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Abstract: In this report, we analyze a queueing system characterized by a space-time
arrival process of customers served by a countable set of servers. Customers arrive at some
points in space and the server stations have space-dependent processing rates. The workload
is seen as a Radon measure and the server stations can adapt their power allocation to the
current workload. We derive the stability region of the queuing system in the usual stationary
ergodic framework. From the analysis of this stability region, we derive optimal partitions of
space among server stations. Some specific subclasses of policies are also studied. Wireless
communication networks provides a natural field of application for this model.
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Stabilité des files d’attente spatiales

Résumé : Dans ce rapport, nous analysons une file d’attente caractérisée par un processus
spacio-temporel d’arrivée de clients servis par un ensemble dénombrable de serveurs. Les
clients arrivent sur des points de l’espace et les serveurs ont des vitesses de traitement qui
dépendent de l’espace. La quantité de travail est vue comme une mesure de Radon et les
serveurs peuvent adapter leur allocation de puissance avec la quantité de travail en cours.
Nous établissons la region de stabilité de la file d’attente dans le cadre stationnaire ergodique
usuel. L’analyse de la région de stabilité permet de définir des partitions de l’espace entre
serveurs optimales. Certaines sous-classes de politiques sont également étudiées. Les réseaux
sans fils est le champ d’application naturel de ce model.

Mots-clés : région de stabilité, processus ponctuels spaciaux, réseaux sans fils, politique
adaptative.



Stability of spatial queueing systems 3

1 Introduction : Model description

In this paper, we analyze a space-time arrival process of customers served by a countable
set of servers. This model is motivated by large scale wireless communications networks but
could suit to other types of infinite queuing systems. This model is along the line of other
allocation problems studied by Tassiulas and Ephremides [11] and Bambos et al. [8], [1], [3].
Applications of this work to wireless networks are done in [5].

We consider a system where some jobs arrive exogenously, the jobs are located in the
space. Some server stations serve the incoming jobs. Each server station can process the
jobs at a rate depending of the localization of the job and a random environment variable.

All the random variables, we introduce in this section are defined on a common probabil-
ity space (Ω,F , P ). This space is endowed with a measurable flow {θt}, t ∈ R. We suppose
that (P, θt) is ergodic.

1.1 Customers arrival point process

In our system, the customers (or jobs) are seen as points of a marked point process A. Namely
A is a spatial marked point process on R×R

d with marks on R+. We use the notation : A =
∑

n δ{Tn,Xn,σn} to represent the point process. The nth job arrives at time Tn ∈ R located

at Xn ∈ R
d and it requires a service time of σn ∈ R+. We suppose that A is compatible

with the flow θ that is : if A(ω) =
∑

n δ{Tn,Xn,σn}, A ◦ θt(ω) = A(θtω) =
∑

n δ{Tn−t,Xn,σn}.
This implies that the point process A is stationary along the first coordinate. The intensity
measure of A is defined for a Borel set B ⊂ R

d+1 as :

E(A(B)) = E
(

∑

n

11((Tn, Xn) ∈ B)
)

.

It is supposed to be finite for all compacts K. Thus the intensity is a Radon measure of the
form : λ(dx)dt (see for example Lemma A2.7.11., p.634 in Daley and Vere-Jones [7]). By
definition for a compact K ⊂ R

d+1 :

E(A(K)) =

∫

K

λ(dx)dt < +∞. (1)

Note that λ is not necessarily a finite measure on R
d. Therefore between time t and

t′ > t, there arrives an infinite number of jobs on the space. In particular, the indexation of
customers cannot be time monotonous. However, on a compact set K ⊂ R

d, only a finite
number of jobs arrives almost-surely (a.s.).

As usual, we will often drop the “ω” in the expression of random variables to simplify
notations.

Define P t,x
A (•) as the Palm probability of the point process A at (t, x) ∈ R

d+1 (refer to
[7], chapter 12). Since A is compatible with θt, we have :

P t,x
A (•) = P 0,x

A (θ−t•).
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4 C.Bordenave

Under P t,x
A , let σt,x be the required service of a customer arriving at time t in x. It is

consistent since there is a customer arrived at t in x P t,x
A -a.s.. We will suppose that 0 <

E0,x(σ0,x) < +∞, λ(dx)-a.e.. Remind that E0,x(σ0,x) can be understood as the mean
number of service time requirement of a typical customer arriving in x.

1.2 Server stations adapative policy

We have a countable set of server stations denoted by J . The servers can provide service
to all points in space and they have a different processing rate for each point in space ; the
server j serves a customer located at x at a rate of rj(x). We suppose that x 7→ rj(x) is a
bounded positive measurable function and :

lim
|x|→+∞

rj(x) = 0, (2)

where | • | denotes the Euclidean norm.
The server stations are in a random environment and their processing powers varies over

time. At time t, the total processing power available is εj(t) ∈ R+. As all the other random
variables we consider, we suppose that the driving process εj(t) is compatible with the shift,
that is to say : εj(t) = εj(0) ◦ θt.

We suppose :
pj = E(εj(0)) < +∞.

The workload at time t is the set of all the jobs waiting to be processed. It is denoted
by Wt and it is an atomic measure on R

d : for a Borel set B,
∫

B
Wt(dx) represents the total

service time remaining at time t for all customers located in B.
The server stations divide their processing power between the jobs required according to

a policy scheme. This power allocation depends on the current workload. We suppose that
our queuing system cannot handle an infinite amount of service in finite time for a given
location x : more precisely :

for all bounded borel set B,
∑

j

pj sup
x∈B

rj(x) < +∞. (3)

We can define a policy properly.

Definition 1. Let M be the set of Radon measures on R
d, endowed with the vague topology

(refer to [7]). A policy is a measurable mapping :

π :

{

M× Ω → MJ

(m, ω) 7→ {πj(m, ω)}, j ∈ J ,

satisfying, for all ω ∈ Ω :
∫

Rd

πj(m, ω)(dx) ≤ εj(0)(ω) (4)

INRIA



Stability of spatial queueing systems 5

and
πj(m, ω) is absolutely continuous with respect to m. (5)

The policy enforced at time t is : π(Wt, θtω).

Equation (4) means that the server stations cannot allocate more than their total pro-
cessing power. If the total workload on a Borel set is zero, it is useless to dedicate some
processing power to this set. This is the meaning of Condition (5).

πj(Wt)(B) is the processing power the server station j dedicates to jobs located in B at
time t. Therefore, the server station j achieves at time t an instantaneous service rate for a
job located in x of :

rj(x)π(Wt)({x}).

The policies we are considering in our model are stochastic and stationary : if W is
stationary, that is if Wt = W ◦ θt, for a given random measure W , π(Wt, θtω) = π(W, ω) ◦ θt

and thus π is stationary. The study of non-stationary policies is performed in [11] in an
other framework ; in this article the authors show that the non-stationary policies have the
same performance as stationary policies.

In the next sections, we will define some interesting classes of policies.
Here is a simple example of a deterministic policy defined for atomic measures :

π+
j (m) =

{

0 if m is the measure zero
εjδx

+
j

otherwise .

where, x+
j = arg max

{

x : rj(x)11(m({x}) > 0)
}

. If multiple choices of x are possible, choose

the first in the lexicographic order.
With this policy, the server stations serve the user with the best processing rate first.

Note in particular that this policy is work conserving : if Wt is not the 0 measure, the server
is active.

1.3 Evolution Equation

The dynamic of our queuing system is given by the following integral equation, for all Borel
sets B and t′ > t,

Wt′(B) = Wt(B) +

∫ t′

t

∫

B

σs,xA(ds × dx) −
∑

j

∫ t′

t

∫

B

rj(x)πj(Ws)(dx)ds, (6)

where by definition :
∫ t′

t

∫

B
σs,xA(ds × dx) =

∑

n σn11(Tn ∈ [t, t′[)11(Xn ∈ B). If W0 is
an atomic measure then from Condition (5), Wt ≥ 0 for all t ≥ 0 and it is also an atomic
measure (a.s.).

RR n° 5305



6 C.Bordenave

Using Borovkov’s terminology (see [6], chap. 4), Equation (6) defines a stochastic recur-
sive process : we can write Wt+h = fh(Wt, A

t+h
t ), where At+h

t denotes the trajectory of the
arrival point process A between t and t + h.

Under a given policy π, for a Radon measure m, define W m
t as the workload at time t

when W0 = m.

1.4 Some Examples

Here come a few examples which illustrate the model.

Example 1. All the jobs arrive on a countable set of points : {xi}, i ∈ N, with no accu-
mulation points. This points are buffers and Assumption (1) reads :

λi = E(A([0, 1] × {xi}) < +∞.

The server stations serve users arriving at xi with a processing rate rj(xi).
In this example, the system reduces to a multi-class job traffic with processing rates

depending on the class and the server station. Stability results on this type of systems have
been presented in [8].

Example 2. In a wireless communication scenario, d = 2 and the server stations are base
antennas and the customers are mobile users which want to receive some data from the
network. Server station j is located at Yj ∈ R

2. The processing rate can be written :
rj(x) = f(x)L(x, Yj). L(x, y) is an attenuation function on the channel between x and y. A
natural assumption is to assume that L(x, y) depends only on |y − x|. If customer arrivals
are uniform on the plane, then the intensity measure λ(dx) is proportional to the Lebesgue
measure.

Example 3. When εj ∈ {0, 1}, the model has a random connectivity. The server stations
are switched on or switched off. At time t, if εj(t) = 1 (resp. 0) the base station j is switched
on (resp. switched off).

1.5 Stability Region

In this paper we analyze the stability of the queuing system described above. The definition
of stability we use relies on the existence of a stationary regime.

Definition 2. A policy π is stable if there exists a finite stationary workload {Mt = M ◦
θt}, t ∈ R, for an atomic random measure M satisfying Equation (6).

The queuing system is said to be stable if there exists a stable policy.

This definition is called stochastic stability in [3]. In the next section, we will adopt a
stronger definition of stability.

INRIA



Stability of spatial queueing systems 7

The parameter of the queuing system is the arrival marked point process A. Let N be
the set of possible point processes A (namely the point processes of finite intensity and with
a service time with finite expectation under the Palm measure). We define :

F =
{

f = (x 7→ fj(x), j ∈ J ) such that,

∀j, fj is non negative, measurable and λ(dx)-a.e.
∑

j fj(x) = 1
}

.

N s =
{

A ∈ N : ∃f ∈ F such that : ∀j,

∫

Rd

E0,x
A (σ0,x)fj(x)

rj(x)
λ(dx) < pj

}

. (7)

N̄ s =
{

A ∈ N : ∃f ∈ F such that : ∀j,

∫

Rd

E0,x
A (σ0,x)fj(x)

rj(x)
λ(dx) ≤ pj

}

. (8)

These sets are continuous generalizations of the stability sets derived in [8].

Note that
∫

Rd

E
0,x

A
(σ0,x)fj(x)

rj(x) λ(dx) is a traffic load : E0,x
A (σ0,x)λ(dx) is the mean number

of service requirements per unit of surface and rj(x) is the processing rate at x for server
station j.

We can now state the following stability theorem :

Theorem 1. For the queuing model described above,

- if A ∈ N s, then there exists a stable policy,

- if there is a stable policy then A ∈ N̄ s.

Note that, as in Loynes’ Theorem, the stability region depends on the distribution of the
point process A only through its means. To fix ideas, suppose that there is only one server
station and that all jobs arrive at the same place, say 0. Then the theorem says that the
stability region is given by E0,0

A (σ0,0)λ(0) < p1r1(0). This result is the usual condition ρ < 1
for G/G/1 queues.

In the proof of the theorem, we establish that to a given stable policy π corresponds a
set of functions (fj)j∈J in F such that :

∫

Rd

E0,x
A (σ0,x)fj(x)

rj(x)
λ(dx) ≤ pj .

fj(x) is the proportion of service carried by the server j for users in x in the stationary
regime and for the stable policy π.

The converse mapping is also available, for a set of functions (fj)j∈J in F such that the
above inequality is satisfied with a strict inequality, there exists a stable policy. In fact, as
it will be seen in the proof of Theorem 1 this last assertion is only true for a dense subset
of functions of F .

A proof of Theorem 1 is given in Section 2.

RR n° 5305



8 C.Bordenave

In Section 3, we give a stronger stability results on our queuing systems which follows
from classical coupling arguments.

In Section 4, we consider a subclass of policies which preserves a kind of monotony for
the workload measure.

Section 5 is dedicated to the stability region defined by Equation (7) when the spatial
intensity measure in absolutely continuous with respect to the Lebesgue measure.

The last results of this paper concern a subclass of policy for which the stability region
is easy to compute. This work is done in Section 6.

2 Proof of Theorem 1

2.1 Necessary Condition

This technical lemma is needed in what follows.

Lemma 1. Let Z be a non-negative a.s. finite random variable, such that for a given t,
Z − Z ◦ θt ∈ L1(P ), then E(Z − Z ◦ θt) = 0.

For the proof, see for example Lemma 2.2.1 of Baccelli and Bremaud [2].
Suppose exists a stable policy π. There exists a stationary workload measure Wt = W ◦θt

a.s. finite. Let B be a bounded Borel set, from Equation (6), we have :

W ◦ θt(B) = W (B) +

∫ t

0

∫

B

σs,xA(ds × dx) −
∑

j

∫ t+h

t

∫

B

rj(x)πj(W ◦ θs))(dx)ds.

The Campbell Formula for marked point processes, using (1.1), implies :

E(

∫ t

0

∫

B

σs,xA(ds × dx)) =

∫ t

0

∫

B

∫

R−

σs,xP s,x
A (dσ)λ(dx)ds

= t

∫

B

E0,x
A (σ0,x)λ(dx).

Since πj(B) is bounded by εj and we can define π̄j(B) = E(πj(W )(B)). π̄j is a Radon
measure. Moreover, since

∫

Rd πj(W )(dx) ≤ εj , we have :
∫

Rd π̄j(dx) ≤ pj . Using Condition
(3), we deduce :

E(|W ◦ θt(B) − W (B)|) ≤ t

∫

B

E0,x
A (σ0,x)λ(dx) + t

∑

j

pj sup
x∈B

rj(x) < +∞.

Thus W ◦ θt(B) − W (B) ∈ L1(P ) and we can apply Lemma 1 to conclude that :

0 =

∫

B

E0,x
A (σ0,x)λ(dx) −

∑

j

∫

B

rj(x)π̄j(dx). (9)

INRIA



Stability of spatial queueing systems 9

Since Equation (9) holds for all bounded Borel sets, the Radon measures :
∑

j rj(x)π̄j (dx)

and E0,x
A (σ0,x)λ(dx) are equal. In particular the measure rj(x)π̄j (dx) is absolutely contin-

uous with respect to E0,x
A (σ0,x)λ(dx). We define the measurable function π̃j(x) as the

Radon-Nicodym derivative of π̄j(dx) with respect to λ(dx). Let fj(x) =
rj(x)π̃j(x)

E
0,x
A (σ0,x)

. We

deduce from (9) that for all Borel B :

∫

B

E0,x
A (σ0,x)λ(dx) =

∑

j

∫

B

fj(x)E0,x
A (σ0,x)λ(dx).

Thus λ(dx)-a.e. :
∑

j fj(x) = 1.

We have proved that f ∈ F .
∫

Rd π̄j(dx) ≤ pj reads
∫

Rd

E
0,x

A
(σ0,x)fj (x)

rj(x) λ(dx) ≤ pj .

The second assertion of Theorem 1 follows.

2.2 Sufficient Condition

Suppose, A ∈ N s. There exists (fj), j ∈ J , in F such that : for all j,
∫

Rd

E
0,x

A
(σ0,x)fj(x)

rj(x) λ(dx) =

ρj < 1. We can suppose that f has the properties given in Proposition 6 (in Appendix).
For a given policy π and an initial atomic workload m, we define the sets :

Am
j (t) =

{

x : rj(x)

∫ t

0

πj(W
m
s )({x})ds ≤ fj(x)

(

m({x}) +

∫

[0,t)×{x}

σs,xA(ds × dx)
)

}

.

The fact that x is in Am
j (t) means that server j has contributed for less than fj(x) to

fulfill the service requirements of customers located in x.
Consider the following non-stationary policy : for all j ∈ J , for t ≥ 0 :

πj :











Ω × R → M

(ω, t) 7→

{

εj(t)δx∗
j

if AW0

j (t) 6= ∅

0 if AW0

j (t) = ∅.

(10)

where,
x∗

j = argmax
{

x : 11(x ∈ AW0

j (t))11(Wt({x}) > 0))rj(x)
}

if multiple choices of x∗
j are possible, choose the first in the lexicographic order.

The existence of this policy follows from Condition (2).

The policy π divides the workload among all servers with proportions fj and processes
the jobs at the faster available rate. This policy is not stationary and is defined for an initial
workload at time 0. In other words, πj(t) is the policy enforced at time t when at time 0,
the workload was equal to m : with the usual notation, πj(t) = πj(W

m
t ).

RR n° 5305



10 C.Bordenave

Note also that if at time T , Am
j (T ) = ∅, then the server j will only serve after time T

jobs arrived after time T and for t > 0 :

Am
j (t + T ) = A0

j (t) ◦ θT . (11)

Let B be a bounded Borel set, we have :

Wt(B) =

∫ t

0

∫

B

σs,xA(ds × dx) −
∑

j

∫ t

0

∫

B

rj(x)πj(s)(dx)ds

=
∑

j

∫ t

0

∫

B

fj(x)σs,xA(ds × dx) −
∑

j

∫ t

0

∫

B

rj(x)πj(s)(dx)ds

=
∑

j

∫

B

rj(x)W̃ j
t (dx),

where :

W̃ j
t =

∫ t

0

∫

B

fj(x)σs,x

rj(x)
A(ds × dx) −

∫ t

0

∫

B

πj(s)(dx)ds. (12)

Definition 3. We define a total order ≺j on R
d : x �j y if rj(x) > rj(y) or rj(x) = rj(y)

and x is in the lexicographic order smaller than y.
A Borel set B is a j-max set if : {x : x �j y for all y ∈ B} = B.

Lemma 2. For a j-max set B :

W̃ j
t (B) =

(

max
(

∫

B

fj(x)W0(dx)

rj(x)
+

∫ t

0

∫

B

fj(x)σs,x

rj(x)
A(ds × dx) −

∫ t

0

εj(s)ds,

sup
0≤h≤t

∫ h

0

∫

B

fj(x)σs,x

rj(x)
A(ds × dx) −

∫ h

0

εj(s)ds
)

)+

.

Proof. The policy π divides the global queuing system with the set of servers J into distinct
queues, one for each server in J with an incoming workload equal to :

∑

j

∫ 0

−t

∫

B

fj(x)σs,xA(ds × dx).

W̃ j
t (B) is the rescaled workload : the server j serves the user at x with a unit processing

rate. If B is a j-max set, from the definition of policy πj , the server j dedicates all of its
processing power to B if the workload in B is not 0. The customers in R

d\B are served if
there is no customer in B. Thus the statement of the lemma follows from the usual formula
for the G/G/1 queue.

INRIA



Stability of spatial queueing systems 11

Let Mt = W 0
t ◦ θ−t be the Loynes sequence under policy π and M̃ j

t = W̃ 0
t ◦ θ−t.

Mt(B) =
∑

j

∫

B

rj(x)M̃ j
t (dx)

. Note from Lemma 2 that M̃ j
t (B) is a non-decreasing sequence for a j-max set.

Lemma 3. As t tends to infinity, M̃ j
t couples a.s. with M̃ j

∞, a finite random measure.

Proof. Let B be a j-max set, from the Birkhoff’s Theorem a.s. :

lim
t→+∞

1

t

∫ 0

−t

∫

B

fj(x)σs,x

rj(x)
A(ds × dx) =

∫

B

fj(x)E0,x
A (σ0,x)

rj(x)
λ(dx) < 1.

Therefore : M̃ j
t (B) = (sup0≤h≤t

∫ 0

−h

∫

B

fj(x)σs,x

rj(x) A(ds × dx) − h)+ is a bounded increasing

sequence and it couples with M̃ j
∞(B) = (suph∈R+

∫ 0

−h

∫

B

fj (x)σs,x

rj(x) A(ds × dx) − h)+.

It remains to prove the result for any Borel set. R
d is a j-max set and we have for any set

B : M̃ j
t (B) ≤ M̃ j

t (Rd) ≤ M̃ j
∞(Rd). Therefore a subsequence M̃ j

tn
(B) converges to M̃ j

∞(B)

and M̃ j
∞ is well defined and it is a finite random measure.

Since W̃ j
t (Rd) is a G/G/1 queue, we can define T the first time after the coupling time

with M̃ j
∞ ◦ θt(R

d) such that W̃ j
t (Rd) = 0. T is a.s. finite. In view of Equation (11), for

t ≥ T , W̃ j
t = M̃ j

∞ ◦ θt. Thus : M̃ j
t = W̃ j

t ◦ θ−t = M̃ j
∞ and M̃ j

t couples with M̃ j
∞.

Let B be a bounded set. For our specifical choice of f , given by Proposition 6 :

Mt(B) =
∑

j∈JB

∫

B

rj(x)M̃ j
t (dx), (13)

Since |JB | is finite, we deduce from Lemma 3 that Mt(B) couples a.s. with M∞(B) =
∑

j∈JB

∫

B
rj(x)M̃ j

∞(dx).
We thus have proved the existence of the limit :

lim
t→∞

Mt = M∞ =
∑

j

∫

B

rj(x)M̃ j
∞(dx).

To conclude the proof, it remains to prove that M∞ is a stationary solution of Equation (6)
for a policy π′.

Along the line of Lemma 3, we can also prove that the process {M̃ j
t+s ◦ θs}0≤s≤h couples

with {M̃ j
∞ ◦ θs}0≤s≤h for any positive h.

From Equation (12), for a bounded set B :

M̃ j
t+h ◦ θh(B) =

∫ 0

−t−h

∫

B

fj(x)σs,x

rj(x)
A(ds × dx) −

∫ t+h

0

∫

B

πj(θ−t, s)(dx)ds

= M̃ j
t (B) +

∫ h

0

∫

B

fj(x)σs,x

rj(x)
A(ds × dx) −

∫ h

0

∫

B

πj(θ−t, t + s)(dx)ds.
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12 C.Bordenave

If Z is the maximum of coupling time of {M̃ j
t+s ◦ θs(B)}0≤s≤h, for t ≥ Z we deduce :

∫ h

0

∫

B

πj(θ−t, t + s)(dx)ds = M̃ j
∞ ◦ θh(B) − M̃ j

∞(B) +

∫ h

0

∫

B

fj(x)σs,x

rj(x)
A(ds × dx).

For all h, the right hand side of the last equation does not depend on t, thus πj(θ−t, t + s)
couples a.e. with a measure π′

j(s) = limt πj(θ−t, t+s). Let t0 such that the coupling occurs,
we have π′

j(s) = limt πj(θ−t+s−t0 ◦ θs, t + t0 − s + s) = π′
j(t0) ◦ θs−t0 .

In consequence, π′ is a stationary policy and M∞ is a stationary solution of Equation
(6).

Theorem 1 is proved.

Remark 1. In the particular case described in Example 1, a simpler proof is available. We

have :
∑

i

λiE
0,xi
A

(σ0,xi
)fj (xi)

rj(xi)
= ρj < 1. Consider the following deterministic policy defined

for atomic measure with atoms on {xi}, i ∈ N :

πj(m)({xi}) = εj11(m({xi}) 6= 0)
fj(xi)λiE

0,xi

A (σ0,xi
)

rj(xi)ρj

.

When computing Mt({xi}), it appears that this policy is stable.

3 Convergence toward a Stationary Solution

When there exists a stationary regime in a queuing system it is an important issue to know if
for any initial condition the workload converges in some sense to the stationary regime. The
following proposition gives a positive answer for the policy defined in the proof of Theorem
1.

Proposition 1. If the policy scheme defined by Equation (10) is enforced, for any finite
initial workload at time t = 0, for all bounded Borel set B, {Wt+T (B)}, t ∈ R+, converges
in variation toward {M ◦ θt(B)}, t ∈ R+, as T tends to infinity.

Note that the workload measure does not converge in variation, convergence happens
only on bounded sets. The proposition states that the workload converges in variation for
the vague topology.

Proof. The proof relies on the following fact : if a stochastic process {Xt} couples with
{Y ◦ θt} then {Xt+T }, t ∈ R+, converges in variation toward {Y ◦ θt}, t ∈ R+, as T tends to
infinity (see Lindvall [9] or Theorem 2.4.1. of [2]).

From Lemma 2, W̃ j
t (B) is G/G/1 queue, therefore the coupling of W̃ j

t (B) for any initial
condition follows from Property 2.4.1. in [2].

For a general Borel set B, it suffices to notice as already done that W̃ j
t (B) ≤ W̃ j

t (Rd).
The same arguments used in the proof of Theorem 1 works to show that W̃ j

t (B) couples for
any initial condition.

If B is a bounded set, Wt(B) =
∑

j∈JB

∫

B
rj(x)M̃ j

t (dx). Since |JB | is finite, the coupling
also occurs.
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Stability of spatial queueing systems 13

4 Monotonous Policies

The policy we have defined to prove the sufficiency part of Theorem 1 is not of particular
interest. In particular, it requires the knowledge of the mappings fj(x). Along the line of
the work done in [11], [1], [3], it would be very appealing to find some stable policy which
does not rely on the knowledge of the parameters of the system.

4.1 Loynes’ Sequence and Loynes’ Variable

We are now going to use the key ideas of the proof of Loynes for general Polish space (see
paragraph 2.5.2. of [2]). The space M is a Polish space for the vague topology (refer to [7]).

We define a partial order � on M, the set of Radon measures on R
d. Let m and m′ be

two Radon measures, m � m′ if for all bounded Borel set B in R
d, m(B) ≤ m′(B).

Lemma 4. Let (mn, n ∈ N) be a monotonous sequence in M for �, such that for all bounded
Borel sets B, mn(B) is bounded. Then, (mn, n ∈ N) converges in M for the vague topology.

Proof. Let f be a bounded continuous function vanishing outside a bounded set. Let f+ =
max(0, f) and f− = min(0, f), it is straightforward to check that (mn(f+), n ∈ N) and
(mn(f−), n ∈ N) are bounded monotonous sequences. Thus (mn(f), n ∈ N) converges.

The Loynes sequence (Mt, t ∈ R+) is defined as the workload found at time 0 supposing
that the workload was zero at time −t, that is :

Mt = W 0
t ◦ θ−t.

The Loynes sequence is of particular interest for the class of monotonous policies.
A policy is said to be monotonous if m′ � m implies for all t ∈ R+, W m′

t � W m
t .

Monotonous policies are quite natural in our queuing setting.

Lemma 5. Suppose π is a monotonous policy then {Mt}, t ∈ R+, is non-increasing sequence
(for �).

Proof. Let h ∈ R+, we have : 0 = W 0
0 ◦ θ−t � W 0

h ◦ θ−t−h, from the monotonicity of

m 7→ W m
t , we deduce that : Mt = W 0

t ◦ θ−t � W
W 0

h◦θ−t−h

t ◦ θ−t = Mt+h.

If (Mt), t ∈ R−, is an non-decreasing sequence and is bounded by a random Radon
measure Z (for �), using Lemma 4, Mt converges a.s. in M and we can then define the
Loynes variable as :

M∞ = lim
t→+∞

Mt.
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14 C.Bordenave

4.2 Monotonous Left Continuous Policies

In this paragraph, we gives some conditions to ensure that a stationary solution exists. To
ensure that the Loynes’ variable is a stationary solution we need some continuity properties
of πj .

Definition 4. Let f be a measurable mapping from M to M. We say that f is left con-
tinuous (resp. right continuous) if for all non-decreasing (resp. non-increasing) converging
sequence (mn), n ∈ N, of M, limn f(mn) = f(limn mn).

It is consistent to define some continuity properties with converging sequences since M is
a complete metric space. Note also that a mapping can be left and right continuous without
being continuous. This is due to the fact that � is only a partial order.

Right continuous policies cannot be relevant. When a new customer arrives, the policy
can change drastically. In particular remark that a work-conserving policy cannot be right
continuous.

We define the discontinuity set of a mapping h : disc(f) as {x : h(x) not continuous at x}.

Proposition 2. Suppose πj is left continuous and λ(disc(rj)) = 0 for all j ∈ J . When
M∞ is finite, it is a stationary solution of Equation (6).

Proof. By definition, W Mt
s = W 0

t+s ◦ θ−t = W 0
t+s ◦ θ−s−t ◦ θs = Mt+s ◦ θs. Therefore, from

Equation (6), we have, for a Borel set B and t ∈ R
+ :

Mt+h ◦ θh(B) = W Mt

h (B)

= Mt(B) +

∫ h

0

∫

B

σs,xA(ds, dx)

−
∑

j

∫ h

0

∫

B

rj(x)πj(Mt+s ◦ θs)(dx)ds. (14)

When (tk), k ∈ N, be an increasing sequence converging toward +∞. (Mtk+s ◦θs), k ∈ N,
is a non-decreasing sequence converging toward M∞ ◦ θs. Since πj is left continuous, we
have limk→+∞ πj(Mtk+s ◦ θs) = πj(M∞ ◦ θs) for the vague convergence.

For a fixed ω, the arrival point process is A(ω) =
∑

n δTn(ω),Xn(ω),σn(ω). We define
C(ω) = {Xn(ω), n ∈ N} and let B be a bounded Borel set such that C(ω) ∩ ∂B = ∅. ∂B
avoids a countable set of points in R

d.
From Equation (6) and Condition (5), M∞ ◦ θs and πj(M∞) ◦ θs are atomic measures

and they are supported by
∑

k δXk
11(Tk < s). Thus, for B as above, for all s in R, we

have πj(M∞ ◦ θs)(∂B) = 0. Moreover, since λ(disc(rj)) = 0, P -almost surely π(M∞ ◦
θs)(disc(rj)) = 0. From Lemma 6 (in Appendix), we deduce P -almost surely :

lim
k→+∞

∫

B

rj(x)πj(Mtk+s ◦ θs)(dx) =

∫

B

rj(x)πj (M∞ ◦ θs)(dx).
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Now, from Hypothesis (3),
∑

j

∫ h

0

∫

B
rj(x)πj (Mt+s ◦ θs)(dx) ≤

∑

j h supx∈B rj(x) < +∞.
The dominated convergence theorem gives, P -almost surely :

M∞ ◦ θh(B) = M∞(B) +

∫ h

0

∫

B

σs,xA(ds, dx) −
∑

j

∫ h

0

∫

B

rj(x)πj(M∞ ◦ θs)(dx).

From Lemma 7 (in Appendix), this last equation is indeed satisfied for all Borel sets. There-
fore, M∞ is a stationary solution.

The hypothesis can be made more precise. Consider E = {ω ∈ Ω : ∃T, ∀t > T Mt(ω) =
M∞(ω)}. On E, Mt converges in variation (or couples).

We have already noticed that : Mt+s(θsω) = W Mt
s (ω). Thus, if Mt(ω) = M∞(ω), for

t > T , we deduce that Mt(θsω) = W
Mt−s
s (ω) = M∞(θsω) for t > T + s. Thus E is a

θs-invariant event and from ergodicity, P (E) ∈ {0, 1}.
If P (E) = 1, Mt couples with M∞ a.s.. It follows that the hypothesis on the continuity

of πj and rj are not needed. We deduce the corollary :

Corollary 1. For a given policy π, if Mt = W Z
t ◦ θ−t couples with M∞ then M∞ is a

stationary workload solution of Equation (6).

Example 4. Cone policies. An interesting class of policies has emerged in papers, see
[11], [1], [3]. Let α > 0, we define for an atomic policy m :

Aj(m) = arg max
{

x : m({x})αrj(x)
}

πj(m) =

{

C(m)εj

∑

x∈Aj(m) rj(x)−
α+1

α δx if m 6= 0

0 if m = 0,

where C(m) is the constant such that
∫

Rd πj(m)(dx) = εj if m 6= 0.
Notice that π(cm) = π(m) for c > 0. For finite workload measures, it can be shown that

this policy is monotonous and left-continuous. However, it is not clear whether or not this
policy is stable when A ∈ N s.

5 Optimal Spatial Allocation

In this section, we suppose that the spatial arrival intensity λ(dx) is absolutely continuous
with respect to the Lebesgue measure : it can be written as λ(x)dx.

We have seen in Theorem 1 that the stability of system relies on :

ρ = inf
f∈F

sup
j∈J

1

pj

∫

Rd

E0,x
A (σ0,x)fj(x)

rj(x)
λ(x)dx. (15)
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16 C.Bordenave

If ρ < 1, the system is stable, if ρ > 1, the system is unstable. In this section, we analyse
this optimization problem. To this end, we define :

ρj(f) =
1

pj

∫

Rd

E0,x
A (σ0,x)fj(x)

rj(x)
λ(x)dx and ρ(f) = sup

j

ρj(f).

F is a convex closed set and f → ρ(f) is a convex function, thus the minimum of
Equation (15) is reached. In this section, we take interest to the optimal subset of F defined
as :

F∗ = {f ∈ F : ρ(f) = ρ}.

The extremal points of the convex set F are the measurable functions such that fj(x) =
11(x ∈ Vj), for a Borel set Vj . This class of function is called tessellation. A tessellation is a
partition of the space : each point x ∈ R

d is affiliated to a unique base station j.
We know that there is a mapping from an (fj)j to a stable policy π. Therefore, in

Equation (15) we are looking for a policy scheme which maximizes the intensity of arrival.
The policy scheme which corresponds to a tessellation is a cellular type policy : a customer
is served only by one base station.

Proposition 3. If ρ is finite there is a f such that :

∀j, ρj(f) = ρ.

If there is a finite number of server stations, all f ∈ F∗ satisfy the above equation.

Proof. Let f ∈ F and suppose for example, ρ1(f) < ρ2(f), since, ρ2(f) > 0, f2 is not
a.e. equal to 0. Thus, there exists a measurable non negative function x 7→ ε(x) such that
f ε
2(x) = f2(x) − ε(x) ≥ 0, f ε

1(x) = f1(x) + ε(x) ≤ 1 and ρ2(ε) > 0. Let f ε
j (x) = fj(x), for

j /∈ {1, 2}. f ε ∈ F and we have ρ1(f
ε) = ρ1(f) + ρ1(ε) and ρ2(f

ε) = ρ2(f)− ρ2(ε). Thus for
ρ1(ε) small enough, supj∈{1,2} ρj(f

ε) < supj∈{1,2} ρj(f) and ρ(f ε) ≤ ρ(f).
Suppose now that f ∈ F∗, then f ε is also in F∗. By iterating the construction above for

all j, j′, such that ρj′ (f) < ρj(f), the proposition follows.

Proposition 3 as an intuitive meaning : for an optimal spatial allocation, the traffic load
is the same on each server station. Along the same line, we can prove a more surprising
result.

Definition 5. The processing rates are said to be singular if there exist j and k in J , a
constant C > 0 and a Borel set A of positive Lebesgue measure such that :

∀x ∈ A, rj(x) = Crk(x).

Proposition 4. Suppose ρ is finite. If the processing rates are not singular, then there is
an f ∈ F∗ which is a tessellation.

If there is finite number of base stations, all f ∈ F∗ are tessellations.

INRIA
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This proposition gives a counter-intuitive result : the server stations do not need to
share the jobs to reach the stability region. However, note that all the difficulty is to find
the optimal tessellation which reaches the optimum. This result is not very surprising from
the point of view of convex optimization : it only asserts that the extremum is reached at
an extremal point.

Definition 5 is purely technical and does not relies on a natural assumption on the
processing rates. In the wireless scenario (Example 1.4) and rj(x) = f(x)l(|Yj − x|), if
Yj 6= Yk for all j, k ∈ J and l is a strictly convex mapping then the processing rates are
non-singular.

Proof. We consider the f ∈ F∗ given by proposition 3. Let E = f1(]0, 1[)−1 ∩ f2(]0, 1[)−1.
In this proof, µ will denote the Lebesgue measure. We want to show that µ(E) = 0.

Suppose instead that µ(E) > 0, we can suppose without loss of generality that µ(E) <
+∞. Let A, B be disjoint compact sets of positive Lebesgue measure included in E, these
sets exist in view of Theorem 2.14 in Rudin [10] (Riesz Representation Theorem). We
consider the mapping φ(x) = 11(x ∈ A) − ν11(x ∈ B), ν > 0.

Let f ε
1(x) = f1(x) + εφ(x), f ε

2(x) = f2(x) − εφ(x) and f ε
i (x) = fi(x) for i 6∈ {1, 2}. If

ε > 0 is small enough, f ε and f−ε are in F and for i ∈ {1, 2} :

ρi(f
±ε) = ρi(f) ± ερi(φ) = ρ ± ερi(11A) ∓ νερi(11B).

Since f ∈ F∗, max(ρ1(f
±ε), ρ2(f

±ε)) ≥ ρ and we deduce that sign(ρ1(φ)) = sign(ρ2(φ)),
where sign is the sign function (sign(0) = 0, and for x 6= 0, sign(x) = x

|x| ). It follows

that for all real ν, ρ1(11A) − νρ1(11B) and ρ2(11A) − νρ2(11B) have the same sign. Therefore
the vector (ρ1(11A), ρ1(11B)) and (ρ2(11A), ρ2(11B)) are colinear : exists CA,B such that :
ρ1(11A) = CA,Bρ2(11A) : CA,B cannot depend on B and by symmetry does not depend
neither on A. Thus, exists C > 0 such that :

ρ1(11A) = Cρ2(11A).

This last equality has been proved for any compact set included in E. From Theorem 2.14
in [10], it can be extended to any Borel set included in E. Thus, for all A included E, such

that µ(A) > 0, 1
µ(A)

∫

A

E
0,x

A
(σ0,x)

p1r1(x) − C
E

0,x

A
(σ0,x)

p2r2(x) )dx = 0. We can apply Theorem 1.40 of [10]

and conclude that a.e. in E :
C ′r1(x) = r2(x).

This contradicts our hypothesis on the processing rates. Therefore µ(E) = 0. and we have
proved that there exists an f in F∗ such that a.e. fj(x) = 11(x ∈ Vj) and Vj ∩ Vk is a set
of measure 0. Since for two functions equal a.e., ρj(f) has the same value, (11(Vj))j∈N is a
tessellation in F∗.
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18 C.Bordenave

6 Cellular Policies

Definition 6. Let {Vj}, j ∈ J , be a tessellation, a cellular policy with cells {Vj}j is a policy
scheme satisfying for all j :

∀m ∈ M, πj(m)(Rd\Vj) = 0.

We have seen in Proposition 4, that cellular policies reach the stability region under some
assumptions. In this section, we focus on this subclass of policies.

For a cellular policy, the server stations are not sharing the jobs which are divided among
them. We say that a cellular policy is work-conserving if m(Vj) > 0 implies πj(m)(Vj) = 1.

Proposition 5. Let {Vj}, j ∈ J , be a tessellation with bounded sets, any work conserving
cellular policy with cells {Vj}j is stable if :

∀j,

∫

Vj

E0,x
A (σ0,x)

rj(x)
λ(dx) < pj .

If there is a j such that :
∫

Vj

E
0,x

A
(σ0,x)

rj(x) λ(dx) > pj then any cellular policy with cells {Vj}j

is unstable.

This proposition is along the line of the result on single server queue which asserts that
the stability does not depend on the discipline, provided it is work-conserving.

Since there is no interactions between server stations when a cellular policy is enforced,
to prove the proposition, it is sufficient to prove the following result :

Suppose that the intensity measure λ(dx) is finite and that there is a unique server. Then
if A ∈ N s, any work conserving policy is stable, if A /∈ N̄ s any working policy is unstable.

This result on multi-class queues is mainly known. A proof is given in Appendix.

7 Conclusion

In this paper, we have derived some basic results on a spatial queuing system. An important
aspect of this model is that the workload is an atomic measure with an infinite total mass
and not a vector in R

n
+. Another feature is the infinite number of server stations but this

was more easy to handle.
With stronger hypothesis on the arrival point process A, it could be possible to derive

more precise results on the stability and on the law of the stationary workload measure.
As already pointed out, Theorem 1 does not provide an interesting stationary policy. It

would be interesting to find other types of policies which are stable when the arrival point
process is in N s. In this scope, deriving the stability region of cone policies described in
example 4.2 is a challenging work.
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Appendix : Property of the Stability Set

In this section, we find some properties on the set N s as it is defined in Section 1.5.

To simplify notations, νj(dx) will denote the measure
E

0,x

A
(σ0,x)

rj(x) λ(dx) and J is set to be

N.
For x ∈ R

d, let Jx = {j : fj(x) > 0} and for a set B, JB = ∪x∈BJx.

Proposition 6. If N s is not empty, there is a f ∈ F such that for all j, x 7→ fj(x) is
continuous and for all bounded set B, |JB | is finite.

Proof. Let f ∈ F such that ∀j, ρj =
∫

Rd fj(x)νj(dx) < 1. Let G be a open bounded set.
For all j, from Lusin’s Theorem (see for example [10]) there exists a sequence of continu-

ous functions on G, gn
j (•), such that νj(dx)-a.e., 0 ≤ gn

j (x) ≤ fj(x) and limn

∫

G
gn

j (x)νj(dx) =
∫

G
fj(x)νj(dx).
We have

∑

j gn
j (x) ≤ 1 =

∑

j fj(x). Let εn(x) = 1 −
∑

j 6=1 gn
j (x). We define

fn
j (x) =

{

gn
j (x) + 11j=1ε

n(x) if x ∈ G,
fj(x) if x 6∈ G,

We check that fn is in F and by the dominated convergence theorem, for n large enough
: ∀j,

∫

Rd fn
j (x)νj(dx) < 1.

By iterating this construction for a set of open sets covering the R
d, we deduce that there

exists and f ∈ F , such that ∀j, ρj =
∫

Rd fj(x)νj(dx) < 1 and fj continuous.
Now we turn to the second part of the proposition. Let K be a compact subset, fj as

above and max(ρj ,
1
2 ) < ρ′j < 1. We define gj(x) =

fj(x)
ρ′

j

.

Then :
∫

Rd gj(x)νj(dx) =
ρj

ρ′
j

< 1 and
∑

j gj(x) > 1. For all x, there exists jx such that
∑jx

j=1 gj(x) > 1. By continuity, since K is compact, jK = supx∈K jx is finite.

It is immediate to check that f̃j(x) =
gj (x)11j≤jx

∑

j≤jx
gj (x) has all the required properties.

Appendix : Vague Convergence in M

In this paragraph, we give some technical results used in Section 4.
The following lemma is an adaptation of Theorem 5.2 of Billingsley [4] to the vague

topology.

Lemma 6. Let mn be a sequence in M converging for the vague topology toward m. Let h
be a bounded measurable function which m(disc(h)) = 0 and B a bounded Borel set of R

d

with m(∂B) = 0, then : limn

∫

B
h(x)mn(dx) =

∫

B
h(x)m(dx)

Lemma 7. Let C be a countable set of points in R
d and let C the set of bounded Borel sets

of R
d with C ∩ ∂B = ∅. Then :

- C is an algebra and the σ-algebra generated by C, σ(C) is the Borel σ-algebra B.
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- From a measure m defined on C, there is a unique extension to m on B.

Proof. From the relations : ∂(A∩B) ⊂ ∂A∩ ∂B, ∂(A∪B) ⊂ ∂A∪ ∂B and ∂(Ac) = ∂A. It
follows that C is an algebra on the set of sets of R

d.
B is the σ-algebra of the algebra generated by the open rectangles of R

d. To prove the
first assertion of our lemma, it suffices to prove that the rectangle ]0, 1[d can be written as
∪n∈NBn, where B1 ⊂ B2... ⊂ Bn ∈ C. To this end, consider the rectangle Rε =]ε, 1 − ε[d,
with 0 < ε < 1

2 . If ε 6= ε′, ∂Rε∩∂Rε′ = ∅. Since C is countable there can only be a countable
set of ε such that C ∩ ∂Rε 6= ∅. In particular, there exists an increasing sequence εn such
that C ∩ ∂Rεn

= ∅. We have proved the first statement of the lemma.
The second assertion is the Caratheodory Extension Theorem.

Appendix : Spatial queuing system with one server

When there is only one server in the system, Theorem 1 can be made more precise. The
system reduces to a multi-class queue. The condition λ ∈ N s can be restated as :

∫

Rd

E0,x
A (σ0,x)

r(x)
λ(dx) < p,

where r is the processing rate for the server providing service for a user located at x and p
is the expectation of the available processing power.

We have the following proposition :

Proposition 7. Suppose that the intensity measure λ(dx) is finite and that there is a unique
server. Then if A ∈ N s, any work conserving policy is stable.

Proof. We will only give a sketch of the proof in three steps. We will suppose that ε(t) = 1
(hence p = 1). The proof in the general case follows with obvious modifications.

Step 1. Since λ is a finite Radon measure, N =
∑

n δTn,
σn

r(Xn)
is a simple marked point

process on R with finite intensity E(N [0, 1]) =
∫

Rd λ(dx).

For a given work conserving policy π, define Yt =
∫

Rd

Wt(dx)
r(x) . From Equation (6), we

deduce that for t ∈ [Tn, Tn+1) :

Yt =
(

Y (Tn−) +
σn

r(Xn)
+ (t − Tn)

)+

.

Therefore, Yt does not depend on the policy and Yt is the usual workload for G/G/1
queue (in particular Wt(R

d) is equal to zero at the same time for any work conserving policy).

The workload for this queue is equal to
∫

Rd λ(dx)E0
N ( σ0

r(X0)) =
∫

Rd

E
0,x

A
(σ0,x)

r(x) λ(dx) < 1.

Similarly, by denoting Wn = WTn−, it appears that (Wn), n ≥ 0, is generated by a
stochastic recurrence, see [6], [2] (indeed we may write Wn+1 = h(Wn, ξn), for a suitable
measurable mapping h and a driving sequence (ξn), n ∈ N, compatible with the flow θ).

INRIA



Stability of spatial queueing systems 21

Step 2. Let Mf be the set of atomic measures with a finite set of atoms on R
d. If

W0 ∈ Mf then a.s., Wt ∈ Mf for t ≥ 0.
Now, we define the following policy on Mf :

π− :







Mf → M

m 7→

{

δx∗ if m 6= 0
0 if m = 0.

where x∗ = arg max
{

x : r(x)11(m({x}) > 0)
}

. If multiple choices of x∗ are possible, choose
the first in the lexicographic order.

π− is the work conserving policy which dedicates all the processing power to the slowest
customer. For π−, m → W m

t is non-increasing : that is, m′ � m implies for all t ≥ 0,
W m′

t � W m
t . To prove this last assertion, remark that for t ∈ [0, T1) and t small enough :

W m′

t = m′ − tr(x∗(m′))δx∗(m′)

and
W m

t = m − tr(x∗(m))δx∗(m).

If m({x∗(m′)}) > 0 then W m′

t − W m
t = m′ − m � 0. If m({x∗(m′)}) = 0 then since

m′({x∗(m)}) > 0, we have still W m′

t − W m
t � 0.

Let M−
t be the Loynes’sequence for policy π− (a.s., M−

t ∈ Mf ). Let 0 ≤ s ≤ t,
since 0 = W 0

0 ◦ θ−s � W 0
t−s ◦ θ−t, from the monotonicity of m 7→ W m

s , we deduce that :

M−
s = W 0

s ◦ θ−s � W
W 0

t−s◦θ−t

s ◦ θ−s = M−
t .

Thus (M−
t ), t ∈ R

+, is a non-decreasing sequence and for all Borel set B, M−
t (B) ≤

M−
t (Rd). M−

t (Rd) is the Loynes’ sequence for the usual G/G/1 queue (from Step 1). We
deduce that M−

t converges a.s. toward the Loynes’ variable M−
∞ (from Lemma 4).

Step 3. Consider now any work conserving policy π, we define similarly the Loynes’ vari-
able Mt for policy π. As noticed above, π− is the slowest policy and it follows :

Mt(R
d) ≤ M−

t (Rd) ≤ M−
∞(Rd).

Consider the event A = {M−
Tn

= 0}. This event is a renovating event for MTn
and since

the workload of the G/G/1 queue is strictly less than 1, P 0
N (A) ≥ P 0

N (M−
∞(Rd) = 0) > 0.

From Theorem 2.5.3 and Property 2.5.5 of [2], we deduce that Mt converges to a stationary
solution M∞ and that Mt couples with M∞ (in the strong backward sense).

Restating Property 2.4.1 of [2], we can also prove that from any finite initial condition
m, W m

t couples with M∞ ◦ θt (as t tends toward +∞).
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