N

N
N

HAL

open science

Gal’s Accurate Tables Method Revisited

Damien Stehlé, Paul Zimmermann

» To cite this version:

Damien Stehlé, Paul Zimmermann. Gal’s Accurate Tables Method Revisited.
RR-5359, INRIA. 2004, pp.23. inria-00070644

HAL 1d: inria-00070644
https://inria.hal.science/inria-00070644
Submitted on 19 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

[Research Report]

https://inria.hal.science/inria-00070644
https://hal.archives-ouvertes.fr

ISRN INRIA/RR--5359--FR+ENG

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Gal’s Accurate Tables Method Revisited

Damien Stehlé, Paul Zimmermann

N° 5359
Octobre 2004

THEME 2

apport
derecherche

% I N RIA

LORRAINE

Gal’s Accurate Tables Method Revisited

Damien Stehlé, Paul Zimmermann

Théme 2 — Génie logiciel
et calcul symbolique
Projet Spaces

Rapport de recherche n° 5359 — Octobre 2004 — 23 pages

Abstract: Gal’s accurate tables algorithm aims at providing an efficient imple-
mentation of elementary functions with correct rounding as often as possible. This
method requires an expensive pre-computation of a table made of the values taken
by the function — or by several related functions — at some distinguished points. Our
improvements of Gal’s method are two-fold: on the one hand we describe what is
the arguably best set of distinguished values and how it improves the efficiency and
correctness of the implementation of the function, and on the other hand we give
an algorithm which drastically decreases the cost of the pre-computation. These im-
provements are related to the worst cases for the correct rounding of mathematical
functions and to the algorithms for finding them. We show that the whole method
can be turned into practice by giving complete tables for 2% and sinz for x € [, 1],
in double precision.

Key-words: Gal’s method, elementary functions, lattice reduction, simultaneous
worst cases.

Unité de recherche INRIA Lorraine
LORIA, Technopble de Nancy-Brabois, Campus scientifique,

615, rue du Jardin Botanique, BP 101, 54602 Villers-Lés-Nancy (France)
Téléphone : +33 3 83 59 30 00 — Télécopie : +33 383 27 83 19

Améliorations de la méthode de Gal

Résumé : L’algorithme de Gal a pour but de fournir une implantation efficace
des fonctions mathématiques élémentaires avec arrondi correct aussi souvent que
possible. Cette méthode nécessite un pré-calcul trés cotiteux d’une table de valeurs
prises par la fonction considérée — ou de plusieurs fonctions en relation avec celle-ci —
en un ensemble de points distingués. Nous améliorons la méthode de Gal de deux
maniéres: d’une part nous décrivons quel est le meilleur ensemble de points distingués
et comment il améliore P'efficacité et la correction de I'implantation de la fonction,
et d’autre part nous donnons un algorithme qui décroit considérablement le cofit
du pré-calcul. Ces améliorations sont liées aux pires cas pour 'arrondi correct des
fonctions mathématiques et aux algorithmes qui les calcule. Nous montrons que nos
ameéliorations sont raisonnables en pratique en donnant des tables complétes pour 27
et sinz avec € [1,1[, en double précision.

Mots-clés : Méthode de Gal, fonctions mathématiques élémentaires, réduction de
réseaux, pires cas simultanés.

Gal’s Accurate Tables Method Revisited 3

1 Introduction

The IEEE-754 standard for floating-point arithmetic [12] specifies that the four
basic arithmetic operations and the square root should be correctly rounded, but
does not require a correct rounding for any other elementary mathematical function,
like trigonometric, exponential and logarithmic functions. For this reason, there are
libraries which produce incorrectly rounded results, or which do not guarantee a
correctly rounded result, and, for example, this causes serious difficulties for the
portability and reproducibility of scientific calculations. The reticence to extend the
standard to the elementary mathematical functions comes from the fact that an im-
plementation guaranteeing a correct rounding is too expensive. Citing David Hough
in the context of the revision of the IEEE-754 standard’:

[Elementary functions| are too hard to standardize now because no-
body knows how to trade-off precision vs performance. If less than cor-
rect rounding is specified [...] then [it] is always possible that some-
body will come up with a non-standard algorithm that is more accurate
AND faster. This can’t happen with a correct rounding specification, but
correctly-rounded transcendental functions seem to be inherently much
more expensive than almost-correctly-rounded. One could instead stan-
dardize properties that approzrimate functions are supposed to obey - but
anomalies still abound. All these points argue against standardizing tran-
scendental functions now.

In the present paper, we improve a routine commonly used in the implementation
of elementary functions, namely Gal’s accurate tables method (see [8,9] and [17]
pp58-62), in the hope it will shrink the efficiency gap between elementary functions
libraries in use and those guaranteeing a correct rounding (such as [1,25]), and give
more support for proposals of standardization of these functions [18, 7].

The implementation of an elementary function over its full domain for some given
precision usually requires two phases (see [6] for the exponential function): a quick
phase giving a correctly rounded result for an overwhelming proportion of the entries
and an accurate phase which is considerably slower but performed only in the few
cases for which the quick phase was not sufficient. The quick phase often uses the
input-output precision as working precision (or eventually extends the precision or
uses a few more bits in very few steps), while the accurate phase is often based
on Ziv’'s strategy [24] which extends the working precision until the result can be
guaranteed correctly rounded (eventually, one may also use a sharp bound on the

! http://grouper.ieee.org/groups/754/meeting-minutes/01-03-14.html

RR n°® 5359

4 Damien Stehlé, Paul Zimmermann

required precision if such a bound is known [13,14]). The quick phase is itself often
subdivided into three sub-phases:

— First range reduction: The full domain of the function is restricted to a smaller
one by using the mathematical properties of the considered function, e.g. exp(x+
kln2) = 2F.exp(z) giving the range [0, In 2[, 2% = 2¥.2% giving the range [0, 1],
sin(z + k%) = fr(x) with fi = £sinx or f = *cosx depending on k mod 4,
giving the range [—%, 7|, - .-

— Second range reduction: By a table lookup, the range is shrunk further. For
example, we write 2% = 270 . 2" (resp. sinz = sinxg - cosh + cos g - sinh)
where (zg,2%) (resp. (xo,sinzg,coszg)) is stored in the table and h = = — z9
is small (|h| is approximately smaller than the length of the range obtained
after the first reduction, divided by the number of distinguished elements). We
call related functions the functions used in this range reduction: for 2% there is
one related function (namely 2%), but for sinz there are two related functions
(namely sinz and cos).

— Polynomial evaluation: The remaining terms (e.g. 2, cos h,sinh, ...) are evalu-
ated by using a polynomial approximation of the function (or the related func-
tions) over the restricted range.

There are very satisfactory answers for the first [20] and last sub-phases [2]. Gal’s
method addresses the second sub-phase. The original technique is based on a table
of “almost regularly spaced” distinguished points which images by the function (or
the related functions) are unusually close to machine numbers. The table, of size a
few kilobytes [5], is obtained wia a pre-computation based on a naive search.

We improve Gal’s method in two ways. First we notice that the best set of
distinguished points is made of the values for which the function (resp. the related
functions) is hard to round (resp. to round simultaneously) in the case of directed
rounding (towards 0 or oo): this problem is therefore closely related to the Table
Maker’s Dilemma (TMD for short). A direct consequence of this fact is that we
can adapt the methods which find the worst cases of a one-variable function [13,
14,22,23] in order to construct the tables, if there is a single related function. This
is much more efficient than Gal’s naive search. In the case of one related function,
Gal’s method can be adapted for the accurate phase to guarantee a correct rounding
for any input. The second improvement is an algorithm to construct the table when
there are two related functions: we modify the lattice-based algorithm of [22,23] to
find simultaneously bad cases for two functions.

In the paper, although the method can be easily generalized to other functions
and to arbitrary precision, we focus on 2% and sin x for x € [%, 1[in double precision.

INRIA

Gal’s Accurate Tables Method Revisited 5

For this choice of parameters, our improvements towards Gal’s original method are
the following:

1. The table for sin z is constructed much more efficiently than by naive search (the
cost of the naive search would have been 2°2 calls to sinz and cos x in extended
precision).

2. For sin x, the proportion of entries for which the quick phase fails decreases from
~ 2710 to o 2720,

3. The accurate phase for 2% can be based on Gal’s method by using the work of
Lefevre [13,14]. It requires only quadruple precision calculations.

The rest of the paper is organized as follows. In Section 2 we recall some basic
facts about the TMD and Gal’s accurate tables method. In Section 3 we describe
what is the best set of distinguished values in the table and how this choice improves
the quick and accurate phases. In Section 4 we explain how to obtain these tables.
Finally, in Section 5 we show that the method is practical for double precision by
giving parts of the tables for 2 and sin x.

Notations: We define [|a,b|] (resp. [|a, b[|) as the set of integers in [a, b] (resp. [a, b[).
For any integer n, [a, b, denotes the set of the 47’s where a < g% < b and m is an
integer. For example, [3, 1[53 corresponds to the doubles with exponent —1. For any
reals x and ¢, z cmod c denotes x— | £], and if £ is half an odd integer, we choose any
of the possibilities. In particular, x cmod 1 is the “centered” fractional part of x. We
denote by o(x) a machine number closest to x in double precision. Finally, vectors
are denoted in bold and for a vector x € R", ||x|| and ||x||; are respectively its Lo

and Ly norms, i.e. |[(z1,...,2,)|| = />y 22 and ||(21, ..., 20)|[1 = Doy |@il-

2 Preliminaries

This section gives the necessary background to describe our improvements of Gal’s
accurate tables method. We describe an informal model where the functions we con-
sider are regarded as black-boxes returning uniformly distributed outputs. Experi-
ments corroborate very well this model. We use it to describe Gal’s original scheme
and to give the basic ideas concerning the Table Maker’s Dilemma.

2.1 The Random Model

We consider that a function behaves as a random black-box when the first bits of its
output are thrown away. Such an assumption is of course very strong and completely

RR n°® 5359

6 Damien Stehlé, Paul Zimmermann

heuristic. Nevertheless experiments tend to validate this hypothesis and in particular
the experiments of Section 5 do not contradict it.

A given function f : [§,1[— [a,b[for some a < b (e.g. 27 : [1,1[— [1,2]) is seen
as a random black-box: for any n and k1 < ko larger than some thresholds, if = is
chosen randomly and uniformly in [%, 1], then the bits at positions k; and ko of the
binary expansion of f(z) are independent random variables uniformly distributed

in {0,1}. This implies some useful properties:

— The probability of obtaining a run of p consecutive identical bits— starting from
some given position — in the binary expansion of f(z) is 2! 7.

— If we consider 2P consecutive z’s, there is O(1) of them such that the binary
expansion of f(z) has a run of p consecutive identical bits starting from some
given position.

— The set of the z € [§,1[, such that f(z) has a run of p consecutive identical
bits — starting from some given position — is of cardinality around 2"7P, and the
maximum distance between two consecutive elements is less than ~ (1 +n— %) .
2"P (see the appendix for a proof).

We generalize this model to two functions f1, fo : [%, 1[— [a,b] for some a < b
(e.g. sinz and cos x). They are seen as random independent black-boxes: firstly they
both are black-boxes, and secondly, for any n and k1, ko larger than some thresholds,
if x is chosen randomly and uniformly in [, 1[,, then the bit at position k; of the
binary expansion of fi(z) and the bit at position ks of the binary expansion of fo(z)
are independent random variables. From such an hypothesis we can also derive some
properties:

— The probability of obtaining a run of p consecutive identical bits— starting from
some given position — in the binary expansions of both fi(x) and fo(z) is 22727,

— If we consider 2?7 consecutive z’s, there is O(1) of them such that the binary
expansions of both fi(z) and fo(x) have a run of p consecutive identical bits
starting from some given position.

— The set of the x € [3,1[,, such that fi(z) and fo(x) have a run of p consecutive
identical bits starting from some given position is of cardinality around 227,
and the maximum distance between two consecutive elements is less than ~
(14+n—p) 2772,

Notice that it is easy to make all these statements rigorous and to generalize the
model to more than two functions.

INRIA

Gal’s Accurate Tables Method Revisited 7

2.2 Gal’s Accurate Tables Method

Gal’s accurate tables method [8,9] addresses the second range reduction of the quick
phase of the calculation of f(z). The method is general, but here we take as examples
f(x) =2% and f(x) = sinx. The idea of the second range reduction is to write:

2$ — 2(20 . 2h’

sinx = sinxg - cos h + cos xg - sin h,

where z(is in a table of distinguished points and is stored with an approximation of
its corresponding 2% (resp. sinxzy and cos xg); h = x — x¢ is small: roughly speaking,
|h| is smaller than § divided by the number of distinguished points. After this table-
based range reduction, 2" (resp. cos h and sin h) is computed approximately by using
a low degree polynomial (resp. two low degree polynomials) which closely approxi-
mates 2" (resp. sin h and cos h) when h is close to 0. To fix the ideas, we can suppose
that these polynomials are the Taylor expansions of the functions at 0, but it is pos-
sible to do better [2]. If we consider the double precision (i.e. 53 bits of mantissa),
since we are in the quick phase, the calculations should be made in double preci-
sion as often as possible, and it is interesting to have tables with approximately 2'°
distinguished elements, for cache optimization reasons (see [5, 1]).

The naive way of choosing the distinguished elements is to take them equally
spaced, thus minimizing the maximum value taken by |h|. Gal’s idea is to relax very
slightly the maximum value taken by |h| in order to choose better distinguished
points: he takes almost regularly spaced distinguished points xg such that the stored
approximation of 2%0 (resp. sinxg and cosxg) is unusually close to its true value.
More precisely, in double precision, for any 0 < i < 219, z is a machine number
closest to % + 2% such that:

‘252 . 9% cmod 1‘ <2710 for 27

‘253+e -sinz}) cmod 1] < 2710 and !253 - cos xfy cmod 1] < 2710 for sinaz,

where e = 1 if |z{)| < £ and 0 otherwise. According to the random model, z{, should
be extremely close to % + 2%, implying a negligible increase of the value that can
be taken by |h|. Moreover, this set of distinguished points gives a more accurate
implementation of the function: since |z — x| is bounded by ~ 27!2, the final output
for f(z) can be made accurate with ~ 63 bits of precision although the calculations
are made with doubles. Again in the random model, this implies that the value

RR n°® 5359

8 Damien Stehlé, Paul Zimmermann

output for f(x) is correctly rounded with probability around 1 — 27! which is
higher than 99.9%.

The tables are constructed by exhaustive search, so that there are approximately
29 trials for any distinguished element of the 2%-table, and approximately 2'® trials
for any distinguished element of the sin z-table.

2.3 Some Reminders on the TMD

Let n be the precision and f : [3,1[— [3,1[be the considered function. A m-bad
case x for f is a m-bit machine number such that at least n + m bits are needed to
round f(z) correctly. More precisely these are the 2’s in [5, 1[, such that:

— 2" - f(z) cmod 1] < 27 for the directed rounding modes (towards 0, +oo
or —oo0),
— 2" f(z) — % cmod 1| < 27™ for the rounding to nearest mode.

Notice that in this definition, m can be any real number. Here the functions we
consider have output ranges different from [%, 1], so we adopt the definition to our
case. We say that z € [1,1[53 is a m-bad case for 2% if [2527% cmod 1| < 27™, a
m-bad case for cosz if [2°3 - cosz cmod 1| < 27, a m-bad case for sinx if |25 -
sinz cmod 1| < 27™ when « €]%,1[and [2°! - sinz cmod 1| <27 if z € [}, E.
The knowledge of the hardness to round f,i.e. the maximum m such that f admits
a m-bad case, makes it possible to implement f efficiently, because the maximum
number of bits which are needed is known in advance. The drawback of this approach
is that this value is hard to compute. The exhaustive search is by far infeasible
because of its &~ 2" complexity. Lefévre and Muller proposed a ~ 227/3 algorithm [13,
14] , which was sufficient to perform some systematic work in double precision.
Stehlé, Lefévre and Zimmermann [22] gave a generalization of this algorithm by using
lattice-based Coppersmith’s work to find small roots of modular polynomials [3, 4].
They obtained an algorithm with a heuristic ~ 23"/® complexity, which was later
improved to ~ 2°7/7 [23]. Although these complexity bounds are better than the one
of Lefévre’s algorithm, it seems that the practical cut-off between both methods is

around the double extended precision, i.e. n = 64.

3 Gal’s Accurate Tables Method Revisited

Our improvement is based on the idea that it is possible to require runs of more than
10 consecutive identical bits as Gal does. We first describe what are the best sets of
distinguished points for 2* and sin z, and then show that for 2%, Gal’s method based

INRIA

Gal’s Accurate Tables Method Revisited 9

on this set can be used for the whole evaluation scheme (both quick and accurate
phases).

3.1 A Table Made of Bad Cases for the Directed Rounding Modes

Under the random model assumption, it is possible to strengthen the requirements of
Gal on the lengths of the runs of consecutive identical bits. For the 2% function, we can
take as set of distinguished points all the 42-bad cases. There are approximately 2'2
of them and the maximum distance between two consecutive ones is below 279914,
see Section 5. Choosing such a set of distinguished values decreases the error made
on 2%0 in

2% = 9%0 . oh

but since the maximum distance between two distinguished values is not decreased,
the error made while evaluating the polynomial approximating 2" for h close to 0
is roughly the same, i.e. ~ 2710: since the coefficients of the polynomial are dou-
bles and since this is also the working precision, the degree-1 coefficient is correct
with error bounded by ~ 27%3710 As a consequence, the error made in the quick
phase is roughly the same. But as we will see in the next subsection, this choice of
distinguished points makes the accurate phase more efficient.

For the sinx function, since there are two related functions in the second range
reduction (namely sinz and cosx), we cannot expect runs of consecutive identical
bits as long as for 27. Indeed, the best choice of distinguished values is made of all the
2’s that are simultaneously 21-bad cases for sin z and cos x. There are approximately
212 of them, and the average distance between two consecutive ones is below 272977
as shown by the experiments of Section 5. This means that the errors made on sin xg
and cos zg in

sinz =sinzg-cosh+coszg-sinh (1)
are decreased from ~ 2793 to ~ 277 We argue that the errors made in the polyno-

mial evaluations corresponding to cos h and sin h can also be made that small, in a
very efficient way. We define

1
S(h) = h — ash® + ash® and C(h)=1—§h2—|—a4h4,

where a; is the double closest to for i € {3,4,5}. Using the fact that || < 2710977

along with Lagrange’s bound, we obtain that:

3 5
sinh—<h—h—+h—>‘+

inh — <
|sinh — S(h)| < s T 120

RR n°® 5359

10 Damien Stehlé, Paul Zimmermann

< 2—76.839 . 2—12.299 + 2—56.584 . 2—32.931 + 2—62.906 . 2—54.885

< 988314
1

h? ht
h—\1——+ = - =
cos (5 + 24> a4 2
< 905862 9—0.491 | 9—58.584 9—43.908

|cosh — C(h)| < +

1l

< 2—75.352‘

We now explain how to evaluate equation (1). Let ¢y and sy be the two machine
numbers approximating cos xg and sin xg. By construction we have |co — cos x|, |sg —
sinzg| < 27™. Let C*(h) = C(h) —1 and S*(h) = S(h) — h. Recall that h < 2710977,
We first compute approximations of S*(h) and C*(h) with Horner’s method in double
precision:

k« o(h?) lk — h?| < 275421 < 9= 75 J < 921953

K — o(h - k) k' — B3| < 2710977=T5 | 9-54-32 9—84.988 k'] < 2732:930
S* «— o(as - k) |S* — as - h2| < 976:906-75 | 9—54-28 L 9—80.952 15*| < —28.859
S* — O(S* _ a3) |S* _ (_a3 +as - h2)| S 2—80.952 + 2—54—2 S 2—55.999 |S*| S 272.584
S* «o(k'-S*) |8* —S*(h)| < 9~84.988-2.584 | 9—55.999-32.930 | 9—54-35 L 9—86.754 5% < 9—35.513
C* — o(as - k) |C* — ay - h2| < 9T48B4=TE 4 9—54-26 < 9=T8.TTT ¥ < —26.536
C* — O(C* _ %) |C* _ (_% +aq - h2)| S 2—78.777 + 2—54—2 S 2—55.999 |C*| S 2,1'000

C* — O(l{? . C*) |C* _ C*(h)| S 277571.000 4 2755.999721.953 + 2754722 S 2774.824 |C*| S 2722.951.

The calculation of sin z ends with the sum:
s=so+co-h+(so-C"+c¢o-S"),

the term “cq - h” being evaluated in an extended precision, for example by using a
quadruple, a double-double, or by simulating the extended precision with the use of
a fma operation. For example we do this with a fma.

— W~ Ofma(SO +co - h)
— t — o(h' — sp).
— |« Ofma(t —Co - h)

Since |cg - h| < %2, we have b’ > 22 and the second operation is exact. Therefore we
2 2 P
have:

h'+1=sy+co-h and |(h +1)— (sinzg+cos zg-h)| < 97T 4 9= TA10.977 9= T73.999

We now compute some less significant bits, which in particular suffice to round
correctly the result most of the time.

S* — O(C() . S*) |S* — cos To - S* (h)' S 2774735.513 + 270.188786.754 + 2754735 S 2786.631 S*l S 2735.700
C* — O(S() . C*) |C* — sin Zo - c* (h)| S 2774722.951 + 270.249774.667 + 2754723 S 2774.610 |C*| S 2723.199

INRIA

Gal’s Accurate Tables Method Revisited 11

C* — o(S* +C*) |C* = (coswo - S*(h) + sinzo - O (h))| < 2786631 | 9= 74610 < 9=74.609
C* - O(l + C*) |(h/ + C*) _ SinI| S 2774.609 + 2773.999 + 2717106 S 2773.271.

When the distance between 2°37¢ . sinx and Z is higher than 253t¢ . 2773271 —
27 19-271+¢ _ where e is 1 in the case of a rounding to the nearest mode, and 0 for
a directed rounding mode — the addition h’ + C* gives the correct output. This
implies that by using such a scheme the result is correctly rounded with probability
at least 1 — 2719271 which makes the 99.9% estimate of Gal increase to ~ 99.9998%.

3.2 A Function Evaluation Scheme Based on Gal’s Method

In this subsection we describe how one could evaluate 27 : [3,1[— [1,2[in double
precision with correct rounding by using only Gal’s method, in the case of a directed
rounding mode. As usual, there are two phases: the quick phase and the accurate
phase.

The quick phase We use Gal’s method with the table made of the 42-bad cases.
This induces an error bounded by 274! for the term 2%, and the problem is reduced
to computing approximately 2" where |h| is smaller than 2710914 (see Section 5).
We do this by evaluating the polynomial P(h) = 1 + a1h + ... + ash*, where q; is
the double that is closest to (ml.?)l. It is possible to check that P(h) can be evaluated
with only operations on doubles to approximate 2" with error bounded by ~ 273
when |h| < 2710914 This implies that if x is not a 10-bad case, the value calculated
so far for 2” is correct. Moreover, as a side effect, if x is a 42-bad case, the result
can also be correctly rounded: for each entry (xg,2%0) of the table, we add a bit of
information telling whether the stored value for 270 is slightly larger or smaller than
its real value.

The accurate phase Suppose now that the quick phase was not sufficient to guar-
antee a correct rounding of the output. We keep the same pair (zg,2%°) and only
change the polynomial evaluation sub-phase. We evaluate in quadruple precision the
polynomial Q(h) = 1+ bih + ... + byh” where b; is the quadruple precision ma-
chine number that is closest to (1112_')1 It can be checked that Q(h) can be evaluated
with operations on quadruples to .approximate 2" with error bounded by 27106821
when |h| < 2719914 Tet Q(h) be the value computed for Q(h), and yo be the value
for 270 that is stored in the table. We finally approximate 2% by o - Q(h), the error

being bounded by:

2—106.821+1 + 2—41—53 . 1000360 + 2—114+1 S 2—93.999'

RR n°® 5359

12 Damien Stehlé, Paul Zimmermann

This implies that if z is not a 41.999-bad case, then the result is rounded correctly.
Therefore, we have an implementation returning the correct rounding for any input x
except those that are 41.999-bad cases but not 42-bad cases. We fix this point in the
following way. We consider a table made only of 42.00072-bad cases instead of 42-bad
cases, which means that we remove 6543825232174115/2%3 from the look-up table
and consider it as a special case. This removal does not change the bound on |h|.
Moreover, it is easy to see that the error analysis just above now gives an final error
bounded by 2794, Therefore the result is correctly rounded because we must be in
one of the three following situations: = is not a 42-bad case, the error bound gives
that the value returned for 2% is correctly rounded; x is a 42.000072-bad case, the
output is stored in the table; otherwise x is 6543825232174115/2%3.

4 The Computation of the Tables

So far, we built our function evaluation scheme as if we knew explicitly the tables
we described. Nevertheless, the task of computing the tables is by far nontrivial: if
we were using an exhaustive search as Gal does, the cost of computing the table of
either 2% or sinz would be 252 calls to 2% (resp. sinz) in extended precision. For 2%
the problem is easily solved once it is noted that the 42-bad cases can be calculated
by Lefévre’s algorithm [13,14] or the lattice-based algorithm of Stehlé, Lefévre and
Zimmermann [22,23]. In this section, after giving some background on lattices and
lattice reduction algorithms, we describe a method to construct simultaneously bad
cases for two functions. For a given precision n, this algorithm admits a heuristic
complexity of ~ 2/2 — instead of ~ 2" for the exhaustive search, and ~ 22"/3 with
Lefevre’s algorithm.

4.1 A few Reminders on Lattices

In this subsection we briefly give some necessary background on lattices and on lattice
reduction algorithms. We refer to [11,16] for more details on both the algorithmic
and mathematical aspects.

A lattice L is a discrete subgroup of R", or equivalently the set of all linear
integral combinations of £ < n linearly independent vectors b; over R, that is:

14
i=1

Notice that the rank ¢ of the lattice can be smaller than the dimension n of the
embedding space. As soon as ¢ > 2, a given lattice L admits an infinity of bases

INRIA

Gal’s Accurate Tables Method Revisited 13

related to each other by unimodular transformations. We define the determinant
of the lattice L as det(L) = Hle ||bj||, where b7,...,b; is the Gram-Schmidt
orthogonalization of a lattice basis bi,...,b,. This quantity does not depend of
the choice of the basis. Most of the time, only bases which consist of short vectors
are of interest. The i-th minimum of the lattice L is the smallest r such that the ball
centered in 0 and of radius r contains at least ¢ linearly independent lattice vectors.
For example the first minimum A;(L) is the length of a shortest non-zero lattice
vector.

Since it corresponds to our situation in the following subsection we now suppose
that £ = 4 and L C Z°. It is classical [11] that in this case there always exists a basis
reaching the four first minima, such a basis being called Minkowski-reduced, and
that the first minimum of L is below v/2 - det(L)'/4. Moreover, the well-known LLL
algorithm [15] can be used to find a vector which is not much longer than the first
minimum.

Theorem 1. Given a basis [b,...,by] of a lattice L C Z°, if M = maxz;||b;||, the
LLL algorithm provides in time O(log® M) a basis [vy, ..., vs] satisfying:

o1]| < 4\i(L) < 4v2det(L)'2.

This is not optimal because the output basis is not necessary Minkowski-reduced,
and therefore the vectors may not be as short as possible. The greedy algorithm of [19]
outputs a basis reaching the first four minima, and has the additional advantage of
admitting a O(log? M) complexity bound.

4.2 An Algorithm for the sin z-Table

The search over [%,1[is divided into - quick searches over intervals of length %.
These quick searches are performed by using the algorithm we describe below.

Given two functions fi; and fs, a precision n, a bad-case bound m and a search
bound T, the following algorithm tries to find all the machine numbers x € [—21", 21"]
such that:

|2" - fi(z) cmod 1] <27 for i € {1, 2}.

In fact it solves this problem for any N and M in place of 2" and 2™. It starts by
approximating both f; and fs by polynomials, and then tries to solve the problem for
these polynomials instead of the initial functions, by using Coppersmith’s method to
find small roots of multivariate modular polynomials [3, 4]. Our algorithm is heuristic:
all its outputs are correct, but it may eventually fail. Nevertheless, the heuristic is

RR n°® 5359

14 Damien Stehlé, Paul Zimmermann

quite reasonable and the algorithm worked very well in our experiments described in
Section 5: we follow the strategy of halving 7" until the algorithm does not fail, and
it happens that the average T corresponds to what the theory predicts.

In the algorithm we use a routine LatticeReduce, which can either be the LLL
algorithm [15] or the greedy algorithm of [19]. The input functions are made inde-
pendent of N: F;(t) = N fi(t/N).

Algorithm SimultaneousBadCaseSearch.
Input: Two functions F; and F», and two positive integers M, T
Output: All ¢t € [T, T] such that |F;i(t) cmod 1| < & for i € {1,2}.

Let Pi(t), P2(t) be the degree-2 Taylor expansions of Fi(t), Fa(t).
Compute € such that |P;(¢t) — Fi(t)| < ¢ for |[t| < T and i € {1, 2}.
Let M’ = | 7=, C =3M', and” P;(r) = |C- P,(T)] for i € {1,2}.
Letelzl,egzr,engQ,eg:v,e5:q§. _
Let g1 =C, g2 =C -7, g3 = Pi(7) + 3v, g4 = Pa(7) + 3¢.
Create the 4 x 5 integral matrix L where Ly ; is the coefficient of the monomial e; in gy.
V «— LatticeReduce(L)
Let vi,v2,vs be the three shortest vectors of V, and Q;(7) the associated polynomials.
If there exists 7 € {1,2, 3} such that ||v;||1 > C, return(FAIL).
Let Q(7) be a linear combination of the @;’s which is independent of v and ¢. We have
deg@ < 1.
Let ¢(t) = Q(%). For each to in IntegerRoots(g, [T, T]) do

if |Fi(to) cmod 1| < 47 for all ¢ € {1,2}, then output to.

S VPN W

—_

—_
—_

4.3 Correctness of the Algorithm

The following theorem gives the correctness of the algorithm.

Theorem 2. In case the algorithm does not return FAIL, it behaves correctly, i.e. it
outputs ezactly all integers t € [T, T such that |F;(t) cmod 1| < 47 for i € {1,2}.

Proof: Because of the final check in Step 11, we only have to check that no worst case
is missed. Suppose there s tg € [T, T with |F;(to) cmod 1| < 4 fori € {1,2}. From
the definition of P;, |Pi(tp) cmod 1| < 57 + & < 5i7. Since [C' - Pi(TT) — Pi(1)| < 3
for |7| < 1, by choosing 79 = & we get |P;(10) cmod C| < 3.

Whence the g;’s have a common root (to/T,vg,¢o) € [~1,1]3, modulo C. Since
the Q;’s are linear integer combinations of the g;’s, they admit a common root in
[—1,1]® modulo C, and even over the reals since |[v1]1,|[va||1,|[vs|li < C. Finally
to is an integer root of ¢(t) and will be found at Step 11.

2 The notation |C' - P;(T'7)] means that we round to the nearest each coefficient of C'- P;(T'r). This
gives an element of Z[r].

INRIA

Gal’s Accurate Tables Method Revisited 15

Working Precision In Step 1, we can use floating-point coefficients in the Taylor
expansion P;(t) instead of symbolic coefficients, as long as it introduces no error in
Step 3 while computing P;(7), for i € {1,2}. Let a§- be the j-th Taylor coefficient

of f;. In order to get a correct 15() at Step 3, the error on CN (Z)j -ag must be

% must be less than ﬁ () Since N > T, it thus
suffices to compute a] with logy(2C'N) < 2n bits after the binary point. (We will see
below that C' = O(N'/2).)

less than 3 5, thus the error on a’

4.4 Complexity Analysis of the Algorithm

Now that the correctness of the algorithm is proved, we estimate its complexity. Let
ay, ay, ... be the Taylor coefficients of f; for i € {1,2}. Here we assume that for any
k and i, |a}| = O(1).

Taylor’s Bound Since we neglect Taylor coefficients of degree three and higher,
the error made in the approximation to N - f;(%) by P;(t) is ~ a} - T3 - N~2. Since
we are looking for simultaneously bad cases with |P;(t) cmod 1| < 7, we want

T3 N2 =0 (4),ie. T = 0 (57).

The Size of the Coefficients of the P;’s The degree-2 polynomials Py(7) ~6 +
pir+phT? € Z[7] computed at Step 3 of the algorithm satisfy p; = O(M - T?.)
Indeed, since P;(t) = p}+pit+ p2t2 is the degree-2 Taylor expansion of N - f (
have pb = O (N~1). Moreover, P, is defined by P;(1) = py+pi7+psr2 = |C-P(T
The fact that C = ©(M) concludes the proof.

The Matrix Computed at Step 6 We have to reduce the lattice spanned by the
rows of the following matrix.

Py P1 D33
s pi P 3

It is easy to compute the determinant of this lattice:

|det(L)| = 3C% - T - \/(33)% + (3)? +3 = O(M® - T N 1),

RR n°® 5359

16 Damien Stehlé, Paul Zimmermann

Coppersmith’s Bound In order to ensure the algorithm does not return FAIL at
Step 9, we use Theorem 1 to provide at least one short vector: det(L)l/ 4 has to be
smaller than C, which gives the bound 7% = O(M - N). This is not enough to ensure
that there are two other short vectors, but it seems that in practice the first three
minima for these lattices are most often very similar.

Complexity Analysis We have two bounds for 7', N and M:

M-T3= O(N?) [Taylor’s bound]
T3 =O(M - N) [Coppersmith’s bound]

Since the complexity of the overall search — an exponent range of N/2 values — is
approximately poly(log N) - %, the best choice of parameters is T ~ M ~ N'/2, thus
giving a heuristic complexity of ~ poly(log N) - N/2.

Remark: The technique used in Algorithm SimultaneousBadCaseSearch resembles
very closely the algorithm of [22, 23], but things happen to be somehow simpler. For
example, increasing the degree of the polynomial approximations or the dimension
of the lattice by taking powers of the P;’s is useless here: it seems that the degree-2
approximations and the four-dimensional lattice give a better complexity bound than
any other choice of parameters.

5 Experimental Results

We give here the first values of the tables for 2 and sin(z), the complete tables being
available at the url: http://www.loria.fr/“stehle/IMPROVEDGAL.html.

5.1 The Table for 2*
We give in Figure 1 the smallest 340 values to € [|252,253]| satisfying:

t
2524385 emod 1] <27 (2)

with m > 41. The table has been provided by Vincent Lefévre and was computed
with Lefévre’s algorithm for finding the worst cases of a one-variable function.

There are 4001 elements in the table, 1985 if we choose m > 42, 973 with m > 43,
491 with m > 44 and 265 if we choose m > 45. The maximum distance between two
elements of the table is below 279914 and the worst case is tg = 13e34fa6ab969e
with m = 52.

INRIA

Gal’s Accurate Tables Method Revisited

17

to m

to m

to m

to m

1000a0933511b6 41
10010b0e40£f662 46
1003127£149599 42
10090d6fac990e 43
100b80c24097£2 43
100bab73fdcc3f 42
100bb8ab1d1100 41
100cadb551fe346 44
100cb£828d7460 46
100d68962fcc81 42
100e0a8c90£689 43
100e97b65850f4 42
10132731cebbel 42
10134149fe0d12 41
101376279d2dc1 42
1014c13ae9fefc 41
1014cfa7e6f50f 47
10152a02a0e1d7 41
101572981d0476 43
1016b1lbae4d03c 41
1016bad257171c 41
1017c31d491bba 41
1017£00d465af95 41
1018b94b547a9a 42
1019574298668a 41
101a1266c635ea 42
101a13477077£3 41
101a9¢6150a8f9 41
101b8a60603ead 41
101c£f8045e2370 41
101d6254e73fd6 41
101e21cfb94e2e 41
101e3bfced8abe 41
101e491£36b805 41
101£f6ad0d7b36b 41
10230fb167bfb7 41
102387b05e6545 43
10250b58310371 43
102518534e84cf 42
1026fbd8e9b8df 42
102a021633b58a 46
102abb7£f4f0846 41
102a72437ae131 41
102b5b6e340122 43
102cbcb7e91eb54 41
102cb72bab4fd3 42
1030f46£21b28c 41
103104de6e26e9 41
10310a0cba76bd 41

104ff6c8df89c9 41
10515c7fae4713 41
1052861427ae4b 41
105292757balbb 41
1054ad24cacf03 41
10570d95dae311 43
105746998b9£f8f 43
105c7910974a51 42
1060e7defdfccf 43
10642abeaal22e 42
10648724988ab3 41
106502aa0bb873 42
10663e1c7a91a3 41
10689232cd0al19 42
10699a598db731 46
106ab4067a924f 41
106c243adf9733 41
106d1c9260468d 41
106d5b7968bbef 42
106eef8395e912 41
106ef69bb3e581 41
106£8baf443960 44
107083a6d6ffba 42
1070£fa9f51779e 41
10714d132debel 41
1071833084ab7c 41
1074d76fa7bffd 41
1076d298bcaf26 45
107734e9125945 41
1077986c944eal 41
107895385f87a2 43
1078c86d7ccf08 43
10790f81ed8ble 41
107a4bd8645636 44
107c398749fda0l 43
107dd22eb97b83 42
107£d944a37068 41
108035098c8bb5 41
10805acac3eebc 43
108307e£22c375 45
10831134b7a2be 44
1083a556fccd3c 42
1083fb63a05848 43
108436d22bfdf0 41
108454c9275a56 42
108472f13c1638 45
10847fa37272e4 42
1084£0ad44799b 42
108608d20c912d 42

10a8c959del7ec 43
10aa5620d4d55d2 45
10aad829751d41 46
10ab55c3bf3fdf 43
10af7642c57264 49
10af78aabddd8d 41
10afe702aafa22 41
10b10471e500c7 41
10b1880e15e187 43
10b2204396d7cd 44
10b290db417aeb 42
10b3dd3d6443dc 41
10b3ecb63b653c 41
10b432dd48904f 43
10b4c0a2b70a93 41
10b70e980e2075 43
10b81504a3b6f2 41
10ba3cble670ac 41
10bab38c616eda 44
10bacb2b5b7d57 44
10bb74a596b653 42
10bbd7a9b2£059 41
10bc0d7cdb97b9 41
10bc2babb4dbdcc 42
10bcdb4838bceb 42
10bdc58bealelf 41
10be49£351£f97 41
10be5559c3ab£f8 41
10beefd2889f5b 41
10c046edb7£731 41
10c04e92273366 41
10c151dc12ecf7 46
10c16de3c6ccdb 43
10c258b14bal7e 43
10c280f41a50fc 42
10c45302f7e7£6 42
10c54410eae788 43
10c6debc012f7a 41
10c96aba034896 42
10cb16£6b62d7e 41
10cbd2f904e167 41
10cbd94529a9e7 42
10ccf098a6bdbe 45
10ccf7d97£1a97 41
10cdcd4760ab8c 42
10cecc7c07798a 46
10c£30936de093 42
10d40489ee954ac 41
10d16b2e672e96 41

10£537£3554cc4 42
10£62e793af175 42
10f6af736baa7d 41
10£f6b67d0223d6 41
10£6faa7153803 42
10£7218c776af6 41
10£75282e65fa0 45
10£f8dbec829dec 45
10£92eec9c9f26 43
10£9f6c083f93a 41
10faa42£732397 42
10£fab4d705e116 42
10£fb15£0318546 42
10fba014£fc8116 45
10£c901159e14a 41
10fca9fefcbce3d 42
10fd7dadf5a3b3 42
10fdb62d4def4f 41
10£e0£63679f1e 41
10fe184d5ccel2 41
10££fd77d8b14£f2 41
1100c21c464f0f 41
1100£37c692673 42
1101072£c95068 41
11028a32c4a2ef 47
1102cf995ce239 41
1102dd6d49caf7 42
11033ea6£703cc 43
11036dfa18ab53c 42
1106772d539bab 41
1106e0af2056¢7 42
11075aef9690f1 41
1107£07e070c£f2 41
1108f1fcc904fd 44
110b25bee87achb 41
110bbdaabd8667 41
110c1e5£0025df 41
110f43fb4caldf 41
110£7109d13719 41
1110e91b2d1f3a 41
111155105d5924d 42
11118275139509 41
1111a97b4£263f 43
1113ec3ba733bb 41
1114ea9f9ebalb 42
11167c6b40c8e3 44
1118fa37fal2c8 41
111982798864ea 41
1119a87f9ef18a 42

RR n°® 5359

18

Damien Stehlé, Paul Zimmermann

to m

to m

to m

to m

1031625a98e771 42
103171d08132ea 41
10338161238438 43
1033fb60ab460c 42
10340a91d235aa 41
103430a4e98425 41
1034d2ecc35d1b 43
10359d4ea8f91d 41
1037481cedaeb7 42
1037£349bbbafb 43
1038bce2bdifde 41
103b1b58d452eb 41
103c4c4044638b 41
103c4d302f6d0c 41
103d95f6dcb2d6 44
103e1d04638a7c 42
103e6adab7c68a 43
1040ce08962562 42
1041b900d4dela 46
1041£3294776a0 41
10425b570ce231 41
1043683b2855da 41
104465a2e29491 42
10460bf32£7445 42
10464beb261708 43
10465feabe21ab 42
104709a8fadd6c 41
10471£d702c9d3 42
1047c04£d4d928 42
1047e0£3bc9998 41
10484e9f051391 47
104901619d35dd 44
104989b0163d8e 44
104a0f5c73cabf 41
1042ab3068aab67 41
104fc5ded73759 41

1087d1ed5a7904 41
10881b25a3e2d0 41
108956376cdbe2 41
10896be0d6df11 41
1089c4408426£f6 41
108aacdf72£200 42
108b2ced385574 44
108b3140cb3afa 43
108d361ab20c9a 41
108dab8b58528b 43
108e0abelb77af 41
108ec85cf08dcl 41
108fce687£9840 41
10918bb26cf0c4 41
1093129e745f16 41
10948c3a13d895 41
10948f31d564a7 41
109609c2£64999 43
1096c7c75ad460 42
109777be978a67 43
109971e693c2dc 41
1099875c6£8773 41
1099£7bf3b3398 42
109b98555a5238 42
109ba07£ab£908 42
109¢319a483366 45
109cf2a7b0f7ce 41
109d8467594476 44
109£24264£f525e 43
109£fbd573b0093 41
10a010bdd31967 41
10a0£0£9456c64 42
10a1de8993d77f 42
10a5403cb5a794 42
10a559e66148c1 41
10a6afbe9cbe31 42

10d4233c636bf1b 43
10d4286a02df36e 41
10d43448f07be60 41
10d39996808b21 42
10d3a3af6ea778 41
10d3c7087a3e77 41
10d4b6d9fa9fb8 47
10d4bf19a7d5c1 41
10d6ccaed7654b 41
10d471a092d749f 45
10d484b5bb44c12 41
10dc0dac7d009f 48
10dc4afd3a4bi1b 41
10dca0dad94c53 45
10dde88cdab4de3 42
10d4f60d8af554d 41
10e08b1£f5c02a0 41
10elccd8badch8 42
10e2fa2cbd1e48 41
10e6£76ad97103 41
10e803eb7d750f 44
10e86de60591ab 41
10e88bdc0fff7d 44
10e8bc7£fd88662 41
10eale34c15056 42
10eaacb1416c22 43
10eabbd10965b5 41
10eb82c979df98 41
10eb87227fdda7 41
10ebb62a06ac91 42
10ecd4a9ab85eb 41
10eda1b07£d3b3 42
10edb4a0507dbe 41
10ee017b71576¢ 47
10efc482af6810 41
10£514cd3348ee 42

111ad682071cce 41
111b9a9fb4702e 41
111bbeceb83d7e 42
111e3804bf7be0 41
11201db8d2£123 42
11204e081f1eda 42
1120ec98297799 41
11217a561806ab 42
11218ef8e0£270 47
1125590cc9c638 43
1126bal1760d591 43
1127e2ee8£2539 43
1127f7ad5b5639 43
1129192fc2bc3f 41
1129a9855d1698 41
112af5b851eci2 41
112b269c438074 42
112c999bf575ab 41
112ccf71c46625 42
112d9611ca8ac4 41
112f9¢7338bd4b 41
1131465988299 45
1131b2d980608c 42
11326a0d38c3b1 45
1132e10e16c70f 42
1135788566076f 43
1136¢818592a53 42
1139fd01c7c864 41
113a343467c9d9 43
113a52¢d9dd3b4 41
113b9c767982a9 41
113e29b82ca375 41
113e30c3667506 41
113£887a0a026e 41
113fc2b1069abd 42
1141675df1591c¢c 42

Fig. 1. The smallest 340 entries of the table for 2* for double precision and z € [1, 1[: for any entry,
to, m satisfy equation (2).

INRIA

Gal’s Accurate Tables Method Revisited 19

5.2 The Table for sinx

We give in Figure 2 the smallest 340 values to € [|2°2,253[| satisfying:

t
253 . cos — cmod 1| < 2772 (3)

253

t
953+e gin 2—503 cmod 1‘ <27™ and

with mq,mo > 21, e = 1 if 2% < § and e = 0 otherwise. The table has been
computed by an implementation of the algorithm described in Section 4 using GNU-
MP [10] and MPFR [21], within a time equivalent to one day on a single Pentium IV,
4.3 GHz.

There are 4113 elements in the table, 1084 if we choose mq, my > 22 and 248 if
we choose m1, mg > 23. The maximum distance between two elements of the table is
below 279977 and the worst case is ¢y = 31a93fddd45e3, with mq, mo > 27. Notice
that all these values are very close to what predicts the random model.

We also started the calculation for the double extended precision (64 bits of man-
tissa) and quadruple precision (113 bits) for z € [3, 1[. The worst simultaneous cases
found so far are 2o = aa349cb12135522b/2% and 1 = 10000000004af2d94d4c848253a£8/2!13,
with:

!264 - sinzy cmod 1‘ <273 and ‘264 - cos g cmod 1! <2733,

‘2114 -sinx; cmod 1‘ <2740 and ‘2113 - cos r1 cmod 1‘ < 2740,

Acknowledgements

We thank Vincent Lefévre for providing the 2*-table, and Florent de Dinechin and
Nicolas Brisebarre for helpful discussions. We also thank the Medicis center for al-
lowing the computation of the sin z table.

References

1. THE ARENAIRE PROJECT. Crlibm, 2004. http://lipforge.ens-1lyon.fr/projects/crlibm/.

2. N. Brisebarre and J.-M. Muller. Finding the "truncated" polynomial that is closest
to a function. INRIA Research Report No 4787, 2003. Updated version available at
http://arxiv.org/abs/cs.MS/0307009.

3. D. Coppersmith. Finding a small root of a univariate modular equation. In Proceedings of
Eurocrypt’96, volume 1070 of Lecture Notes in Computer Science, pages 155-165. Springer-
Verlag, 1996.

4. D. Coppersmith. Finding small solutions to small degree polynomials. In Proceedings of
CALC’01, volume 2146 of Lecture Notes in Computer Science, pages 20-31. Springer-Verlag,
2001.

RR n°® 5359

20

Damien Stehlé, Paul Zimmermann

to

mi

ma)

to

mi

ma)

to

miy 1m2

to

miy 1m2

100005b33739b0
100041£f50c3flc
1001816a64dd2f
100200c5ch2ble
100232ac6ced30
1004a41a9c144b
1005133741a51b
1005bdc9e62331
10082241803fdc
100878de00f64e
100a05ecc34c4b
100b96f21a2cba
100b9c13f7af85
100clacccb1200
100cd15£f52fa66
100d6012cd1521
1010e3a483df8a
1013afb9a473c3
101906bca03655
101ac9ca78b2ct
101ddd2fabec33
101e313e5941e2
101e4f064a62d8
1021695200a512
1022377ecc3c61
10247db0a22a8a
1025204d12226f
102837b0141d55
102843d0813d4b
10287095e29e03
1029d934cf0c8b
102a3da792d082
102a79ae9ebafc
102bc1£2791512
102bf46dc54edb
102c00£99a9ebb
102dea6280480e
102ec7d7278c68
102f0£8422829d
102f1£660892f1
10318ce9536c14
1032384fe53575
1032d5874e5600
10339e8a9abibe
1033b15b3b4b49
1033dd8384e176
1034ae60£96942
1035de70672b94

22
22
21
24
21
23
21
24
21
25
21
23
22
24
22
21
21
22
21
21
22
21
22
24
21
21
23
21
21
21
23
22
22
21
21
23
21
21
24
23
21
22
21
22
22
23
21
21

23
26
22
22
21
21
21
23
21
21
21
21
22
22
21
21
22
23
23
21
21
21
23
21
22
21
21
25
27
22
21
21
22
21
21
23
22
22
24
21
21
21
21
21
21
23
23
21

105bbaca3eddle
105e6be8cf5774
105ec2e64498ef
105£8b988f6£00
1060b539cbb5aab
10627fd75a5d5a
1064cb8e18b925
10660397acbabe
10672dfd9566b2
1067ece33bb379
1068£fb69£286b9
106914e6c86511
1069fce2287eel
106a51c672bddc
106a5d5£27cc30
106a66c1bd1af0
1062a87f18£8d43
106b79196edeb7
106b9c67c82478
106c77dal1638ac
106e320e3186ed
106e34c6dc2225
106e4290410bbf
10717£9e£24796
10719476d554d0
107209eb970£f41
10725c42eclicla
10734f4ae296eb
1074113ce06309
10757bbafc961e
1076bf672dbdeb
1076c8b1c9e2e3
1078£079e3870c
10793906974243
107a8820£f£766¢
107b464c692a80
107b4c9e24983e
107c1085936936
107faddd7de242
107££8f631e4fd
1081798f564455
1081b1b54cca8c7
1082324dc77240
1082b1163b1db6
1085d06d52bba6
1086d1d94c7074
108724abeda7cd
108725142e5d25

22
23
22
21
21
23
21
21
23
21
21
21
23
23
21
21
22
22
22
22
23
24
22
21
21
23
21
22
21
23
21
24
23
21
22
21
22
21
21
21
22
22
23
21
23
21
21
21

21
21
21
26
25
21
25
21
23
21
24
21
23
24
21
23
22
21
22
22
21
22
21
23
22
26
22
25
21
23
21
21
25
21
21
22
21
21
21
21
21
21
22
21
21
21
22
21

10abf25186b83d
10ac2623c6b253
10ac2b88b6b488
10ac9abf467fae
10acd45e3d39f6
102e4093fd8c6d
10ae68db95a30e
10aedbcfe2aacl
10aef857e93654
10b15a14b82070
10b48e3e5c599b
10b5014ab8calb
10b6121£f6c1133
10b63b44b0807a
10b68£f0b9d2bb0
10b72056£91450
10b9510108fe35
10ba273084d7e8
10babd29c¢85560
10bbc36d6£047a
10bc65e0adebbe
10bccfb8c96420
10bcefa7d7a725
10be8b2d909c8b
10bf2e28314376
10b£45c5c91750
10bf99afd9b7df
10c000c83bb309
10c0204927ebb5
10c12006££9642
10c1ddb34cfeb1
10c34aede19a3d
10c361932d629f
10c4c4dlecOefe
10c62919966c63
10c6aa32a2a90f
10c844926fe873
10cad8ebeaed4dd
10cadab9a5038c
10cb67e06de678
10cb808bc636£2
10cb8faa0102b3
10cb90aa7efe73
10cba073a49f9b
10cdd8553220a0
10ceOeac08faa9
10ceaall1a43ic
10cf1b3485c6d8

22
25
24
22
22
21
22
22
24
21
22
23
21
24
23
22
22
22
21
22
23
21
21
23
22
21
21
21
21
22
23
23
24
22
22
22
26
22
21
22
21
23
21
25
22
23
21
21

21
21
21
21
22
23
21
21
22
21
21
22
21
25
23
22
21
22
22
22
24
21
21
21
22
21
21
22
24
21
21
21
26
21
22
21
21
21
22
22
23
21
21
21
25
21
24
23

10£59e428feeb9
10£5f£fd7£7107c
10£78163b97ffd
10£9318c7eb8f2
10£f94eala96655
10£9bcd75e4chc
10fcae0099cd49
10fcbdd65144a8
10£cc37204925b
10£d348c2eb9a8
10££fb048e5ac40
10£ffcea2062887
11006£2333aa3f
11019655c69beb
1101b3b0e03ac3
11029ca7d942b4
11040e1£5928dd
110481b7fad244
11051e92ae1357
110786bd47c6£3
11092285dd3bd8
110bc2d0a8c190
110c3cc9b3cabb
110c427383adel
110d3614fb7dbd
110d4698db23£82
110dbeb370afe7
1110283255bcfb
111041£f0511a79
1110935eb5613b
1111642c8d6053
1111fb819e95aa
1113673ada3c8b
1113abb7a2bada
1113c39c7378b5
11159177938bc6
11177806cbbbef
1117fa42£9d367
11180c4267dd14
111994a808000d
111a4701603bc2
111a90f95aa8fa
111a9bc4c969b0
1110830584168
111b2ccdbOalec
111bbf54bfc577
112006ba015aa8
112128339be9ce

21
24
26
21
21
22
21
21
21
21
22
21
22
21
23
27
23
24
21
22
23
22
25
24
21
24
21
21
22
23
23
23
22
21
24
22
21
22
21
22
24
22
21
21
22
23
21
21

21
21
25
27
22
21
21
22
21
21
23
22
22
24
21
21
21
21
21
21
23
23
21
21
21
23
21
24
21
21
22
21
23
22
25
22
21
21
22
21
22
21
25
25
21
21
21
22

INRIA

Gal’s Accurate Tables Method Revisited 21

to mi1 ma to m1 ma to mi me to mi mo
10360bdc0503e3 22 21|1089057fe8bf9f 25 21|10cf5bb959f981 23 22(1121f7a14911f3 24 22
103659b3264f1a 23 21({108a2bacd4bdbal 23 22|{10d11cec9795c7 22 21(11222a01a53222 22 24
103933fb42490a 22 23(108a64810eedba 21 31|10d165e20883df 22 21(112238cdbafd43 29 21
1039520b39de3f 22 21({108b0bcc0f3db4 23 22|10d26e57593eda 21 25(112294fd009e8b 25 22
103bb05ed2ed15 21 24(108dbf125bildba 21 22|10d28bede41899 21 21({112570dc7b64fb 21 21
103befeb9d099d 21 21({108e1b53376a09 23 21{10d299c02ceb06 21 21({112683c12c65cc 25 21
103dc6bb0320ab 21 21({108e5c34488fce 21 24|10d33ac8e428ca 21 21(112748f1a0449f 23 21
103e3187526ca7 21 22|108e73339d096e 21 22|10d3£3728c9e19 31 22|11280a807fa60b 23 21
103e9455296b10 21 21({108eaebf9e6c04 22 22|10d4baf3576aa6 21 21({1129bal11920e62 24 21
103fbb4c9ab033 23 23(108ef1cb5d492f1 21 21|10d622cabfbcb9 23 22(112acae9fb365c 21 22
103fbfeba05c63 22 22(108£f072adb9f88 22 22|10d697dfe9c4fb 22 21(112bldbcae3909 22 21
1041534a083934 22 25(108f4179ad4df0 21 21|{10d494d7£f£524f8 21 21({112b4488fc7bce 21 32
1042d54e1489c3 21 22|{10900cb646148d 21 22|10d9bf905c9e20 23 21({112bdb7b4f06f2 21 21
1044d7e90231b0 21 21|1090b399efa956 22 26|10db53395a9977 22 22|112bf757346083 24 21
10453a4a9a4a8f 21 21(1090f70cOe9aca 21 22|{10dcd14a30e9bb 21 26({112c3569bcf3be 22 21
104559f45e94c4 22 22|10947bdf0lebld 21 21|10dde90d53b2cb5 24 21({112d0789cb6024 21 26
1046f9ccbbebea 21 21(109615db97d66e 22 21|10dfcc2ec6a0d4 23 26(112£049d4c80f1 24 25
1047c2abdbb72b 21 22(10979549e32d13 22 21|10e001ba088b2f 25 21(113165fdf9f7bc 22 21
1048bd23a4dd2e 23 21({1097a64bfda33d 21 23|10e021a9120121 21 21{113221b693£823 22 25
10495faa26160e 22 25(109896c9f914e5 22 21|10elacae70db54d 21 21({1132ea6b8a3bbc 23 21
10496656c1££f87 21 25|109aec630233bf 21 25|10e321fbddifef 21 26(11334f7db2405a 21 23
104aa7ea3874c9 23 21(109b4bf4£29d94 23 23|10e604a4d17649 21 22(1133b657a730f0 21 21
104b3d3c366b58 21 21({109b7e3645d8b8 21 21|10e799f2cdfOdc 21 21({1135b308e2e218 22 24
104b4a97f4f5c6 21 21|109b9f6a2a429e 22 21|10e7c358af2dab 21 27(11362fdbbdidc2 23 21
104bc374£21721 21 22({109beb7f54460e 21 21|10ealfcfa7f8a9 23 21({11365bb3bd4b8f 22 23
104c68d1bb4dcde 23 22(109d690bfel1789 21 21|10eac47da3b32d 23 21(11385af2ecdd6b 25 24
104ca7c46330df 21 24({109eal505a7c¢57 21 21|10eadOafe7c2eb 22 21({1138abb94abb37 25 21
104d3270d89b8e 25 21|109ed784ceb6lc 22 22|10ec03f654b512 21 21(1138d925dbd757 21 23
104£d823dbc039 21 22(10a0b3bb1a3d772 22 21|10ecad34738809 24 21(113935408b7f24 22 22
105639e€9100f11a 21 21({10alebacdcefc8 21 21|10ed37c0c95289 23 23(113a3c3b12f666 22 21
1053e86deeBabd 22 21|10a2e0fcf91802 21 22|10edf546a9b982 24 22(113a6bc755fe7f 22 22
1055a709cbdab7 21 21({10a60c73574756 21 21|10ee8aa36ae7ba 22 22(113bce3e99d426 22 22
1056574aedecl17 21 21({10a80£3bd4577d 22 22|10ef07c49468d0 21 22(113defedb485ef 21 21
10590dd662dc15 22 21(10a8607f38aflb 21 23|10£f00918f9aad6 24 21(113ea2edb89253 21 22
1059e587£fa8996 25 22|10a8a9201db329 24 24|10f0486591187e 24 21|113f80945eca69 23 21
105b8d1£f£31578 22 21|10a9e86bb6103f 21 22|10f0f85d38beee 23 21(1140ddb619caac 21 23
105bb056calbb3 21 32(10aae00a9a3852 21 22|10£483062d50c6 21 22(11425defb64c47 21 22

Fig. 2. The smallest 340 entries of the table for sinz for double precision and z € [3,1[: for any
entry, to, m1, m2 satisfy equation (3).

RR n°® 5359

22

Damien Stehlé, Paul Zimmermann

ot

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

. D. Defour. Cache-optimized methods for the evaluation of elemen-

tary functions. LIP Research Report RR2002-38, 2002. Available at
ftp://ftp.ens-lyon.fr/pub/LIP/Rapports/RR/RR2002/RR2002-38.ps.Z.

. D. Defour, F. de Dinechin, and J.-M. Muller. Correctly rounded exponential function in double

precision arithmetic. In Proceedings of SPIE /6th Annual Meeting, International Symposium
on Optical Science and Technology, 2001.

D. Defour, G. Hanrot, V. Lefévre, J.-M. Muller, N. Revol, and P. Zimmermann. Proposal
for a standardization of mathematical function implementation in floating-point arithmetic.
Numerical Algorithms. To appear.

S. Gal. Computing elementary functions: a new approach for achieving high accuracy and good
performance. In Proceedings of Accurate Scientific Computations, volume 235 of Lecture Notes
in Computer Science, pages 1-16. Springer-Verlag, 1986.

S. Gal and B. Bachelis. An Accurate Elementary Mathematical Library for the IEEE Floating
Point Standard. ACM Transactions on Mathematical Software, 17(1):16-45, 1991.

T. Granlund. GNU MP: The GNU Multiple Precision Arithmetic Library, 4.1.4 edition, 2004.
Available at http://www.swox.se/gmp/.

P. M. Gruber and C. G. Lekkerkerker. Geometry of Numbers, second edition. Amsterdam,
North-Holland, 1987.

IEEE standard for binary floating-point arithmetic. Technical Report ANSI-IEEE Standard
754-1985, New York, 1985.

V. Lefévre. Moyens arithmétiques pour un calcul fiable. Thése de doctorat, Ecole Normale
Supérieure de Lyon, 2000.

V. Lefévre and J.-M. Muller. Worst cases for correct rounding of the elementary functions in
double precision. In Proceedings of the 15th IEEE Symposium on Computer Arithmetic, pages
111-118. IEEE Computer Society, 2001.

A. K. Lenstra, H. W. Lenstra, and L. Lovasz. Factoring Polynomials with Rational Coefficients.
Mathematische Annalen, 261:515-534, 1982.

L. Lovasz. An Algorithmic Theory of Numbers, Graphs and Convexity. SIAM lecture series,
50, 1986.

J.-M. Muller. Elementary Functions, Algorithms and Implementation. Birkhauser Boston,
1997.

J.-M. Muller. Proposals for a specification of the elementary functions. In Abstracts of
SCAN’2002, pages 54-55. Laboratory LIP6, Paris, France, 2002.

P. Nguyen and D. Stehlé. Low-dimensional lattice basis reduction revisited (extended abstract).
In Proceedings of ANTS VI, volume 3076 of Lecture Notes in Computer Science, pages 338-357.
Springer-Verlag, 2004.

M. Payne and R. Hanek. Radian reduction for trigonometric functions. SIGNUM Newsletter,
18:19-24, 1983.

THE SpACES ProJECT. The MPFR library, version 2.0.3, 2004. http://www.mpfr.org/.

D. Stehlé, V. Lefévre, and P. Zimmermann. Worst cases and lattice reduction. In Proceedings of
the 16th IEEE Symposium on Computer Arithmetic, pages 142-147. IEEE Computer Society,
2003.

D. Stehlé, V. Lefévre, and P. Zimmermann. Searching Worst Cases of a One-Variable Function.
To appear in IEEE Transactions on Computers, 2005.

A. Ziv. Fast Evaluation of Elementary Mathematical Functions with Correctly Rounded last
Bit. ACM Transactions on Mathematical Software, 17(3):410-423, 1991.

A. Ziv. MathLib, 2004. http://www-124.ibm.com/developerworks/oss/mathlib/.

INRIA

Gal’s Accurate Tables Method Revisited 23

Appendix:

We study here the expected maximum distance between two bad cases of a function f
under the random model.

Lemma 3. Let [: [%, 1[— [%, 1] satisfying the random model assumption. Let n be

the precision and 2 < p < n. Let M be the mazimum distance between two consecutive
p-bad cases for f. We have:

EM] < (1+n- g) D

Proof: The probability of having a run of at least k consecutive machine numbers
that are not p-bad cases for f is bounded by:

2n—1 . (1 _ 2l—p)k ,
because there are less than 2"~ ! starting points for the run. We now fix k =
(n—1—28)In2-27. Using the fact that log(l — 2) < —a — 2? for any = € [0, %],
we can bound the probability above by:

9n— 142 (n—1-5)log(1-2""7) < gn—1-2(n—1-§)(2'"P4+22"%) op—n-+1 927 9 gp—n+l
from which we obtain that:
EM]<k-27"+ % .9 . gp—n+l
< 2. (n+1—§)7

which ends the proof.

RR n°® 5359

/<

Unité de recherche INRIA Lorraine
LORIA, Technopdle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-les-Nancy Cedex (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhone-Alpes : 655, avenue de I’Europe - 38334 Montbonnot Saint-lsmier (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)
Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)
http:/ /www.inria.fr

ISSN 0249-6399

