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Abstract: We consider on-board networks in satellites interconnecting entering signals
(inputs) to amplifiers (outputs). The connections are made via expensive switches with four
links available. The paths connecting inputs to outputs should be link-disjoint. Some of
the input signals, called priorities, must be connected to the amplifiers which provide the
best quality of service (that is to some specific outputs). In practice, amplifiers are prone
to fail and the faults cannot be repaired. Therefore, extra outputs have to be built into
the network to ensure that every input can be routed to operational outputs. Given three
integers, n, p, and f, we would like to design a low cost network (where the network cost is
proportional to the total number of switches) such that it is possible to route all n inputs
to n operational amplifiers and to route the p priorities to the p best quality amplifiers for
any set of f faulty and p best-quality amplifiers. Let R(n,p, f) be the minimum number of
switches of such a network. We prove here that R(n,p, f) < 2+ [log, p] + 3(n — p) + g(f)
with ¢g a function depending only on f. We then give exact values of R(n,p, f) for small p
and f.
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Réseaux embarqués tolérants aux pannes avec priorités

Résumé : Nous considérons les réseaux embarqués dans les satellites qui interconnectent
des signaux d’entrée 4 des amplificateurs (sorties). Les connexions sont effectuées par
I'intermédiaire de commutateurs & quatre liens. Les chemins connectant les entrées aux
sorties ne peuvent pas partager un méme lien. Certains signaux d’entrées, appelées prior-
ités, doivent étre connectés aux amplificateurs qui assurent la meilleure qualité de service
(c’est-a-dire certaines sorties particuliéres). En pratique, les amplificateurs peuvent tomber
en panne et ne peuvent étre réparés. Ainsi, des sorties supplémentaires doivent étre in-
troduites afin de garantir un nombre suffisant de sorties opérationnelles. Etant donnés trois
entiers n, p et f, nous désirons construire le réseau le moins cotiteux possible (le coit étant
proportionnel au nombre de commutateurs) tel qu’il soit possible de diriger les n entrées
vers n amplificateurs opérationnels et les p priorités vers les p amplificateurs de meilleure
qualité pour tout choix de f amplificateurs en panne et p amplificateurs de meilleure qualité.
Soit R(n,p, f) le nombre minimum de commutateurs d’un tel réseau. Nous montrons ici que
R(n,p, f) < %f [og, p] + 3(n — p) + g(f) avec g une fonction dépendant uniquement de f.
Nous donnons ensuite les valeurs exactes de R(n,p, f) pour de petites valeurs de p et f.

Mots-clés : conception de réseaux, réseaux embarqués, tolérance aux pannes, vulnérabilité



Fault tolerant on-board networks 3

1 Introduction

Modern telecommunication satellites are very complex to design. Components are often
prone to failure, and so providing robustness at the lowest possible cost is an important issue
for the manufacturers. A key component of telecommunication satellites is an interconnec-
tion network which allows to redirect signals received by the satellite to a set of amplifiers
where the signals will be retransmitted. The network is made of expensive switches; so we
want to minimise their number subject to the following conditions: each input (respectively
output) is adjacent to exactly one link; each switch is adjacent to exactly four links; there are
n inputs (signals) and n + f outputs (amplifiers); among the n + f outputs, f are allowed to
fail (all failures are irreversible). All the input signals should be sent to operational outputs
via link-disjoint paths. Designing such networks is a complex problem that was proposed
by Alcatel Space Industries and partial solutions are given in [3] and [4]. Alcatel Space
Industries proposed also to consider the case where each signal needs a specific amplifier;
that leads to design a network realizing any permutation from the inputs to the outputs
(see [1], [2]). Recently it asked the following new problem. Out of the total of n inputs,
p are called priorities and must be connected to the amplifiers providing the best quality
of service (that is to some specific outputs) and the other signals should be sent to other
amplifiers. Note that the priority signals are given, but the amplifiers providing the quality
of service change according the position of the satellite and so the network should be able
to route the signals for any set of f failed outputs and route the p priorities to any set of p
operational outputs.
This problem can be restated more formally as follows:

Definition 1 An (n,p, f)-network G is a graph (V, E) where the vertex set V is partitioned
into four subsets P, I, O and S called respectively the priorities, the ordinary inputs, the
outputs and the switches, satisfying the following constraints:

- there are p priorities, n — p ordinary inputs and n + f outputs;

- each priority, each ordinary input and each output is connected to exactly one switch;

- switches have degree at most 4.

An (n, p, f)-network is a repartitor if for any disjoint subsets F' and @ of O with |F| = f
and |Q| = p, there exist n edge-disjoint paths in G such that p of them connect P to Q
and the n — p others connects I to O \ (Q U F'). The set F' corresponds to the set of
failures and @ to the set of amplifiers providing the best quality of service. We denote by
R(n,p, f) the minimum number of switches (i.e. cardinality of S) of a (n, p, f)-repartitor.
An (n,p, f)-repartitor with R(n, p, f) switches will be called minimum.

Problem 2 Determine R(n, p, f) and construct minimum (or almost minimum) repartitors.
As indicated above, the problem with no priority (that is, p = 0) has been considered
in [3] and almost solved in [4]. In [3], it is shown that R(n,0,1) = R(n,0,2) = n. In [4],

it is proved that 3 — O(%) < R(n,0,f) < 32 4 g(f) with g a function depending only
on f. The minimum size repartitors is also bounded for the following small values of f:

RR n° 5363



4 Bermond, Havet & Toth

R(n,0,4) =n+[%], R(n,0,6) =n+%+,/3+0(1), R(n,0,8) =n+ %+ 2,/7+0(*\/n),
R(n,0,10) = n + 32 + ©(y/n) and R(n,0,12) = n + 32 + O(y/n).

In this paper, we study (n, p, f)-repartitors when p is not zero. We first give a general
upper bound for R:

n+f
2

R(n,p, f) < [log, p] + g(n—p)+g(f)-

We then give optimal or near optimal bounds on R(n,p, f) for small values of p and f:

R(n,1,0) = n-1

R(n,2,0) = _37"—3_,
R(n,1,1) = _3"2_1_,
R(n,1,2) = _3"2_1_ ,
R(n,3,0) = 37” + g +e(1),
R(n,2,1) = 37" + 4 +0(1),
R(n,4,0) = % + 0(1),
R(n,3,1) = %”+@(1).

2 General upper bounds

The aim of this section is to show an upper bound on R(n,p, f). We first give an inductive
construction of (n,p,0)-networks and then construct an (n,p, f)-repartitor form an (n —
p,0, f)-repartitor and an (n + f, p, 0)-repartitor.

Proposition 3 (i) If f < f' then R(n,p, f) < R(n,p, f');
(“’) R(’n,p7f) = R(TL,TL - b f)

Conjecture 4 If p<p' < § then R(n,p, f) < R(n, 7/, f).

Proposition 5
R(n,1,0)<n-—-1

Proof. Let G be the graph with one priority p, ordinary input set {i1,42,...,in—1}, output

set {01,02,...,0,} and switch set {s1,82,...,8n—-1} such that (p,s1,$2,...,8,-1,0,) is &
path and for I, 1 <1 < n—1, 4; and o; are adjacent to s;. (See Figure 1.) We claim that G is

INRIA
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Figure 1: Minimum (n,1,0)-repartitor.

an (n,1,0)-repartitor. Indeed, suppose that o; is the priority output. Since 0,1 and o,, are
equivalent, we may suppose that j # n. The desired paths are Py = (p, 51,82, ---,58;,05),
P; = (ij,85,8j41,---,Sn—1,0n) and P, = (i, 81,0;), for  # j. [ |

Theorem 6 Forn>p>1,

() R(2n,2p,0

) 2R(n,p,0) +n—1,
(7i) R(2n +1,2p,0)

)

)

R(n +1,p,0) + R(n,p,0) +n,
R(n,p+1,0) + R(n,p,0) +n,
R(n+1,p+1,0) + R(n,p,0) + n.

(i) R(2n,2p+1,0
(tv) R(2n+1,2p+1,0

IAIA IN A

Proof. (i) Let G! and G? be two (n,p,0)-repartitors. For i = 1,2, let I*, P', O° =
{ot,05,...,0!} and S* be the ordinary input set, priority set, output set and switch set of
G*. Let H be a graph defined as follows: its ordinary input set is I = I' U I?, its priority
set is P = P1 U P2, its switch set is S US2 U S with S = {s1,52,..., 8,1} and its output
set is O = {01,02,...,0,_1} U {0/1»0/27---70%71} U {ol,02}; H contains the edges of G!
and G? except the edges incident to 0 and o2 for 1 < j < n —1. Furthermore, for every
1< j <n—1, s; is linked to o}, 0} the switch adJacent to o in G and the switch adjacent
to 03 in Go. (See Figure 2 (1))

We claim that H is a (2n, 2p, 0)-repartitor. Indeed, let @ be a 2p-subset of O. Clearly,
one can partition O in two n-sets O; and Oz such that for i = 1,2, 0}, € O;, |Q N O;| = p
andV1<j<n-1,]0;n{0;,0;}| =1. Fori=1,2,let Q; = QN O;. Since G' and G* are
(n, p,0)-repartitors, there are edge-disjoint paths joining P* to Q; and I' to O; \ Q;. Hence,
there are edge-disjoint paths joining P to @ and I to O\ Q.

The proofs of (ii), (iii) and (iv) are analogous and are omitted. (See Fig. 2) for the
construction of H). [ ]

Corollary 7
n
R(n7p70) < [§J [10g2 p-] +n—p

Proof. We proceed by induction on p. The inequality holds for p = 1, by Proposition 5.
Suppose that the inequality holds for every p’ < p. Assume first that p and n are even.
By Theorem 6 (i),
R(n,p,0) <2R(n/2,p/2)+n/2 -1

RR n° 5363
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7 (n,p,0)

(n, p*1,0)

= (hpo)

(iii)

(n+1,p,0)

(n‘p‘o)

(if)

(n+1, p+1,0) |-

(n.p.0)

@iv)

Figure 2: Construction of repartitors from smaller ones.

Thus, by induction hypthesis,

R(n,p,0) < 2{| 7| Nogy(p/2)] +n/2—p/2} +m/2-1

Since 2 | 2| < | %], we obtain

R(n,p,0) < |3 | Mogy(p/2)] +n —p+n/2—1

Because [log,(p/2)] + 1 = [log,(p)] then

n
R(n,p,0) < bJ [log,p] +n—p—1

If p or n is odd, we obtain the result analogously by Theorem 6 (ii), (iii) and (iv). ®

INRIA



Fault tolerant on-board networks 7

Proposition 8 For p <mn,
R(napaf) S R(’I'L _p707f> +R(n + fapao)

Proof. Let G be an (n — p,0, f)-repartitor with output set O* = {o},03,...,05,; ,} and
let G be an (n + f,p,0)-repartitor with ordinary input set I* = {i{,45,...,i%, , }. Let
G be the network obtained from the union of Gy and Gy by replacing each pair {o},i?

by an edge between their neighboring switches. (See Figure 3). It remains to prove that

P =
— 1 (n+fp,0) 0O
|7 (mpof) §

Figure 3: Construction of an (n, p, f)-repartitor.

G is an (n,p, f)-repartitor. Let P = {mq,ma,...m,} the set of priorities of G2 be that
of G, I = {i1,i2,...,in—p} the input set of G; be the ordinary input set of G, and O =
{01,02,...,0n4+s} the output set of G2 be that of G. Let @ and F be two disjoint subsets
of O with cardinality p and f respectively. Since G is operational there exists a set of
edge-disjoint paths {P;,Pa..., P} U{Q1,Q2,...Qnt+s—_p} such that for 1 < j < p, P; links
m; to an element of @ and for 1 < j < n+ f —p, Q; links @j to an element of O \ Q. Let
J be the set of indices j such that @Q; ends in a vertex of F. Set F* = {o},j € J}. Since
G1 is an (n — p,0, f)-repartitor, there are edge-disjoint paths R; in G; 1 <1 < n — p such
that R, links ; to a vertex O;(z) that is not in F''. Now the union of the paths R; and Q4(;)
induces a path P/ in G which joins 4; to 04y € O\ (Q U F). The paths P/, 1 <1 <n —p,
and the paths P;, 1 < j < p, are obviously edge-disjoint. ]

Corollary 9
n+ f

2

5
R(n,p, f) < [logy p] + 5 (n = p) + 9(f)
Proof. By Proposition 8, R(n,p, f) < R(n — p,0,f) + R(n + f,p,0). By Corollary 7,
Rin+ f,p,0) <n+f—p+ ”;f [log, p] and it is proved in [4] that R(n — p,0, f) <
2(n—p)+9(f). u

RR n° 5363



8 Bermond, Havet & Toth

3 Lower bounds

To make computation easier and have equalities instead of inequalities, we will show that,
without loss of generality, we can suppose that all the switches have degree 4 except possibly
one. Let e(f) =11if f is odd and 0 otherwise.

Proposition 10 There is a minimum (n, p, f)-repartitor with e(f) switch with degree 3 and
all the others with degree 4.

Proof. Let R be a minimum (n, p, f)-repartitor with the minimum number of switches with
degree less than 4.

Obviously, R has no switches with degree 0 or 1 otherwise the network obtained by
removing them is also a repartitor, which contradicts the minimality of R. Similarly, R
has no switch of degree two. If a switch S had degree two, then we obtain a smaller valid
repartitor by removing S and connecting its neighbours by an edge.

R has at most one switch with degree 3, otherwise the network obtained from R by adding
an edge between two switches with degree 3 is an (n, p, f)-repartitor with less switches with
degree less than 4.

Since there is an even number of odd degree vertices in every graph, R has €(f) switches
with degree 3. |

Therefore, in the remaining of this section, we assume that every (n, p, f)-repartitor has
e(f) switch with degree 3.

Proposition 11 In a minimum (n,p, f)-repartitor, there is no switch connected to two (or
more) ordinary inputs and also there is no switch connected to two priorities.

Proof. Let R be an (n,p, f)-repartitor containing a switch s connected to at least two
ordinary inputs i; and i5. Let v; and vs be the two neighbours of s distinct from iy and
ia. Then the (n,p, f)-network obtained from R by removing s and adding the two edges
(41,v1) and (i2,v2) is also a repartitor and R is not minimum, a contradiction. The same
proof works if both i; and iy are priority inputs. [ |

It follows that there are more switches than ordinary inputs.

Corollary 12
R(n,p,f) 2n—p

3.1 Cut criterium

One main tool to obtain lower bounds is to use the following cut criterium which gives
necessary conditions for a network to be a repartitor. Let W be a set of vertices. We denote
by in(W) (resp. out(W), pr(W)) the cardinality of the set In(W) (resp. Out(W), Pr(W))
of ordinary inputs (resp. outputs, priorities) of W. We denote by deg(W) the number of
edges with an endvertex in W and the other one not in W.

INRIA



Fault tolerant on-board networks 9

Proposition 13 Let G be a (n, p, f)-repartitor and W be a set of vertices of G.
(i) If p+ f < out(W) then deg(W) > in(W) — out(W) + 2p + f — pr(W).
(i) If p < out(W) < p+ f then deg(W) > in(W) + p — pr(W).
(iii) If out(W) < p then deg(W) > in(W) + |out(W) — pr(W)|.
(iv) deg(W) > in(W) + pr(W) — max(0, out(W) — f).

Proof.

(i) Suppose that p outputs of Out(W) are in @ and f others are faulty. Then in(W) —
out(W)+p+ f paths from an ordinary input to an output of O\ Q leave W. And p—pr(W)
paths from priorities enter W. Since all these paths are edge-disjoint they go through
different edges with an end in W and the other not in W. Thus, deg(W) > in(W) —
out(W)+2p+ f — pr(W).

(i) Suppose that p outputs of Out(W) are in Q and out(W) — p others are faulty. Then
in(W) paths from an ordinary input to an ouput leave W and p—pr(W) paths from priorities
enter W. Thus, deg(W) > in(W) + p — pr(W).

(iii) Suppose that out(W) outputs of Out(W) are in ). Then in(W) paths from an
ordinary input to an ouput leave W. If out(W) > pr(W) then out(W) — pr(W) paths from
priorities enter W and if out(W) < pr(W) then pr(W) — out(W) paths from priorities leave
W. Thus, deg(W) > in(W) + |out(W) — pr(W)|.

(iv) Suppose that min(out(W), f) outputs of Out(W) are faulty. Then in(W)+ pr(W)—
max (0, out(W) — f) paths leave W. [ |

3.2 Graph G associated to G

We can distinguish two kinds of switches in a minimum (n,p, f)-repartitor, by Proposi-
tion 11. An ordinary switch is a switch adjacent to an ordinary input. A wusual switch
is a switch that is not ordinary switch. Let S, (resp. &,) be the set of ordinary (resp.
usual) switches and s, (resp. s,) their cardinality. Counting the ordinary inputs, we have
So =1 —p.

Hence the total number of switches is N =n — p + s,.

Thus, to find a minimum (n, p, f)-repartitor, we need to find a repartitor with as few
usual switches as possible.

In order to obtain lower bounds for s,, the basic idea is to consider the sum ¥ of the
edges incident to each vertex of S,. Doing so, we count twice an edge joining two vertices
of S,,. To avoid this weight problem, we introduce a link vertex b, in the middle of an edge
e with both endvertices in S,. Let G be the graph obtained from G by replacing each edge
e = (s,s') joining two usual switches by the path (s, be, s’). Then the sum X is exactly the
number of edges of G between S, and G — S,,.

RR n° 5363



10 Bermond, Havet & Toth

Following an idea of [4], let us now consider the connected components of G — S,, called
blocks. We distinguish two kinds of blocks, the principal blocks corresponding to connected
components of G — S, and link blocks reduced to a link vertex. Note that with our definition
when a block contains a switch it also contains the inputs and outputs connected to it.

Proposition 14 For every block B, deg(B) < in(B) + 2 — out(B) — pr(B).

Proof. The statement holds trivially for link blocks. By definition, a principal block B has
in(B) switches. Let e(B) be the number of edges connecting two switches of B. Since B is
connected then e(B) > in(B)—1. Furthermore, there are in(B) (resp. out(B), pr(B)) edges
linking inputs (resp. ouputs, priorities) to switches. Thus, deg(B) = >, . itcnldeg(v) —
2e(B) —in(B) — out(B) — pr(B)]. Since the degree of every switch is at most 4, we obtain
deg(B) < 4in(B) — 2e(B) — in(B) — out(B) — pr(B) < in(B) + 2 — out(B) — pr(B). [ |

Remark 15 Note that if equality holds in Proposition 14, then every switch has degree four.
Proposition 16 Let B be a block of G.

(1) pr(B) < 1.

(11) If p > 2 then out(B) < 1.

(iii) If f > 1, then out(B) + pr(B) < 1.

Proof. (i) If B has two or more priorities, then by Proposition 14, deg(B) < in(B)—out(B).
This contradicts Proposition 13 (iv).

(ii) Suppose that B contains two or more outputs. Then either out(B) > p + f and by
Proposition 13.(i), deg(B) > in(B) + 4 — out(B) — pr(B) contradicting Proposition 14; or
p < out(B) < p+ f and by Proposition 13.(ii), deg(B) > in(B) + 2 — pr(B) contradicting
Proposition 14; or p > out(B) and by Proposition 13.(iii), deg(B) > in(B) + out(B) — pr(B)
contradicting Proposition 14.

(iii) If B has one priority and one output then by Proposition 14, deg(B) < in(B). This
contradicts Proposition 13.(iv) if f > 1. [ |

In the remainder of this section, we assume that either p > 2 or p=1and f > 1.;
indeed the case p =1, f = 0 is already solved by Proposition 5 and Corollary 12.

We partition the blocks in the four following sets:

e B, the set of blocks having one priority and one output;
e B, the set of blocks having one priority and no output;
e 31, the set the blocks having one output and no priority;

e By, the set of blocks having no priority and no output including the link blocks;

INRIA



Fault tolerant on-board networks 11

Remark 17 Note that if f > 1, then B, is empty.

Proposition 18 A block in B, satisfies deg(B) = in(B). A block B € By U B, satisfies
deg(B) = in(B) + 1.

Proof. It follows directly from Propositions 13.(iii) and 14. |

Remark 19 Note that in a block of B;,UBPUBI every switch has degree four by Remark 15.

Proposition 20 A block B € By of a minimum (n,p, f)-repartitor satisfies deg(B) =
in(B) + 2 unless it contains the only verter switch with degree 8 in which case deg(B) =
in(B) + 1.

Proof. If B is a link block, then deg(B) = 2 = in(B) + 2. Assume now that B contains

switches. Let e(B) be the number of edges linking two switches of B.

By Proposition 13, deg(B) > in(B) (a).

In the proof of Proposition 14, we have: deg(B) = )", . it d€9(v) — 2e(B) — in(B).
Thus, if one switch has degree 3 then: deg(B) = 3in(B) — 2e(B) — 1 (b).

Since e(B) > in(B) — 1, Equations (a) and (b) yield: deg(B) = in(B) + 1.

If every switch has degree four we obtain: deg(B) = 3in(B) — 2¢(B) (c). Because
e(B) > in(B)—1, Equations (a) and (c) yield: deg(B) = in(B)+2 or deg(B) = in(B). Now
if deg(B) = in(B), then the graph obtained by removing the switches of B and linking one
to one the ordinary inputs of B to the neighbours of B is also operational. This contradicts
the minimality of G. So deg(B) = in(B) + 2. [ ]

Let bg, b1, b, and b, be the cardinality of By, B1, B, and B,,. We denote the number of
ordinary inputs which are in a block of By (resp., Bi, B,, and B,) by ng (resp., n1, np, and
n).

P
From previous definitions, propositions and remarks, one can easily derive few equations.
Let ¢(f) =0 if f is even, ¢ (f) =1 if f is odd, and the switch of degree 3 is

usual and €'(f) = —1 otherwise.

Proposition 21 We have the following equalities:

b+, =n+ f (1)

M=0 if f>1 @)

by +b,=p (3)
ny+mng+n,+n,=n—p (4)
48y =20+ f + 2bp — 2b, + €'(f) (5)

RR n° 5363



12 Bermond, Havet & Toth

Proof. (1) there is a one to one correspondence between blocks of B; U B, and the outputs
they contain.

(2) is Remark 17.

(3) there is a one to one correspondence between blocks of B, U B, and the priorities
they contain.

(4) is obtained by noting that the n — p ordinary inputs are in blocks.

(5) counts the edges between usual switches and blocks. On one side, there are 4s,, (minus
€'(f) if the switch of degree 3 is a usual one). On the other side, we have by Proposition 18,
n;, edges to blocks of By, n, + b, edges incident to blocks of B, and n1 +b; edges incident to
blocks of By and by Proposition 20, ng + 2by edges incident to blocks of By (or ng + 2bg — 1 if
the switch of degree 3 is in a block of By). Thus 4s,, = n; +np+by+n1+bi +n9+2by+€(f).
Then by (1) (3) and (4), we obtain the result. [ |

3.3 The lower bounds
Theorem 22 If f > 1, then

3n +e€
Proof. By Equations 5 and 2, s, = n/2 + (f 4+ 2bo + €(f))/4. Now if €(f) = —1, by
Remark 19, the switch of degree 3 is in a block of By; hence by > 1. Therefore s, >
n/2+ (f +€(f))/4. As N =n — p+ sy, we obtain R(n,p, f) > 32 —p+ f++(f). [ |

Theorem 23 3
R(n,2,0) > 7" ~3

Proof. By Equations 5, s, > n/2 —b,/2 > n/2 — 1. Then R(n,2,0) > 3 3. [ |

From now on, we will suppose p>3 or p=2and f >1.

Lemma 24 Forp>3 orp=2, f > 1, a usual switch is adjacent to at most 2 elements of
B;.

Proof. Suppose to the contrary that a usual switch S is adjacent to three blocks By, By and
By of By. Then W = SU B; U B U BY satisfies out(W) = 3 and contradicts Proposition 13
(ii) if p = 2 and f > 1 or Proposition 13 (iii) if p > 3 as deg(W) = in(W)+1 and pr(W) = 0.
|

For 0 < i < 2, let S; be the set of usual switches adjacent to exactly 4 elements of B

and s; its cardinality. By Lemma 24, (Sp,S1,S2) is a partition of S,,. Moreover, together
with Proposition 21, it yields the following corollary:

INRIA



Fault tolerant on-board networks 13

Corollary 25 Forp=2and f>1 orp> 3,

Zdeg(B):n1+b1=n1+n+f—blp=252+51S5u+52 (6)
BeB1

Lemma 26 Ifp > 3, then a block of B,, and a switch of Sa cannot be adjacent.

Proof. Suppose that a block B’ of B;, and a switch Sy of Sy are adjacent. Let By and Bj be
the blocks of B; adjacent to Sz. Then W = B'U S, U B; U B} contradicts Proposition 13 (iii)
as deg(W) = in(W), out(W) = 3 and pr(w) = 1. [ |

It follows from Remark 17 and Lemma 26 that a switch of Sy is adjacent to two blocks
of B; and two blocks of By U B,,. Let H be the multigraph whose vertices correspond to the
blocks of By U B, and where two vertices are joined by p edges if the corresponding blocks
share p neighbours in Ss.

Lemma 27 If p > 2 and f > 1, then H has no cycle of length at most [%J If p > 3,
then H is a simple graph (has no cycle of length 2).

Proof. Suppose that in H there is a cycle C of length at most [%J or a cycle of length

2if p > 3. Let W be the union of the blocks By U B, corresponding to the vertices of C,
plus the switches of S2 corresponding to edges of C' and the blocks of B; adjacent to these
switches. Then W contradicts Proposition 13 (i), (ii) or (iii), as deg(W) = in(W) — pr(W).
|

Since a simple graph on n vertices has at most n(n — 1)/2 edges, it follows:
Corollary 28 Ifp>2and f > 1 orp >3,

5y < (bo + b,,)(b20 +b,—1)

(7)

Turan’s Theorem asserts that a simple graph on n vertices without cycle of length 3 has
at most n?/4 edges. So we get:

Corollary 29 Forp> 2 and f > 3 then ,

s < (bo + bp)2/4: (8)
Theorem 30
3 V4 3
R(n,2,2) > R(n,2,1) > 7" + "; ~3
3n n—3 9
> — — -
R(n,3,0) > 3 + 5 5
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14 Bermond, Havet & Toth

Proof. Suppose p = 2 and f = 1. From Inequality 7 and Equations 6, as b, = 0 thus
b, = p = 2, we obtain:

(bo + 2)(b0 + 1)

5 >sy>n+n+1—s,

Replacing s, by its value in Equation 5,

b3 + 3bo + 2
2

b + 4by + 4
bo + 2

\Y

ni+n+1l—n/2—1/4—by/2—€(1)/4

n+3
vn+3

Writing this bound on by into Equation 5, we obtain s, > 3 + ¥ ";3 — 1. Thus

2
>

n—+3
2

3
R(n,2,1)27n+ -3

The proof is analogous if p = 3 and f = 0. We obtain M >ni+n— b’ — Sy

and (by+b,)? > n—b,+b,. Hence by > \/n =B + b, —b,. So s, > 24 Y2t b +*’% >

n + Vn—3 _ 3
2 2 2"
Finally R(n,3,0) > 3 + "2—3 — 9 .

Theorem 31 .

3n n

If >3’ RTL,Q, Z_+—+Q
F28, B>+ Y200

Proof.

Suppose now that p = 2 and f > 3. In the same way as above, it follows from Inequality 8
and Equations 6 and 5:

(bo + 2)% + 2bg > 2n + 3f — €'(f)
bo+3>2n+3f —€(f)+5

Writing this bound on by into Equation 5, we obtain

f+e) 3
> 243 \/2n+3f—6(f)+5+T—§.
Thus /
(n,2,f)>—+ \/2n+3f—e(f)+5+f+T€(f)_;
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Fault tolerant on-board networks 15

Lemma 32 Ifp>4 orp=3 and f > 1, then a block of By U B, is adjacent to at most one
switch of Sa.

Proof. Suppose that a block B € By U B, is adjacent to two switches S, and S5 of S». Let
B; and C; and Bj and Cf be the elements of B; adjacent to Sy and S% respectively. Then
S2U S, UBUB; UC: UBjUCY contradicts Proposition 13 (iii) if p > 4 or Proposition 13 (ii)
ifp=3and f > 1. (deg(W) =in(W)+2 —pr(W), out(W) = 4 and pr(W) <1.) [ ]

Let B} (resp. B{) be the set of elements of By adjacent to exactly one (resp. no) switch
in Sy and let b} (resp. by) be its cardinality.

Corollary 33 Forp>4 orp=3 and f > 1,
b0+bp2b6+bp2252 (9)

Theorem 34 Ifp>4orp=3and f > 1,

Proof. By Inequality 9 and Equations 6, we have: s, > n + f — b, — (bo + bp)/2. By
Equation 5 s, =n/2+ (f +€'(f))/4+ (bo — b;,)/2. Adding these two inequalities, we obtain:

! b, + 30/
oz WL D)t
2 4 2

Hence, R(n,p, f) > ?T"_l_f’+5f+T€'(f)‘ =

Lemma 35 If p > 5 or p =4 and f > 1, every switch of S1 is adjacent to at most one
block of Bj.

Proof. Suppose that S; € &; is a switch adjacent to two blocks By and By in Bj. Let Sy
(resp. S%) be the switch of Sz adjacent to By (resp. Bj) and By and Cy (resp. Bj and Cj)
the two blocks of B; adjacent to Sa (resp. S3). Let Ay be the block of By adjacent to S;.
Then W = A; US; USy UByUB; UC; US,U BjUB; UC contradicts Proposition 13 as
deg(W) <in(W) + 3 and out(W) = 5. [ ]

Lemma 36 If p > 6 or p =5 and f > 1, every switch of Sy is adjacent to at most two
blocks of Bj.

Proof. Suppose that Sy is a switch adjacent to three blocks By, Bj and B{ in Bj. Let
Sy (resp. S%, SY) be the switch of S; adjacent to By (resp. Bj, B{) and B; and C;
(resp. Bj and C{, B} and CY') the two blocks of B; adjacent to Sz (resp. S5, S5). Then
W = SoUS2UByUB; UC; USyUB{UB; UC] USYUB{ UBYUCY contradicts Proposition 13
as deg(W) < in(W) + 4 and out(W) = 6. [ |
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16 Bermond, Havet & Toth

Proposition 37 Let p > 2. A block B € B|, has no switch of degree 3. Thus deg(B) =
in(B) + 2.

Proof. Suppose that B has a switch with degree 3. Let S be the switch of Sy adjacent
to B and B; and C; be the two blocks of B; adjacent to S. Then W = BU S U B; U (C}
contradicts Proposition 13-(iii), as deg(W) = in(W) + 1. [ ]

Let S be the set of elements of S; adjacent to exactly one block in Bf and let s] be its
cardinality. Let n; denote the number of inputs in blocks of Bj.

Corollary 38 Ifp>6 orp=5and f > 1,
ng + by < 81+ 250 (10)

Proof. Let us count the number e of edges between Bj and S; U Sy.

On one side, every block B of Bj is adjacent to exactly one element of Sy and no in
81\ 8. Thus, by Proposition 37, there are in(B) + 1 edges from B to S U Sp. Thus
e =ng + bj.

On the other side, there are si (resp. at most 2sg) edges joining S (resp. Sp) to Bj
according to the definition of S and Lemma 35 (resp. Lemma 36). Thus e < s} +2s9. W

Lemma 39 Ifp >4, a block of B}, is not adjacent to a switch of Sj.

Proof. Suppose B’ is a block of B, adjacent to S in Sj. Let A; (resp. B) be the block of
By (resp. Bj) adjacent to S’. Let S5 be the switch of S, adjacent to B and B; and Cy the
two blocks of B; adjacent to S;. Then W = B’ US" U A, U BU S, U By UC; contradicts
Proposition 13 (iii), as deg(W) = in(W) + 1, out(W) = 4 and pr(W) = 1. [ ]

Lemma 40 Ifp > 6 or p =15 and f > 1, every element of By U B, is adjacent to at most
one element of S .

Proof. If B € Bjj U B, is adjacent to two switches Sy and Sj of S;. Let By and By (resp.
Bj and Bj) be the blocks of By and Bj adjacent to Sy (resp. Si). Let Wy (resp. Wy be
the union of the switch of S» adjacent to By (resp. Bj) and its two adjacent blocks of Bj.
Then W = B U B; U By U W, U Bj UBjU W] contradicts Proposition 13 (ii) or (iii), as
deg(W) =in(W) +4 — pr(W), out(W) = 6 and pr(W) < 1. [ |

Corollary 41 Ifp>6 orp=5and f > 1,
by + by > 28 (11)
Theorem 42 Ifp>6 orp=>5and f > 1,

Ln _15p , 13f —(f)

>
R(n,p, f) > 3 3 16
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Fault tolerant on-board networks 17

Proof. We have s, = s5 + s1 + sg, then by Equations 6,
su=n+n+f—b,— s+ 50
25, > 2n+2f—2b;—252 + 25
By Inequalities 10 and 9, 259 > ny + 2s3 — s§ — by, thus
25y > 2n+2f +ng — s — b, — 2b,,
Then by Inequality 11,
25y > 20+ 2f +ng — by /2 — 3by /2 — 20,
4sy, > 4dn +4f — by — 3b, — 4b;,

Since by = by + by, by Equation 5 and Inequality 9, 2s, > n + (f +€'(f))/2 — b, + b +
289 — by, s0

9f +€(f)
65, > 51+ 282 + 5 —4bp—5b;,
Therefore, by Equations 6,
13f +€(f) /
88y > Tn + — — 4b, — b},

4 Constructions

4.1 Useful constructions

In this subsection, we give general constructions how to compose several repartitors to a
larger repartitor. The first one is in the same vein as Proposition 8. The second one
constructs an (n — 1, p, f)-repartitor from an (n, p, f)-repartitor under some condition.

Proposition 43 For0< f' < f,

R(n,p,f) < R(n+ f',p+ f,f— ')+ R(p,p, f")

Proof. Let G; be a (p,p, f')-repartitor and Gy be a (n + f',p + f', f — f')-repartitor.
For i = 1,2, let I; (resp. P;, O;, S;) be the sets of ordinary inputs (resp. priorities,
outputs, switches) of G; (note that I is empty); and let P» = {p1,p2,...,Ppt+s } and
01 ={01,02,...,0p45}. Let G be the network defined as follows:
V(G) =P US;UIL,US, UOQ;
two vertices of V(G) are joined by an edge if and only if (u,v) € E(G1) U E(G2) or there
exists some ¢ such that (u,0;) € E(G1) and (p;,v) € E(G2); the ordinary input set of G is
I, its priority set Py, its output set Oo and its switch set S1 U Sa.

The proof that G is an (n, p, f)-repartitor is similar to that of Proposition 8. [ |
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18 Bermond, Havet & Toth

Definition 44 Let G be a network. An edge (s,s’) is said to be linking if there is an
ordinary input 4 connected to s and an output o connected to s'.

The L-contraction of a linking edge (s,s’) consists in contracting the edge (s,s’) in a
vertex t and deleting the input connected to s and the output connected to s’. See Figure 4

Figure 4: L-contraction

Proposition 45 Let G be an (n,p, f)-repartitor. Then the network obtained by the L-
contraction of a linking arc is an (n — 1,p, f)-repartitor.

Proof. Let (s,s’) be a linking edge of G and ¢ the input linked to s and o the output linked
to s’. Let G' be the network obtained by the L-contraction of (s, s') in ¢.

Let @ and F be two disjoint subsets of outputs of G’ with |Q| = p and |F| = k. Since G
is a repartitor, there exists a set P of n edge disjoint paths in G, connecting the p priorities
to @ and the n — p ordinary inputs to O \ (Q U F).

Case 1: A path P € P connect i to o. Then replacing in the n — 1 paths of P \ P the
vertex s, s’ or the succession of these two by ¢, we obtain the required set of n — 1 paths in
G'.

Case 2: A path P of P connect an ordinary input ' # ¢ to o and a path P, of P connect
i to an output o'. Let Py = (i',s},55,...,55,8,0) and P» = (i,s,51,52,...5,,0"). Let W'
be the walk (i, s1,s5,...,5,5',8,81,82,...5,0") and P’ the path from i’ to o' contained in
W'. Let P! = (P \ {P1,P2}) U {P'}. Then replacing in the n — 1 paths of P’ the vertex s,

s’ or the succession of these two by #, we obtain the required set of n — 1 pathsin G'. H

4.2 Minimum (n, 1,0)-repartitors.

Theorem 46
R(n,1,0)=n—1

Proof. By Proposition 5, R(n,1,0) < n — 1. By Corollary 12, R(n,1,0) > n — 1. [ |

We can, in fact, completely describe the set of minimum (n, 1, 0)-repartitors.

Let T be a binary tree with n leaves and n — 1 internal nodes one being the root r. Let
us define the graph G associated to T in the following way: every leaf of T is an output of
Gr; the internal nodes of T are the switches of G'r; each internal node of T is adjacent to
an ordinary input and furthermore the root is adjacent to the priority (See Figure 5.).
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Fault tolerant on-board networks 19

Figure 5: A binary tree with 8 leaves and the corresponding minimum (8,1, 0)-repartitor.

Proposition 47 A (n,1,0)-repartitor is minimum if and only if it is associated to a binary
tree with n leaves.

Proof. It is easy to see that the graph associated to a binary tree is a minimum (n,1,0)-
repartitor.

Let N be a minimimum (n,1,0)-repartitor. It has n — 1 switches and each of them is
adjacent to exactly one ordinary input. Moreover n ouputs and one priority are connected
to the switches. Thus, there are exactly (4(n —1) —2n)/2 = n — 2 edges connecting a switch
to another. Since N is connected then it is a tree. Let T be the subtree of N induced by
the switches and the outputs. It is clearly a binary tree. Indeed every output has degree
one and every switch has degree 3 except the one that is connected to the priority that has
degree 2 (and thus is the root). [ ]

4.3 Minimum (n,2,0)-repartitors.
Theorem 48

R(n,2,0) = F’?" _ 3}

Proof. Theorem 23 yields R(n,2,0) > [22 —3]. Since R(n,1,0) = n — 1, by the first
inequality of Theorem 6, R(n,2,0) < [22 — 3]. n

Remark 49 Note that minimum (n,2,0)-repartitors are not necessarily formed from two
minimum (n/2,1,0)-repartitors with the construction of Theorem 6. Indeed, let R be a
minimum (n, 2, 0)-repartitor and o and o' two distinct outputs incident to the switches s
and s respectively. Let R’ be the (n + 2,2,0)-network obtained by removing o and o' and
adding three switches ¢, t' and u such that ¢ is adjacent to u, s and an ordinary input and
an output, ¢’ is adjacent to u, s’ and an ordinary input and an output, and u is adjacent to
two outputs. It is easy to check that R is a minimum (n + 2,2,0)-repartitor. And since ¢
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20 Bermond, Havet & Toth

and t’' are adjacent to an input and an output, R’ may not be obtained via the mentionned
construction.

4.4 Minimum (n,1,1)-repartitors and (n,1,2)-repartitors

Theorem 50

R(n,1,1) = F’" - 1}

Proof. Theorem 22 yields R(n,1,1) > [2%=1]. Now from, Proposition 43, R(n,1,1) <
R(n+1,2,0)+ R(2,1,0). By Theorem 48, R(n +1,2,0) = [2%t2 — 3], and by Theorem 46,
R(2,1,0) = 1. Thus R(n,1,1) < [32 - 1]. [ |

Theorem 51

R(n,1,2) = F’"; 1}

Proof. Theorem 22 yields R(n,1,2) > |_3” — %-|

2
The network depicted Figure 6 has [22 — 1] switches. Checking that this network is an

2

—~{ ==

Figure 6: Minimum (n, 1, 2)-repartitor

(n, 1, 2)-repartitor is not difficult but tedious since we must investigate a certain amount of
configurations and exhibit each time the corresponding edge-disjoint paths. The complete
proof is left in appendix A. [ |

4.5 (n,3,0)-repartitors

Theorem 52

3
R(n,3,0) = 7"+

ol
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where —5 < ¢ < 9/4.

Let G; be the graph with vertex set {a;;,1 < i < 3,1 < j < [} whose edge set is
the union of the three paths P; = (a;1,ai2,...,a;;) for 1 < i < 3 and the [ cycles C; =
(a1,5,02,5,a3,5,a1,;) for 1 < j <. See Figure 7.

al,l a'1,2 a'l,I—l a1,I

AEE

a3,1 a3,2 a-3,I—1 a3,I

Figure 7: The graph G.

So G has 31 vertices and 6] — 3 edges.

From G;, we construct the network H; as follows.

To each vertex a; ;, 1 <4 < 3,1 < j <, we associate a switch s; ;. Each switch s, ,
1 <4 < 3, is connected to a priority input p; and each switch s;;, 1 <14 < 3, is connected
to some output o;,. We replace each edge e of G; by a path P(e) consisting of n(e) switches
with some ordinary input connected to each of them. In the bipartite graph H; defined
previously, it corresponds to associate to each edge e a block By(e) of By. The size n(e) of
the paths P(e) is in(Bg(e)) and determined as follows: In H;, we connect two blocks By (e)
and By(f) to a switch s, f, if the corresponding edges e and f are not adjacent. In H; it
corresponds to connect an ordinary switch of P(e) to an ordinary switch of P(f) via s.,r (in
such a way that each vertex has degree four). Furthermore s, is connected to two ouputs
0c,r and o, ;. (In H, 5.5 isin Ss.)

If I > 3, an edge e of G; is connected to 6 other edges except the edges of E; =
{(ai1,0:2),1 <i<3}U{(aii-1,a:1),1 < i< 3}, which are connected to 5 other edges and
the edges of By = {(a;,1,ai41,1),1 <@ <3} U{(aii,ait1,),1 <1i < 3}, which are connected
to 4 edges. Hence the number n(e) of switches of P(e) is defined as follows: n(e) = 61 — 8 if
e € Ey, n(e) =61l —9if e € E; and n(e) = 6] — 10 otherwise.

In summary, H; has for [ > 3:

- 3 priority inputs,
- n;—3="6(60—8)+6(6l—9)+ (6l —15)(6] — 10) = 36(> — 78I + 48 ordinary inputs,
- n; outputs,

- m; — 3 ordinary switches (those of the P(e)),
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22 Bermond, Havet & Toth

- (ng — 3)/2 switches of Sy (the s, r), and

- 3l switches of Sy (the s; ;).

Hence H; has Ny = 32t 4 31 — & switches. As n; = 3602 — 78] + 51 = (6] — 12)? 4 35,
Hence N = 8+ L /u ~ %~ § < 3 4 Ly &

Note that all the formulae are also valid for [ = 2. Indeed in that case n(e) = 4 for any
of the 9 edges and so n; — 3 = 36.

Theorem 53 H; is a repartitor.

We will reduce the proof of this theorem to the existence of some specific walks in the
graph G slightly modified.

Definition 54 Let G] be the graph obtained from G; by adding the set R3 = {1,141, 02,141, 03,141 }
and the three edges (a;,,a:41), 1 <@ < 3.

Let E5 = {e1,ez,e3} be a set of distinct edges of G}. An Ej3-good set of walks is a set
of three edge disjoint walks {W7, Wy, W3} such that W, contains e; and the set of initial
vertices of the W; is {a1,1,a2,1,a3,1} and the set of terminal vertices of the W, is Rs.

Lemma 55 If G} admits an E3-good set of walks for any set E3 of three distinct edges such
that two of them are not adjacent, then H; is a repartitor.

Proof. Let us define an assignment as a mapping ¢ from the output set of H; into the
edges of G} such that :

° ¢(oi) = (ai,l,ai,lH) for ¢ € {1,2,3};

e for the two outputs oes and o ; adjacent to the switch sy, then ¢(oc,f) = e and

¢(0;,7) = [ or §(0e,r) = f and ¢(0 ;) = e.

Let @ = {q1,42,q3} be any set of three outputs of H; and let us denote {o1, 02,03} by
O3. To prove that H; is a repartitor, we have to find the desired paths in H;.

First let us show that there exists an assignment ¢ such that the three edges ¢(q;) are
distinct and two of them are not adjacent.

-If|QNOs| > 2,let g1 =o0;, and g2 = 0;,. Then for any assignment ¢, ¢(q1) = e; =
(@iy 15 @iy 141) and @(g2) = e2 = (@i, ,1,4,,141). Hence e; and ey are not adjacent and
distinct from ¢(e3) since only ¢; (resp. ¢2) may be mapped on ey (resp. ez) by an
assignment.

-IfQNOs| =1, let ¢t = 0;; and ¢o (resp. g¢3) be connected to S, f, (T€SP. Sey,fs)-
As all the edges incident to ¢(g1) = e1 = (a1,1,a1,41) are adjacent, one of {es, fo} is
not adjacent to e;. Let ¢(g2) be this edge and let ¢(gs) be an edge of {es, f5} \ {e2}-
Then ¢ satisfies the requirement.
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-If|1QNOs| =0, let g;, 1 <4 < 3, be connected to s.,,r,. By definition |{e;, f;} N
{e;, i} < 1.
Suppose first that there is ¢ # j such that [{e;, fi} N {e;, f;}| = 1. Without loss of
generality, we may assume that e; = e3. Then let ¢(q1) = e; and ¢(g2) = fo. €1 = e
and fy are not adjacent. Let ¢(g3) be an edge of {es, f3} \ {e2, f2}. (Such an edge
exists since |{es, fo} N {es, f3}| < 1.)

Suppose now that all the six edges ey, f1, €2, fo, €3, f3 are distinct. If one edge of
{e1, f1} is not adjacent to one edge of {es, f2}, say e; is not adjacent to e;. Then let
#(¢;) = e;. Otherwise the four edges e1, f1, e, f2 form a 4-cycle. Since there is no
diagonal of a 4-cycle in G}, es is adjacent to at most one edge of {e1, f1}, say es is not
adjacent to e;. Then setting ¢(g;) = e;, we obtain the desired assignment.

Let us now exhibit the n = 36/2 — 78]+ 51 required edge disjoint paths, 3 of them joining
the priorities to ) and the n — 3 remaining joining the ordinary inputs to outputs.

Consider an assignment ¢ as above and let E3 = {¢(q1),#(q2), #(q3)}. By hypothesis,
there exists an Es-good set of walks {Wy, Wy, W3} such that W; contains ¢(g;).

Let o be an output not in Os. Let e = ¢(0), s r(0) is the switch adjacent to o, s.(0)
the vertex of P(e) adjacent to s, r(0) and i(o) the input adjacent to s.(0). The default path
associated to o is P(0) = (i(0), $¢(0), Se,£(0), 0).

If 0 ¢ Q U O3, we choose its default path for joining the ordinary input (o) to o.

To each W; corresponds a walk @; in H(l) obtained by replacing an edge of G} by the
corresponding path P(e) and the edge {a;;;ai 41} by the output o;.

If ¢; € O3 then choose @; which joins a priority to the priority output g;.

If ¢; ¢ Os, let s; = s.(¢;) be the switch that is in both @; and the default path of ¢;. Let
D, (resp. F;) be the subpath of Q; starting in aj; o (resp. at s;) and ending at s; (resp. in
O3). Then choose (pj,, D, se,7(¢:), ;) which joins a priority to a priority output and (i, , F;)
which joins an ordinary input to a non-priority output. All the paths we have constructed
are edge-disjoint. |

Proof of Theorem 53. By Lemma 55, it suffices to prove that for any set E3 of three
edges of G} with two non adjacent edges, there is an E3-good set of walks.
Forl <i<3andl<j <k <I+1, wewill denote by L;[j, k] the path (a; ;, @i j+1, - - -, @ik)-
By symmetry of Gj, it suffices to prove it for the following ten cases. All these cases and
the corresponding covering walks are depicted Figure 8. The walk Wi (resp. Wa, W3) is
drawn as a dotted (resp. bold, thin) line. The grey (resp. black, white) ellipses represent
the possible positions of e; (resp. es, e3).

(1) e1 = (a1,iy,01,i,41), €2 = (G1,iy,01,i,4+1) and ez = (a1,4,,01,4,41) with 0 < 45 <
o < i3 < I. The covering walks are W; = (Ll[l,iz],agyiz,Lz[iz,l + 1])7 Wy =
(LQ[].,iz],Ll[iQ,i3],L3[7;3,l+ 1]), and W3 = (L3[1,7;3],(1271‘3,L1[’l’3,l+ 1])

(2) e1 = (a1,i,,01,i,41), €2 = (a1,iy,01,i,+1) and e3 = (az,i5,a3,i;41) With 0 <y <idp < 1.
The covering walks are W7 = (Ll[l,ig],LQ [iz,l—}—l]), Wy = (Lz[l,iz],a&ile[iQ, l+1]),
and Wi = (Lg[1,1 + 1]).
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Figure 8: The covering walks in each case.

(3) e1 = (1,41, 01,5,41), €2 = (42,55, 02,i,41) and ez = (as3,45,03,i,+1). The covering walks
are W1 = (Ll[l,l+ 1]), W2 = (Lg[l,l—}— 1])7 and W3 = (L3[1,l+ ].])

(4) e1 = (a1,4,02,), e2 = (az;,a3;) and e3 = (asi,a14). Wi = (L1[1,4], La[i, 1 + 1]),
Wy = (Lz[l,i],L3[i,l+ 1]), and W3 = (L3[1,i],L1[i,l+ 1])

(5) €1 = (a1,i1,a2,i1), €2 = (a2,i1,a3,i1) and ez =€ {(al,i3’a2,i3)7 (112,1'37613,1'3), (a3,i3,a1,i3)}
with i3 ?,é 1. W1 = (Ll[l,il],LQ[’il,l + 1]), Wy = (Lg[l,il],agiil,Ll[il,l-l- 1]), and
W3 = (L3[1,1j3],0,1’,’3,az,ia,Lg[ig,l+ 1])

(6) e1 € {(ar,i1,02,,), (a2, 03, ), (a3,iy 5 01,01}, €2 € {(@1,iz, 02,35 ), (2,13, 03,35 ), (03,15 01,45 ) }
and ez =€ {(al,is,ag,is), (a27i3,a37,’3), (a3,i3,a1,i3)} with 47 < 49 < i3.
W, = (L1 [].,’h], a2y, 03,51, Ll[il,l =+ 1]), Wy = (Lg[l,’iz], A3,is, 01 iy Lg[’iz,l + 1]), and
W3 = (L3[1,7:3], al,is,ag,is, L3[i3, { + 1])
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(7) e = (aliil,agﬂ'l), ey = (ag,il,a&il) and ez = (ag,is,ag,i3+1) with 4, < i3.
Wi = (L1[1,d1], La[i1, 3], a1 45, La[is, I + 1]), Wa = (L2[1,41],a3,i,, L1[i1, ] + 1]), and
Ws = (Ls[1, i3], Lalis, [ + 1]).

(8) e1 = (a1,iy,02,4, ), €2 = (a2,i,,03,i,) and e3 = (a3,i5,3,5541). Wi = (L1[1, 1], La[i1, 1 +
1]), Wy = (Lg[l,il],ag,il,Ll[’il,l + 1]), and W3 = (Lg[l,l+ 1])

(9) €1 = (al,i17a1,i1+1>a €2 € {(al,i2v(12,iz)7 (a’2yi27a3,i2)7 ((13’,'270,1’1'2)} and e3 € {(a15i37a27i3>’
(@2,i3,03,i5), (03,45, 01,45 ) } With o < iz, Wy = (Li[1,141)), Wo = (L2[1,42], 3,4, a1,4,, La[ia, I+
1])7 and W3 = (L3[17i3]va1,i37a2,i37L3[i3al+ 1])

(10) e1 = (a1,51,01,i1+1), €2 = (G2,i5,02,i,+1) and e3 =€ {(a1,i5, 02,45, (42,45, 03,455, (43,i5,01.55) }-
W, = (L1[1,1+ 1]), Wy = (L2[1,1+ 1]), and W3 = (L3[1,7:3],a1’1‘3,02,13,L3[7;3,l+ 1])

Proof of Theorem 52 By Theorem 30, R(n,3,0) > 22 + 4 —5.

Let us now define the (n,3,0)-network G3(n) inductively as follows :
For | > 2, let n; = 3612 — 78]+ 51. If n = n; for some integer [, then G3(n) = H;. Otherwise
let ni—1 <n < ny. If nis odd then Gs(n) is obtained from Gs(n + 2) by removing a switch
se,r and its two adjacent outputs, and deleting the two switches s(e) € P(e) and s(f) € P(f)
adjacent to s. ¢ and their adjacent inputs, and adding an edge joining the two neighbours
of s(e) (resp. s(f)) in the input path P(e) (resp. P(f))-
If n is even then G3(n) is obtained from G3(n + 1) by an L-contraction of a linking edge
{5(6)7 Se,f}-

Since H; is a repartitor, then if n is odd G3(n) is obviously an (n, 3, 0)-repartitor and if
n is even, by Proposition 45, G3(n) is an (n, 3,0)-repartitor. G3(n) has N = N; — %(n -

ny) +e/2 = 37” + @ — 5/4 + ¢/2 switches where ¢ = 1 if n is even. But as n > n;_g,

S — < /i — AT <6. S0 N <3 V9 ]
Theorem 56

3 i
mm@=§+’§

+c
where —3 < ¢ < 2.

Proof. From Proposition 43, we obtain: R(n,2,1) < R(n+ 1,3,0) + R(2,2,1). By Theo-
rem 52, R(n +1,3,0) < 37" + ’;“ + 14—5. And by Proposition 3, R(2,2,1) = R(2,0,1) and
R(2,0,1) = 2 (see [3]). Hence R(n,2,1) < 32 4 Y2t 4 23 Theorem 30 gives the other
inequality. [ |

4.6 (n,4,0)-networks

The aim of this subsection is to prove the following theorem :

RR n° 5363



26 Bermond, Havet & Toth

Theorem 57 .
R(n,4,0) = In +c

where =7 <c < 8.

We will construct a network H(m), which is a (16m + 4,4, 0)-repartitor.
We start with a basis brick B (see Figure 9). It contains 12 switches a;, by, ¢; for 1 <1 < 4.

Figure 9: A brick

a; is connected to b; and b1 (the indices being taken modulo 4) and b; is connected to ¢;.
There are 8 inputs: for 1 < [ < 4, 4; connected to b; and j; connected to ¢;. There are 8
outputs: for 1 <[ < 4, 0; connected to a; and w; connected to ¢;.

Let G(m) be the network obtained by concatening m bricks B*, 1 < k < m, that is by
joining cf to aft for 1<k <m—1land1<[<4.

Let F(m) be the network obtained by taking two copies of G(m), G(m) and G,,, deleting
the 8m outputs wf and @}, adding 4m switches s connected to cf, & and two new outputs
rf and 7F.

Finally let IS be an input selector with 4 inputs p;, 1 <1 < 4, and 8 outputs «; and ay,
1 €1 <4, such that for any set of four outputs, there are four edge-disjoint paths joining
the inputs to these outputs.

Let OS be an output selector with 8 inputs v; and 4;, 1 < I < 4 and 4 outputs ¢,
1 <1 <4, such that for any set of four inputs of the form C; U Cs and any partition T3 UT,
of T = {t1,ta,t3,ts} with |Cy| = |T1|, there are four edge-disjoint paths, |Cy| of them joining
Cy to T and |Cs| of them joining Cy to T.
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Then H(m) is obtained by concatening IS, F'(m) and OS that is by identifying «; (resp.
a;) with a} (resp. a}) and " (resp. ¢*) with v, (resp. ;). The network H(m) is depicted
in Figure 10

B2 BM

g

f

—]
—]

e

il
e
it

Figure 10: The network H(m).

H(m) has 4 priorities p;, 1 < [ < 4, 16m ordinary inputs if, i¥, jF, jF for 1 <k <m
and 1 <1 <4 and n = 16m + 4 outputs, of, of, rf, 7F for 1 <k <m and 1 <1 < 4 and
ti, 1 <1< 4. It has 28m + N(IS) + N(OS) switches where N(IS) (resp. N(OS)) is the
minimum number of switches of an input (resp. ouput) selector. An input selector is nothing
else than a (4, 0,4)-repartitor and it is proved in [4] that R(4,0,4) =5, so N(IS) = 5. An
optimum input selector is drawn Figure 11 left. The network depicted Figure 11 right is
an output selector. Indeed, it is constructed from a Waksman network (see [1, 2]), which is
able to realize any permutation of the 8 inputs into the 8 outputs, by removing the useless
outputs, switches and links (dotted on the figure). Hence N(0OS) < 13.

Theorem 58 H(m) is a (16m + 4, 4,0)-repartitor.

Proof. In what follows we will denote O =, ,0r, O = Uy, 01, R= U, 77, R=U,, 7,
W =U,, wr, W= Uy, wr-

Let @ be any set of four outputs of H(m). Let Q1 = QN(OUOURUR) and Q2 = QNT
and ¢; = Qi|, 1 <i < 2.

To prove that H(m) is a repartitor it suffices to find in F'(m) for any set Q@ = Q1 UQ2 a
set of 16m + 4 edge disjoint paths such that:
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= [

Figure 11: An optimum input selector and an output selector.

q1 of them join a set A; of ¢ elements of |J,{a},a} } to Q1,

g2 of them join a set Ay of ¢» elements of |J,{aj,a}} \ A1 to a set Cy of g2 elements
of U;{c],¢*}, and the 16m other paths join the ordinary inputs to the set of outputs
(OUOURUR)\ @ and a set C; of g1 elements of |J;{c",e"} \ Coa.

Indeed IS being an input selector, we can connect the 4 priorities of H(m) to the 4
outputs identified to A; U A, with edge disjoint paths; then one can link A; to @; and A,
to Cy and the ordinary inputs either to outputs of (O U O U RU R) \ Q; or vertices of Ci;
at last, OS being an output selector, we can find edge-disjoint paths from C5 to @)=, and
from C; to T\ Q2. Hence we have the 16m + 4 required disjoint paths of H(m), 4 of them
joining the p; to @ and the 16m other joining the ordinary inputs to the ouputs not in Q.

In fact, we can reduce the problem of finding the required set of paths in F(m) to that
of finding in G(m) a Qo-good path set defined as follows :

Let Qo be any set of at most 4 outputs of G(m), Qo C OUW and |Qo] = go < 4. A
Qo-good path set consists in 8m + 4 edge-disjoint paths such that

- 4 of them link the vertices of U1gzg4 all to Qo and a set Dy of 4 — g9 vertices of
U1§l§4 ", and

- the 8m other link the 8m ordinary inputs of G(m) to (OUW)\Qo and Dy = |J; <;«, ¢\
D;. o

Let us define an assignment as an one-to-one mapping from RUR to WUW by associating
to rf one of wf and w} and to 7F the other one.

Let @, = QN (RU R). For any assignment ¢, let Q, = (Q NO) U (¢(Q,) N W) and
Qs = (@QNO)U(6(Qr) NW). o

If G(m) contains a Q4-good path set and G(m) a Qg-good path set, then we obtain
the required set of edge-disjoint paths of F(m) by taking the paths in G(m) and G(m) and
replacing for 1 < k < m and 1 <1 < 4, the last edge (cf,wf) (resp. (¢, wF)) of the path
ending in wf (resp. wF) by the subpath (cF,sF, ¢~ 1(wF)) (resp. (eF,sF,¢~1(wF))). Note
that we actually get more paths than required ; some of them joining some a; or a; to some
c* or ¢* are not needed.

Finally note that we have many choices of possible assignments and we can always choose
an assignment ¢ such that Q, (resp. Q,) contains:
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- either 2 outputs of W (resp. W) and none of O (resp. O),

- or 1 output of W (resp. W) and at most 2 of O (resp. O),

- or no output of W (resp. W).

Indeed choose ¢ such that:

Q] = 4, then [$(Qx) N W] = |6(Q,) N W] =2

- if |Q,| =3, and |Q@ N O] =1 then |¢(Q,) NW| =1 and |¢(Q,) NW|=2;

- if |Q,] =3, and |Q N O] = 1 then |¢(Q,) NW| =2 and |¢(Q,) N W| = 1;

- if |Q+] = 2, then [¢(Q) N W] = [¢(Q-) N W| = 1;

- if |Q;] =1, and |Q N O] > |Q N O then |$(Q,) NW| =0 and [¢(Q,) " W| =1;
- if |Q-| =1, and |Q N O] < |Q N O] then |¢(Q,) NW| =1 and |¢(Q,) N W| = 0.
In summary, to prove that H(m) is a repartitor it sufices to prove the following lemma :

Lemma 59 For any set Qo of outputs of G(m) such that either |QoNW| = 2 and |QoNO| =
0, or |QoNW| =1 and |QoNO| <2, or |Qo NW| =0, there exists a Qy-good path set in
G(m).

Proof. We call default path for wf, (resp. of) the path (jf, ¢f,wf) (resp. (if,1,bf,,af,0})).
Let L, be the path (a},b},c},a?,b%,c2,...,a7,b",c") and let us denote by L;[z,y] the
subpath of L; with endvertices z and y. Let O; = {of|1 < k < m} and W, = {wf|1 <k <
m}.

By symmetry of G,,,, we only need to prove it for the following cases :

(i)

(i) QoN(OUW) = {wk,w} with ky < ka,

(iii) If Qo NW = {wf'} and Qo N O = {o}2}.

(iv) FQoNW = {wy°} and Qo N O = {o}*, 0,2} with Iy =1 or I =1ls.

Qo N (O, UW;)| < 1forl1<1<4,

(v) ¥ Qon(WUO)={of*, 0} 7013 01 -

We only give here the proof in cases (i), (ii), (iii) and (v) with I3 = 4 = 1, the other
cases being very similar.

i) - if |QoN (O UW;)| =0, take the path L;;
- if Qo N (0 UW;) = w;°, take the paths (L;[a},c;°],w;®) and (5, L[c, c)).
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- if QoN(O,UW)) = 0)°, take the paths (Li[a},a;°], 0°) and (i, b2, Lla;®, c"]).
These paths plus the default paths associated to the outputs not in ¢ form a Qy-good

path set.

(ii) Consider the paths (L, [af, Cllcl]vwf ) (91 ) Ll[cl 701 *l,0 )7 (Ls[a3, bkz] Ll[a1 7012] w *),
(i82, Ly[b¥2, c)), (512, Ly[cf*, ¢*]), Lz and Ly. These paths plus the default paths as-
sociated to the outputs not in Qo U {0} form a Qo-good path set.

(iii) Consider the paths (L [al, ™ ], wk), (jF, Li [, ¢]), (Lalad, b52], ak2, of2), (i%2, Lo[bk2, c)),
L3 and L4. These paths plus the default paths associated to the outputs not in Qg
form a @Qy-good path set.

(v) Suppose that I3 = I, = 1. Without loss of generality, we may assume that &k < ko <
ks < k4. Consider the paths (Ll[a17 kl] 0]1“1) (L2[a2,bk2] a 2] 0 2), (L3[a3,bk3] 3,b§3,a'fs],olf3),
(Lafa} Vi) aft 05 b 0 o], o), G 08" Lafal T ), (%, Lalt, o) o).
(@2 7L2[b2 yay]s 0 );( L3[b3 7034] 03*), (@2 ,Lg[b24,02 )5 (Z3 7L3[b3 ,¢5']), and

(@4 7L4[b44vc4 )
These paths plus the default paths associated to the outputs not in Qo U {02 ,02 ,03 *}
form a Qg-good path set.

Proof of Theorem 57. By Theorem 34, R(n,4,0) > ™ — 7. For n = 16m + 4, we have
constructed a (n,4,0)-repartitor H(m) w1th 28m + 18 = 74” + 11 switches. If n is not of the
form 16m + 4, let n = 16m + 4 — h with 1 < h < 15. Let K (n) be the network obtained
from H(m) by the L-contraction of h linking edges. That is always possible as the edges
(bf,af,,) or (cf,sf) are linking. By Proposition 45, K(n) is an (n,4,0)-repartitor. And
K(n)has 28m + 18 —h = 22 + 11 + 32 < T2 4 89 gyitches. [

Theorem 60
™
R(TL,371) = I +C

where —12 < ¢ < 27.

Proof. From Proposition 43, we obtain: R(n,3,1) < R(n + 1,4,0) + R(3, ) By Theo-

rem 57, R(n+1,4,0) < 2 +24. And R(3,3,1) = R(3,0,1) = 3. Hence R( 1) < Img27,
Theorem 34 gives the other inequality. |

5 Conclusion
In this paper, we obtained general upper bounds for R(n,p, f) and lower bounds and exact

values for small p and f. It will be interesting to see if the lower bound for p=6 and f =0
is attained and to study the case p =1,2,3,4 and any f.
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Another interesting problem is to know more on the behaviour of R(n, p, f) and to answer
Conjecture 4. According to this work, it holds for small n, p and f. In view of this conjecture,
the case p = n/2 looks promising.

In a more recent paper, Havet [5] gives a better asymptotic upper bound: R(n,p, f) <
Bn+32f—33p+ O(log(n + f)) if p < "—;f, R(n,p, f) < 18n + 34f + O(log(n + f)), if
"T_f <p< %f and R(n,p, f) < 3n+ 28 f 4+ 33p+ O(log(n + f)) if p > %f
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A  Proof of Theorem 51

Let us exhibit a (n, 1,2)-repartitor with [3% — 1] switches.

We will now prove that the depicted network is a (n,1,2)-repartitor by examining all
the possible cases. By symmetry, we may assume that the best quality output is either one
of the o(ci), one of the o(er), o(d), o(a1) or o(by).

The priority is denoted p and for every switch s i(s) (resp. o(s)) denotes the ordinary
input (resp. output) adjacent to s if it exists. A default path is a path of type i(s), s,0(s).
In each case, we only write paths which are not default ones.

The subpaths of (a1, ¢1,a2,c¢a,...,¢n_1,a,) are denoted [z, y] where z and y are its two
endvertices. Analogously, subpaths of (b1, b1,b2,d2, ...,dn_1,b,) are denoted [z, y] where z
and y are its two endvertices.

Suppose first that Q = {o(ck)}.

1. F ={o(ex),o0(ci)}.

(pv Cy [alvcj]ao(cj))

(i(cj)s €55 @415 €41, [byg1, 1], 0(b1))
Ifj <k< l, (i(Ck), [ck,al],el, [bl, bn],o(bn))

EiECl))a [c1, an), 0(an))

] C),C, bna enaanada b17ela ai, O(al))
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Figure 12: Minimum (n, 1, 2)-repartitor

p,c,ar,e1, b1, bj], e5,a4,¢5,0(c;))
i(ck)a [Ckv al]v O(al))

i(¢5), ¢y @j415 €541, [bj41,0n],0(bn))
i(c1)), [e1, an], 0(an))

(
(
fhk<j<l, (
(
(i(c), ¢, by, €nyan, d, by, 0(by))
(
(
(
(
(

p,c,ar,e1,[b1,b5], €5,a5,¢5,0(c;))
i(¢;), [¢j, anl, 0(an))

ck), ek, a1, 0(a1)

)s €ty ags eq, [br, bi], 0(by))

,C bn,0(by))

Ifk<jy<li,

S
-

b, ¢, [alvcj]70(cj))
i(Cj),Cj,ej, [ijbl]vo(bl))
i(ef),ef, [bl7bn]70(bn))
i(ck)a [ck7an]70(an))

(
(
Ifj<k,j<lI, (
(
(i(C),C, bn7€n7an7d7 blaelvalao(al))
(
(
(
(
(

P, ¢, [a1, ¢5],0(c;))

i C'),C]‘,ej, [ijbn]vo(bn))

)7627 [bl7b1]70(b1))

)7 [ckH a‘n]7 O(O’n))

, Gy bn7 €n7an7d7 b17617a170(a1))

Ifj<k,j=l,

~.

—_= =
%)

NP SN
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(p,c,a1,e1,[b1,b5], e5,a5,c5,0(c;))
(i(c;), [ijan] o(an))

5>k j<lI, (i(e)) e} [bi,bn],0(bn))
(i(ck), [er, ar], 0(ar))
(i(c), ¢, bn, €ny Gn, d, by, 0(b1))
(¢, [bn, bj], €5, a4, ¢5,0(c;))
(i(cj), [CJ anl,0(an))

fj>k j>1, (i(e)) el [bi,b1],0(b1))
(i(ck), [er, ar], 0(ar))
(i(c),c a1, e1,b1,d, Gn,€nybp,0(by))

3. If F = {o(ck),o0(en)},

¢ [a1, ¢5], 0(c;))

(CJ) Cjs@j11,€j+1, [bjt1,b1],0(b1))
Ifj <k, C(i(ck), [k, an], 0(an))
ZE n)s €n, b, 0(bn))

¢,a1,0(ar))

)
p,C [bnab] e] G/J,C] O(Cj))
i(c;), [cj, an], 0(an))

i(ck), [k, a1], 0(ar))

i(en), en, bn,0(by))
i(c),c,a1,e1,b1,0(b1))

4. T F = {o(ci), ole1)},

p, ¢ lar, ¢, 0(cs))

CJ)7CJ @j+1,€5+1, [bj+1,b1],0(b1))
ck), [Ck, an], 0(an))

el) e1,a1,0(ay))

c), ¢, bn,0(by,))

P, ¢ [bn, bj], €5, a5, ¢5,0(c;))

i(¢;), [¢j,an], 0(an))

(Ck)70k7ak+1 €k+1, [br+1,b1],0(b1))
(el) e1,b1,d,an, en,bn,0(by))

(p,
(1
(
(i(e
(
(
(
Iftj>k, (
(
(

If j < k,

/\/\/\/\

If j >k,

5. If F = {o(ex),0(e))}, k<.

¢ [ar, ¢5], 0(c;))

CJ)? [cj’aﬂ]vo(aﬂ))

) €k, [bk, b1], 0(b1))
)7 €, [bla bn],O(bn))

(p
(u
Ifl#n, (i
(1
( cvbmemanvdvblvo(bl))

S NN
/-\/-\/-\/\\.
2] ®
— = =
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I F = {o(ck),

Ifl=mn,j<k,

Ifl=n,j>k,

Ifj<k,j<l,

Ifj<k,j=l,

fj>k 21,

5>k j<i,

M ,v

P, ¢ [bny bnils €,y [an—1, ¢4, 0(¢5))
(¢5),[¢5, a1], ( 1))

k), €k, [br, b1),0(b1))

(€n); €n; bn; 0(bn))
),c,a1,e1,b1,d,an,0(an))

c, [bn7bJ] i aj,cj,0(ci))
C]) [Cj an] O(an))

i(ex), ek, [br, b1], 0(b1))
en) envbnao(b ))
),¢;a1,0(a1))

O(dl)}7

P, ¢, a1, ¢j], 0(c;))
(CJ> Cj> Aj+1, e]+17[b i+1,b1],0(b1))
(ck), [ck, an), o(an))

1), [di, b], 0(bn))

(d
i(¢), ¢, bn, €n,yan,d, b1, e1,a1,0(a1))
, C,

[a1,¢5], 0(c;))

z(c]) Cj, Aj+1, eJ+17[bj+17bn]vo(bn))
i(ck), [ex, anl, 0(an))

iE 1), [di, b1], 0(b1))
1

C) C, b en,anad b]_,e]_,a]_,o(al))

P, ¢, bns €n, [an, ;] 0(c;))
i(cj), ¢jyaj, €5, [bj, ba], 0(bn))
i(ck), [ex, ar], 0(ar))

QE 1), [di, 1], 0(b1))
)

¢), ¢, a1,e1,b1,d,an,0(an))

D, ¢, b, €n, [an, ¢;],0(c5))
i(¢i), ¢j,a4,¢€j,[bs,b1],0(b1))
k) [ck, a1],0(a1))

); [di, bn], 0(bn))

c,ai, el,blad Qn, O (a’ﬂ))

,o(d)},

[ahcg] o(c;))

1); [cj, anl, ( n))

€k,[bk, n] €n,0n,d, by, 61,(11,0((11))
; [di, 1], 0(b1))

¢,y bn,0(by))
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P, ¢, la1, ¢j], 0(c;))

i(c)), [¢j, anl, ( n))

(€ ), ek, [bk, b1], 0(b1))

E 1), [di,bn), en, Gn,d, b1, e1,a1,0(a1))

¢), ¢, by, 0(b,))

p, ¢ [a1,¢5], 0(c;))

1), [cj, an, 0 ( n))

), e1,a1,0(a1))

) [dlv ]7en7an7d7b170(b1))
,Cy b,y 0(br))

8. It F = {o(dy), o(d)}, k <1,

D, c, [(]/1, C]] (CJ))
i(cs), [ej, an), 0(an))
i(dy), [dx, b1], 0(b1))

(
(i
k=1, (i
(i
(

/(d1), [di, br], 0(br))

i(¢), ¢, bn, €n,yan,d, by, e1,a1,0(ar))
9. It F = {o(dy), o(d)},
P, ¢, a1, ¢j], 0(c;))

(CJ)ch Aj+1,€5+1, [bj-l—lvbl]?o(bl))
(k) [cr, an], 0(an))

( ) d b1 €1,0a1, o(al))

(), ¢, b, 0(bn))

Py ¢, bp, en, [an, ¢, 0(c))
CJ) ¢j>aj, €, [bj,bn], 0(bn))
i(ck), [k, a1], 0(a1))

Ed) d,an,0(an))

¢), ¢, a1,e1,b1,0(b1))

If j <k,

Ifj >k,

10. If F = {o(ex),0(d)},

b, ¢, [al C]] O(C]))
i(c;), [¢j, an], 0(an))

z(ek) ek, [bx, b1], e1,a1,0(ar))
i(d),d, b1, 0(b1))

i(c), bn))

11. If F = {o(dy,), o(d)},
)

p, ¢ [a1, ¢4, 0(cs)

(
(
(
(
(

¢, b, of

i(cs), [cj, an], 0(an))

i(dr), [dk,b1], e1,a1,0(ar))
'lE ) d bla ( ))
i(c

(
(
(
(
((¢), ¢,bn, 0(bn))
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12. If F = {o(cx),0(a1)},
pefchoe)
. Ci),C5,Q541,€541,5(0541,01
M5 <E (ilcr) lorsan)solan))
(i(c), ¢, bn, 0(bn))
RS A
. A& c],aj,ej, 55 On bn
If‘] >k, (l( /c) Ck,ak+1aelc+lv[bk+lvb1]70(b1))
(i(c),c,a1,e1,b1,d, an,0(an))
13. If F = {o(ex),0(a1)},
(p, ¢, [a1, ¢, 0(c;))
(i(cs), [, anl, o(an))
((ek) ek, [bk, b1],0(b1))
(i(c), ¢, bn, 0(bn))
14. If F = {o(dy),0(a1)},
(p, ¢, [a1, ¢5], 0(c5))
(i(c5), [cj, an], 0(an))
(¢(dr), [dr, b1],0(b1))
(i(0), ¢, b, (b))
15. If F = {o(d), 0(a1)},
(p, ¢, [a1,¢;5], 0(c;))
(i(cj)s [ej, an], 0(an))
(i(d ) [d,b1,0(b1))
(i(c), ¢, bn, 0(by))
16. If F = {o(cx),0(b1)},
Ep(c)[ahcj] ( )) [b b ] (b ))
_ €;),Cj5 0541, €541, [bjt1, n
M5 <E (iler) lon, anlyolan))
(i(c), ¢, bny €n, an, d, by, €1, a1, 0(a1))
e o)
_ i(cj),cj,aj,ej, n
>k, (i(ck), [cr, 1], 0(a1))
(i(c),c,a1,e1,b1,d, an,0(an))
17. If F = {o(ex),0(b1)},

b, ¢, [(]/1 C]] O(CJ))
i(cj),[¢5,an), 0(an))
z(e;) s €k, (b, b1], €1, a1, 0(aq))

(
(
(
(i(c), ¢, by (b))
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18.

19.

20.

21.

22.

23.

24.

It F' = {o(dk), o(b1)},

p, ¢ a1, ¢, 0(c)))

i(¢;), [¢j, an], 0(an))
i(dk), [dk,b1], e1,a1,0(a1))
i(c), ¢, b, 0(by))

If F' = {o(d),o(b1)},
(p,c, [a1 C]] O(CJ))
(i(cs), [¢j, anl, o(an))
(l( ) d b17617a1 O(al))
(i(c), ¢, bp, 0(by))

If F = {o(ck),0(an)},
[alacj] ( ))

l(cj)vcj @j+1, €541, [bj+1,b1],0(b1))
(ck), Cis Qs €, [bis b, 0(bn))
( ) C, bn7enaan7d7b17617a170(a1))

(
(
(
(

Ifj <k,

P ¢, [bn, bjl, €5, a5, ¢4, 0(¢5))
(c3), 163, e b (b))
i(cr), [er, ar], 0(ar))
i(c),c,a1,e1,b1,0(b1))

If F ={o(er),o(ans)},

(p, ¢, [a1,¢5], 0(cj))
ﬁz(cﬂ s [¢j5 an), d, b1, 0(b1))
(

(p,
(
(1
(1
(»
Ifj >k, E
(

i(er), ek, [bk, b1], e1,a1,0(a1))

i(c); ¢, bn, 0(bn))
If ' = {o(dx), o(an)},

b, ¢, [al Cj] O(C]))

z(cj) [¢j,an],d,b1,0(b1))
i(dy), [k, b1], e1,a1,0(a1))
i(c), ¢, bn, 0(bn))

If F = {o(d), o(an)},

P, ¢, lar, ¢4, 0(¢5))

i(cj), [¢j, anl, d, b1, 0(b1))
i(d ) d,b1,e1,a1,0(a1))
i(c

(c),c,bn,0(by))
If F = {o(a1),0(an)},

(
(
(
(

(
(
(
(i
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25.

26.

27.

28.

29.

30.

(p7 ¢, [ah cj]7 O(Cj))
(i(cj)s €55 5415 €541, [bjt1, b1], 0(b1))

(i(c), ¢, b, 0(by))
If F = {o(b1),0(an)},

(pv ¢, [alv cj]a O(Cj))
(i(cj)s iy j115 €541, [bjt1,b1], €1, a1, 0(a1))

(i(c), ¢, bn, 0(by))
If F = {o(ck),0(bn)},

. ¢, la, ¢, 0(cy))
(¢j),¢5, @541, €541, b1, b1],0(b1))
i(ck), ek, an], 0(an))

i(c), ¢, bn,€ns an,d, b, e1,a1,0(a1))
C,

Ifj <k,

b,
Z(C]) [ijan] O(an))
i(ck), [k, a1], 0(ar))
i(c),c,a1,e1,b1,0(b1))

If F' = {o(ex), o(bn)},

p, ¢ a1, ¢5], 0(¢s))

) [¢j, an],0(as))

), €k, [bk, b1], €1,a1,0(az1))
2 Cy b, €n, G, d, by, 0(b1))

b, c, [ala Cj], O(Cj))
i(¢;): [¢j, an], o(an))
i(€n),€n,an,d,b1,e1,01,0(a1))

1(0). ¢, [bn, br], ob1))

[bn, bj],€5,a5,¢5,0(c;))

(
(1
(
(
(
Ifj >k, E

If k # n,

(]
—

If k # n,

p,c, [al cjl, o(cj))

i(¢j), [cj, an),0(an))

i(dk), [di, 1], e1,a1,0(a1))
l( ) Cabnvenaanada blao(bl))

It F' = {o(d), o(bn)},

(p, c, [a1, ¢, 0(c)))

(i(es), [¢j, anl, o(an))

(i(d ) d,by,e1,a1,0(a1))

(’L( ) cvbnvenvanada blao(bl))

If F = {o(a1),0(bn)},

(
(
(
(
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(p, ¢, [a1, ¢5], 0(c5))
(i(¢j), [¢j, an], 0(an))
(i(c)v ¢, [bnv b1]7 O(bl))

31. If F = {o(by),0(bn)},
(pv Gy [alvcj]ao(cj))

(i(cs), [cj, an], o(an))
(i(c), ¢, [bn, b1], €1, a1,0(a1))

32. If F = {o(ayn),0(bn)},

(p; ¢, [a1, ¢5], 0(¢5))
(i(CJ')v [Cj7 an]v d, b1, O(bl))
(i(c), ¢, [bn, b1],€1,0a1,0(a1))

Suppose that @ = {o(ex)}. By symmetry, we may assume that we are in one of the
following cases:

1. If F = {o(ck),0(cr)}, k < 1,

P: ¢, [bn, bs], €5, 0(e;))

Z(ej) €5,0;5, ]7[b bl] ( ))
i(ck), [k, a1], 0(ar))

i(c1), [c1, an], 0(an))
i(c),c,a1,€1,b1,d,an, en, by, 0(by))

p, ¢, a1,e1,0(er))

(e1),e1,b1,0(by1))
(ck), [cr, 1], 0(ar))
i(c1), [c1, an], 0(an))

1
(p
(
Ifj#1,5#n, E
(

(
(i
Ifj=1, (i
(

(i(c), ¢, bn, 0(bn))
ey ) ek o ofan)
. 1€n), En, an,0\An ¢ Ck, a1],0(01
Itj=n, (i(cr), i, ar, €, [br, b], 0(br)) )
(i(c), ¢, a1, e1,b1,0(b1))
2. If F = {o(ck),0(e))},

¢ [bn, bjl, €5,0(¢;))
)ejvajv ]7[b bl] ( ))
), e, anl, 0(an))

)s €l lar; a1, 0(ar))

(p
(i
j£Lj#L k>0 (3
(i
(i(c); ¢, bn, o(bn))

=TS E S
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I F = {o(er),

4. If F = {o(ck),

. ¢ [bn, bjl, €5, 0(e5))
i(ej),ej,a;,¢€%,[bs,bi1],0(b1))
i(cr), [k, a1],0(ar))
Z(e;) ef,[al,an]m(an))
1

(i(c), ¢, b, 0(by))

P, ¢, a1,e1,0(er))

61) €1, bl O(bl))
ck), [k, an], 0(an))
el) ela[alaal] ( ))
i(c), ¢, bn, 0(bn))

(p
(
fj#Lj#Lk<I, (
(

fj=1k>1,

1
Iszl,k<l, k
eé) elv[alvan] ( ))

(p,c, [al, aj], e, o(e;))
(i(ej), €5, [bj, ba], 0(b1))
(i(€}) €}, [bs, bn], 0(bn))
(i(ck), [cks an], 0(an))
(i(c)

c),¢, bnae’naanada blaelaalvo(al))

Ifj=10wlog j<lI,

o(di)},

D, ¢, a1,e1,0(er))
( )elabla (bl))
(ck), [cr, 1], 0(ar))
(dr), [di, bn], 0(br))
(€), ¢ bns €nyan,0(an))

(
(@
Ifj=1, (i
(¢
(@

?
?
?

(p7 c, [alaaj]7ej70(ej))

(i(ej)veja [bj7b1]70(b1))
i<k j<lLj#1, C(i(ck)[cksan] 0(an))
(i(dr), [di, bn], 0(br))
(i(c)acvbnaenaanada blaelaalvo(al))
¢, a1, e1, [b1, b5, e5,0(e;))
€;j ) ej’[ajaan]ao(an))

k), [y a1],0(ar))

1); [di,bn], 0(bn))
(l( ) ) bﬂaenaanada b170(b1))

By symmetry, we have the result in the other cases.

o(d)},

(p,

(i(
Ifk<j<l, (i

(i(d
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¢ a1,e1,0(er))
61) €1,b1, (bl))
k) [ek; a1, 0(a1))
)) d,an,,0(an))

(P,
(i(
Ifj=1, (i(c
(i(
(i(c), ¢, bn, 0(bn))

?
wc
?
?

(p c, [a,l GJ] €j5,0 (61)>
(z(e;) ej, [bj, b1],0(b1))

Fl<j<k, (i(ck),[ck,an),0(an))
(i(d),d, by, e1,a1,0(a1))
(l( ) c, bnvo(bn))

e]) ej,[aj, an], o(ax))
k), [k, a1], 0(ar))
d) d b1, O(bl))

i(¢), ¢y by, 0(by))

w).o(d)}, wlog. j <k,

pac a1, a]] €;5,0 (61))
€; ) er[ijbl] ( ))
€k) ek, [ak, a1],0(a1))
i(d),d, an,o0(an))

} C) C, bn,O(bn))

p, ¢ la1,a5],ej,0(e;5))
6]) er[ijbl] ( ))
i(€k), ek, [ak, an],0(an))
d d bl,el,al,o(al))
c), ¢, bn,0(by))

6. Tt F = {o(cx), 0(a1)},

b, ¢, [alaaj] €;5,0 (

Ifj#1,

\./?S"

€;))
i(ej), €5, [bj, ba), 0(b1))
ZECkHCk ], 0(an))

¢), ¢, bn, 0(bn))

¢ [bn, b5, €5, 0(¢;))
7’(6]) €;,0aj5, ]7[b bl] (bl))
(Cl)c) s [k, anl; 0(an))

?
i(c),c,a1,e1,b1,d,an,0(an))
!

k

7. If F = {o(€}), o(a)},

Ifk>y,

(
(
(
(
v
Ifk <y, E
(
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e B ot
BEZ3: (i(el). el [ar, an,0(an))
(i(c), ¢, by, 0(by))
A
HL<k<i<m Gy o i b o(b))
(i(c), ¢, a1, e1,b1,d,an, €n,bp,0(by))

p ¢, la,a;],ej,0(e;))

i(€5), €5y [Dj,bn], €nyGn,y0(an))
) 61) €1, b1 O(bl))
i(¢), ¢, bn,0(by))

s by €0, 0(en))

) eﬂvanao(a”)>

;c)?e;cv[bkvbl]vo(bl))

i(¢), ¢, [a1,n-1,€n—1,bn—1,dn_1,bn,0(by))

[alvaJ] ej,o(e;))
€j); €5, [bj, b1],0(b1))
di), [k, bn], 0(bn))

5 Cy Dy €ny Gny0(an))

D, ¢ [bn, bs], €5, 0(e;))

i(€;5), €5, [aj, an), ( n))

i(d), [di, ba], 0(b1))
i(c),c,a1,e1,b1,d,an, €n, by, 0(byn))

(e
\—/?r-

._.
s
oyl
A
.
A
B

¢y bn,en,0(en))
€n), en,an,O(an))
dk)

[dk, n] ( n))

9. If F = {o(d),o(a1)},

(p,c,la1,a5], €5, 0(¢;5))
("(ea) e, [bj, 1], 0(b1))
(i(d), d, an,0(an))
(i(c), ¢, bn, 0(bn))

10. If F = {o(a1),0(bn)}, by symmetry, j # n,
(pv ¢, [a17 aj]v €5, 0(61))

(i(e;), €5, [bj, ba], 0(b1))
(i(c), ¢, bn, €n, Gn, 0(as))
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11. If F = {o(cx),0(b1)},

(p,c,a1,e1, 0(61))
(i(e1), ex, [b1, bn], 0(br))
E( k), [ck,a1],0(a1))

(¢), ¢, bn,en,an,0(ar))

Ifj=1,

(p, ¢, [a1,a5], €5, 0(e;))

(i(ej),€j, [bj, bn], 0(bn))
gl(ck) s [ek, an), o(an))
i(c

(¢), ¢, bn,€n,an,d, by, e1,a1,0(a1))

If1<jy<k,

(p, ¢, [bn, bj], €5, 0(e;))

("(ea) €j,laj, anl, ( n))
E%(Ck) s ek, a1],0(ar))
)

(C),C ai, el7b17d Qn, €n, bﬂ7o(b ))

bn,en,0(en))

)> €ns Gn,0(an))

), [ek, ai], o(a1))

¢, ay, e, [br,bn), 0(bn))

12. If F = {o(e}),0(b1)},

(e e e b o0
BI<kST<m (i), el lar,ail.olar))
(i(c),c,a1,€1,b1,d,an,0(an))

P, ¢ [bn bjl, €5, 0(¢;))
€;), €5, [aj,an], €n,bn,0(bn))
) 61) €1, bl d Qn, 0 (an))

(en
i(ck
i(c),
)

j e;:),eﬁc, [k, bn], 0(bn))

ieneer T ooy

Fl<j<k<m, g o050 ahoum

ISEST(iel), e [ar, an), o(an))
(i(c)vcvalvelvbladvanvenvbnvo(bﬂ))

e o)
Ifj=1, (i(el), e,; [a;c a1]m (a WS)
(i(c), ¢, bn, o(bn))
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13.

14.

15.

E(c}[b b[]e”](ef))))
HE=1 (o), emboo(b))

(i(c), ¢, a1,0(a1)).
It F = {o(dy), o(b1)},

b, ¢, [al aJ] €j,0 (eJ))
Z( ) VR Ja [(Z] a"] ( ))
i(d), [di, bn], 0(bn))

(¢), €, by €n, [an,a1]o(ar))

ps¢,a1,e1,0(er))
i(e1),e1,b1,d, an,0(an))
ZE k)s [di; bn], 0(bn))

), €, by, €n, [an,a1],0(a1))

P, ¢, bns €n;0(€n))
) en,an,o(an))
di.), [dk, bn], 0(bn))

,¢,a1,0(a1))

If F = {o(d),o(b1)},

v?rg

E( )[b b[] e],]( ())))

. i 1€j5),€5,(Aj,0n

Itj#1,and j #n, (1,( ) d,n,€n, by O(b ))
(i(c), ¢, a1,0(a1))

i(el) et, [b1,0n],0

i(d),d, [an,a1],0(a1))

(C) C, bnao(b ))

) en) en,an,o(an))

i
i(d),d, [by, bn],0(bn))
i

If F = {o(ay), (bl)}=
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16. If F = {o(b1), 0(bn)},

(pv ¢, [bmbj]7ejﬁo(ej))
(i(es), €5, [aj, an], o(an))
(i(C),C, (11,0((11))

17. If F = {o(b1),0(an)},

(p7 ¢, [alv aj]v €5, O(GJ'))
Ifj#1,and j #n, (i(e;) €;,[b;;bn],0(bn))

(’i(C),C, bnvenvanvdv blvelaalao(al))

p.c,a1,e1,0(e1))

(61)7 €1, [blv bn]v O(bn))
(C c, bnvena [anval]ao(al))
p

,Cy [al, an]7 €n, O(en>)
Z(€n>, €n, bnv O(bﬂ))
i(¢), ¢, [bn, b1, 1, a1, 0(a1))

Suppose that @ = {o(d)}. By symmetry, we are in one of the following cases :

(p,c,a1,e1,b1,d,o(d

)
(i(d), d, an, €n, bn, 0(by))
1. If F = {o(ck),0(c)}, k<1, (i(ck), [Ckaal] o(a1))
(i(a), [ar, an), o(an))
(i(c), ¢, [bn, b1], 0(b1))
2. If F = {o(ck),o(er)}
(p,c,a1,e1,b1,d,0(d)
(i(d),d, an,0(az))
Ifi#1, (i(ex), [cr,ar],0(ar1))
(i(e), ers [be, br], o(b1))
(i(c), ¢, b, 0(bn))
(p, ¢, b, €n, an, d,0(d)
(i(d) d, by, 0(b1))
Ifi=1, (i(ck), [cksan],0(an))
(i(e1), e, [b1, bn], 0(br))
(i(c), ¢, a1, 0(a1))

3. If F = {o(ck),0(e;)}

D, ¢, a1,e1,br,d,o(d)
i(d), d, an,0(an))

i(cx), ek, 1], 0(ar))
@E 1), [di, 0], 0(b1))

(
(
(
(
(i(c), ¢, bn, 0(by))
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4. I F = {o(er),0(e))}, k <1

b,c,ai,é€1, bla da O(d)
i(d),d,an,0(an))

i(ek)a €k, [akv al]a O(QI))
i(€7) €}, [bi, 1], 0(b1))
(i(c), ¢, b, 0(br))

Ifk+#1,

N NN N

By symmetry, we have the result if [ # n.

(p ¢, [bna b1]7d7 O(d)
(i(d ) d,an,0(an))
(i(e1),e1,b1,0(b1))
(i(en), en, bn,0(bn))
(i(

¢),¢,a1,0(ay))

Ifk=1and!l=mn,

. I F ={o(ck),0(a1)}

p,c, a1, e1,bi,d,o(d)

i(d ) d, an,o(an))

i(Ck),s Chs Okt 15 €41, [brt1, D1],0(b1))
i(c),

(
(
(
(i(¢), ¢,bn, 0(bn))

. I F = {o(ey),0(a1)}

b, c, alvelabladao(d)
( ) d Qn, 0 (a’ﬂ))
i(ex), ek, [br, b1],0(b1))
i(c), ¢, bn,0(bn))

p,cC, bnvenvanvd O(d)
i(d),d,by,0(b1))
i(e1),e1,[b1,bn],0(bn))
Z( ) [alaan]vo(an))

. I F ={o(e),o(a1)}

p,c, a1, e1,by,d, o(d)
i(d ) d, an,0(an))
i(dx), [dk, b1], 0(b1))
i(c

(
(
(
(i(¢), ¢,bn, 0(bn))

1 F = {o(bn),0(a1)}

(p,c,a1,e1,b1,d,o(d)
(i(d), d, an,0(an))
(i(C), & [bn7 b1]7 O(bl))

. I F = {o(ct),o0(b1)}
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10. f F = ﬂxekxoan)}

b, c a’lvelvblvdvo(d)
(d ) d,an,0(an))

(
(i

HEZL (iler), ek, [ak, ar), o(an))

(), €, b o(b)

( ")

(

(

Z( ) d [bla n] ( )
i(e1),e1, a1, an],0(an))
i(c), ¢, a1,0(a1))

);

o(b1)}

k=1,

11. If F = {O(dk

(p,c,a1,e1,b1,d,o(d)

(i(d), d, an,0(an))

(i(dw), [k, bn], 0o(bn))

( ( ) vanvenv[anval]vo(al))

12. If F = {o(an),o(b1)}

(pv c,a1,¢€1, bla da O(d)
(Z(d)a d, [ana al]; 0(al>)
(i(c), ¢, bn,y 0(bn))

13. If F = {o(ax),0(b1)}
(p,c,a1,e1,b1,d,o(d)
(i(d),d, an,0(a))
(i(c), ¢, b, 0(bn))

14. If F = {o(b1),0(b,)}
(p,c,a1,e1,b1,d,0(d)
(i(d), d, an,0(ar))
(i(c), ¢, bn, en, [an, a1],0(a1))

Suppose that @ = {o(a1)}.
In each case, the path from p to o(a1) is (p,c,a1,,0(a1)). We now list the remaining
non-default paths.

1. If F = {o(ck),o(c)}, k < 1,

(i(ck), [cx, a1], €1, b1, 0(b1))
(i(cr), 1y an)y olan))
(i(c), ¢, bn, 0(bn))
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10.

11.

If F = {o(ck),o(er)},
(i(cw), ek anl, 0(an))
(i(el)aela [blvbl]ao(bl))
(i(c), ¢, bny 0(br))

If F = {o(ck),o(di)},

(i(ck), [ck, an), 0(an))
(i(d1), [d1, b1], 0(b1))
(i(c), ¢, b, 0(br))

If F={o(er),o(er)},
(i(ek)aekv [akvan]ao(an))
(i(e;), €, [bu, ba], o(b1))
(i(c), ¢, bn, 0(br))

If F = {o(ex),o(d;)},

(i(ek)vekv [akvan]vo(an))
(i(dy), [di, b1], 0(b1))
(i(c), ¢, bn,y 0(bn))

If F={o(dy),o(di)}, k<l
(i(dk)a [dk7bl]70(bl))
(i(dl)7 [dl7 bn]7 €n, Qn, O(Qn))
(i(c), ¢, bny 0(br))

If F = {o(ck),o(an)},
(i(ck>’ [Ck7a1]7617 ,b1, O(bl))
(i(c), ¢, b, 0(bn))

IfF= {O(Ck)vo(bl)}7
(i(c), ek anl, 0(an))
(i(c), ¢, bn, 0(br))

If F={o(ck),o(bn)},
(i(ck>7 [ck7a‘1]7el7 7b170(b1)>
(i(c), ¢, bn, €n, Gn, 0(an))

It F ={o(er),o(an)},
(i(ex), ek, [bk, b1], 0(b1))
(i(c), ¢, b, 0(bn))

IfF= {O(Gk)vo(bl)}a

(i(ex); exs [ar, an], o(an))
((¢), ¢,bn, 0(bn))
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12. If F = {o(ek),0(b,)},
(i(ek),Ek, [akvan]ao(an))
(i(c)a c, [bna b1]7 O(bl))

13. If F = {o(d), o(an)},

(i(dw), [dx, ba], 0(b1))
(i(¢), ¢,bn, 0(bn))

14. If F = {o(dy,), o(b1)},

(i(dg), [dk, bn), €ny an,0(an))
(i(c), ¢, bn, 0(bn))

15. If F = {o(dy), o(bn)},
(i(dk), [dr, b1}, 0(b1))

(i(c), ¢, bn, s €ny an,0(an))

16. If F C {b1,an, by}, it is easy there is a path from i(c) to the element of {b1, an,b,} \ F

since the network minus the link ca; is connected.

Suppose that @ = {o(b1)}.

1. If F = {o(ck),0(c))}, k <1
p,c,a1,€e1,b1,0(b1))

(

(i(ck), [cr, ar], 0(a1))
(i(cr), [c1, an], oan))
(i(¢), ¢,bn, 0(bn))

2. If F = {o(ck),o(er)},
psc,ay,e1,bi,0(br))

(ck), [ex, a1], 0(a1))

i(€1) 1, [bi, bn], €ny @n,0(an))
i(c), ¢, bn, 0(br))

D, Cy by, €n, G, d, by, 0(b1))
i(ck), [ek, an], 0(an))
i(e1),e1, [b1,bn],0(bn))

i(c), ¢, a1,0(a1))

3. If F = {o(ck),o(d))},

Ifl#1,

(
(i
(
(
(
Ifl=1, E
(

P, ¢, a1, e1,bi,0(br))

i(cr), [er,a1],0(ar))

7/( ) [dl n] €n, Qn, O(Gn))
1 C

(
(
(
(i(¢), ¢,bn, 0(bn))
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4. I F = {o(er),0(e))}, k <1,

(p c,ay,€1, bl, (bl))

(i(ex), ex, [ak,a1],0(a1))

(i(€)): €1, [ar, an], 0(an))

(i(c); ¢, bn, 0(bn))

(p, ¢, bny €n,an,d, by, 0(b1))
(e1),e1, [a1,an],0(an))
i(€)): €1, [b1, bn], 0(bn))
(c),c,a1,0(ar1))

(4
(4
(4
Ep G [bn, 01, 0(b1))
(
(

Ifk+#1,

Ifk=1and ! #n,

i(e1), €1, a1, an], 0(an))
i(en)s €ns bn, 0(bn))
i

c),¢,a1,0(a1))

5. If F = {o(ex),o(d))},

Ifk=1andl=mn,

D,C,a1,€1,by, (bl))
i(ex), ek, [ar,a1],0(a1)
i(d1), [di, bn], €n, an,0(an))
i(c), ¢, bn,0(bn))

D, Cy b, en,an,d, by, 0(b1))

Z(ek) ek, [ak, an], o(an))

lE 1), [d1, bn], 0(bn))
i(c

) ¢ a1,0 ( 1))
c,ap,é€q, b1 O(bl))

(p
Ifk#1and k # n, E
(

(
k=1, E
(

Z( n)s n;y0(an))
i(dy), dlabl+lvel+la[al+1’a1] o(a1)) or (i(dy),dy, b, e, [ar,a1],0(a1))
i(c), ¢, bn, 0(bn))

6. If F = {o(dy),o(d))}, k < 1,

(p,
Ifk=nmn, E
(

(p,c,a1,e1,b1,0(b1))

(@(dk) dic, bt 1, €41, [akt1,a1], 0(a1))
(i(dr), [d1, bn], €n, an, 0(an))

(i(c), ¢, bn, 0(br)

7. If F = {o(ck),o(d

R N

I
p,c,ai, e, bi,o(br))
i(ck), [ck, ar], 0(al))
i(d), d, an,0(an))
i(c), ¢, bn, 0(bn))

8. If F = {o(ex),o0(d)},

(
(
(
(
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10.

11.

12.

13.

14.

15.

p,¢,a1,¢€1,b1,0(b1))
z(ek) ek, [ak, a1],0(al))
i(d),d, an,0(a))
i(c), ¢, bn, 0(by))

¢ bn,en,an,d, by, (bl))

Ifk#1,

z(el) €1, [bl, n] ( ))
i(d), d, an;0(ay))
i(e),

c,a1,0(a1))

If F = {o(di),o(d)},

(
(
(
(
(P,
k=1, E
(

(p,c,a1,e1,b1,0(b1))

(i (dk) i, bit1, €xt1, [akt1, a1, 0(al))
(i(d), d, an,0(ax))

(i(c), ¢, bn, 0(bn))

If F = {o(cy),o0(a1)},

(p,c,a1,e1,b1,0(br))
(icr), [er, anl, 0(an))
(i(c), ¢, bn, 0(bn))

If F = {o(er),0(a1)},

(p,c,a1,e1,b1,0(b1))
(i(ek)v €k, [akH an]v O(an))
(i(c), ¢, bn, 0(bn))

If F = {o(et),o(a1)},

(p,c,a1,e1,b1,0(b1))
(i(dk)v[dkvbn]venvanvo(an))
(i(c), ¢, bn, 0(bn))

If ' = {o(d), 0(a1)},

(p,c,a1,e1,b1,0(b1))
(i(d),d, an,0(an))
(i(c), ¢, bny 0(br))

If F = {o(ck),o(an)

b
(p,c,a1,e1,b1,0(b1))
(i(ex), ek, ar], 0(a1))
(i(c), ¢, b, 0(bn))

If F={o(ex),o0(an)},

(p7 c, bTM €n,n, d7 b17 O(bl))
(i(ex), ex, [br, bn]; 0(br))
(i(C), C, a1, O(al))
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16.

17.

18.

19.

20.

21.

22.

If F' = {o(dx),0(an)},
(pacabnaenaanadablao(bl))
(i(dw), [k, bn], 0(bn))
(i(C),C, alao(al))

If F' = {o(d),o(an)},
(p,c,a1,€1,b1, (bl))
(i(d), d, [an, a1], o(a1))
(i(c), ¢, bn, 0(bn))

If F = {o(ck),0(bn)},
(p,c,a1,e1,b1,0(b1))

(i(ck), [k, an], o(ar))

(i(c), ¢y bn,y €ny G, 0(ar))

If F = {o(ex),o(bn)},

(p,c,a1,e1,b1,0(b1))
i(ex), ek, [ak, a1],0(a1
(i(c), ¢, bn, €n, Gn, 0(az))
(p, ¢, bn,y €n,an,d, b, 0(br))
Iftk=1, (i(er),e1,a1,0(a1))
(i(c); ¢, bny €ny @n, 0(an))

Ifk#1landk#n, (

(pca17el7b17 (b1>)
If k = n7 (Z( ) eﬂda/nao(an))
(i(c), ¢, bnydn—1,bn1,€n 1, [an_1,a1],0(a1))

If F' = {o(dx),0(bs)},
(p,c,a1,e1,b1,0(b1))

(i(dk)a [dkv bl]’ d, [an7 al]v 0(a1

(i(c), ¢, bn, €ny G, 0(Gr))

If F ={o(d),o(by)},
(p,c,a1,e1,b1,0(br))

(i d 7d7 [aTHal] (a1>)

(i(c), ¢, bn, €n,y an,0(ay))

If F C {a1,an,by}, it is easy there is a path from i(c) to the element of {a1,an,bn}\ F
since the network minus the path (p,c,a1,e1,b1,0(b1)) is connected.
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