o

Cluster presorting reduced the number of iterations from 98 to 10 for this example, with
no backtracking at all. In other cases the improvement is less dramatic. In the example of
Cabello’s MMP diagram above, the number of iterations was reduced from 280 to 262, with
132 backtracks.

Cluster presorting is estimated to have approximately O(n?) behavior, whereas the main
algorithm can in principle have exponential behavior.

In practice, for the diagrams of interest to us, the overhead of the cluster presorting
algorithm tends to be, on average, slightly greater than the savings afforded for the main
algorithm. Because most diagrams of interest will have very tight coupling throughout (i.e.
many groups will have vectors in common with other groups), the main algorithm tends to
be extremely fast already. Most of our runs were done without cluster presorting enabled.

In the future, if diagrams with sparser coupling are studied, cluster presorting may be-
come more useful. For such diagrams there is a greater likelihood that exponential behavior
will start to be exhibited. As a simple example, we inserted a chain of new groups in the
middle of Cabello’s MMP diagram as follows:

1234,1256,1378,149A,LMNO,OPQR,RSTU, UVWX, XYZa, abcd , BCDE , BDF8,CD9G , DESH,
AGIJ,6HIK,F7KJ

RR n° 5388



10 Povicié, Merlet, Megill

This diagram clearly illustrates the exponential behavior of the backtracking algorithm.
Without cluster presorting, 87 996 iterations were required to determine that the diagram
admits no 0-1 state. Cluster presorting, by scanning the groups in an order that forced
conflicts and backtracking to occur early in the scan, reduced the number of iterations to
just 262 (which may be the minimum possible or close to it, since it is the same number
needed for the original Cabello’s MMP diagram as mentioned above). In general we believe
that cluster presorting can help attenuate possible exponential behavior in this way.

Currently, the states01.c program is run separately and independently from the gener-
ation of non-isomorphic MMP diagrams. Any MMP diagram that extends an MMP diagram
not admitting a 0-1 state will itself not admit a 0-1 state. If we are interested only in the
smallest diagrams not admitting a 0-1 state, then it may be possible to exploit this charac-
teristic by checking whether 0-1 state assignment is possible during the generation. However,
this possibility has not yet been explored.

2.3 Dealing with the orthogonality and non-collinearity constraints

Our objective is to develop different algorithms that deal with the orthogonality and non-
collinearity constraints. The purpose of these algorithms will be twofold

1. to take into account the orthogonality and non-collinearity constraints to reduce the
complexity of the generation

2. to determine if there are components for the vectors of a given system such that the
vectors satisfy the orthogonality and non-collinearity constraints. The result must be
guaranteed (i.e. there are indeed components for the vectors such that the constraints
are exactly satisfied) and the components of the vectors can be computed exactly (i.e.
their values may be given as a symbolic formula such as v/2/2 or with an arbitrary
number of digits)

Hence the problem we are interested in is:
Being given MMP diagrams with no 0-1 states, determine if there are wvectors for such
systems that satisfy the orthogonality and non-collinearity constraints.

3 Conditioning Kochen-Specker systems

Without any additional assumptions any Kochen-Specker system that has one solution will
have in fact an infinite number of solutions. Indeed

1. if X is a solution vector then AX where A is an arbitrary non zero scalar, is also clearly
a solution called a multiplicative solution

2. let R be a rotation or symmetry matrix (hence a matrix that satisfies RRT = I™ with
I™ the identity matrix in dimension n). If W = {W,,..., W, } is a set of solution

INRIA



Solving Kochen-Specker vector systems 11

vectors then RW is also a solution vector called a rotated solution. Indeed assume
that W; must be orthogonal to Wj i.e. W;” .W; = 0. Then we have

(RW;)T . RW; = W;RTRW; = W;" W;T =0

As a Kochen-Specker system is defined only by orthogonality equations this shows that
RW will also be a solution. The non-collinearity constraints will be satisfied as well.

The purpose of conditioning a Kochen-Specker system is to impose constraints on the
vector components so that there will be a finite number of solutions to the system.

For that purpose we will first impose that the vectors should be unitary i.e. that the
Euclidean norm of the vectors is 1. Hence if Wj is a solution vector only —W; will be another
multiplicative solution. In a later section we will see that we will impose an additional
constraint so that in general —W; will be excluded from the solution set. Note that as the
vectors are unitary their components will always lie in the range [-1,1].

Imposing the vectors to be unitary is not sufficient to have a finite set of solution vectors,
since we still have the rotated solutions. To eliminate the rotated solutions we will impose
that the vectors of a specific group will be the unitary orthogonal basis of R™ i.e that the
n vectors Wi, i € [1,n] in this group have as components aW;j = 1 if ¢ = j, 0 otherwise.
This specific group will be called the basis group of the system.

Hence a Kochen-Specker system will have (a — n)n unknowns. As a group induces
n(n — 1)/2 orthogonality equations a Kochen-Specker system will have (b — 1)n(n —1)/2
equations to which must be added a —n equations that indicate that the vectors are unitary.
If (b—1)n(n—1)/2+(a—n) is greater or smaller than n(a—n) we will have an over-constrained
or under-constrained system. For example, the system

1234,4567,789A,ABCD,DEFG,GHI1,35CE, 29BI,68FH

with @ = 18,b=9,n =4 has (b—1)n(n — 1)/2+ (a — n) = 62, n(a —n) = 56 will be an
over-constrained system (and one of our results presented in this report is that there are no
under-constrained MMP systems).

Note that some equations of the system will be quite simple as soon as one vector of the
basis group appears in groups different from the basis group. Indeed if Wj is a member of
the basis group with only its i-th component being not zero, then an orthogonality condition
between W; and a vector Y implies that the i-th component of Y is 0.

In the above example, if the basis group is chosen as 1234 the system will have 56
unknowns and 62 equations, of which 12 state that a component of one vector is 0. Hence
we will end up with a system of 50 equations in 44 unknowns.

4 Solving Kochen-Specker systems with interval analysis

Kochen-Specker systems usually have a large number of equations. Although they are al-
gebraic and sparse, classical algebraic solving methods such as homotopy, elimination or
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12 Povicié, Merlet, Megill

Grobner basis will have difficulties solving them as these methods are very sensitive to the
number of equations in a system (and these methods are not very appropriate to deal with
the non-collinearity constraint). But we have seen that all the unknowns of the equations
have a value that should lie in the range [-1,1]. Hence this allows the use of solvers based
on interval analysis.

4.1 Interval arithmetic

Let f be a function of [ variables {z;,...,2;}, and let us assume that each variable z; is
constrained to lie in a given range [z;,%;]. In interval arithmetic the width of an interval
[z, 7] is defined as T — z and the mid-point of this interval is (Z + z)/2.
An interval evaluation of f is a range [F, F| such that f(z1,...,z;) for all z; € [z, 7]
satisfy
ng(xl,...,xl) SF

In other words F, F are lower and upper bounds for f when the variables are constrained
to lie within their ranges.

A first interesting property of an interval evaluation is that if 0 € [F', F, then there does
not exist a set of values for the variable in their range that will cancel f.

There are numerous ways to obtain an interval evaluation of a given function. The
easiest one is the natural evaluation, where each mathematical operator in the function is
substituted by an equivalent operator that can be used with intervals and that satisfies the
inclusion rule. For example, an interval equivalent of the + operator is defined as

[z,7] + [3,7] = [z + ¥, T + 7]

The interval “+” operator satisfies the inclusion rule i.e. Va € [z,7],Vb € [y,7] z+y < a+b <
T+ 7.

An interesting property of interval arithmetic is that it can be implemented in such way
that the interval evaluation will always include the exact result of a function value. For
example, consider the simple function f(z) = 2 % (1/3)® that must be evaluated at z = 3.
Using double arithmetic the result will be 0.99999 while using interval arithmetic we will
get the interval [0.9999. . .,1.0000.. .].

There are numerous available packages for interval arithmetic. We used the BIAS/Profil
L package.

A drawback of the natural interval evaluation is that in general it overestimates the
lower and upper bound for a function. The most curious example of this overestimation
is the interval evaluation of the function z — x for example for the interval [-1,1]. We get
[-1,1] — [-1,1] = [-2,2]. The reason of this overestimation is that the natural interval
evaluation does not take into account the dependency between the variables. The natural
interval evaluation of x — z is in fact the natural interval evaluation of z — y in which z,y
are considered as independent variables that happen to have the same range.

Thttp:/ /www.ti3.tu-harburg.de/Software/ PROFILEnglisch.html

INRIA



Solving Kochen-Specker vector systems 13

It must be noted, however, that the size of the overestimation decreases with the width
of the ranges for the variables. Furthermore, an important rule of interval arithmetic is the
following:

If there is only one occurrence of each variable in a function then the interval evaluation
will be exact up to round-off error, i.e. if the interval evaluation of f(x1,...,2) is [F, F],
then there are values 27*,..., 2™ and ... M of the variables in their range such that
f@r,...,zm)=F and f(aM,...,2M)=F

It must be noted that the equations in a Kochen-Specker system satisfy this rule.

4.2 Solver based on interval analysis

We consider a Kochen-Specker system with [ equations in m unknowns:
f,’(l’l,. .. 7.Z'm> =0, 2 € [l,l]

A boz is a set of ranges, one for each of the variables. The solving algorithm will use a list
of N boxes T = {Z1,...,Zn}. An interval vector of dimension i F(Z;) will represent the
interval evaluation of the f functions for the box Z;. The width of a box will be defined as
the maximal width of the ranges in the box.

The proposed algorithm will return as a potential solution of a Kochen-Specker system
a box 7}, whose width will be smaller than a given threshold ¢, such that the width of F(Z},)
will be smaller than another threshold er, each interval of F'(Z;) including 0. The solving
algorithm will look for a solution for the variables within a search space: in our case this
search space is a box B whose ranges are all [-1,1]. When starting the algorithm the list 7
has only one element, which is the box B.

A procedure called a bisection will be used on a box Zj. In this procedure the range I =
[, T;] of one variable z, will be split in 2 intervals I = [z,, Mid(I)] and I, = [Mid(I),Z;)
where M(I) denotes the mid-point of I. Then we will create two boxes that are copies of
7). except for the variable r: one box will have I; are interval for z, while the other one will
have I,. Another procedure, the filtering of a box, will be used and will be explained in the
next section.

An index 4 is used in the algorithm and its initial value is 1.

1. if i = N +1 return NO SOLUTION
2. filter 7;
3. compute F(Z;)

4. if there exist F) with k in [1,!] such that Fj(Z;) < 0 or Fj(Z;) > 0, then ¢ =i+ 1 and
go to step 1

5. if the width of Z; is smaller than ¢ and the width of F(Z;) is smaller than e then
return SOLUTION 7;
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14 Povicié, Merlet, Megill

6. bisect Z; to get two new boxes B; and B,. Substitute Z; by Bj, shift the boxes at
position ¢+ 1,..., N to position ¢ + 2,..., N 4+ 1, store By at position ¢ + 1. Set N to
N +1 and go to step 1

4.2.1 Filtering the boxes

The purpose of the filtering is to decrease the width of a box by excluding parts of it that
cannot include a solution. The filtering may even determine that a box cannot include a
solution.

Two approaches will be used for the filtering step. The first one is called the 2B method [8§]
and will be illustrated on an equation of a Kochen-Specker system. The orthogonality
condition between vectors ji, j2 may be written as

p=n

Z ajip aj2p =0 (1)
p=1
This equation may be written as
p=n
> ajip ajap = —ajilagy1
p=2

Let Wi, W, be the interval evaluation of the left and right term of this equation. If the
intersection W of W, W, is empty then equation (1) cannot have a solution. Now assume
that W C W, and that the interval for aj;1 does not include 0: then the interval for aj;1
must be included in W/aj,1: this may allow to reduce the range for aj;1. Clearly, the same
method may be used for the other variables of the equation.

The same method may be used for the equations that describe that the vector are unitary.

We have pen
Y et =1
p=1

which may be written as
pP=n

Z ajip® — 1 =aj1?

p=2

Here again, if the intersection of W;, W, has no intersection then there is no solution for this
equation. Assume now that W = [W, W] is a subset of W;. The range for aj;1 must be
included in

o [-VW,-VIW]U[VIV. VW] if W >0
o« VW VW]if W <0
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Solving Kochen-Specker vector systems 15

The other filtering method that will be used is called the 3B method. Let 7, be box that
is considered for filtering, [z,,7| the range for the variable z, in the box and a a small
number that is smaller than the width of z,. Consider now a box B that is a copy of Zj
except for the range z,, which is substituted by [z,,z, + a]. We then compute F'(B): if one
of the interval vector in F' does not include 0 then we may modify the range for =, in Zj
to [& + a,T,| as the removed part of Z;, cannot include a solution. We may then repeat
the procedure but each time we double the value of a until no further reduction of Z is
obtained. The procedure may also be used to improve the upper bound of the range for z,.
(we test if the box with [T, — a,T,] as range for x, may include a solution) and evidently
with the other variables. Note that the 2B method may be used to determine that there is
no solution in the box B.

Both the 2B and 3B method may be repeated as soon as there is a change in the width
of one variable that may induce a change on another variable that has not been modified in
a previous step. However, as the decrease of the widths of the ranges will usually become
smaller and smaller, it will be more efficient at some point to use the bisection procedure.

The drawback of the 2B and 3B methods is that they are local: each equation may be
consistent (i.e. no improvement will be obtained with these methods) but the whole system
may be inconsistent. We use another filtering method that is global, namely the interval
Newton method. Let J be the square Jacobian matrix of the system of m first equations
chosen from the Kochen-Specker system. We define the interval vector b as:

b=J ' (Mid(Z;))F(Mid(Z;))

Note that although is may seem that b is not an interval vector, the quantity F(Mid(Z;))
is not a scalar vector as round-off errors have to be taken into account. On the other hand
numerical errors in the inversion of the Jacobian matrix do not play a role. Now let us
define:

V = JJ Y Mid(L;))
U =V(Mid(T;) - T,)

and the iterative scheme for the variable z; whose range is xi as:
Zr = xx + (U = b(k))/V (k, k)
assuming that the interval V (k, k) does not include 0. The following result may be shown:
o if 7, Nxx = 0, then there is no solution in Z;

e if there is a solution in Z;, then the value for x; will lie in Z; N xy

4.2.2 Choosing the bisected variables

When using the bisection procedure, we have to choose which variable will have its range
bisected. Classical heuristics are:

RR n° 5388
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e bisecting the variable whose range has the largest width
e bisecting the variables in turn (called also the round-robin method)

The drawback of these methods is that they do not use the influence that the variables may
have on the equations. Our bisection method is based on the smear function as defined by
Kearfott [11]: let J = ((J;5)) be the Jacobian matrix of the system and let define for the
variable x; the smear value s; as:

Max(|J o, 7], [Ty e 7]
for all j in [1,{]. The variable that will be bisected will be the one having the largest s;.

4.2.3 Dealing with the non-collinearity constraints

As seen in the introduction, the non-collinearity constraint is not strict in practice. We
may assume that the angle between two vectors cannot be smaller than a fixed threshold «
(from a technological viewpoint this correspond, to a minimal angular distance between the
measurement axis of two distinct detectors). Under that assumption the absolute value of
the dot product between two vectors cannot be greater than cos a.

This constraint will be used in the filter. Interval arithmetic will be used to compute the
interval evaluation of the dot product for a given box. If the lower bound of this evaluation
is greater than cosa or if the upper bound is lower than — cos a the box will be eliminated.

4.2.4 Choosing the basis group

As seen previously, one of the groups in the Kochen-Specker system will be chosen as the
basis of R". Let X; be one of the vectors in this group, which will have only 0 components
except for the i-th that will be 1. Assume now that this vector appears in another group
including the vector Y. The orthogonality condition between X; and Y will imply that the
i-th component of Y will be 0. Clearly, canceling vector components will have a positive
impact on the solving of the system as it reduces the number of unknowns and simplifies the
remaining equations. A natural heuristic to choose the basis group is to determine among
all the groups which one will cancel the maximal number of vector components.
Consider for example Cabello’s system:

1234,4567,789A,ABCD,DEFG,GHI1,35CE, 29BI,68FH

Here, whatever is the chosen basis group, 12 vector components will be canceled. Hence all
the groups are equivalent, and 1234 will be selected as basis group.

4.2.5 Finding the search space

As mentioned previously, any vector member of the solution set of a Kochen-Specker system
may be substituted by its opposite and the solution set will still be a solution. This may be
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used to decrease the size of the search space. Indeed, the range for the first component of
all the vectors may be reduced to [0,1] instead of [-1,1], thereby eliminating the remaining
multiplicative solution (except if a solution is obtained for vectors whose first component is
exactly 0).

4.3 Decreasing the number of unknowns

Although the solver is able to deal with systems having a relatively large number of equa-
tions and unknowns, it may be interesting to decrease the number of unknowns. Different
strategies for that purpose are presented in this section. Note, however, that these strategies
may lead to equations that have multiple occurrences of the same variable (at the opposite
of the initial set of equations): this may induce an overestimation of the interval evaluation
of the equation and decrease the overall efficiency of the solver. Hence the right compromise
between a reduced number of unknowns and more complex equations has to be found.

4.3.1 Combining equations in R*

As seen previously, the filtering methods make use of each equation to reduce the search
space for the unknowns. Hence additional equations derived from the initial system may be
useful as long as they do not involve new variables. We will see that it will also be possible
to use this additional equation to eliminate vectors. However, solving with a reduced set
of variables will not allow us to verify that the eliminated vectors will satisfy the non-
collinearity constraints. Hence it will be necessary afterward to calculate them and verify
these constraints.

We have also seen that the choice of a basis group will allow us to determine that some
components of the vectors are 0. Note first that a given vector cannot appear in groups that
involve 3 or 4 vectors of the basis group: indeed, in that case the vector will be collinear
with one of the vectors of the basis group or will be the zero vector. Hence we may assume
that the vectors may have at most one or two zero components.

First let us assume that a given vector X has 2 zero components and let us denote by
Z1, X2 its nonzero components. As soon as this vector appears in a group the orthogonality
condition will lead to 3 equations that involves z;, 2.

Now consider the set Sx of all equations in the Kochen-Specker system that involves
only z1,22 and every pair of equations in this set:

r1a1 + 2209 = 0
.’L'lbl + .’L’2b2 =0

As z1, 25 cannot be simultaneously 0, we derive a necessary condition for this system to be
satisfied:
a1b2 - a2b1 =0 (2)

RR n° 5388



18 Povicié, Merlet, Megill

Deriving this condition for all pairs of equations in Sx will allow us to obtain additional
equations. Furthermore, as all these equations will involve different pairs of vectors, we may
remove z1, %o from the list of unknowns.

Let us furthermore that one of the vector A, B, whose components appears in the equa-
tion (2), has also two zero components. Let us assume that a3 = a4 = 0. The orthogonality
condition between A, B will be written as:

arby + asby =0

This equation combined with equation (2) is a linear system in ay,as. As a1, a2 cannot be
simultaneously 0 we derive that
b+ b2 =0

from which we will deduce b; = b, = 0. Hence deriving the necessary condition will not only
allow us to reduce the number of variables but also to determine the values of some vector
components.

Now assume that the vector X has one zero component. The orthogonality equations
will be obtained as:

r1a1 + X209 + x303 =0
T1b1 + 22by + 2303 =0

xr1C1 + T2C0 + I3C3 = 0

As x1,29,z3 cannot be simultaneously 0 we derive that:

ay a2 as
by by b3 |=0
i C2 C3

Expanding this determinant will lead to a new equation. If all triplets of equations that
involve 21, x2, 3 are processed in this manner, then these variables may be removed. Instead
of removing these variables we may proceed along a different path (that will work in any
dimension). Assume that three vectors Wj, Wj, Wy in the same group (hence mutually
orthogonal) lie in the same 3D space (i.e. they have n — 3 identical zero components). Each
of these vectors may be obtained as + the cross-product of the two other vectors. The square
of each component of this vector is therefore equal to the square of the component of the
cross-product. These additional equations may be used with the 2B method to speed-up
the solving procedure.

Note that there is a special case of this procedure that will not only lead to the elimination
of variables but also to the determination of the value of one component of another vector.
This will be illustrated by an example. Let us assume that the vector 9 has only two
nonzero components, say a93 and a94, that the vectors 6 and 7 have one zero component,

INRIA



Solving Kochen-Specker vector systems 19

say a61,a71, and that a group in the Kochen-Specker system is 6789. The orthogonality
condition between 679 is written as:

a63a93 + a64a94 = 0
a73a93 + a74a94 =0

Using the method described previously we get the condition:
a63a74 — a64a73 =0
Using the orthogonality condition between 6 and 8 we get:

a62a72 + a63a73 + a64a74 =0
a62a82 + a63a83 + ab64a84 =0

We have now a system of three linear equations in the unknowns a62, 463, a64 which cannot
be all 0. The determinant of this system leads to:

—a72(a73a83 + a74a84) + a82(a73? + a74?) (3)
Using the unitary condition on 7 we get
a73% +a74* =1 —a72?
Using this equation in (3) we get:
—a72(a73a83 4+ aT4a84) + a82(1 — a72?) (4)
Now we use the the orthogonality condition on 7,8
a72a82 + a73a83 + a74a84 = 0

Equation (4) become:
—a72%a82 + a82(1 — a72%) = a82 =0

Hence we may assign the value 0 to a82.

4.3.2 Combining equations in R3

For vectors in R3, we may have only one zero component in a vector, otherwise the vector
will be collinear with one vector of the basis group. The strategy used for the 4D vector
may still be applied.

But additional equations may also be produced easily. Indeed, if a group is X;X;Xk
then we may write Xy = £Xj x Xj. To deal with the sign change we will write the following
equation for each component of Xy:

rkm? = (zip zjq — xiq xjp)?

Note that if xkm is 0 then this equation simplifies to zip xjq — xiq zjp = 0.
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4.4 Proving the existence of a solution

The solving algorithm as implemented does not allow us to prove exactly that a system has
a solution but will only return interval solutions that are guaranteed to include a solution
if there is any. We have now to investigate how to prove effectively that a system has a
solution.

4.4.1 Manual proof

The first approach is based on our experience with solving of Kochen-Specker systems: most
of the vector components of their solutions have values that are restricted by belonging to
a given set V:

o for dimension 4: V = { 0, £ 1/3, £ 2/3, £v/3/3, + 1/2, £/2/2 }

o for dimension 3: V = {0, + 1/3, £ 2/3, £v/3/3, + 1/2, £/2/2, £1/3/2/6, £/15/5,
+4/30/6, £1/15/15 }

At this time we have no theoretical explanation of this fact (except if we assume that the
system has a solution in which all the vector components have a value that is either -1, 0
or 1, see the next section). But we may still use this property to prove that a system has
effectively a solution.

We have designed a Maple program that takes as inputs the description of a Kochen-
Specker system together with the interval solutions that have been found by the solver.
Remember that the solver may have discarded some vectors during the pre-processing phase
of section 4.3. The program first computes all the orthogonality and unitary equations
without discarding any vector. For each unknown, if the mid-point of the corresponding
interval solution is close to a value in the above set, we assign this value to this unknown.
As soon as the unknown list has been processed we look at the equations that are not solved.
Some of them may be linear in the unknowns: we solve this equation in one of the unknowns.
This process is repeated until no additional unknown is determined.

At this stage we may have determined all the vectors: a Maple procedure then computes
the absolute value of all the dot products between all pairs of vectors to verify the non-
collinearity constraints. If none of these values is 1 then we have proved that the system has
a solution.

It may also happen that some vector components are still undetermined. At this point
we will look at the unitary equations. It may happen that some of these equations have only
one unknown. Hence in that case the unknown may have two different values. We choose one
of these values and assign it to the unknown. The orthogonality equations are then used to
determine the values of additional unknowns. We repeat the process until all the unknowns
have been determined. The non-collinearity test is then used. If it fails we backtrack: if an
unknown value has been determined through a unitary equation, choosing one value among
the two possible ones, then the opposite value will be assigned to the unknown.
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Consider, for example, the Cabello’s system:

1234, 4567, 789A, ABCD, DEFG, GHI1, 35CE, 29BI, 68FH

The selected basis group is 1234, and the orthogonality condition may be written as:

ab3 a63 + ab4 a64 =0 ab3 a73 + ab4 a4 =0
a62 a72 + a63 a73 + a64 a74 =0 a72 a82 4+ a73 a83 + a74 a84 =0
a72 a92 + a74 a94 = 0 a72 al02 + a73 al03 + a74 al04 =0
a81 a91 4+ a82 a92 4 a84 a94 =0 a81 al0l1 4+ a82 al02 4+ a83 al103 4+ a84 ¢l104 =0
a91 al101 + a92 a102 + a94 2104 =0 al01l al111 + 2102 2112 + 2104 2114 =0
al01 al21 + 2103 123 + al04 al24 =0 al01 2131 + 2102 al132 + al103 al33 + al04 al34 =0
alll al121 4 o114 2124 =0 alll a131 + al112 a132 4 al114 2134 =0
al21 al131 + al123 @133 + al24 2134 =0 al31 al41 + a133 a143 + al134 2144 =0
al3l al51 + al32 al52 + al33 alb53 + al34 al54 =0 al3l al6l + al32 al62 + al33 al63 =0
al4l al51 + al143 al153 + al44 al54 =0 aldl al161 + al143 2163 =0
al51 al61 + al52 al62 + al53 al63 =0 al6l al71 + al62 al72 + al63 al73 =0
al6l al81 + al162 al182 =10 al7l al181 + al72 2182 =0
ab3 al23 + ab4 al24 =0 ab53 al43 4+ a54 al44 =0
al2l al4l + al123 al143 + al24 2144 =0 a91 alll 4+ a92 all2 + 94 al14 =0
a91 al181 + a92 al182 =0 alll o181 + al12 2182 =0
a62 a82 + a63 a83 + a64 a84 =0 a62 al52 4+ a63 al53 4+ a64 al54 =0
a62 al72 4+ a63 al73 =0 a8l al51 4+ a82 al52 4+ a83 alb53 + a84 alb54 = 0
a81 al7l + a82 al72 4+ a83 al73 =0 al5l al71 + al52 al72 + al53 al73 =0

The 32 variables used in the solver are:

[a72, aT73, a74, a81, a83, a84, allOl, al02, al03, alll, all2, ali4,
al21l, al23, al24, al31, al32, al33, al34, al4l, al4d3, ald4,
albl, alb2, alb3, alb4, al61l, al62, al63, al71l, al72, al73]

and the solver provides the following interval solutions:

a72 = [.7070320229151, .70713178113013] a73 = [—.50004598260911, —.49997258438718]
a74 = [.49996812017253, .50004379793779] a8l = [.70707175486468, .70712250000001]
a83 = [.49994470302941, .50004808676851] a84 = [.49997940464194, .50004042079311]
2101 = [.49997227162018, .50005000000001] 2102 = [—.50007650140248, —.49995045605404)]
@103 = [—.70714999999999, —.70706590271862] alll = [.49991,.50002000000001]
all2 = [.50007,.50013315611188] all4 = [.70704203035544, .70704877845822]
@121 = [.70711000000001, .70712000000001] 2123 = [.50004671363637,.50006065240012]
al24 = [—.49998748682551, —.49992323851443] 2131 = [0,.17031547791655¢ — 6]
al32 = [—.7071152518822, —.707115] 2133 = [.50001017745745, .50001554759612]
al34 = [.50007076877523,.50007481113807] al4l = [.7070717510339, .70707500000001]
al43 = [—.49997026594097, —.49996] al44 = [.49999258558033, .50003255023753]
2151 = [.49999994694038, .50000005315071] 2152 = [—.50000064746846, —.49999935547389]
al53 = [.96339588551904e — 5,.23249689161164e — 4] al54 = [—.70710705468682, —.707106506802]
161 = [.50000325872397,.50001213464297] al62 = [.50001563824114,.50001895126214]
2163 = [.70710667021816, .70710689243824] @171 = [.50001132991274, .50002113904678]
2172 = [.50000018905546, .50000735257214] al73 = [—.70710747465462, —.70710609126643]
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Among these 32 interval, 31 are recognized as elements of V. After having assigned these

variables, the remaining equations are:

a53 a63 + ad4 a64 =0
1/2a62 v/2—1/2a63+1/2 a64 =0
1/2v/2a92+1/2a94=0
1/2 v/2 a91 + a82 a92 +1/2 a94 = 0
1/2 091 —1/2 092 + a94 a104 =0
-1/2al12V2+1/4/2=0
1/2 a181+1/2al82 =0
—-1/2a53+1/2a54=0
a9l al81 + a92 al8 =0
a62 a82+1/2 a63 +1/2 a6 =0
1/2 a62—1/2a63 v/2=0

—1/2a53+1/2 a54=0
1/2V2a82=0

1/2 104 =0
—1/2a82+1/2a104=0
1/4—1/2al1241/2 al04 V2 =0
1/2 a181 +1/2 al182 =0

1/2 a53 —1/2 a54 =0

1/2 a91 + a92 al12+1/2 a94 V2 =0
1/2 a181 + al12 a18 = 0

—1/2 a62—1/2 a64 V2 =0
~1/2a82=0

Solving the linear equations in this set allow, to get

a53 =a54 a82=0 a94 = —a92V2
al0d=0 a91=a92 all2=1/2
a8l = —al82 a63 = —abd a62 = —v/2a64

The remaining unknowns are a54,a64,a92,a182. As these variables involve each only one
vector, the unitary condition allows us to determine two possible values for each unknown.
Assigning:

ab4 =+2/2 a64=1/2 a92=—-1/2 al82=+?2/2

allows to get a vector set that satisfies the non-collinearity condition.

5 Solving Kochen-Specker systems with Ritt’s triangu-
larization

Another approach for solving KS-system is based on symbolic processing. We will use a
variant of Ritt’s triangularization algorithm. To use this algorithm, we will assume that at
least one of the vectors has n — 2 zero components. The non-collinearity constraint implies
that none of the remaining components may be 0. These components will appear in some
of the orthogonality equations. For example when dealing with Cabello’s system:
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1234,4567,789A,ABCD,DEFG,GHI1, 35CE, 29BI, 68FH

after having assigned 1234 as the basis group we get that 5, I have two zero components.
Vector 5 appears in the orthogonality equations:

ad3 a63 + ad54 a64 =0
ad3 a73 4+ ab4 a74 =0
ad3 al23 + ad4 al24 =0
ad3 al43 + ab4 al44 =0

As a53 cannot be 0, we may calculate a63,a73,a123,a143 as

ab4 a64 add a74

W3=-—lss BT
ab4 al24 ab4 ald4

al23 ab3 alds a53

Note that 6 is [0,a62,a63,a64]. From the above equations, we deduce that neither a63
nor a64 may be 0. Using the orthogonality equations involving I we may in the same way
calculate al111,a161,a171,a191 and determine that some vector components cannot be 0.
A table 7 in the algorithm allows us to keep track of all the vectors components that
cannot be 0.
The value of the vector components that have been determined at this step will be used
in the remaining equations. A cleaning process will be applied on these equations:

e only the numerator of the equations will be considered
e the equations are factored

e if an equations is the product of several terms, factors that cannot be 0 will be elimi-
nated. Such terms may be

— vector components for which 7 indicates that the components cannot be 0

— terms involving only the sum of square elements that cannot be 0. For example
in the case of the Cabello’s system an equation will be written as a82 a62 (a74% +
a72? a53?) = 0 while it has been determined that neither a53 nor a72,a74 can
be 0. Hence this equation will be substituted by the equation a62 a82 =0

We then proceed with an update of the table 7. We will assume in turn that each of the
remaining vector components aij are 0. As other components of vectors may be a function
of aij we will consider each vector and determine if setting aij to 0 will not imply that a
vector is collinear with another vector or a vector in the basis group (i.e. that setting aij to
0 induces that a vector has at least 3 zero components) in which case 7 will be updated to
indicate that aij cannot be 0.
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Then we proceed to a determination step. If the coefficient of a vector component in an
orthogonality equation cannot be 0 we assign to this component the value that is derived
from this equation. For example for Cabello’s system the orthogonality equation between
7, 8 will be

a72 a82 a53 — ab4 a74 a83 + a74 a84 a53 =0

As ab4,a74 cannot be 0 we derive

_ab3 (a72 a82 + a74 a84)
B a54 a74

a83

After having assigned this value we proceed with a cleaning step and an update step. This
procedure is repeated while unknowns may be eliminated. Note that the cleaning process
may lead to a univariate polynomial in one of the unknowns that may allow us to determine
the value of the unknown. At this stage we use these polynomials only if they are of degree
1. During the process we may also encounter an inconsistency: typically we get an equation
that requires one (or more) variables to be 0 while the zero-table indicates that this variable
cannot be 0, or we get an equation that cannot be verified by real numbers.

When no more unknowns can be determined, we use another determination step that is
basically similar to the previous one except that we deal now with the square of unknowns.

This process may determine that a KS system has no solution or on the other hand to
allow us to determine all its solutions, although there is no guarantee of convergence for the
process.

For example, for Cabello’s system we get as our final result:

2a542-1=0 2a53°-1=0
20622 -1=0 2a942-1=0
4aA22 -1 —-142aC1%’=0
4aE42 -1 —1+42aG3?
—14+2al2? -142al12=0

INRIA



Solving Kochen-Specker vector systems 25

Solving the above equations, we may determine all solutions of the system using the following

vectors:

H &= @ ™ [ 9O Q W = © 0 N O O

: 0,0, a53, a54]

: [0,a62, —2 a54 a62 a94 a53,a62 a94]

: [0, —a94, —a54/(2 a53),1/2]

:[all/(2 a94 al2),0,a53/(2 a54),1/2)

: [—al2/(2 all),1/2,0,a94]

:lall aA2/al2,aA2, -2 a53 094 aA2/a54,0)

:[—al2/(2 all),1/2,0,—1/(2 a94)]

: [aC1,0,2 a54 a94 al2 aC1 all/a53,-2 a94 al2 aC1 all]
:0,1/(2 a94),1/(4 a54 a53),1/2]

: [aE4 a94/(al2 all),0,—a54 aE4/a53, aE4]

a2 all,1/2,0,—1/(2 a94)]

: [aG3 all al2/(2 a54 a94 a53),—aG3/(4 a54 a53 a94),aG3,0]
: [a54 a94 a53 V2 al2/all, —a54 a94 a53 V2, —v/2/2,0]
:lall,al2,0,0]

6 Systems with {—1,0,1} solutions

We will investigate systems that admit at least one solution for which all the components
of all vectors are in the set {—1,0,1} (such a solution will be denoted a {—1,0,1} solution).

Let us now consider with an n=4 example whose normalized solutions are unitary. The
solutions, i.e., unitary vectors can be classified into one of these categories:

e category I: a vector with 3 zero components. As the vector is unitary the remaining
component’s value will be +1

e category 2: a vector with 2 zero components. The two nonzero components must
then be identical up to their sign. Let a denote the absolute value of the nonzero
components. The norm of such vector will be 2a®> = 1 and hence a = \/5/2 and the
nonzero components will be +a

e category 3. a vector with 1 zero component. Using the same reasoning than above the
absolute value a of the nonzero components will be a = \/g/ 3

e category 4: a vector with no zero component. The absolute value of the component
will be @ = 1/2 and such a vector will be written [+a, +a, +a, +a]
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Hence there is a finite set CA” of normalized vector that may be a normalized {—1,0,1} so-
lution of a system. This set has exactly 80 vectors.

Let us consider now all the solutions § = {51, ..., S, } of the continuous system obtained
by assuming that one group represents the orthogonal unitary basis of R*. A system will
have {—1,0, 1} solutions if there is a rotation matrix R that transforms at least one solution
S, into a normalized {—1,0,1} solution.

Theorem A-6: There is only a finite set of rotation matrices that may transform a
continuous solution into a {—1,0,1} solution,

Proof: Each column of the rotation matrix represents the normalized {—1,0,1} solu-
tion for one of the unit vectors of the basis of R*. Since the number of such normalized
{-1,0,1} solutions is finite, there is only a finite number of possible rotation matrices O

To determine these matrices we calculate all the matrices that may be obtained by
considering all possible normalized {—1,0,1} solutions as columns of the rotation matrix.
We then check whether all the column are orthogonal and if the determinant of the matrix
is 1. If these conditions are fulfilled, then the matrix is a rotation matrix. This leads to
6144 possible rotation matrices, but it must be noted that for each possible rotation matrix
its opposite is also included in the set. Hence the set may be decomposed into two subsets
R1,R2 in which R includes the opposite of the matrix in R;.

To test if a continuous solution may be transformed into a normalized {—1, 0,1} solution,
it is thus sufficient to determine if there is at least one matrix in R; that transforms the
continuous solution into a {—1,0,1} solution.

Consider now a system S and a set V' of normalized vectors, including a basis of R*, that
is solution of S. If the systems S admits a set of solution vectors that have only components
in the set {—1,0,1} then we have:

Theorem B-6: A vector in NV can belong only to a finite set i, of normalized vectors.

Proof: Consider the set CA of normalized {—1,0, 1} solutions of S and a solution C; of
S in this set. A continuous solution S; of S including a basis of R* that is identical to C;
will be obtained by multiplying C; by a rotation matrix R such that RC; includes a basis
of R*. This is possible only if each row of R corresponds to a vector in a group in this C;.

The possible continuous solutions are thus obtained by considering all matrices whose
rows are elements of CA, rejecting the ones that cannot be rotation matrices and then
multiplying these rotation matrices by all the elements in CA/. As CA is a finite set, the
obtained vector set will also be finite O

The set of possible rotation matrices R may be easily obtained as the set of transposed
matrices obtained from the matrices in Ry, R,. After multiplying this set by the 80 vectors
of CN we get that there are exactly 960 vectors in U, and that the components of these
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vectors each have a value in a set V of 21 values, namely:

0,1,-1
1/2 v2,-1/2 V2
1/33,-1/3 3
1/2,-1/2
1/3v2/3,-1/3V2 V3
1/6 V2 V3,-1/6 V2 V3
1/6 V3,-1/6 V3
1/2V3,-1/2 /3
2/3,-2/3

1/3,-1/3

6.1 Determining if a system has a {—1,0, 1} solution

To each vector W in U,, we may associate a set Sy, of vectors that are perpendicular to W.

When considering a system and after assigning one of the group to be a basis of R?*, we
look at each group in which one of the basis vectors is involved. Each vector of such a group
that is not a basis vector may belong only to the set Sy, associated with the vector basis.
We may then make a hypothesis for the first vector by assigning it to be one element of
Sw . This reduces the possible values for the other vector of the group. All these constraints
are propagated for each group until either an inconsistency is detected (two vectors have
coordinates that are either identical (or opposite) or one orthogonality constraint is violated)
or the system is consistent. In the former case we backtrack an assign another value for one
of the vectors (if all values have been tested, then the system has no {—1,0,1} solution).
In the later case if all vectors have been assigned, then we have found a {—1,0,1} solution,
otherwise we assign one value to one of the unknown vectors (a value that respect the
orthogonality constraints for each group in which the vector is involved) and we restart.

This algorithm allows us to determine very efficiently if the system has a {—1,0,1} so-
lution: the computation time is less than one second.

6.2 Fast algorithm for preselected vector component values

If we assume definite values for vector components, it is possible to compute very efficiently
a solution for a system represented by an MMP diagram when a solution with those values
exists. To this end N. Megill wrote a program called that finds solutions for several pre-
determined value sets. This program is typically very fast (less than 1 second on a PC).
In addition to its use in trying to find simple solutions quickly, most of the final results
described in Section 8 were independently verified with this program.
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The speed is achieved in part by pre-computing all combinations of scalar products of
allowable vector assignments. This is possible because the set of values is a small finite
number.

The main algorithm scans the vectors and tries to assign unique vectors to them so that
all vectors assigned to a given group are orthogonal. In case of a conflict the algorithm
backtracks, until either all possible assignments have been exhausted or a solution is found.

By default, the algorithm is hard-coded to look for solutions with vector component
values from set {—5, -2, —1,0, 1,2, 5}, although the values {—+/2,v/2} may be added to this
list.

In the worst case, the behavior of the backtracking algorithm is exponential. We are
able to attenuate that behavior in most cases by scanning next those vectors most tightly
coupled to those already scanned. This helps to force conflicts to show up early on so
that backtracking can take care of them more quickly. The algorithm for determining the
scanning order is similar to the cluster presorting algorithm described in Section 2.2.

Even with the presorted scanning order, occasionally we encounter exponential behavior
that this method does not attenuate. Therefore the program has a user-settable timeout
parameter. Those few MMP diagrams that do not complete can be rerun later, if desired,
with a larger setting.

7 Implementation

7.1 The preliminary pass

Our experience is that most of the Kochen-Specker systems will have no solution and that
the majority of such systems may be eliminated by symbolic manipulation of the equations
of the conditioned systems.

Since symbolic manipulation was involved we developed first a prototype in Maple for
n = 4 that implemented the following steps:

1. choose the basis group using the heuristic described in section 4.2.4

2. determine which vector X appears in groups involving vectors of the basis group. The
orthogonality condition between such a vector and the basis group vector will allow
us to set to 0 some components of X

3. compute the set O of all the orthogonality equations

4. if in O we have equations that are of type ajk alk = 0 corresponding to the orthogo-
nality of vectors X, X;, count the number n;,n; of 0 components in these vectors

o if n; =2 and n; < 2 set ajk to 0. Indeed, alk cannot be 0, otherwise X; will be
collinear with a vector in the basis group. Similarly, if n; =n—2andn; <n -2
we set alk to 0
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e if n; = 2 and n; = 2 then the system cannot have a solution, because satisfying
the orthogonality condition would imply the collinearity of the vector with a
vector of the basis group

5. consider all vectors that already have two 0 components. For a given vector Xy
consider all pairs of equations in O involving Xj. Each of these pairs will describe an
orthogonality condition between X and two vectors Xi, Xj, and the equations may
be written as:

aki ali + akm alm =0

aki ajt + akm ajm =0

As aki, akm cannot simultaneously be 0 we deduce the constraint ali ajm —aji alm =
0. As the vectors Xy, X;, X; should belong to the same group, we consider now the
orthogonality condition between X;, X;. Assume that this orthogonality condition is
written as ali aji + alm ajm = 0. We have therefore

ali ajm — aji alm =0

ali aji + alm ajm =0

The particular shape of the orthogonality condition implies that one of the vectors
X, X, say X, already has a 0 component. Hence ali, alm cannot simultaneously be
0, and we deduce the constraint ajm? + aji? = 0 which implies that ajm = aji = 0.
Note that if both X;, X; already have one 0 component, we may eliminate the system
as these vectors will be collinear with the basis group

6. if during the process one component is set to 0, then we update the orthogonality
equations and restart at step 4

Although the Maple prototype was efficient it was able to deal with only about 10
Kochen-Specker systems per minute. In view of the large number of systems that were
expected to be processed, the computation time was too large. Hence we decided to develop
a specific C program that implemented the above manipulations. In view of the efficiency
gain of this program, we decided that instead of using only one basis group we may assign
every group in a system to be a basis group (although the group provided by the heuristic
is always tested first).

The speed-up factor is considerable: the C program is able to deal with about 2.5 million
systems per minute (150 millions per hour) on a single laptop. Splitting the Kochen-Specker
file and using a cluster of 15 machines has allowed us to deal with about 2.25 billion systems
per hour.

In view of this efficiency, the weak point of the whole process for relatively small values for
a, b was no longer the verification of the solution but instead the generation of the Kochen-
Specker systems. Indeed, although the exhaustive generation of the systems was done on
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a large cluster, we experienced difficulties for large values of a. To speed-up the process,
Brendan McKay modified its generation program so that the Kochen-Specker systems were
generated incrementally: after the generation of the first m initial groups of a system, only
the systems starting with these initial groups are generated until one group in 1, m must
be modified. This allows one to implement a pruning mechanism: if the process determines
that the system with m groups has already no solution, then the systems starting with the
m initial groups are not generated and the next initial group is considered. Clearly, our C
program was the candidate of choice for this pruning mechanism.

For example, for a = 10,b = 12 without filtering, we generated 197 885 058 Kochen-
Specker systems in about 5 hours while for a = 11,b = 12 we were not able to generate all
the systems. In both cases the modified program determined almost immediately that there
was no potentially valid system. For ¢ = 18,b = 12 we were able to get all possible 100220
systems in about 16 hours while without filtering, over 2.9 10'6 systems would have been
generated (although this would have required over 30 millions years on 2 GHz CPU).

The pruning mechanism also allows us to use a distributed implementation for the gen-
eration of the Kochen-Specker systems. In a first pass we will determine what may be the
m < a first groups of the sequence (typically m will be 6). As soon as a set of m groups is
generated, it is saved in a file, and the pruning mechanism is used to discard any systems
that start with the same m initial groups. Then a set of slave computers is used to generate
all the sequences that begin with a set of m groups as found in the file, discarding all other
systems.

In dimension 3 such an approach is no longer valid since similar simplification rules
cannot be derived.

7.2 The “hard” solver

After the generation and the filter through the preliminary pass, the systems that are of
interest remain. Now we will use the solving algorithm described in section 4 to determine
if some of these systems may have at least one real solution. As the number of systems may
still be relatively large our objective is to design a fully automated software process.

Fortunately, we have the right tool to design such a procedure with the ALIAS library?2.
The kernel of this library is a collection of solving algorithms written in C++ that use the
BIAS/Profil interval arithmetic. The algorithm described in section 4 is implemented as a
generic solving procedure: a C++ procedure is designed to handle any system. The argu-
ments of this procedure are basically the number of unknowns and the number of equations
and two key procedures:

e an F procedure that will allow the interval evaluation of the equations for a given box

¢ a J procedure that computes the interval evaluation of the components of the Jacobian
matrix of the system

2see www.inria.fr/coprin/logiciel/ALIAS
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Furthermore, the solving procedure may have an optional argument which is a C+-+ program
provided by the user that will allow, to filter the boxes i.e. to reduce the width of a box or
even to determine that there is no solution in a given box. This possibility will be used to
implement the 2B method described in section (4.2.1) and a filter for the non-collinearity
constraints.

An advantage of the ALIAS library is that the solving algorithm described in section (4)
is fully interfaced with Maple. We have therefore designed a Maple procedure that reads
the description of Kochen-Specker systems and proceeds along the following steps:

1. determine of the best basis group according to the strategy presented in section (4.2.4)
2. calculate of the orthogonality and unitary equations

3. eventually decrease the number of unknowns using the strategy presented in section
(4.3)

4. generate the C++ filtering code (see section (4.2.1) that corresponds to the 2B method
(the 3B method is already available within the C++ solving algorithm) using a Maple
procedure that is part of the ALTAS-Maple library

5. generate of the C++ code that will allow us to filter out boxes that have vector
components that will not fulfill the non-collinearity constraints. For that purpose we
compute the interval evaluation of the dot product for each pair of vectors and if either
the lower bound of this evaluation is greater than 0.99 or the upper bound is lower
than -0.99, then the box is discarded

6. call a specific ALTAS-Maple procedure that will generate all the C++ code necessary
for the solving procedure. The F, J C+-+ procedure will be automatically generated
together with a main program. It will then be compiled and run and the result of the
solving algorithm will be available directly within Maple

A feature of the ALTAS Maple interface is that it allows a distributed implementation
of the solving algorithm. Indeed, it may be seen in the algorithm that the processing of
one box in the list does not depend upon the other boxes in the list. Hence we may use
the master-slave paradigm: a master program manages the list of boxes and sends one box
to a slave computer. This slave computer will perform a limited number of bisections on
this box and returns to the master program the remaining boxes together with the eventual
solution that will be found by the slave. Communication between the slave and the master
uses the PVM message passing software. In our case, distributed implementation may
allow us to reduce drastically the computation time. Indeed, when using a single computer,
the solutions of the system may be included in the last box of the list of boxes. Using a
distributed implementation this box may be processed very early in the algorithm. Hence
the decrease in the computation time may be larger than expected from the number of slave
computers. A distributed version may be generated directly within Maple by just providing
a list of machine names together with how many boxes they may return.
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The solving time is in general relatively small. For Cabello’s system involving 32 un-
knowns and 82 equations, the computation time on a single laptop is about 60 seconds. For
Kernaghan’s system we have 35 unknowns and 81 equations, and the system is solved in
about 75 seconds. Eliminating systems without solution is usually faster. For example, the
system

1234,1256,1378,129A,24BC, 34DE, 5DFG, 7HIJ, 8BFK, 9ADE,CGHI ,6EJK

with 59 equations and 26 unknowns is eliminated in 10 seconds.
In dimension 3, Peres’s system has 82 equations with 72 unknowns and is solved in 135
seconds, while Bub’s system with 89 equations and 76 unknowns is solved in 78 seconds.

8 Results

For the systems in R*, we have been able to show the following results for systems with a
minimal loop of 3 blocks:

e Cabello’s system with a = 18,b =9 is the smallest 4-dim Kochen-Specker real system
(figure 1)

e a general feature we found to hold for all MMP diagrams without 0-1 states we tested
is that the number of edges, b and the number of vertices that share more than one
edge, a* satisfy the following inequality: nb > 2a*, where n is the number of vertices
per edge. Hence, there are no KS vectors that share at least 3 of b n-tuples in their

KS set whose number a* > "7" In R™ this means that we cannot arrive at systems

with more unknowns than equations when we disregard the unknowns that appear in
only two equations. To prove the feature for an arbitrary n remains an open problem

e the smallest MMP diagrams with no 0-1 states are

— with 8 vertices per edge
7 vertices—5 edges (smallest loops of size 3): 123,345,561,275,476 (triangle);
15-11 (4): 123,345,567,789,9AB,BC1,CD6,2DA, 2ES ,4FA, CEF (hexagon),
123,345,567,789,9AB,BCD,DE1,4AE,28C,2FA, 6FD (heptagon);

19-13 (5): 123,345,567,789,9AB,BCD,DEF,FG1,2IA,61E, 4HC,8JG,HIJ (octagon)
(2d);
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1 2 3

123,345,567,789,9AB,BCD,DE1,EI7,2F9,4GB,1JG,FJH,CH6 (heptagon);

— with 4 vertices per edge (see figure 2)
6-3 (smallest loops of size 2): 1234,2356,1456 (twisted triangle) (2a);
10-5 (smallest loops of size 3): 1234,4567,7891,35A8,29A6 (triangle) (2b);
22-11 (smallest loops of size 4):
1234,4567,789A , ABCD , DEFG,GHI1 ,FJK5 ,HIMC, 3KL8 , IBL6 , 29ME . (hexagon) (2¢);
1234,4567,789A,ABCD,DEF1,FGH5,EMJ6,2GLC,31J8,HIKB,MLK9(pentagonﬁ
3819 (5):
1234,1567,2894A,5BCD, 8BEF ,3GHI,6JKL ,GJMN, CHOP,EMQR, 0QST,RUVW,
4UXY,9SZa,FIbc,KTXb,7VZc,ALPW,DNYa (dodecagon)

(2a) (2b)

Figure 2: smallest diagrams with no 0-1 states and 4 vertices per edge

but none of them (except possibly the last one—see the end of this section) has a
solution;
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e the smallest KS vectors that we found to have real solutions are

— Cabello 1234,4567,789A,ABCD,DEFG,GHI1,35CE,29BI,68FH with a = 18, b = 9;
it has solutions from the set {—1,0,1};

— 1234,4567,789A,ABCD,DEFG,GHI1,FNM8,GOL7 ,HJK6 ,DNK4,AMJ1,35CE,B291 with
a = 24, b = 13 which is the first system with smallest loops of size 3 that does
not contain Cabello’s; it does not have solutions from the set {—1,0,1};

— 1234,4567,789A,ABCD,DEFG,GHI1,35CE,29BI,68FH,678J with a = 19, b = 10
and the smallest loop of size 2 that contains Cabello’s and is the only diagram
with 19 vectors that has a {—1,0,1} solution
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e the smallest 4-dim systems with loops of size 2 that do not contain Cabello’s and do
have {—1,0,1} solutions are

— 1234,4567,789A,ABCD,DEFG,GHI1,68FH,12J1,1J9B, 345K, 4KEC (4a)
— 1234,4567,789A,ABCD,DEFG,GHI1,68FH,2IAK, 345 ,4JEC,9ABK (4b)

with a = 20, b = 10, the last one being isomorphic to Kernaghan’s system

7 (4b)

¢ the smallest 4-dim systems with loops of size 2 that contain neither the two previous
systems nor Cabello’s system and do have {—1,0,1} solutions are

— 1234,4567,789A,ABCD ,DEFG,GHI1,21ILA,345J],4JEC, 678K, TKMG, 9ABL ,FGHM, ¢ =
22, b=13; (4c)

— 1234,4567,789A,ABCD ,DEFG,GHI1,121J,345K, 678L,GML7 , 1J9B, 4KEC ,FGHM, ¢ =
22, b=13; (4d)
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These two systems are the only such systems for ¢ = 22 and they are not contained in
any other system with ¢ = 22

all 4-dim systems with up to 22 vectors and 12 edges with the smallest loops of size
2 that do have solutions from {—1,0,1} contain at least one of the systems (4a), (4b)
and in many cases Cabello’s system

4-dim systems with more than 41 vectors cannot have solutions with {—1,0,1} com-
ponents, and there are no such solutions to systems with minimal loops of size 5 up
to 41 vectors

3-dim systems with loop of size 3 and 4 cannot have a real solution

all 3-dim systems with up to 30 vectors and 20 groups have been scanned and no
Kochen-Specker system was found

in 3-dim systems, vectors that appear in only one group cannot be neglected and
therefore Bub’s system:

123,345,167,AB6,AC4,DEG,DFH,F90,E8V,5JI,7MN,GIa,HNh,7LT,5KR,DAe,UTS,
PRS,1GP,3HU,3Vj,Pgh,Uba,10i,VZg,0Yb,6Xk,4Wn,Sde,dci,dfj,imn, j1lk,akQ,
hnQ,eQ2

is currently the smallest known 3-dim system. It contains 49 vectors

As an additional result, we may probably claim that we have established a world record

in terms of number of equation systems that have been solved for a given problem: indeed,
the number of systems that have been solved up to now is about 250 000 000. Generation
of all systems with loops of size 2 has been performed by M. Pavi¢i¢ on two clusters with 43
and 60 CPUs, while the solving part takes place either on a laptop or, for the most difficult
tasks, on a cluster with 20 CPUs.

Still we have difficulty dealing with larger a, b because:

o the generation time becomes very large

e the solving algorithm still fails for very large values of a. For example, we have failed

to determine if the sequence:

1234,1567,2894A,5BCD, 8BEF,3GHI,CJKL,GJMN,40PQ,6RST,0RUV,HWXY,7WZa,4Kbc,

Zbde,DIU4,9LVX,ESYc,AMTe,FNOa

with a = 40,b = 20 has a solution.

We are now investigating the use of grid computing to deal with such large systems.
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9 Conclusion

We have presented a constructive and exhaustive definition of Kochen-Specker systems. Our
constructive definition of such systems is based on algorithms that generate linear MMP
diagrams, on algorithms that filter out diagrams on which algebraic 0-1 states cannot be
defined, and on algorithms that solve nonlinear equations describing the orthogonality of
the vectors by means of polynomially complex interval analysis. To demonstrate the power
of the algorithms, all 4-dim Kochen-Specker vector systems containing up to 24 vectors have
been generated and described, all 3-dim vector systems containing up to 30 vectors have
been scanned, and several general properties of Kochen-Specker systems have been found.

The presented algorithms can easily be generalized beyond Kochen-Specker systems: for
example, one can use MMP diagrams to generate Hilbert lattice counterexamples and partial
Boolean algebras.
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