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Abstract: This paper presents a method to simulate growth phenomena, and its applica-
tion to the modeling of complex organic shapes (e.g., plants organs) and folded surfaces.

Our main contribution is the interactive and stable resolution of the mechanical problem
of growth-induced deformations, based on the minimization of the energy due to the various
constraints in the shell. From this, we propose a new modeling approach based on a set of
growing tools: The user can apply 'hot spots’, ’hot curves’, or paint growing parameters on
the surface to grow. Growth can be simulated either simultaneously to the user interaction,
or once all parameters have been settled on the surface (which allows the use of textures
of parameters and procedural operations). The main parameters are the intensity and
anisotropy of growth, as well as their variations over time. Geometric constraints and
plasticity can also be considered.

As our results show shapes can fold, bend, and curl as in nature, which deforming tools
such as displacement map could not achieve. We demonstrate our tool with an interactive
session and a gallery of shapes easily produced.
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* projet EVASION INRIA Rhone-Alpes et Laboratoire GRAVIR/IMAG, laboratoire commun CNRS,
Institut National Polytechnique de Grenoble INRIA et Université Joseph Fourier

Unité de recherche INRIA Rhéne-Alpes

655, avenue de I’Europe, 38334 Montbonnot Saint Ismier (France)
Téléphone : +33 4 76 61 52 00 — Télécopie +33 4 76 61 52 52



Morphogénése semi-interactive

Résumé : Ce rapport présente une méthode permettant de simuler des phénoménes de
croissance, ainsi que ses applications pour la modélisation de formes organiques complexes
ou des surface plissées.

Notre principale contribution est la résolution stable et en temps interactif du probléme
mécanique des déformations induites par la croissance, grace & la minimisation de I’énergie
des contraintes qui s’appliquent & une coque. Nous proposons une nouvelle approche de
la modélisation basée sur un ensemble d’outils de croissance: l'utilisateur peut appliquer
des ‘points chauds’, des ‘contrours de croissance’ ou peindre directement les paramétres de
croissance sur la surface. La croissance peut étre simulée soit simultanément aux interactions
de Tutilisateur, soit une fois que tous les paramétres aient été fixés sur la surface (ce qui
autorise 'utilisation d’une texture de ces paramétres ainsi que les opérations procédurales).
Les principaux paramétres sont ’intensité et ’anisotropie de la croissance, ainsi que leurs
variations au cours de temps. On peut également tenir compte de la plasticité ainsi que de
contraintes géométriques.

Comme le montre nos résultats, les formes peuvent se plisser, plier ou se tordre (comme
dans la nature), ce que des outils de déformations basés sur des cartes de déplacements ne
peuvent réussir de maniére simple.

Mots-clés : Morphogénése, croissance, plis, modélisation surfacique, modélisation procé-
durale, modéle physique, interface utilisateur.
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1 Introduction and Previous Work

Natural shapes are often complex, globally as well as in their details. Modeling them using
classical geometric modelers can thus be especially tedious. A number of these natural shapes
result from a growth phenomena [Thol7] (e.g. plants, organic shapes) or can be modeled as
such (e.g. folded surfaces, geological shapes). Even though growth-induced deformations can
be physically simulated similarly to cloth animation or deformable objects [BW98, TPBF87],
real-world parameters are usually unknown. Moreover, artists want to keep enough control
so a blind off-line simulation is not desirable.

Various tools have been introduced to model or enrich a shape by deforming it either
at global (e.g. Free-Form Deformations [SP86, Coq90]) or local scale (e.g. displacement
maps [Coo84, WMFT00]). Similarly, several virtual sculpting tools have been proposed ei-
ther for the overall shaping (e.g. [BL95, FCGO0]) or to edit and enrich an existing shape (e.g.
Maya Artisan [Ali]). Although the user interaction is more intuitive with these tools than
using a classical geometric modeler, the user still has to explicitly specify where each bulge
or pit should be. For shapes that are complex (either globally or locally) this can be very
tedious.

We would like to let the user specify the global and local aspect of the shape with-
out having to define each very detail. [CNOQ2] introduces the expansion terture paradigm
(summarized in the next section) to shape folded surfaces: the user specifies expansion (i.e.
growth) parameters using either a brush or a texture map. The surface folds under the
local constraints caused by the growth. Since the parameters are attached to the surface,
even large amplitude of growth can be simulated and still yields natural looking results.
Oppositely, surface displacement tools cannot be applied for huge amplitudes: the displace-
ment is done along the normal and cannot curl the shapes. Tools like Maya Artisan [Ali]
allows to iterate displacement relying on the new normals. But such a geometric growth
quickly degenerates into unnatural and self-intersecting surfaces. This does not occur with
expansion textures due to the use of a mechanical model to simulate the deformations.

The [CN02] model has similarities with physical models such as the ones used for de-
formable surfaces (e.g. [TPBF87]). However, the mechanical model is tuned to give control-
lable results (e.g. fold wavelength) and the solving is quasi-static (the purpose is to simulate
the shape at equilibrium, not the dynamics).

Our model draws on [CN02] and extends it to permit huge deformations at interactive
rate (i.e. we are not limited to adding details) and to increase the flexibility. Thus, our
tool applies to the modeling of a large variety of shapes (and not simply folds). For that
we revisit the mechanical model in order to make it more general, steady and efficient as
detailed in section 3.

From this new engine we propose a new modeling approach based on a set of growing
tools. These allow both local and global shaping, and both interactive and semi-procedural
specification of growth. We describe these tools in section 4.

In section 5, we demonstrate our tool with interactive sessions, as well as samples of
typical shapes that are easily produced (e.g., plant organs, and folded shapes like a tablecloth
or an unmade bed).

RR n° 5302
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2 The expansion texture formalism

Since we draw on and expand the approach of [CN02|, we share the same formalism. We
present here a summary (see the paper for more details).

The growth is modeled by local anisotropic expansions which acts on a free form surface
discretized by a triangular mesh. The growth does not modify explicitly the surface but a
reference state defined by the rest length I, of each edge e, the rest mean curvature &, of
each vertex v and the graph connectivity of the mesh (see figure 1). This wvirtual reference
state (updated by the growth) defines locally the ideal shape the surface should attain.
The ‘real’ shape is obtained by a mechanical solver which minimizes the constraints, i.e.
the differences between the mesh and the reference state. Note that the surface has to be
dynamically remeshed.

AN
T X \ solver
7>

@ (d)

Figure 1: The virtual reference state is defined by the rest lengths l. (a), the rest mean curvatures %y (b)
and the graph connectivity (c) of the mesh. The solver finds the shape (d) that minimizes the difference
with the reference state (modified by the growth).

The local expansion is described by an expansion tensor field over the surface. An
expansion tensor can be represented by a 2 x 2 positive definite symmetric matrix D. It can
be defined by three parameters: two expansion rates D; and D relative to the eigenvector
directions, and an angle # which defines the orientation of the eigenvectors basis relative to

the local 2D frame. The expansion along a vector [ is then given by Gp(l) = VIFDI.

The growth parameters the user can tune are: the rate and the anisotropy of the expan-
sion (i.e. D1,D3,0) at every active locations; and desired wavelength and regularity A\, A
of folds or curls. External constraints can be added by the user, such as static collision with
solid objects and partial or total attachment (i.e. 1D, 2D or 3D constraints) of some surface
locations. The local growth parameters interactively painted by the user or predefined using
a paint program are stored in a map — the expansion texrture. A parameterization of the
surface is thus required.

INRIA
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3 Our mechanical model and solver

We want to allow huge expansion in order to deal with a large range of morphogenesis
situations, and we want to provide more precise tools to the user (see section 4). For
this, our model must not depend on any global parameterization (which would be soon
overstretched). A very stable model is also required: we rely on an energetic formalism close
to thin shells mechanical model. We also want to provide the user with higher level controls
(i.e. semi-procedural, or semi-interactive), by allowing him to tune how long a growth will
last, according to which activation pattern (e.g. delayed starting, progressive decay...).

3.1 Expansion model

To avoid a global (u,v) parameterization we store the various local data at the vertices or
at extra nodes within the faces. For extra nodes we define a radius of influence r and an
influence kernel w(z). We define a local 2D frame for each vertex using a local geodesic
polar parameterization [WW94].

For growth data defined at vertices we model the expansion of the referen_qe length I, of
edge e as the average of the expansion at the tips: G(e) = £(Gpp, (le) + Gpp, (Ie)) where Dp,
and Dp, are the tensors at the edge tips P; and P». For growth data defined at an arbitrary
node N we define Dp, = w(||P; — N||)Dn. For growth data defined on an arbitrary curve C
(based on control points {N;}) we define Dp, = w(d(P;,C))Dy where d(P,C) is the distance
from a point P to the curve C.

As stated above and detailed in section 4 we account for the duration of growth in
time. The expansion of an edge e between iteration steps corresponding to time ¢; and ¢, is
Gle) = G(e)=".

We also take plasticity into account if desired, which avoids accumulating undissipated
stress in the surface. This permit smoother shapes in case of huge expansion. When the dif-
ference between the reference length I, and the corresponding real length exceeds a threshold
Qplast We operate a relaxation over [e:

if l;; < (1 - apla,st)le
le = (1 - kplast)l + kplast(l - aplast)le

else if I, > (1+ Qplast)le
=t

le = (1 - kplast)Z + kplast(l + aplast)le
endif

3.2 Our energy-based mechanical model

Contrary to [CN02] we do not compute explicitly the displacement of the vertices, but we
define an energy E of deformation between the surface and the reference state. This is
closer to mechanical formalism and this ease the accounting of new phenomena. We use
three components: E = Enembrane + Ebending + Epressure- This definition is inspired by
the models of thin shells (see [GHDSO03] for details) where the energy is the sum of two
components similar t0 Epemprane and Epending-

RR n° 5302
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The expression we propose below for these two energies are easily to calculate and derive.
It produces realistic deformations. However, more accurate (and thus time-consuming)
formulations could be used in the scope of off-line complex growth simulation. The pressure
is not a classical notion here and was introduced by [CN02] to control the wavelength and
the regularity of the shape. We adapt this term to our energetic formalism.

3.2.1 Membrane energy

E,embrane measures the stretching (change of area) and the shearing of the surface (change
in length but not area). We opted for a finite element expression of the stress. We integrate
on the mesh the density of elastic deformation energy E? of the triangles t:

membrane
_ A it
Emembrane - E AtEmembra,ne
t
1 2 2
t _ it
where Emembrane - 5 § : Z 0i5€ij
i=1 j=1

Ay is the reference area of the triangle t, eﬁj (the strain tensor) measures the deformation of ¢
respective to its reference state, and afj (the stress tensor, which describes the internal forces
which acts on the triangle) can be deduced using the Hook’s law (see for instance [OH99]
for details).

3.2.2 Bending energy

Eenging controls the flexure of the surface. In mechanics, models classically measure a
squared difference between curvature tensors at current and rest states. We prefer to use
the mean curvature — which is scalar — because it is faster to evaluate (see [DMSB99]), easier
to derive and the quality of the approximation is enough for our simulations. We integrate
the difference between the mean curvature k” and the reference curvature &Y along the
surface. So, we have:

— a1 v
Ebendz’ng - E Avaending
v
— \2

v —_
where Efending = (ky — Ry)

A, is the area of the Voronoi cell which contains the vertex v.

INRIA
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3.2.3 Pressure energy

[CNO02] relies on normal stress F'y for this term, thus turning the triangles compression into
a displacement along the normal. This force succeeds in modulating the fold wavelength and
the growth preferred direction. We adapted this term to define a pressure energy Epressure:

— § A v
Epressu?“e - AUEpressure
v
h B = L wowiy
where pressure Z v V)E N

v

v is the 3D position of the vertex at a previous sub-step in the optimization solver.

3.3 The solver

To generate a new global equilibrium of the shape after a growth step, we solve the energy
minimization using a classical Conjugate Gradient Optimization (see [PTVF] for details).
The optimality of the steps provides a more robust convergence than the simple displace-
ment used in [CN02] (corresponding to a constant step Gradient Optimization). We stop
the optimization when the difference between the energies in two consecutive steps or the
maximum stress along the surface are below a small threshold.

4 Growing tools

In nature, growth exists in a variety of modalities: in plants, cellular proliferation mostly
occurs at apexes (i.e. tip of branches). This causes the 1D nature of branches. At some
stage of the leaves development the surface enlarges due to the cellular division along the leaf
edge. Geological rifts are another situation showing an expansion occurring along a curve.
Animal tissues grow more homogeneously, but often with an important anisotropy: body
proportions change from embryo to adult [WFMO01]. The distribution of active and passive
(expansion-wise) areas on a surface strongly influences the pattern of deformation due to
mechanical constraints: an expanding spot can only bulge out of the surface. An expanding
linear area crossing the surface might simply enlarge it (e.g. rifts). When the whole surface
is expanding, any heterogeneity or local constraint will result in folds or curling.

In order to provide the user with most flexibility, we account for the same variety of
modalities: Our tools can be hot spots (0D), hot curves (1D) or hot surfaces (2D). Formally
these three kinds of active regions could all be simply painted in an expansion texture. The
difference mostly lies in their specification and control: Spots and curves control points are
located precisely on the mesh by relying on their barycentric coordinates within faces (and
updating this data during remeshings). Hot surface data is defined at the mesh vertices.

RR n° 5302
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4.1 Hot spots (0D tools)

A hot spot is defined by the growth parameters (D1, D,,0,...), a radius of influence r and
an activation curve I(¢t) (growth intensity in time, or by default a constant and a duration).
Since a hot spot generates a bulge, a long activation results in the growth of a branch.

We implemented various spot tools such as rotating the frame over time, and splitting a
spot into several spots within the radius of influence. As shown in the results section, this
results into branching. It would be easy to connect this mechanism to a procedural event
generator such as L-systems [PLH88] or [DL97]. We tried simple ones as illustrated in the
result section.

4.2 Hot curves (1D tools)

A hot curve can share common growth parameters, which orientation can follows the local
frame along the curve. We denote Dt the expansion along the curve (i.e. tangential) and
Dy the expansion in the orthogonal direction (i.e. normal). To model an heterogeneous
growth, growth parameters can be painted and attached to the control points (and thus to
the surface), or specified by a 1D texture I(u) (relying on a curvilinear parameterization
u). The last case can typically be used for controlling the activation of growth in time: A
user-defined 1D texture defines the growth intensity along a normalized range of time, and
the local time offset and local time pace are interpolated along the curve.

The curve is attached to the surface and thus is distorted together with it (by the effect
of its activity plus the one of other growing tools). For instance, this allows to define a
very short curve across an apex (i.e. a hot spot) and to let it enlarge before activating it.
This can be used to generates a leaf from a stem. It is easy to create automatically such a
small curve from geometric parameters (e.g. the apex normal — which corresponds to the
stem axis — , or the vertical), so a procedural tool can generate and trigger hot curves as
illustrated in results.

Growth anisotropy along the curve can result in different shapes: for a straight curve, a
totally radially oriented growth (i.e. Dy =1 and Dg > 1) generates a plane. Adding a slight
tangential growth (Dr > 1) yields tangential folds, while a slight tangential contraction
(Dr < 1) would yield radial folds. For a curve, the tuning corresponding to the balanced
case (i.e. aplane) depends on the local curvature . If the user wants to control the regularity
of the generated surface (see the mushrooms example on figure 2(b)) a normalization has to
be applied: in such case we define Dy = 1 4+ A(Dg — 1)re7y, with A a control factor (1 for a
plane) and 7. the efficient influence radius = m, where w(z) defines the shape of the

0

influence kernel.

4.3 Hot surfaces (2D tools)

The user interface for the 2D tool draws on and extends the [CN02] one: growth param-
eters are defined either by interactive painting (parameters are sampled at mesh vertices,

INRIA
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orientation is given by the mouse direction) or by a 2D texture (a temporary (u,v) pa-
rameterization — e.g. a projection — is then defined on the targeted area). From this, we
added several features. In the interactive case we store a time offset ¢y and a time pace dt
at each painted vertex: this allows to control how long the growth will apply (i.e. while
(t — tg)dt < 1). This also permits to spread huge growth along time, thus allowing stable
huge deformations. We also implemented various painting tools in order to apply growth
‘brushes’ and interpolation. For the latter, we rely on adapted Laplace interpolation [GS03]:
the user paint values (spots or curves) which are spread by solving a diffusion equation (we
used an implicit solver for efficiency). Interpolating tensors is not as simple as for scalars.
Similarly to what [Tur01] does for vectors, we first interpolate the tensor coefficients. Then
we rebuild an orthonormal frame and we reconstruct the interpolated tensor by scaling it
with the separately interpolated eigenvalues.

5 Results

Our results are presented on figure 2. Animated sequences are framed.

e (a): Using a hot spot (the initial shape is a sphere). Isotropic growth; anisotropic growth
(folds appear in the most expanded side); with twisted frame; branchings by splitting the
spot.

e (b): Using a hot curve (the initial shape is a triangle). Mushrooms (the initial hot curve is
a circle at the stem tip): without normalization; with the normalization. Leaves (the initial
hot curve is a half-circle crossing the apex at the stem tip; its control points are figured on
the first two images).

e (¢): Using a hot surface (and isotropic growth). Pumpkin: rigid lines (in grey) were
painted on a sphere before the homogeneous growth. Leaves: growth is painted only on
the edge, using various tunings (frequency, gradient). Flowers: painting growth only on the
corners grows and curls them into petals.

e (d): Modeling an unmade bed. A physical cloth simulation would require to know the
initial state, the material parameters, and the history of forces. Using our model, the artist
simply draws areas where to add ‘extra matter’ (resulting in folds) much like a sculptor
would. The frequency is tuned by the user and the folds are oriented by the mouse direction.
e (¢): Table cloth. Starting with a cylinder, the user paints a totally tangential anisotropic
expansion on the bottom, and a zero-expansion circle on the top. Then he interpolates
the growth parameters in between. Note that the user can exaggerate the folds (as for the
drapes in ancient paintings) on desire.

e (f): A cabbage leaf modeled using an expansion texture (much like in [CN02]).

e (g): Procedural growth. Apexes are split randomly. Note that our model produces a
continuous growth, and that mechanical constraints move branches apart naturally.

RR n° 5302
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P & |

Figure 2: Results (sequences are framed). (a): Using hot spots. (b): Using hot curves. (c-f): Using hot
surfaces. (g): Procedural growth.

INRIA
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6 Conclusion and Future Work

We have presented a new modeling paradigm based on the control of surface growth. The
engine consists on a new efficient and stable mechanical model and solver able to simulate
growth-induced deformations. Compared to physical simulations we are able to provide the
user with fine control of the shape. Compared to traditional modeling tools and to sculpting
tools we do not require the user to explicitly define each very detail. However, by tuning
the radius of influence the user can indeed edit details whenever he wants. Most of the
result we show could not have been modeled easily with any other modeling tool or physical
simulation.

Our approach is able to model either global shapes or complex surface details, relying
on interactive or semi-interactive operations. However, the user may sometime want an
even higher level of control. Our model could be connected to procedural tools such as
L-systems [PLH88| to generate complex structures. Similarly, expansion texture could be
procedurally evaluated or simulated using noise [Per85] or reaction-diffusion [Tur91]. Finally,
it would be interesting to add to our model a scheme for the semi-procedural synthesis of
surface colors and textures.

RR n° 5302
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