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Distribution de zéros et relations d’orthogonalité

Résumé : Ce rapport présente une nouvelle méthode pour déterminer la distribution
asymptotique des zéros de polynomes orthogonaux sur un segment, qui procéde directe-
ment & partir des relations d’orthogonalité. Nous l'illustrons dans quatre cas de figure :
orthogonalité classique, non-Hermitienne, orthogonalité en approximation rationnelle pour
les fonctions de Markov, ainsi que pour les intégrales de Cauchy de mesures complexes. Les
résultats dans les trois derniers cas sont les premiers de ce type.

Mots-clés : Théorie des fonctions, Théorie du potentiel, Polynémes orthogonaux, Polyn-
Omes orthogonaux non-Hermitiens, Approximation rationnelle, Approximation méromorphe.
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1 Introduction

Let u be a positive measure with infinite compact support S C R, and consider the corre-
sponding monic orthogonal polynomials ¢, (t) = t™ + - - -,

/qn(t)tkd,u(t):o, k=0,...,n—1. (1)

Under quite weak hypotheses on the measure p, it is true [19, Theorem 2.2.1] that the zero
distribution of the polynomials ¢, is asymptotically equal to the equilibrium distribution wg
of S for the logarithmic potential. The proofs in the literature usually go through estimates
on the norm of the polynomials. In what follows, we present a new approach that uses
directly the orthogonality relations (1). Under mild assumptions this approach generalizes
to non-Hermitian orthogonality, that is to the case where p gets replaced by some complex
measure A; this cannot be said of classical proofs. See further motivation for and connection
with non-Hermitian orthogonality in Section 6.

Another feature of the present approach, is that it applies to other kinds of orthogonality
relations, like those arising from best rational or meromorphic approximation with free poles.
For example, if the support of A lies in the unit disk, the denominator of a best rational
approximant of degree n to the Cauchy transform of A in L? of the unit circle satisfies [7, 3|:

Iy ek aa) =0,  k=0,...,n—1, )

an
where @, is the reciprocal polynomial associated with g, (see Section 4). Although (2)
looks like ordinary orthogonality with varying weight g, 2, it is not so because this weight
itself depends on ¢,. When X is a positive measure on [a,b] C (—1,1) satisfying the Szegs
condition, then the asymptotic zero distribution of the polynomials g, in (2) is known (and
much beyond, see [2, 5]), but still our result deals with less regular situations. And when
A is complex, the theorem we prove is first of this kind. The method also allows one to
handle the case of a strongly convergent varying weight which is relevant in meromorphic
approximation [3].

In this work we shall extensively use potential theory. For concepts like equilibrium mea-
sure, logarithmic potential, capacity, balayage, and the basic theorems of potential theory,
the reader may consult some recent texts such as [14], [15] or the appendix of [19].

2 Real orthogonal polynomials

In this section, we let i to be a positive Borel measure with support S C R. We shall assume

that p is sufficiently thick, namely that there are ¢, L > 0 such that, for all 0 < § < 1 and
z € 5, we have

w(x = 6,z + 6]) > co™. (1)

Let v, be the normalized counting measure on the zeros of the polynomials g, satisfying

(1), namely the discrete probability measure having equal mass at each of the zeros (these

RR n° 5291



4 L. Baratchart & R. Kistner & V. Totik

are simple). The theorem below asserting the asymptotic behaviour of v, is not new see [19,
Theorems 2.2.1 and 4.2.5]), but our method of proof will serve as a model for more general
situations to come.

Theorem 2.1 Suppose that the support S of u is regular with respect to the Dirichlet prob-
lem in C\ S, and that (1) holds. Then v, tends to the equilibrium measure wg of S in the
weak® topology as n tends to oco.

Proof. Let v be a weak* limit point of {v,}, say v, — v as n — oo, n € Ny. It is well-
known (and elementary to check see [19, Lemma 1.1.3]), that the zeros of the orthogonal
polynomials lie in the convex hull of S, that they are simple, and that each subinterval of
R\ S can contain at most one of them. Hence v is supported on S and it has total mass
1. We claim: it is enough to prove that there is a constant D such that the logarithmic
potential U” of v equals D quasi-everywhere on S. Indeed, the lower semi-continuity of U”
implies then that UY(z) < D for all x € S. Thus, v has finite logarithmic energy, and,
in particular, every set of zero capacity has zero v measure. Now, integrating the equality
“U¥(x) = D for quasi-every z € S" agains wg and interchanging the order of integration,
we get that
—_ v — ws — 1
D—/U dws—/U dV_IOgcap(S)’

and then integrating the same equality against v yields that v has the same logarithmic
energy as wg. By uniqueness of the equilibrium measure (c.f. [15, Theorem 1.3.1]) it follows
that v = wg and, since this is true of every weak* limit point, the whole sequence {v,}
converges to ws as claimed.

Thus, it has left to prove that there is a constant D such that the potential of v equals
D quasi-everywhere on S. Suppose to the contrary that there are d, 7 > 0 and two Borel
sets E_ C S and E; C S of positive capacity such that

U'(z) <d—21 forxe E_ and U'(z) >d+7 forzeE;

(this is the only alternative for U is finite quasi-everywhere on S since it is a superharmonic
function on C which is clearly not identically +00).

We contend that there is a point yo € supp(v) such that U¥(yo) > d. For if not
U¥(z) < d for all z € supp(v), so by the maximum principle for potentials (see e.g. [15,
Corollary I1.3.3]) the same inequality holds for all z € C, a contradiction since on E; we
have bigger values for U”. This proves our contention.

According to the principle of descent (see e.g. [15, Theorem 1.6.8]), which is valid since the
support of v, remains in a fixed compact set (namely the convex hull of S), we subsequently

have
liminf U (y,) > U"(y0) > d

n—oo, n€ENy

for any sequence y,, — yo. Therefore there are p > 0 and Ny such that, for y € [yo —p, yo + p)
and n > Ny, n € Ny, the inequality U~ (y) > d holds, which amounts to

lan(y)| <e ™,  y€lyo—p,yo+p] (2)

INRIA



Zero distributions via orthogonality 5

by the definition of v,, and of the logarithmic potential. We shall use that this same inequality
is true (for sufficiently large n) if {g.} gets replaced by any sequence of monic polynomials
{¢} } having the same asymptotic zero-distribution v and whose zeros are uniformly bounded,
for these were the only facts we used in deriving (2). This is true even if ¢* does not have
exact degree n (the counting measure of the zeros being still normalized with n), but merely
degree (1 + o(1))n.

In another connection, the lower envelope theorem (see [15, Theorem 1.6.9]) implies that
for quasi-every x € E_ we have

liminf U (2) =U%(z) <d - 27,

n—oo, n€ENy

and since the logarithm of |g,(x)|~'/™ stands on the left, we deduce that for some subse-
quence Ny C N; and for sufficiently large n € Ny, say for n > Ny

= > g (d=T),
M, := max|q.(x)| > e (3)

Our assumption that S is regular means: the Green function gcy\s(2) of C\ S with pole
at oo is such that

Ae) = distglzlg7)<52590\5(z)

tends to zero as ¢ — 0. Now, according to the Bernstein-Walsh lemma [20, p. 77], we have
that
lgn(2)] < M, exp(ngc\g(z)) < Mnen/\(g)

if dist(z, S) < 2e, hence for dist(z,S) < ¢ we obtain from Cauchy’s formula the estimate:

Mnen)\(a)

!
<
g, (2)] < 8

where ¢/,(#) indicates the derivative. Thus, if we let z,, € S be a point where |g,| attains
its maximum on S and if z € S satisfies:

g
|$—$n|§Wa (4)

we obtain from the mean-value theorem the estimate:
gn ()] 2 My = |gn(Tn) — @n(2)| 2 Mp — M, /2 = M, /2.

For fixed ¢ > 0, noticing since A(¢) > 0 that the interval defined by (4) is contained in
[Zn — p/2, 2, + p/2] when n is large enough, we conclude on invoking (1) and (3) that

M,\? € L c € L
2 > -n = > = (_ = 72n(d7'r)
/[znp/Z,z"+p/2] |q"| d'u - < 2 ) ¢ (2€">‘(5)) - 4 (26")‘(5)) €

672nd+n7' (5)

v
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6 L. Baratchart & R. Kistner & V. Totik

for n € Ny and, say, n > N3 = N3(¢), provided £ > 0 was chosen so small that A(¢)L < 7.

Observe now that, for sufficiently large n € Nj, there are arbitrarily many zeros of
gn lying in [yo — p/2,y0 + p/2] because yo lies in the support of the limit measure v. In
particular there will be two such zeros, say a1 < ou,,2, as soon as n € Ny is sufficiently
large, say n > N,. For n € Ny with n > max(Ny, Ny, N3, Ny), consider the polynomial
P,_o(t) = ¢n(t)/(t — an1)(t — an2) of degree n — 2. Obviously, ¢,(t)P,—2(t) is nonnegative
outside (@n,1,0n,2). Moreover, since x,, was a maximum place for |g,| on S, it follows
from (2) and (3)) that z, & [yo — p, Yo + p] so that [z, — p/2, 2, + p/2] N (An,1,An2) = 0.
Consequently, by (5), we obtain on the one hand for large n € Na:

;672nd nrt
/tem,l,an.z) GO0 > R (6)

On the other hand, the limit distribution of the zeros of the polynomials P, 2, n € Ny is
again v and these zeros lie in the convex hull of S so that, as pointed out after (2), we also
have:

[Paa(®)l < ey €lyo—pyyo+ 0l

for sufficiently large n € Ny. We thus obtain from this and (2) the estimate:

/ Gn(t) Pr—a(t)dpu(t)| < Ce—2nd -
tE(n,1,0n,2)

with C = p((an,1, an,2))-

But the sum of the two integrals in the left-hand sides of (6) and (7) should be zero by
orthogonality, which is clearly impossible because, as an inspection of the right hand sides
shows, the first integral is much bigger than the second one for large n € Ns.

This contradiction proves the theorem.

3 Non-Hermitian orthogonal polynomials
Let A be a complex-valued Borel measure with compact support S C R, and consider

an associated sequence of monic non-Hermitian orthogonal polynomials namely a sequence
¢n(z) = 2% + - -, with d,, < n, such that:

/qn(t)tkd)\(t):o, k=0,...,n—1. (1)

Although the orthogonalization process can no longer be used here, the existence of such a
sequence {q, } is guaranteed since n linear homogeneous equations in n+ 1 unknowns always
have a nontrivial solution. Therefore, there are @, n,ann—1,--.,an,0, not all zero, such that

/ Zan,jtj tkd\(t) =0, k=0,1,....,n—1,
7=0

INRIA



Zero distributions via orthogonality 7

and now if a, 4, is the highest non-vanishing coefficient, then normalization gives (1). This
time, however, ¢, need not be unique nor have exact degree n; in fact (1) has exactly one
monic solution of minimal degree and if there is another solution, say of degree m, then each
monic polynomial of degree at most m which is a multiple of the minimal degree solution
is in turn a solution [17, lemma 1]. Therefore, there is a certain inaccuracy in the words “a
sequence of monic non-Hermitian orthogonal polynomials associated with \”. Hereafter, we
simply assume that some monic ¢, of degree d,, < n satisfying (1) has been chosen for each
n > 1, for the results will not depend on the precise choice of ¢,, meeting these requirements.
Note if the support S of X is infinite then d,, necessarily goes to infinity with n, as follows
easily from the uniform density of polynomials in the space of continuous functions on S.
The hypotheses on A to come will in fact ensure much more, namely they imply that n — d,
remains bounded (see Lemma, 3.2). For that very reason, it does not matter in convergence
issues whether the zero counting measure v, of ¢, is formed by putting mass k/d,, or mass
k/n to each zero of g, of multiplicity k. For definiteness, we make the former definition so
that v, is still a probability measure.
About the measure A we assume that it is of the form

dA(t) = e Wdp(t), (2)

where ¢ is a function of bounded variation on the support S of u, and p is a positive measure
satisfying the properties set forth in Section 2, i.e. its support S is regular with respect to
the Dirichlet problem in C\ S, and (1) holds. An equivalent way to say this is to let u to
be the total variation measure of the complex measure A and let

dA(t) = e Ddpu(t)

be the Radon-Nikodym decomposition of A with respect to p (polar form of A\). Thus, u
is a positive measure whose support is the same as the support of A, and d\/du(t) = e**
is of bounded variation (more precisely it coincides p-almost everywhere with a function of
bounded variation). In fact, it is easy to see that ¢ and e are simultaneously of bounded
variation or not on S.

Note that, in the present setting, ¢, may have nonreal zeros, so in general, v, is not
supported on R. However, the next theorem entails that it tends to be so asymptotically,
at least in proportion:

Theorem 3.1 With the preceding assumptions on A, the measure v, tends to the equilibrium
measure wg of S in the weak* topology as n tends to oco.

For the proof of Theorem 3.1, we shall rely on a lemma which is of independent interest.
This lemma does not require u to satisfy (1), nor that S be regular but only that it is infinite.
To state the lemma, we need another piece of notation as follows.

Suppose that S C U;"zl[aj,bj] where a1 < by <as <--- < am < bp. For £ € C, let

Angle(¢, [a,b]) = |arg(a — §) — arg(b - £)| € [0, 7]

RR n° 5291



8 L. Baratchart & R. Kistner & V. Totik

be the angle in which the interval [a, b] is seen from £. Subsequently we define

6(6) = | D_ Angle(¢, [a;,b5]) |,

=1

which is the the total angle in which U;[a;, b;]) is seen from £, and we observe that () €
[0, 7] since 6(§) < Angle(¢, [a1,b.m]). Note also that (£) = 0if, and only if £ € R\U,[a;, b;]),
and that 0(¢) = « if, and only if £ € Uj[a;, b,]).

We indicate by

N
V()= sup > () — p(wi)|
ro<z1<...<Xp k=1
NEN, zp€S

the total variation of ¢ on S.

Lemma 3.2 Let ¢,(z) = Hi"zl(z — &) be some n-th orthogonal polynomial in the sense of
(1). Under the sole hypothesis that the support of X is an infinite compact subset of the real
line, it holds with the previous notations that

S

n

(m—=6(&k) + (n — dn)m < V() + (m — 1), 3)

El
Il

where ¢ is any argument function for d\/d|\| (i.e. such that e*®) = dX/d|\|(t)).

It follows from the lemma that the defect n—d,, in the degree of ¢, is at most V(p)/7 and
therefore remains uniformly bounded whenever ¢ can be chosen of bounded variation. To
see it, apply the case m =1 of Lemma 3.2, i.e. consider just one interval [a;,b1] containing
S, and use that 6(&;) < 7 for each k. In particular, when V(¢) = 0, say A is positive, we
conclude that there is no defect and that all the poles lie in the convex hull of S, which is a
well-known result.

Corollary 3.3 Under the assumptions of Theorem 3.1, to every neighborhood U of S there
s a constant Ky such that q, has at most Ky zeros outside U.

The corollary is an immediate consequence of Lemma 3.2: Select finitely many intervals
[a;,b;], 5 =1,...,m such that

ST a;b]CU,
=1

and apply (3) noting that a zero outside U contributes to the left hand side by more than
a fixed constant that depends only on Uj[a;,b;] and U.

INRIA
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Proof of Lemma 3.2. We may assume that ¢ has bounded variation and that it is defined
on the whole real line upon extending it linearly to the finite contiguous intervals of S while
making it constant and equal to ¢(a) (resp. ¢(b)) on (a,+0o0) (resp. (—oo,b)) if [a,b] is
the convex hull of S; this extension has the same variation as . Also, we can suppose that
every jump of ¢ has amplitude at most 7, because there are only finitely many discontinuity
points where it is not so (by the finiteness of the variation) and then we can always add to
@(t) a piecewise constant function with jumps in multiples of 27 to change all jumps larger
than 7 to jumps at most 7 (in absolute value). This modification can only decrease the
variation, and therefore will not affect the validity of (3).

For the proof, we may further assume that ¢, has no zero on U;[a;, b;]. Indeed, putting

dpa (t) = (t — &)*dp(t) and Qn_1(t) = gn(t)/(t — &), we get
/Qn,l(t) the*®du () =0, k=0,...,n—2; (4)

but if £, € Uja;,b;], then p; is again positive and 0(&;) = w, so we are back to prove the
lemma with n — 1 instead of n, d,, — 1 instead of d,, @, instead of ¢,, and p; instead of
u. Proceeding recursively, we reach a situation where ¢, has no zero on U;[a;,b;] or where
n = 1 and either its only root lies on U;[a;,b,] or else d,, = 0. But if ¢1(¢) = ¢t — & with
0(&1) =, then (3) is trivial for the left-hand side vanishes, while if n = 1 and d,, =0, it is
also trivial since V() must be at least 7 in order that the L(du)-mean of e*¥ be zero (see
the argument that follows below).

Thus we can safely assume that ¢, has no zero on Uj[a;,b;] in which case it has a well-
defined and smooth argument on a neighborhood of the latter. Then H(t) = arg(g,(t)e**™®)
is in turn well-defined of bounded variation there. The function H has left and right limit
H(z—0) and H(x+0), respectively, at every x € Uj[a;,b;]. By the graph of H on Uj[a;, b;],
we mean the set

{(z,y) |z € Ujla;,b5], y € (H(z = 0), H(z)] U [H(z), H(z +0))},

where the interval (H(z—0), H(z)] (resp.[H(z), H(z+0))) is omitted if z is equal to some a;
(resp. some b;). The graph can be visualized as the ordinary graph plus all the vertical seg-
ments that represent a jump of H. We will show that the respective variations V (H, [a;, b;])
of H over the intervals [a;, b;] satisfy

m

> V(H,laj,b5]) = (n —m + ). (5)

i=1
This is sufficient to conclude (3), because by the monotonicity of arg(t — &) we have:

ZV(Hv[ajvbjD < +Z

Jj=

g

V (arg(t — &), [aj, bj])

Angle(&y, [aj,b;]) = V(e) + Z 0(&k)-

uMs EM&
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10 L. Baratchart & R. Kistner & V. Totik

Thus, it has left to show (5). Suppose to the contrary that

m

> V(H,[a;,b;]) < (n—m + ). (6)

J=1

Let N(u, H,[aj,b;]) be the (possibly infinite) number of intersections of the line y = u with
the graph of H over [a;,b;]. In this count, the intersection at (z,y) is double if u lies in
both (H(z —0), H(z)) and (H(z), H(z + 0)).

By the Banach-Kestelman lemma, [10]

| NG a5, 0)du = V(. g ). g

Thus if we let -
Ne(u, H,[a;,b;]) = > N(u+lr, H,a;,b)),

l=—c0

we get from (7) that
/0 No(u, H, [ay, by])du = V(H, [a;, by]).

Adding up over j =1,...,m, we can infer from (6) that there is a set E C [0, ) of positive
Lebesgue measure such that

ZNw(u,H, [a;,b;]) <n —m+1 whenever u € E. (8)

Jj=1
Pick ug € E which is not a value H(a;), H(a; + 0), H(b; — 0) or H(b;), nor equal to
any H(z —0), H(x), or H(z +0) for z a discontinuity point of H. This is certainly possible

since such values form a countable set. We will show that there is a polynomial R,,_; of
degree at most n — 1 (it can be chosen with real zeros) such that either

C\?{e*inQn(t)ei‘p(t)Rn—l(t)} >0, te U; [aj7 bj]’ (9)

or b 10
& efiuoq t ei‘f’(t) R 1 t < 0, te i 1G5, 03], ( )
n— AN R R

and in any case the inequality is strict except for finitely many ¢’s. However, (9) and (10)
are then equally impossible, because the integral of

e g (1) DR, _1(t)

against dyu(t) must be zero by (1) and  has infinite support (recall d\ = e**(®dyu(t) ). This
contradiction will prove (5) pending the proof of either (9) or (10) with strict inequality at
all but finitely many ¢’s.

INRIA



Zero distributions via orthogonality 11

To construct R, _1, paint red on the plane all the strips ug + 2i7 < y < uo + (21 + 1),
[=0,£1,%2,..., and let G be their union; and paint the remaining strips ug + (2 — 1)7 <
y < ug+ 2lw, Il = 0,£1,£2,... of the plane white. Let us also agree that the boundary
OG of these regions (i.e. the union of the lines y = ug + 2iw, | = 0,4+1,£2,...) gets both
colors. The graph of H over [aj,b;] intersects the boundary G of G at those abscissa x
where either z is a continuity point of H and H(x) € G or else x is a discontinuity point
and at least one of the vertical segment (H(z —0), H(x)), (H(z), H(x + 0)) is bicolour (one
of the segments is missing if * = a; or = b;, and remember that H(x) cannot lie on 9G).
In the first case the multiplicity of the intersection is 1, and in the second case it is equal to
the number of bicolour segments, i.e. 1 or 2 (remember all the jumps are < w and neither
H(z —0) nor H(z) or H(z 4 0) can lie on 8G). By definition the sum of all multiplicities is
N (uo, H,[a;,b;]), which is finite because of (8); in particular there are only finitely many
intersections and they occur at isolated abscissa. Among those, we further distinguish the
crossing abscissa « € [aj, b;] where the graph of H crosses 0G, meaning that either z is a
continuity point of H and there is € > 0 such that (¢, H(¢)) is red for ¢t € (z — ¢, ] (resp.
t € [x,z+¢)) and white for ¢t € (z,z+¢) (resp. t € (x—¢,x), or else z is a discontinuity point
of H and (z,H(x — 0)), (z,H(x)), (x, H(x + 0)) are not all of the same colour (remember
none of them can lie on 9G). It is straighforward to check with that definition that if
(21, H(z1)) lies interior to G and (z2, H(z2)) lies interior to the complement of G, some
crossing has to occur between z; and z; (i.e. the intermediate value theorem holds). We
also say that the graph of H starts in G (resp. outside G) at a; if (a;, H(a;)) lies interior
to G (resp. to the complement of G); here one should recall that (a;, H(a;) cannot lie on
OG by our choice of ug.

We need now define arguments on the real line for functions involving a polynomial
factor having real zeros. The definition of the argument at a zero is immaterial, because
the function will be later integrated against u and the contribution of the integrand at that
point is zero anyway. For definiteness, we may assume for instance that the argument is
left continuous. The definition of the jump of the argument across the zero also involves an
arbitrary choice for the jump can be chosen to be any mm + k27 where m is the multiplicity
and k € Z. This choice is not relevant either in what follows, because only the color of the
points of the graph will matter and that color is invariant under jumps in y of the form k2.
For definiteness again, let us agree that each zero produces a jump of mm in the argument
of (x — t) when ¢ crosses x from the left to the right.

If R(t) = [](t; —t) is a polynomial with real zeros t;, it is straightforward to check with
that definition that

arg(gn (e R() = Ht) + > _m, t#t;

t;<t

where the t; are repeated according to their multiplicity.
Now, if z1,...,2,, are the crossing abscissa of H over [a1, b;1], and if we pick

Ry(t) = IGL, (2 — )™

RR n° 5291



12 L. Baratchart & R. Kistner & V. Totik

where m; is the multiplicity of z;, a moment’s thinking will convince the reader (see the
next paragraph) that the graph of arg(g,(t)e’ Ry (t)) over [a1,b1] is either red or white
(depending whether a; is a crossing point and whether the graph starts in or outside G at
ay). Furthermore, the graph lies in the interior of the red or white region except possibly
at finitely many places (x, H(z)) where x may be an intersection abscissa which is not
crossing (hence arg (g, (z)e’(®)) € @) or a crossing abscissa (hence a zero of R;) where H
is discontinuous. Hence

either %{e‘moqn(t)ew(t)Rl(t)} >0 or %{e_iuoqn(t)ei‘”(t)Rl(t)} <0 (11)

holds true on [a1,b;], except at the zeros of R; and at those points ¢ where the graph of
H hits 0G without crossing; such points are intersection points (hence finite in number) at
which the left-hand side of the inequalities (11) vanishes by construction.

Geometrically, the above procedure may be described as follows. Suppose to fix ideas
that the graph of H starts in G. Then, a zero of Ry placed to a crossing point where the
graph would leave a red strip pushes the argument down by 7, so the graph continues in the
next red strip, and if the graph does not leave a red strip but only the value at the crossing
point is white because of a jump (so that the crossing has multiplicity 2), we put a double
zero so as to push the graph down by 27 (thus its stays red) while zeroing R; at the crossing
point itself.

Next, we replace H(t) by arg(g.(t)e’¥) Ri(t)) and we proceed in the same manner on
[a2, ba], observing that on [as, ba] the factor Ry shifts H by a multiple of 7 thus it does not
change the crossing points nor their multiplicity. We thus let

Ry =32, iz —8)™

where Z,, 41, .., %, are the crossing abscissa of the graph of H over [a3, b2] with multiplic-
ities m;, and we find that

cither I{e™™0q,(t)e* DRy (t)Ra(t)} > 0
. . (12)
or %{e"“oqn(t)e“P(t)Rl(t)Rz(t)} < 0

except perhaps at finitely many places where the left-hand side vanishes. Note that the factor
R5(t) does not influence the argument on [a1, b ], so we preserve for S{e~"0g, (t)e'*) Ry (t)Ra(t) }
whichever inequality was prevailing in (11). In case the latter is not the same as in (12),

we put an extra zero to R, at ay so that the whole graph of arg(e ¢, (t)e**) Ry (t)R,(t))
over [ag, bo] gets shifted by m and the valid inequality in (12) gets swaped.

Continuing in this fashion, we find R = R1 R ... R,, such that either (9) or (10) holds
with R in place of R, _1, and the inequality is strict except perhaps at finitely many places
where the left-hand side vanishes.

To check the degree of R, we observe that we needed to proceed as many zeros as the
total number of crossings, which is

m

ZNW(UO7H7 [aj7bj])7

Jj=1
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Zero distributions via orthogonality 13

plus possibly one extra zero to each a; with j > 2 which is at most m — 1. Thus R = R,_;
has degree at most n — 1 by (8), as was to be shown.

To establish Theorem 3.1, we need another lemma, that is reminiscent of the previous
proof, but is actually much simpler because we do not control the degree of the polynomial
involved.

Lemma 3.4 If ¢ is of bounded variation on an interval [a,b], then there is a polynomial T
and a 6 > 0 such that

arg(e* T (1)) € [—g n 6,% —§],  telabl, T()#£0. (13)

Proof. Up to the addition of a piecewise constant function taking values in multiples of
27, we may assume as in the proof of Lemma 3.2 that the jumps of ¢ all lie in the interval
(—m, 7).

We suppose first that ¢ is left-continuous. Let ¢1,...,ts denote the points where ¢(t; +
0) — ¢(t;) = m, and set

B(t) = o(t) =7 Y Xt (1),
j=1

where g indicates the characteristic function of the set E. The function v is of bounded
variation on [a, b], it is left continuous, and all its jumps are strictly less than 7 in absolute
value. Let

7= sup [t +0) = (1)

be the supremum of the absolute value of its jumps. Then v < 7, and if v/2 < vy < 7/2,
then there is a continuous function g with |¢) — g| < v1. Let § < (7/2 —1)/2, and T be a
polynomial such that

- 6
|eilg(t) - TO(t)| < 53 te [avb]‘

Shrinking & if necessary ensures that Ty has no zero on [a,b]. Now, |1 — e)Ty(t)| < 6/2
hence . .
e =9() _ (T (1)] < 6/2,

implying that
|(6(t) = 9(4)) — arg (e Tu(0)) | <.

Consequently
arg(eV Ty (1)) € [—g + 4, g - (5]
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14 L. Baratchart & R. Kistner & V. Totik

because 9(t) — g(t) € [-7/2 + 26, 7/2 — 26]. Noticing that

arg(eW(t)To (t)) = arg (ei‘P(t)To (1) H(tj — t)), t #tj,
7=1
the lemma follows with T'(t) = To(t) [1;_, (t; — t)-

In the general case, ¢ can be written as the sum of a left-continuous function of bounded
variation, say ¢1, plus an absolutely convergent series of functions )" h,, where h,, =0
except at some point x,, where, say hm(Z.m) = ym. We apply the previous part of the proof
to 1, and we select finitely many ¥,, such that the sum of the moduli of the remaining
ones is less that §/2. Putting an additional double zero of T at each z,, corresponding to a
selected y,, yields (13) with é replaced by /2.

Proof of Theorem 3.1. Let v be a weak* limit point of {v,,}. By Corollary 3.3 this v is
supported on S and it has total mass 1. Following the proof in the preceding section, it is
again sufficient to show that there is a constant D such that the potential U of v equals D
quasi-everywhere on S.

Let us suppose first that the zeros of qn remain in a bounded set. We argue by contra-
diction exactly as in Theorem 2.1, following the argument there up to the choice of P, _s.
In this connection, it must be stressed that the principle of descent that led to (2) is valid
because we assume that no zero of ¢, can go to infinity. In fact, up to (5) everything remains
true word for word with the degree n replaced by d,, = deg(q,)- In particular, (5) takes the
form

/ gu Py > e indnr. (14)
[Zn—p/2,z0+p/2]
Now, we fix a polynomial T'(z), say of degree k, as in Lemma 3.4, where in that lemma

[a,b] is some interval containing S. If ¢ is the leading coefficient of T, we get from the
Boutroux-Cartan lemma [13] that

e k
1012 e (gt

outside a union of at most k open disks, the sum of whose radii is at most ¢/(4e™*(¥)). Using
this it is easy to see from the proof of (5) that (14) is also true in the form

/ g PIT(2)ldp > ¢ 2indtdn (15)
[zn—p/2,2n+p/2]

when d,, is large enough, provided £ > 0 is so small that A(e)(k+ L) < 7.
Now, for small 0 < < diam(S)/2, let an,1,n,2,--.,0n kt1 be k + 1 zeros of ¢, in the
the n-neighborhood of the interval [yg — p/4,yo + p/4] (recall (2) for the definition of yy).

INRIA



Zero distributions via orthogonality 15

For sufficiently large n (hence large d,, since n — d,, is bounded as we saw after the proof of
Lemma 3.2), there are certainly k + 1 zeros lying in that neighborhood, because yo was a
point in the support of the limit measure v. Consider the polynomial

g (t)T(2)
[t —amy)

of degree at most n — 1. By choosing 7 sufficiently small, we can make the absolute value of
the argument of

P,_1(t) =

1/ﬁ(t—m>

smaller than §/2 for all t € R\ [yo — p/2,yo + p/2]. Since for all ¢t € S, whith T'(¢) # 0, the
argument of ¢, (t)g,(t)e’?T(t) is in (—x/2 — §,7/2 — 6), it follows that the argument of
Gn(t)Pn_1(t)e*?™®) lies in (—7/246/2,7/2—6/2) for each t € S\ [yo — p/2, 0 + p/2] which
is not a zero of P,,_1, and so we get from (15)

Rid Gn(t) Pr—1(t)dA(t) > R Gn () Pr—1(t)dA()
S\[yo—p/2,90+p/2] [Tn—p/2,%n+p/2]
sin(6/2) / 9
2 T qn|”|T(2)|dp
diam(S) T oo )

)
in(6/2 9 .
> G (16

as soon as n € Ny is large enough. On the other hand, the limit distribution of the zeros of
the polynomials P,,_1, n € Ny is again v, because T is fixed and we only discarded a fixed
amount of k + 1 zeros @, 1,02, --,0n,k+1 from g,, these being in a fixed compact set,
while the asymptotic zero distribution of g,, and ¢, is the same. Therefore, as we already
remarked after (2), we also have:

|Poo1(¥)] < lexle ™94,y € yo — p,yo + p]

for sufficiently large m in a suitable subsequence. Thus we obtain from this and (2) the
estimate

yo+p/2
/ Gn(H) Pa_1 (HAN(H)] < Ce~201, (17)

0—p/2

But the sum of the two integrals on left of (16) and (17) should be zero by orthogonality,
which, in view of the estimates in these formulae, is clearly not the case. This contradiction
proves the theorem when the zeros of ¢, remain bounded.

In the general case, we see from Corollary 3.3 that at most a fixed number of zeros of ¢,
say IV, can leave every compact subset of C as n goes large. Denote the zeros that actually
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16 L. Baratchart & R. Kistner & V. Totik

tend to infinity through a subsequence of the n’s with n € Ny, say for n € N, by

) gm e,

where m is a fixed integer which is no larger than N, and put

W =1, (t- 7). ()= 5

Note that ¢} has degree at most n —m, that its zeros remain bounded, and that it satisfies
the orthogonality relations:

. 2
/q:;(t)t’c ei#(t) ‘pﬁ,ﬁ)(t)‘ du(t)=0, k=0,....,n—m—1. (18)

Furthermore, the degree of ¢} is at most n —m, so in what follows n —m plays the role of n

from the first part of the proof. For n large enough we certainly have that 55-") # 0, so we
can define a sequence of positive measures by setting

n 2
P ()

dpt™ (t) = n
e, ¢

du(t), neN

and upon renormalizing (18) we get:
/q;z(t) the®® g™ (1) =0,  k=0,....n—m—1.

Because the asymptotic zero distribution of ¢, and ¢ is the same, we would be done if only
we could apply the first part of the proof to ¢ with u(™) instead of . Although (™ depends
on n, this is indeed possible provided that the constant ¢ in (1) can be made uniform with
respect to n, and provided also that the total mass remains bounded independently of n,
for these are the only facts that were used on u beyond positivity. But it is trivial that p(™
meets these requirements because

0
g™ 2

2

— 1, n— oo, neN

uniformly on S as n goes to infinity, and the proof of Theorem 3.1 is now complete.

4 Rational approximants to Markov functions

Let p be a positive measure with infinite compact support S C (—1,1), and consider the
associated Markov function

M) = [ dute). (1)

z—1
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Zero distributions via orthogonality 17

If we form the diagonal Padé approximants to M(z) at co, we mentioned already that the
denominators are just the orthogonal polynomials with respect to p. If however we form a
best rational L? approximant of degree at most 7 to M (z) on the unit circle T, say pn—1/gn
(by Parseval’s theorem it must vanish at infinity) then its denominator

n

4.(6) = [[(t - o)

j=1
satisfies the orthogonality conditions:

qn(t)
Qr(t)

t*du=0, 0<k<n, (2)

where

n

Qn(t) =[]t - 1/a5)

j=1

is the polynomial whose zeros are reflected from those of ¢,, across the unit circle (if a; = 0,
then the corresponding factor is missing from @,). In fact, that ¢, must be real is not
immediate but true [1], and then (2) follows from [7] (which deals with real approximants
only). In particular ¢, is the n-th orthogonal polynomial associated to the positive measure
Q2(t)du(t).

However, a best approximant of degree n need not be unique, hence (2) may have sev-
eral solutions [4]. Moreover, equation (2) is met not only by the denominator of a best
approximant, but more generally by the denominator of each critical point of the L?-error
in degree n, including local minima, saddles and so on. Sufficient condition for uniqueness
can be found in [7, 6], but the theorem we shall prove is valid for any sequence of polyno-
mials satisfying (2). Therefore we simply assume that we are given such a sequence, which
is consistently denoted by {¢,}. From Lemma 5.2 to come (put m = 1 in that lemma) ¢,
necessarily has real coefficients so that, being the n-th orthogonal polynomial associated to
the positive measure @, 2(t)du(t), it has n simple zeros lying in the convex hull of S.

We are interested in the limit distribution of the zeros of g,, so we let v, be their
normalized counting measure.

About pu we assume exactly as in Section 2 that S is regular and that (1) holds.

To formulate our result we need introduce the Green equilibrium measure of S with
respect to the unit disk. Let
1—-az

9(z,a) =log

Z—a

be the Green function of the unit disk with pole at a. To each probability measure o with
support in .S we associate the Green energy

//g(z, a)do(z)do(a).
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18 L. Baratchart & R. Kistner & V. Totik

Now, among all probability measures supported on S, there is one and only one measure (g
minimizing the Green energy, which is called the Green equlibrium measure of S associated
with the unit disk (see e.g. [15]).

Theorem 4.1 Suppose that the support S of u is regular with respect to the Dirichlet prob-
lem in C\ S, and that (1) holds. Then v, tends to the Green equilibrium measure Qg of S
in the weak™ topology as n tends to oo.

Proof. We start the proof with the observation that the problem is invariant under Mobius
transformations z — (2 — a)/(1 — az), a € (=1,1). It is known that the Green equilibrium
measure is invariant under Mdbius transformation, and we claim that the statement is also
invariant. In fact, let w = (2 — a)/(1 — az) be a new complex variable, reserving the special
notation 7 = (t — a)/(1 — at) when ¢ € (—1,1), and define a new measure v by setting:

dv(T)
1+ar

= du(t).

Observe that the support of v, being the image of S under the conformal map z — w, is
again a regular compact subset of (—1,1), and that (1) will hold for v (with a different ¢).
Note also that for any bounded measurable function h on (—1,1) we have:

Jr(i=i) o= o755

If )\, is the image of a; under the mapping z — w, then 1/); is the image of 1/a@;. Therefore,
the orthogonality relations

/tk<H(ti_17/an)>du() k=0,1,..n—1

take (modulo a multiplicative constant) the form:

r+a\" [ (r=X)1+ar)\ dv(r) _ _
/(Hm) (H BV, >1+M_0, k=0,1,...n—1.

1

Here

T+ a k
( ) (14 ar)™ 1, k=0,1,...,n—1
1+ar

generate all polynomials in 7 of degree at most n — 1, hence the preceding relations are the
same as the orthogonality relations:

/ (HZ%) v(r)=0, k=0,1,...n—1. (3)
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Zero distributions via orthogonality 19

If, on the basis of (3), we are now able to prove the theorem for v, it will hold for u as well
by invariance of the Green equilibrium measure under Mobius transforms, as announced.

Back to our problem, having seen that it is invariant under Mobius transformations
z— (2 —a)/(1 —az) where a € (—1,1) can be chosen at will, we pick it to the left of S
and make this preliminary transformation so as to be able to assume in what follows that
S C(0,1).

After these we prove the promised asymptotic behavior of the zeros, closely following the
proof in Section 2. Let v be a weak* limit point of {v,}, say v, — v as n — oo, n € Ny.
Since, we saw at the beginning of this section, ¢, is the n-th orthogonal polynomial with
respect to the positive measure du(t)/Q?(t), each subinterval of R \ S can contain only
one-one zero of ¢,. Therefore, v is a probability measure supported on S.

Together with v,, we also consider the normalized zero counting measure of @), let it be
on- It is immediate that if v,, — v, then ¢,, — o, where ¢ is the reflection of v across the
unit circle. In particular, o is supported outside the unit disk on the compact subset S—!
of R (remember that S C (0,1), and its potential is continuous in the unit disk. Likewise,
taking into account that the zeros of @, remain in the convex hull of S~1, it is easy to see
that the potentials U’ (i.e. log|Q,|~*/™) are uniformly equicontinuous and bounded on
S. In particular, up to refining the subsequence N;, we may assume that U°" converges
uniformly on S and the limit is necessarily U? because for t € S z — log |z —¢| is continuous
in a neighborhood of S—!.

We claim that it is enough to prove there is a constant D such that the potential U¥~¢
of v — o equals D quasi-everywhere on S. In fact, then the lower semi-continuity of U*~“
implies that U¥~?(x) < D for all z € S. Thus, v has finite logarithmic energy. Let & be
the balayage of the measure ¢ onto S. The regularity of S with respect to the Dirichlet
problem implies that U° (z) = U°(z) + ¢; for some constant ¢; and all z € S. In particular
o has finite logarithmic energy, and the poteritial UY~%(x) is equal to D — ¢; for quasi-every

x € S. Now, integrating the equality “UY~7(z) = D — ¢; for quasi-every x € S" against
v — o we get from the fact that (v — 7)(S) = 0 the equality:

/U” “d(v — ) //log

and it is known for a signed measure with finite logarithmic energy and of total mass zero
that the logarithmic energy can be zero only if the measure is zero (see [15, Lemma 1.1.8]).
Thus, v = o. Let now & and 7 denote the respective balayages of o and v onto the unit
circle. Seeing that the balayage of the Dirac delta ¢, at a onto the unit circle is the same
as the balayage of the Dirac delta 6,/ at the reflected point 1/a, it follows that ¢ = 7.
However, forming the balayage of ¢ onto S can be done in two steps: first form the balayage
onto the unit circle, then form the balayage of the so obtained measure & onto S. Thus,
using as before a “hat” to denote the balayage onto S and a “tilde” to denote the balayage
on the unit circle, we get that & = &, and so we can write

=)0~ 7)),

~

=0=0=1,
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i.e. v has the property that if we form its balayage onto the unit circle and then form the
balayage of that measure back onto S, we obtain v again. This, however, characterizes the
Green equilibrium measure Qg (see [15, Theorem VIII.2.6]), hence v = Qg. Since this is
true for all weak* limit points of {v,}, the whole sequence converges to Qg, as claimed.

Thus, it has left to prove there is a constant D such that the potential of v — ¢ equals D
quasi-everywhere on S. We closely follow the reasoning in Theorem 2.1, but there are some
minor changes that we have to indicate.

Suppose to the contrary that the claim is not true, and there are d, 7 > 0 and two sets
E_C S and E; C S of positive capacity such that

U %(z) <d—21 forze E_ and U= %(z) >d+71 forz e E;

(note that U”~7 is certainly finite quasi-everywhere on S since both U¥ and U are). We
claim that there is yo € supp(v) such that U"~7(yo) > d. In fact, in the opposite case
U¥(z) < U%(x) +d for all x € S, which implies first of all that v has finite logarithmic
energy and then by the principle of domination that the same inequality holds for all z € C,
which is a contradition, for on E; we have bigger values for U¥ 7.

According to the principle of descent (remember that the support of v, remains in the
convex hull of S and that U°" converges uniformly to U? on the disk), we have that

liminf U 7" (yn) > U""7(yo) > d

n—oo, n€N;

for any sequence y,, — yo. Therefore, there is p > 0 and N; such that, for y € [yo — p, yo + ]
and n > Ny, n € Ny, the inequality U"»~"(y) > d holds which is the same as

lgn(1)/QuW)| < e, y € [yo—p,y0+ - (4)

As before, this inequality remains true (for sufficiently large n) if we replace ¢, by some
monic polynomial ¢} with deg(g}) = (1 + o(1))n, provided that the zeros of ¢} remain in a
compact set of the unit disk and their asymptotic distribution is still v.
In another connection, the lower envelope theorem implies that, for quasi-every z € E_,
we have
liminf U 7 (2) =U"""(x) < d— 27,

n—oo, n€N;

hence for some subsequence Ny C N; and sufficiently large n € N2, we get:
M, := max|gn(2)/Qn(®)| 2 e~md=7), (5)

We let z,, be a point where the maximum is attained.

As in the proof of Theorem 2.1, we now need an estimate for g, away from S in terms of
M,,. To this effect, we set w(x) = 1/|Q.(x)[*/™, x € S, and we consider the weighted energy
problem for w on S (see [15, Theorem 1.1.3]). If we denote by o, the balayage of o, onto S, we

deduce from the definition of balayage and the regularity of S that w(z) = exp(U’"(z) —cn)
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for every x € S and some constant ¢,. Then it follows from [15, Theorem I1.3.3] that the
equilibrium measure associated with this weighted energy problem is precisely .. So, from
the generalized Bernstein-Walsh lemma [15, Theorem III.2.1], we obtain:

Ign(2)] < My exp(=nU" (2) + nep). 6)

Note that for z = z,, the exponential factor on the right is just |Qn(2,)|. Since U (z) g is
continuous on S, it follows from the continuity theorem for logarithmic potentials (Maria’s

theorem) [15, Theorem II.3.5] that U~ is continuous on the whole plane, and actually the
continuity on S is uniform in n (this follows from the equicontinuity of the potentials U’"
on S, and from the very proof of the continuity theorem). Hence, for every 6 > 0, there is
e > 0 such that for |z — z,| < 2¢ we have

U7 (2) = U™ ()| < 6.
All these imply in view of (6) that, for |z — z,| < 2e,

lgn(2)] < |Qn($n)|Mne"0.

Then, by Cauchy’s formula,
|Qn(2n)| Mne™

!
<
|4n(2)] < .
for |z — z,| < e and, as in the proof of Theorem 2.1, we obtain that
|gn ()] 2 [Qn(2n)| Mn /2 (7)

for |z — z,| < g/2e™.
From the elementary identity:

1 n
lim (1 + —) =e,
n—oo n

it easily follows that for |z — z,| = o(1/n) we have Q,(2) < 2Q,(z,) for sufficiently large
n. On dividing (7) by the latter inequality, we see that

|4n(2)/Qn(2)] 2 Mn/4, |2 —2n| < e/2e"

when n € Ny is large enough.
From here, (1), and (5), we deduce as in the proof of Theorem 2.1 that

g M \® (e NP e (e \F ann
dp > (22 L n(d—r
/[znp/mm,/z] Q. r" = \¢ )¢ (26”‘9) =16 (26”9) €

Z 672nd+n‘r (8)
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for sufficiently large n € Ny, say for n > N5, provided 6 > 0 is so small that §L < 7.

Now, for n € Ny, n > max(Ni, Na) let us choose two zeros a,,1 < an2 of g, in the
interval [yo — p/2, yo + p/2], and consider the polynomial P,_2(t) = gn(t)/(t — an1)(t — n,2)
of degree at most n — 2 (we can find such zeros because o is in the support of v). As in the
proof of Theorem 2.1 we get on the one hand from the definition of P, 5 and (8) that

qn(t) 1 €—2nd+n'r
Loy By o002 ‘ ©)

On the other hand, the limit distribution of the zeros of the polynomials P,,_2, n € No, is
again v, and these zeros remain in the convex hull of S, hence as we have already remarked
after (4) we also have

|Pra(9)/Qn(y)| < e ™, y€[yo—pyyo+p|

for sufficiently large n. This and (4) together lead to the estimate:

4n(t) —2nd
/<> gz (1) -2 dult)| < Ce ™ (10)

Now clearly, the sum of the two integrals on left of (9) and (10) cannot be zero. But this
contradicts the orthogonality relation (2), and this contradiction proves the theorem.

5 Rational approximants to Cauchy transforms

In this section, we let A be a complex measure with infinite compact support S C (—1,1),
and we consider its Cauchy transform

1
M(z) = dA(t). 1
()= [ S0 )
When ) is positive, then this is just the Markov function discussed in the preceding section.
If we form again a best-L? rational approximant of degree at most n to M(z) on the unit
circle, say pn—1/¢n, then the denominators

Qn(t) = H(t - aj)
j=1

have exact degree n, their zeros lie in the open unit disk, and they satisfy the orthogonality
relations [3]:
an(t)

RHO) tfd\(t) =0, 0<k<n, (2)
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where

Qn(t) = H(t - 1/a;)

is the polynomial that has zeros at the reflected zeros of ¢,, across the unit circle (if a; = 0,
then the corresponding factor is missing from @,). We emphasize that in the present case
the zeros of g, need not be real and so, besides A that is in general complex-valued, the
factor ¢, (t)/Q2(t) in the orthogonality relation is also complex-valued.

Of course, even less than in the real case does (2) characterize g, uniquely in general.
There may be many solutions of degree n with zeros inside the disk, induced by several
best approximants, local minima, saddles and so on. There may also be solutions of lower
degree, but these have no special interpretation with respect to approximation and we shall
not consider them. It is not known whether there may be solutions having zeros outside the
disk.

For our purposes, we shall simply assume that we are given a sequence of solutions {g, }
of exact degree n whose zeros lie in the unit disk. In particular, {¢,} can be a sequence of
denominators of best-L?(T) rational approximants to M.

Again, we are interested in the limit distribution of the zeros of ¢,, so we let v,, be their
normalized counting measure.

About A and its support S we assume the same conditions as in Section 3, namely that
S is a regular set with respect to Dirichlet’s problem in C'\ S, and that A can be written as

dA(t) = e D dp(t)
where ¢ is of bounded variation and p satisfies the density relation (1).

Theorem 5.1 With the preceding assumptions v, tends to the Green equilibrium measure
Qs of S in the weak™ topology as n tends to co.

Proof. By now it should be clear how the proof proceeds: in fact Theorem 5.1 is related
to Theorem 4.1 exactly as Theorem 3.1 is related to Theorem 2.1. We follow the proof of
Theorems 4.1 and 3.1.

First we apply a preliminary Mobius transformation z — (2 —a)/(1 — az), a € (-1,1)
so as to ensure that S C (0,1) (see the proof of Theorem 4.1).

Next we consider any collection of m intervals [a;, b;] such that

S C UL fa;,b;] C(0,1) with a1 <by <az<- < am <bp.

Recalling the notation Angle(¢, [a,b]) = |arg(a — &) — arg(b — £)| for the angle in which an
interval [a, b] is seen from &, we set as in Lemma 3.2

0(¢) = | > Angle(¢, [a;,b;]) | »

j=1
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which is the the total angle in which U;[a;,b;]) is seen from &.
We shall need the analog to that lemma:

Lemma 5.2 Let q,(z) = [[i_,(z — &) be the n-th orthogonal polynomial in the sense of
(2). Then

> (r = 0(&)) < V(g) + (m — D). (3)

k=1

Corollary 5.3 Under the assumptions of Theorem 5.1, for every neighborhood U of S there
1s a constant Ky such that g, has at most Ky zeros outside U.

This corollary immediately follows from Lemma 5.2 exactly as we deduced Corollary 3.3
from Lemma 3.2.

We will have to take care of the argument of 1/Q2(t), as well. This will be done via the
next lemma.

Lemma 5.4 Let S C [a,b] C (0,1) be an interval containing the support S of A. To every
6 > 0 there exists an integer I such that, for all each n large enough, there is a polynomial
Ti.n of degree at most [ satisfying:

Qn(t)
—Tia(t)] <6, t € [a,b]. 4
o]~ T .t @
In particular, the argument of the ratio
Ti,n(t)/Qn(t)

lies in the interval (—26,26) when n is large enough.

Taking these lemmas for granted, we complete the proof of Theorem 5.1 and return to
the lemmas afterwards.

Fix a polynomial T of degree, say k such that, for some 0 < § < 1/2 we have arg(e**? ()T (t)) €
[—7/2 + 66, 7/2 — 6] provided that T'(t) # 0 (see Lemma 3.4).

Let v be a weak* limit point of {v,}, say v, — v as n — oo, n € Ny. By Corollary
5.3 this v is supported on S. Together with v, we also consider o, the normalized zero
counting measure of ),,. By Lemma 5.4 there is a polynomial 7}, of degree at most some
fixed number [ such that (4) holds with é/2 instead of é for all ¢ lying in the convex hull
[a,b] of S. Since the sequence T, is uniformly bounded on [a,b] and its degree is at most
I, the coefficients of T}, are in turn bounded and up to refining N; we may assume that
Ty, converges to some T; of degree at most {. But for n large enough (4) will hold with
T; instead of T}, and consequently arg(T72(t)/Q2(t)) € [—26,28] and 1/2 < |T(t)] < 2 will
hold for large n € Nj.

Exactly as in the proof of Theorem 4.1 it is enough to verify that there is a constant D
such that the potential U¥~7 of v — o equals D quasi-everywhere on S. We first assume that
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no zero of Q, goes to oo, or equivalently that no zero of ¢, goes to zero. Then, if there is no
constant D as above, we obtain as in the preceding section that (4) holds for large n € Ny,

and then that (D)
dn t —2nd+nT
du(t) > e
x/[z"p/2,zn+p/2] |Qn(t)|2
for large n € No C Ny (cf. (8)). This time we actually rather need the estimate

|q”(t)|2 2 —2nd+nT
Jorsnensorn 10O PO I 2 7200 ®
which can be obtained by the same method, appealing to the Boutroux-Cartan lemma for
T as we did to obtain (15) and taking into account that |T;(¢)| > 1/2.
Now, for 0 < n < min{diam(S)/2, p/4}, let an 1,n 2, .-, 0n kt2u4+1 be k + 21 + 1 zeros
of ¢,(t) in the the n-neighborhood of the interval [yo — p/4,yo + p/4]; there exist such zeros
because yo lies in the support of v which is included in (—1,1). Consider the polynomial

_ k+20+1
Pooa(t) = a.OTOTA) ) ] (¢—amy)

Jj=1
of degree at most n — 1. Shrinking 7 if necessary, we can achieve that the argument of

k42141

1/ I ¢-any)

Jj=1

is smaller than § in absolute value for all t € R\ [yo—p/2, yo+p/2]. Since on S the argument
of

QNGO

lies in the interval [-m/2 — 26, 7/2 + 26] by the choice of T and T; provided that T'(t) # 0,
it follows that the argument of

() GOTOTEO) o (D) i
Qn(t)? Hj;mﬂ(t _lamj>e () = PROL Po_1(t)e*®

liesin [—7/2+6,7/2—6] on S\ [yo — p/2,y0+ p/2], except when T'(t) = 0. But by definition
the a,,; cannot lie on S\ [yo — p/2, Yo + p2], hence a zero of T is necessarily a zero of P,_;.
Therefore (5) implies:

R P, 1(t)e**Ddu(t) (6)
S\[yo—p/2,90+p/2] Qn(t)?
sin / |qn(t)|2 ,
2 o T(t)||T2(t)|dp(t
= (2diam(9)F2HL Ji, o e 4o/l |Qn(t)|2| OIT7 (1) dp(t)

sin

—2nd+nTt
= (2diam(S))F 2t © '
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On the other hand, the limit distribution of the zeros of the polynomials P, _; for n € Ny
is again v; therefore, exactly as in (4), we get

|Po1(y)/Qn(y)| < Cre™™,  y € [yo— pyyo + 1l

for sufficiently large n € Ny (observe that the principle of descent that led to (4) is valid,
for the zeros of P,_; remain bounded, being either zeros of T', T} which are fixed, or of g,
whose roots are in the unit disk.

We obtain from this and (4) the estimate

yo+r/2
gn(t) —ond
/yom P A(DaN(®)| < Coe (7

and again the contradiction comes from the fact that the sum of the two integrals on left of
(7) and (6) cannot be zero.

We need finally to handle the case when some zeros of @,, go to infinity, say as n — oo,
n € N. The number of such zeros is necessarily bounded uniformly with n, because only a
bounded number of zeros of ¢, can tend to 0 by Corollary (5.3) and the fact that S C (0,1).

Call these zeros on1,---,0nm, N € N where m is a fixed number. Let us define
Qn (1)
Qn(t) = = —,
07, (t = 1/@n,;)

~ du(t),

dpin(t) = [Ty (@5t — 1))
on(t) = @(t) =2 Arg(@n;t — 1),
j=1
noting that all the above quantities are well defined for n large enough. Then, upon renor-
malizing (2), we can rewrite these orthogonality relations as:

an(t) & g
———t" """ Y dun,(t) =0 0<k<n. (8)

2 n ’ =

/ (@) (1)
Because @), has asymptotic zero-distribution ¢ and its roots are now bounded, we seek to
apply the first part of the proof to i, and ¢, instead of u and ¢ even though these depend
on n. As for p, this is possible because
7y (@ it — 1) — 1

uniformly on S as n — oo, hence the constant ¢ in (1) can be made uniform with respect to
n, and the total mass remains bounded independently of n (compare the end of the proof of
Theorem 3.1). As for ¢,, we notice that ¢, — ¢ converges uniformly to zero on the convex
hull of S together with all its derivatives, thus V(¢ — ¢1) goes to zero as well. Therefore
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Corollary 5.3 remains true, and Lemma 3.4 also remains true with the same T" when ¢ gets
replaced by ¢, if n is large enough. Because these were the only facts we used on ¢, this
demonstrates Theorem 5.1.

In the previous proof we used Lemmas 5.2 and 5.4, and we need now to establish them.

Proof of Lemma 5.2. We follow the proof of Lemma 3.2. Exactly as in that lemma
(remember that 1/& is not present below if &, = 0), it follows that

+sz<ag< 1/56))[%1)]) > (n—m+1)r, (9)

k=1 j=1

otherwise there is a polynomial R,,_; of degree at most n — 1 such that with some ug

— qn( ) i
3 {e o e?IR, _ } (10)
Q@

has constant sign on .S except at finitely many points where it vanishes. But this contradicts
the fact that, by (2), we have (recall that dA(t) = e**®du(t)):

—1iug q"() ete(®) =
/e e R (Odu) =0,

Now (9) implies what we want once we have shown that if [a,b] C (0,1) is any interval

and if we let -
ae(t) = s (i =

where the second summand is not present if £ = 0, then for |{| <1 and ¢ ¢ [a, b]:

V(ge, [a,b]) < Angle(¢, [a, b]). (11)

In fact, using the same argument as in the proof of Lemma 3.2, it is enough to prove (3)
when & ¢ Ujla;,b;], and then plugging (11) into (9) for each [a,b] = [a;,b;] we get the
statement in Lemma 5.2.

Note that (11) certainly holds with equality for €| = 1, since then g¢(t) = arg(1/(t—¢)) =
—arg(t — £) is a monotone function of ¢ € [a,b]. Another special case when (11) holds with
equality is when ¢ € [-1,1]\ [a,b], for then both sides are 0. Thus, let [{| < 1. We may
assume that £ lies in the upper half A of the unit disk.

For ¢ € A4, the function £ — V(g¢,[a,b]) is continuous. Moreover, by definition,
V(ge, [a,b]) is the supremum of all sums of the form

) =arg(t — &) + 2arg(t — 1/¢)

M—-1

2(6) = Y ex (geltern) — ge(tr))

k=1
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where a = t; < ty < --- <ty = b is any sequence of numbers in [a,b] and ¢, = £1 any
sequence of signs. Since g¢ is a harmonic function of £ in Ay so is every £(), and thus
V(9g¢, [a,b]), being the supremum of a family of harmonic functions and being continuous,
is subharmonic. Since

Angle(¢, [a,b]) = arg(§ — b) — arg(¢ — a)

is also harmonic, it is sufficient to show that for quasi-every z on the boundary of A, we
have
;im V(gfv [aa b]) < %lm Angle(¢, [aa b])

We have seen this already on |¢] = 1 and on [-1,1]\ ([a,b] U {0}), and if £ approaches an
inner point of [a,b] then both Angle(¢, [a,b]) and V (g, [a, b]) approach 7. Hence we obtain
(11) via the maximum principle for subharmonic functions.

Proof of Lemma 5.4. The geometry is here simplified by our assumption that the support
S C [a, b] lies within (0,1).

It is sufficient to prove that the functions @, (¢)/|Q~(t)| have uniformly bounded deriva-
tives on [a,b]. In fact, then each of these functions can be extended to a function @, (%)
defined on [0, 1] such that the the derivatives ®!, are uniformly bounded, say |®| < L
for t € [0,1]. By Jackson’s theorem [8, Theorem 6.2] there is a constant C and there are
polynomials 7; ,, of degree at most [ such that

CL
[@a(t) - Toa® < 55, te(0,1,

and here the right hand side is smaller than 6 if [ > CL/é.

In turn, it is clearly enough to verify that arg(Q,(t)) has uniformly bounded derivative
on [a,b]. Consider a zero 1/a; = z + iy of @n. Let the argument of this point be 6; (which
is the same as the argument of «;), and let ¢; denote the angle in which [a,b] is seen from
a;. Consider first the case where 6; € [0,7/4] and |a;| > a/2. It is elementary that 6, is at
most ™ — ¢;, and so if 7 — ¢; < 7/4 we get:

y < (2/a) tanb; < (2/a) tan(r — ¢;) < 2(2/a)( — o),

where we used that tan~y < 24 for v € [0,7/4]. If however m — ¢; > 7 /4, then
y < (2/a) < 2(2/a)(r — )), (12)
so this inequality holds regardless how large m — @; is. In another connection, for ¢ € [a, b],

tan(arg(1l/a; —t)) = tan(arg(z + iy — t)) = y/(z — ¢).
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Differentiate this equality with respect to ¢ to obtain

d(arg(1/a; — 1)) 1 y

dt cos?(arg(l/a; —t)) (z —1t)?’
and on using (12) conclude that

darg(1/a5— 1) _ 4
dt S a1 (™= i)

A similar estimate holds if 0; € [-7/4,0], |oj| > a/2. However, by Lemma 5.2, the
number of those «; for which either |a;| < a/2, or arg(e;) & [—n/4,7/4] is less than
a fixed constant K5, and since the argument of 1/a; — ¢ for each such zero clearly has
bounded derivative on [a,b] (with an absolute bound), the contribution to the derivative of
the argument of Q,(t) of all these exceptional zeros is less than a fixed constant K.

So far we have proved that

‘d(arg(zn(t))) ‘ < i

(m = ;) + K>.

dt = a(1—b)? &

d(arg(1/a; — 1)) 4

J=1

Now the lemma, follows from here and from Lemma 5.2.

6 Remarks

In this section we point out to some works that motivated the results in the preceding
sections, as well as we make some remarks in connection with the method used in this

paper.
1. Generally speaking, the results of the paper would hold under the hypothesis that d\/d| |

has bounded variation while y = || satisfies, on its support S, the so-called A condition
introduced in [19]:

Cap {t € S: limsup Log(1/u([t = r t +7]))

im suj Log(1/7) < +oo} = cap(S). (1)

Above in all sections, we made the stronger assumption that S is regular and that p is
sufficiently thick in the sense of (1). This makes for a clearer exposition that displays
already all the interesting features of the method. For the more general version, we refer
the reader to [11].

2. In recent past, non-Hermitian orthogonality (see Section 3) has received a lot of interest
in connection with rational approximation, for ¢, in (1) is the monic denominator of the n-th
diagonal Padé approximant to the Cauchy transform of A. In this context, the main objective
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of this paper, namely of proving asymptotic zero distribution is tantamount to proving the
convergence in capacity of these approximants [16]. As to non-Hermitian orthogonality
proper, we refer the reader to [17] for a survey on the segment while [18] already deals with
a more general situation where orthogonality holds over an arbitrary symmetric contour for
the logarithmic potential; in this setting, [9] treats the case of a varying weight in relation
to multipoint Padé approximants. Let us point out that the method in Section 3, although
restricted to the segment so far, applies to measures with considerably more general support
at the cost of assuming a little more on their argument, namely that it has bounded variation.
It is moreover interesting in that it provides non-asymptotic information on the zeros of the
orthogonal polynomials, ¢f. Lemma 3.2.

From the point of view of Approximation Theory, a natural sequel would be to establish
convergence in capacity of best rational and meromorphic approximants on the circle to
Cauchy transforms of complex measures on a segment. However, the primary purpose of
this paper is to present a specific technique to handle orthogonality equations, and including
such applications properties would make the paper unbalanced. These will be left here for
further study.

3. The minimal degree solution of (1) is the monic denominator of the n-th diagonal Padé
approximant to the Cauchy transform of A. In this context, the possibility that d, < n
accounts for cases of non-normality which are well-known to occur with such approximants,
and to establish the asymptotic zero-distribution is tantamount to prove their convergence
in capacity [16].

4. From the strong convergence result for Padé approximants established in [12], it follows
that all the zeros of the minimal degree solution to (1) cluster on S when the latter is a real
segment and A is absolutely continuous with respect to Lebesgue measure with continuous
nowhere vanishing (complex) density. This result is not contained in nor contains our Lemma
3.2, and it would be interesting to understand better the relations between them.

5. In connection with the Mobius transformation p — v in Section 4 (see the proof of
Theorem 4.1) it is worth stressing that if M* denotes the Markov function (1) associated to

v, then

1+aw
M(z) = T M (w),

and since |dz| = ((1 —a?)/(1 + aw)?)|dw|, the identity

| )P = @ =a) [ 3Pl
T T

holds. Likewise, if r,, is a rational function with numerator degree < n — 1 and denominator
degree n and with its poles in the unit disk and if we define a new rational function r} by

setting
() 14 aw
rn(2) =

(W),

1—a2 "
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we deduce in the same way upon regarding r, and r} as Cauchy transforms of discrete
measures that

[ @l = 1 =a) [ Pl

Now, if we fix the denominator x, of r, and if we adjust the numerator in such a way
that M — r,, has minimal L?(T)-norm, we get by the characteristic property of orthogonal
projections that

- 2 — 2 _ 2
/T IM(2) = ra(2)ld2] /T IM(2)2)d] /T ()P d2],

which is easily seen [7] to be equivalent to the vanishing of M —r,, at the reflected zeros of .,
across the unit circle. But then M* — r, vanishes at the reflected zeros of the denominator
of r}, so that

/T IM(2) = ra(2) Pld2] = (1= a) ! /T M (w) — 7% (w) | duo]

and we see that best approximants also transform in a natural way.

6. As a corollary to the proof of Theorem 5.1, we get at no extra-cost a slightly extended
version of this result where there is an additional weight that varies with n:

Corollary 6.1 The conclusion of Theorem 5.1 remains true if d\ gets replaced by w,dA\,
where w, is o sequence of complex measurable functions on the convex hull of S whose
moduli are uniformly bounded from above and below, and whose arguments are smooth with
uniformly bounded derivatives.

The corollary has special significance with respect to meromorphic approximation, as we
now explain. If for 2 < p < oo we let h/g, be a best approximant to M(z) in (1) out of
H?/Q,,, where H? is the Hardy space of the disk and Q,, the polynomials of degree at most
n, the (monic) denominator ¢, has exact degree n, it has all its zeros in the unit disk, and
it satisfies the orthogonality relations:

gn(t) _
D) tfw,(t)dA(t) =0, 0<k<n, (2)

where w,, is analytic without zeros in the disk; in fact, w, is the outer factor of an n-th
singular vector of the (generalized) Hankel operator with symbol M (z) [3]. In that work it
is shown, provided A is analytic, that w,, is a normal family of functions which does not have
the null function as an accumulation point. Hence the hypotheses of Corollary 6.1 are met
and (2) implies that the asymptotic distribution of the zeros of ¢, is Qg. Minor modifications
in the arguments of [3] prove that w,, is still normal if X is not analytic but merely satisfies
the hypotheses of Theorem 2, hence Corollary 6.1 actually settles the asymptotic behaviour
of the poles of the best-LP meromorphic approximants to M(z) when 2 < p < co. It is
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worth noting that when p = 2, the best meromorphic approximants to M(z) are nothing
but the best-L? rational approximants that we just considered. Moreover, a computation
resembling much the one we did at the begining of the proof of Theorem 4.1 shows that all
these results are valid is the support of A is a hyperbolic geodesic arc in the disk although
not necessarily a segment. The situation when p < 2 is still not well-understood.

Proof of Corollary 6.1. Follow the reasoning in the proof of Theorem 5.1. We can
extend the definition of w,, to [—1, 1] without increasing the variation nor the bound on the
derivative of the argument. Upon setting du, = |wn|dp and ¢, = ¢ + Arg(w,), we find
ourselves in a situation like at the end of the proof of Theorem 5.1 when we had to extend
the previous argument to varying ¢ and p. Here again, dealing with u, is no problem
because with our assumptions the constant ¢ in (1) can be made uniform with respect to
n, and the total mass is uniformly bounded. To handle ¢,, we notice first that it has
uniformly bounded variation by the boundedness of dArg(w.,(t))/dt, hence Corollary 5.3
continues to hold. Second, using Jackson’s theorem as in the proof of Lemma 5.4 instead
of the Weierstrass theorem, we find that Lemma 3.4 will hold with ¢,, instead of ¢ and T;,
instead of T', where the degree of T7, is uniformly bounded. From the way 7" was constructed
in that lemma, |T},| will also be uniformly bounded (note that the factors needed to handle
the discontinuities of ¢ will not depend on n). We can thus assume, up to extracting a
subsequence, that T, converges and thus can be made independent of n when the latter is
large enough (see the end of the proof of Theorem 5.1). This is all we need to carry out the
proof as in Theorem 5.1.
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