N

N
N

HAL

open science

Pastis: a Highly-Scalable Multi-User Peer-to-Peer File
System

Jean-Michel Busca, Fabio Picconi, Pierre Sens

» To cite this version:

Jean-Michel Busca, Fabio Picconi, Pierre Sens. Pastis: a Highly-Scalable Multi-User Peer-to-Peer File
System. [Research Report] RR-5288, INRIA. 2004, pp.29. inria-00070712

HAL 1d: inria-00070712
https://inria.hal.science/inria-00070712
Submitted on 19 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00070712
https://hal.archives-ouvertes.fr

ISRN INRIA/RR--5288--FR+ENG

N 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Pastis. a Highly-Scalable Multi-User Peer-to-Peer
File System

Jean-Michel Busca — Fabio Picconi — Pierre Sens

N° 5288
Aodt 2004

Théme COM

apport

derecherche

Zd INRIA

ROCQUENCOURT

Pastis: a Highly-Scalable Multi-User Peer-to-Peer File
System

Jean-Michel Buscal] , Fabio Picconi* , Pierre Sens*

Théme COM — Systémes communicants
Projet Régal

Rapport de recherche n® 5288 — Aot 2004 —B9 pages

Abstract: We introduce Pastis, a completely decentralized multi-user read-write peer-
to-peer file system. In Pastis every file is described by a modifiable inode-like structure
which contains the addresses of the immutable blocks in which the file contents are stored.
All data are stored using the Past distributed hash table (DHT), which we have modified
in order to reduce the number of network messages it generates, thus optimizing replica
retrieval. Pastis’ design is simple compared to other existing systems, as it does not require
complex algorithms like Byz-antine-fault tolerant (BFT) replication or a central adminis-
trative authority. It is also highly scalable in terms of the number of network nodes and
users sharing a given file or portion of the file system. Furthermore, Pastis takes advantage
of the fault tolerance and good locality properties of its underlying storage layer, the Past
DHT. We have developed a prototype based on the FreePastry open-source implementation
of the Past DHT. We have used this prototype to evaluate several characteristics of our
file system design. Supporting the close-to-open consistency model, plus a variant of the
read-your-writes model, our prototype shows that Pastis is between 1.4 to 1.8 times slower
than NFS. In comparison, Ivy and Oceanstore are between two to three times slower than
NFS.

Key-words: Peer-to-Peer Systems, File Systems, Performances.

* Regal

Unité de recherche INRIA Rocquencourt

Pastis : un systéme de fichier pair-a-pair multi-écrivains
hautement scalable

Résumé : Nous présentons Pastis, un systéme de fichiers pair-a-pair multi-écrivains
d’architecture entiérement décentralisée. Dans Pastis, chaque fichier est décrit par une
structure modifiable de type inode, contenant ’adresse de blocs non modifiables stockant
le contenu du fichier. Les données sont stockées dans la table de hashage distribuée PAST,
que nous avons modifiée pour réduire le nombre de messages générés et optimiser la lecture
des répliques de blocs. Pastis est simple en comparaison d’autres systémes existants : il
ne requiert ni algorithme complexe tolérant les fautes byzantines, ni autorité administrative
centrale. Il est également hautement scalable quant au nombre de nceuds de stockage et au
nombre d’utilisateurs se partageant tout ou partie du systéme de fichiers. De plus, Pastis
tire parti des propriétés de localité et de tolérance aux fautes la couche de stockage sous-
jacente. Nous avons développé un prototype s’appuyant sur ’implémentation open-source
de PAST, et nous avons utilisé ce prototype pour évaluer différentes caractéristiques de
notre architecture. Supportant le modéle de cohérence close-to-open, ainsi qu’une variante
du modéle read-your-writes, notre prototype montre que Pastis est entre 1,4 et 1,8 fois plus
lent que NFS. En comparaison, Ivy et OceanStore sont entre deux et trois fois plus lent que
NFS.

Mots-clés : Systémes pair-a-pair, Systémes de fichiers, Performances.

Pastis: a Highly-Scalable Multi-User Peer-to-Peer File System 3

1 Introduction

Although many peer-to-peer file systems have been proposed by different research groups
during the last few years [4, O, 00, I3, 07, M9], only a handful are designed to scale to
hundreds of thousands of nodes and to offer read-write access to a large community of users.
Moreover, very few prototypes of these large-scale multi-writer systems exist to this date,
and the available experimental data are still very limited.

One of the reasons for this is that, as the system grows to a very large scale, allowing
updates to be made anywhere anytime while maintaining consistency, ensuring security, and
achieving good performances is not an easy task. Read-only systems, such as CFS [I7],
are much easier to design since the time interval between meta-data updates is expected to
be relatively high. This allows the extensive use of caching, since cached data are either
seldom invalidated or kept until they expire. Security in a read-only system is also quite
simple to implement. Digitally signing a single root block with the administrator’s private
key and using one-way hash functions allows clients to verify the integrity and authenticity
of all file system data. Finally, consistency is hardly a problem since only a single user, the
administrator, can modify the file system.

Multi-writer designs must face a number of issues not found in read-only systems, such as
maintaining consistency between replicas, enforcing access control, guaranteeing that update
requests are authenticated and correctly processed, and dealing with conflicting updates.

The Ivy system [I3], for instance, stores all file system data in a set of logs using the
DHash distributed hash table. In Ivy each update is stored by appending a record to a log.
Since records are never removed from the logs, every client has access to all the file system
history, which greatly simplifies conflict detection and resolution. Furthermore, each Ivy
user has its own log to which she appends her own updates. This has two advantages: first,
writes are fast since there is no central serialization point (like Oceanstore’s primary tier),
and second, data cannot be overwritten by a malicious user since only the log’s owner can
append data to it. However, as the number of users sharing a given file system increases, the
number of logs that need to be traversed to satisfy a read operation also becomes larger, thus
increasing network traffic. Although the number of DHash servers can grow to hundreds of
thousands, the number of Ivy users sharing a given file does not scale. Another problem in
Ivy is that applications have little control over the consistency of data. Although Ivy uses
a consistency model similar to close-to-open consistency, applications cannot fully decide
when written data are propagated to the network (this is due to the lack of a CLOSE RPC
in the NFS v3 protocol specification).

Oceanstore [10] uses a completely different approach to handling updates by introducing
some degree of centralization. A primary tier of nodes uses a Byzantine-fault tolerant (BFT)
[14] algorithm to serialize all file system updates coming from secondary tier nodes. Since
BFT is quite expensive, primary tier nodes must be highly resilient nodes located in high-
bandwidth areas of the network. Oceanstore’s designers assume that these nodes will be set
up and maintained by a commercial service provider. Thus, Oceanstore may not be suitable
for a community of cooperative users wishing to use a system which does not depend on a
centralized authority. Oceanstore also takes into account network locality to optimize replica

RR n° 5288

4 Jean-Michel Busca , Fabio Picconi , Pierre Sens

location. An introspection layer provides information about the network conditions, allowing
the system to dynamically adapt itself to the current environment. Locality management is
absent in Ivy.

Pangaea [19] differs from Ivy and Oceanstore in that it does not rely on a key-based
routing layer. Instead, object location is achieved by maintaining a graph of live replicas
through which updates are propagated by flooding a special message called harbinger. More-
over, a replica of a file or directory is created on each client that accesses the file. Although
this reduces read latency, it can generate an important amount of traffic when updates are
propagated.

With the aim of finding a solution to the shortcomings of these systems we have designed
Pastis, a highly-scalable, completely decentralized multi-writer peer-to-peer file system. For
every file or directory Pastis keeps an inode object in which the file’s metadata are stored.
As in the Unix File System, inodes also contain a list of pointers to the data blocks in which
the file or directory contents are stored. All blocks are stored using the Past distributed
hash table, thus benefiting from the locality properties of both Past and Pastry [2].

Our system is completely decentralized. Security is ach-ieved by signing inodes before
inserting them into the Past network. Each inode is stored in a special block called User
Certificate Block, or UCB. Data blocks are stored in immut-able Content-Hash Blocks so
that their integrity can be easily verified. All blocks are replicated in order to improve fault
tolerance and to reduce the impact of network latency.

The lack of a central serialization point means that conflicts must be detected and solved
in a distributed manner. This can achieved using version vectors and keeping old versions
of the inodes so that conflicting operations can be later undone. At the time of the writing
of this document we have only implemented a conflict resolution scheme based on the last-
writer-wins rule. A more robust conflict resolution mechanism is left for future work.

We have implemented a prototype written in Java. It runs on a modified version of
the FreePastry [6] open source implementation of Past and Pastry. We have modified the
original FreePastry, generalizing the lookup Past call so that one or more predicates can be
specified by the application. This allows us to efficiently retrieve an inode replica whose
timestamp is not older than a given value.

This paper makes the following contributions. It introduces a completely decentralized
multi-writer peer-to-peer file system that supports an arbitrary number of users. It de-
scribes several optimizations of the Past DHT that can increase its performance by reducing
network communication. It presents the results of our prototype’s evaluation using several
configurations and test scenarios.

The remaining part of this paper is as follows: section 2 describes some general concepts
common to all structured peer-to-peer networks and introduces Past and Pastry. Section
3 presents the design of our system in more detail. Section 4 presents our prototype and
some information about our simulator. In section 5 we discuss the results of our prototype
evaluation. Finally, section 6 presents related work and section 7 concludes this paper.

INRIA

Pastis: a Highly-Scalable Multi-User Peer-to-Peer File System 5

2 Structured networks

Most of the recent efforts aimed at designing efficient, highly-scalable file storage systems
are oriented towards the use of structured peer-to-peer networks. Although there are some
systems based on unstructured or loosely structured networks (e.g., Freenet [4]), they lack
some of the key characteristics of highly structured networks, namely deterministic routing
and high scalability.

On the other hand, structured networks guarantee message delivery and achieve a high
routing efficiency (i.e., a low hop count). This makes them suitable for building a number of
services on top of them, such as a distributed hash table or a multicast service. Since these
services can be made quite reliable, they can be used in turn to build complex applications
such as a distributed file system.

The research community has been working to define the abstractions provided by struc-
tured peer-to-peer networks. Three layers, called tiers, have been defined in [3]. Tier 0 offers
abstractions related to the routing of messages, also known as key-based routing. Tier 1
services use the abstractions provided by tier 0, and provide their own abstractions to tier
2 layers. Three different tier 1 services have been defined: distributed hash table (DHT),
group multicast or unicast (CAST), and decentralized object location and routing (DOLR).

2.1 Key-based routing and DHTs

The lowest level abstraction defined for structured peer-to-peer networks is known as key-
based routing (KBR). This type of routing differs from the traditional routing (such as IP
routing) in that the destination node is usually not known by the sender. In fact, rather than
a destination address KBR messages contain a routing key. According to the definitions in
[B], given a key K and a message M, the KBR layer will forward M towards a unique live
node known as the root of the key. The root of the key is usually the node whose identifier
is numerically closest to the key among all live nodes.

The key’s root may change over time as the network conditions change. If the key’s
current root fails, for example, then another node becomes the key’s root. Similarly, a node
may cease to be the root of a key K as new nodes join the network. In Pastry, for instance,
a joining node becomes the root of all keys for which its node identifier is numerically closest
to those keys among all live nodes. Hence the definition of n-root, which is a generalization
of a key’s root [B]: a node is an r-root for a key if that node becomes the root for the key
after all i-roots with ¢ < r have failed.

This definition makes all i-roots with ¢ < k the natural nodes for a tier 1 storage service
to place the k replicas of a given object. In fact, a message sent by a client to retrieve a
replica of a given object will always reach one of the k roots provided all k-roots have not
failed simultaneously (and the system has handled node arrivals as well). This ensures that
at least one live replica will be found.

At the next layer one of the three defined services is the distributed hash table (DHT)
abstraction, which is basically equivalent to a traditional hash table: it maps keys to values.
However, in this case by value it is meant an arbitrary object which is often replicated and

RR n° 5288

6 Jean-Michel Busca , Fabio Picconi , Pierre Sens

stored persistently on one or more different nodes (usually on all the object’s i-roots with
i < k). Applications can then retrieve a copy of the object by providing the key under which
the object was inserted.

The use of replication is desirable because of its well-known advantages, i.e. increasing
fault resilience and masking network latency. However, if the inserted objects are modifiable
(which is necessarily the case in a read-write storage system), it introduces the problem
of replica consistency. In order to deal with this, the DHT interface may contain a call
which allows applications the retrieval of all or a certain number of replicas of an object.
As an optimization aimed at preserving bandwidth, the DHT service can first provide the
application with some metadata of each existing replica. The application can then decide
which replica is to be retrieved from the network, e.g. that corresponding to the latest
version of the object.

DHTs also differ from traditional hash tables in that they must take into account a
great number of security issues. This is necessary because of the inherently unsafe nature
of the resources used by peer-to-peer systems, i.e. the Internet, the computers running
the P2P software, etc. The minimum security guarantee that a DHT service must provide
to applications is the integrity of the objects stored by it. This is achieved by employing
cryptographic techniques such as one-way hash functions and digital signatures.

2.2 Pastry and Past

Pastry [2] is a self-organizing, fault-tolerant decentralized object location and routing sub-
strate designed to support a very large number of nodes. In a Pastry network, each node
has a unique fixed-length node identifier (nodeid) which is randomly assigned when it joins
the network. The nodeid space can be thought of as a circle ranging from 0 to 2i¥e" — 1 |
where idlen is the nodeid length in bits.

In order to route a message through the network a Pastry application supplies a key
associated to that message. Here the key space is the same as the nodeid space. The
routing algorithm then routes the message to the node whose nodeid is numerically closest
to the supplied key (i.e. to the root of the key).

Pastry’s routing algorithm is derived from the work by Plaxton et al. [I]. The basic idea
behind the algorithm is the following: both nodeids and the routing key are interpreted as
a sequence of base 2 digits, where b is a configuration parameter with a typical value 4.
Let the length of the shared prefix between a nodeid and a key be the number of the most
significant base 2° digits that are equal in both the nodeid and the key. When a message is
routed, each hop forwards the message to a node whose nodeid shares a larger prefix with
the routing key. If such a node is not known at the current hop, then a node is selected
whose shared prefix has the same length, but which is numerically closer to the key than
that of the forwarding node.

In order to achieve good locality properties, Pastry ensures that routing table entries
are populated with nodes that are close to the local node according to the chosen metric.
This means that when messages are routed, they will follow a path that is optimized ac-

INRIA

Pastis: a Highly-Scalable Multi-User Peer-to-Peer File System 7

cording to the proximity metric. In addition to this, Pastry locality properties also allow
the optimization of replica retrieval in Past [R].

The details of how routing table entries are chosen go beyond the scope of this paper.
It will be sufficient to say that whenever a node enters the network it retrieves the neigh-
bourhood sets of a number of other nodes, and uses this information to optimize the locality
properties of its own routing table. A detailed description of the algorithm can be found in
2].

Pastry’s routing algorithm is highly efficient. If the routing tables are accurate (i.e., in
the absence of recent node failures), then the number of routing hops will be with very high
probability no greater than loges IV, where N is the number of nodes in the network and b
a configuration parameter. With N = 10° and b = 4, this expected hop count is 5, whereas
with N = 107 it takes the value 8. Furthermore, the maximum number of populated routing
table entries is equal to (logys N)(2° — 1), which yields 120 entries for N = 10° and b = 4.

These advantages do not come without a cost. Maintaining routing information is expen-
sive, as it requires that a certain amount of messages be exchanged when a node either joins
or leaves the network. The number of messages exchanged when a node joins the network
is O(loges N). Furthermore, the correctness of routing information can only be guaranteed
provided the number of concurrent node failures does not exceed L/2, where L may have a
typical value of 16 or 32 (L is the size of Pastry’s Leafset).

Past [R] is a highly-scalable peer-to-peer storage service. It provides applications with
a distributed hash table abstraction, which places it at tier 1 according to the terminology
presented above. Past uses Pastry to route messages between Past nodes, and in doing so
is leveraged by Pastry’s properties, i.e. scalability, self-organisation, locality, etc.

Past makes extensive use of replication, which is complemented by caching if the inserted
blocks are immutable. The location of the replicas is determined by the key associated to
the inserted object. An object replicated k times is usually stored in all the key’s i-roots
with 4 < k. This ensures that at least one replica is always reachable provided all i-roots
have not failed simultaneously. This is very unlikely since i-roots should exhibit a very low
fault correlation, given that nodeids are randomly assigned throughout the network.

In a peer-to-peer network nodes can be expected to be quite heterogeneous as to the
storage capacity they provide to the network. This is a potential source of load imbalance,
which is why Past employs a technique known as replica diversion to achieve good load
balance properties. This consists in placing a given replica on a node other than one of the
key’s i-roots, while leaving a pointer to the diverted replica location on the corresponding
i-root. A thorough description can be found in [§].

As we pointed out above, when a new node joins the network and becomes the n-root
with n < k for a given key, a replica of the object stored under that key must be created on
the newly arrived node. Transferring all the necessary replicas at the time of the join would
be extremely expensive in both bandwidth and time. In order to avoid this problem, Past
creates a pointer to an object replica on the new node so that a replica can be found when
it is requested. Then, it transfers lazily all the replicas in the background.

RR n° 5288

8 Jean-Michel Busca , Fabio Picconi , Pierre Sens

directory inode directory contents fileinode
size, ctime, etc. T | filel idUCB2+—| size, ctime, €etc.
file2 idUCB3
id CHB1 file3 .. id CHB3
id CHB2 id CHB4
CHB1
id CHBI
id CHBii N o
id CHBiii indirect block
ucB1 id CHBx UCB2
id CHBy
id CHBz .
| file contents
¢ CHBI
directory contents
filed idUCB4
file5 id UCBS CHB3
file6
CHBz

Figure 1: File System Structure

3 Design

We begin the description of our file system by presenting how file system data are stored
on the network. The data structures used in our design are similar to those of the common
Unix file system (UFS). For each file the system stores an inode-like object which contains
the file’s metadata, much like the information found in a traditional inode. In order to avoid
confusion, henceforth we will refer by inode to our own inode-like object.

As shown in Figure [l each inode is stored usign a User Certificate Block, or UCB (see
section B4)). For each UCB a private-public key pair is generated by the user who creates
the file (i.e., the owner), and the private key is stored in the owner’s computer. Although an
inode’s contents are very similar to that of a UFS inode, not all inodes are equal. For each
file type, i.e. regular file, directory, symbolic link, etc., a different type of inode is used.

All inodes contain at least the following information: inode type, file attributes, and
security information. File attributes are basically the same as those returned by the stat
Unix system call, although the uid and gid fields are missing. Instead, information re-
garding file ownership and access permissions is encapsulated in what we call the security
information. This allows for a more generic identification and access rights semantics than
the standard Unix uid/gid/mode scheme (e.g., access control lists). Specific inode types
contain additional fields which are only necessary for the corresponding file type. Regular
file and directory inodes, for instance, contain a list of pointers to other blocks in which the

INRIA

Pastis: a Highly-Scalable Multi-User Peer-to-Peer File System 9

file or directory contents are stored. Symbolic link inodes, in turn, contain only the link’s
destination path.

File and directory contents are stored in fixed-size blocks which resemble those of a Unix
block device. However, these blocks are immutable and stored in Past Content-Hash Blocks
(CHBs). The address of each block is obtained from the hash of the block’s contents, and is
stored within the file’s inode block pointer table. As with UFS inodes, we use single, double,
and triple-indirect blocks to limit the size of the inode’s block pointer table. Our design is
very similar to that of CFS [I7], the main difference lying on the fact that CFS inodes are
read-only and therefore stored using Content-Hash Blocks.

The contents of a directory are stored in the same way as those of a regular file. Each
directory inode points to a set of CHBs containing the directory entries. Each directory
CHB contains a fixed number of entries, each entry consisting of a file name and the Past
address of the corresponding inode, which may be a regular file, directory, symbolic link,
etc.

In order to optimize directory operations, each directory inode holds a small number of
directory entries in the inode itself. Therefore, clients accessing directories that contain only
a few files need not retrieve any CHBs. Retrieving or inserting the UCB in which the inode
is stored may be sufficient, thereby reducing operation time and increasing performance.

3.1 Updates and conflicts

As we mentioned in the previous section, our file system structures are similar to those of
CFS. However, in CFS each time an inode is modified the file system owner must recalculate
the hashes of all directories from that inode up to the root. He must then digitally sign and
insert the new root inode. Furthermore, in CFS only the file system owner can update the
file system as only she knows the root block’s private key. In our design, we choose to use
modifiable blocks (UCBs) to store inodes, thus eliminating the cascade effect of CFS’s inode
modification.

Modifying a file or directory in our system requires updating the UCB in which its inode
is stored, but it also usually involves the insertion of new CHBs. Let us consider the case of
a write operation to a regular file. Let the write offset be less than the end-of-file, and the
length of the data to be written less than the size of a data block. In order to update the
file, the system must perform the following actions:

1. Fetch the file inode from the network
2. Fetch the data block(s) corresponding to the offset range [start offset, end offset]
3. Modify the data block(s) overwriting the data located at the specified offset range

4. Insert the new data block(s) into the network. Since data blocks are stored in CHBs, the hash
of the block contents must be recalculated in order to determine the new DHT key(s)

5. Update the inode’s block pointer table with the addresses of the new block(s). If these addresses
are stored using indirect blocks then the indirect blocks must also be modified, which involves
recalculating the hash of their contents and inserting the new blocks into the network

RR n° 5288

10 Jean-Michel Busca , Fabio Picconi , Pierre Sens

6. Update the UCB with the new version of the inode

Note that each time a file is modified, new immutable data blocks reflecting the newly
written data are inserted into the DHT. However, old immutable block are not removed from
the network. This implies that the simple fact of overwriting a file makes the file system
continuously grow in size. Our system is not the only one to avoid reclaiming storage [13],
and as we shall see in the following section we can benefit from keeping immutable blocks
when implementing a relaxed consistency model.

If two or more clients update an inode concurrently, then a conflict will most probably
occur. Our current design supports only a very simple conflict-resolution scheme based on
the last-writer-wins rule for file conflicts. This scheme will be replaced by a more complex
one as we will include new features, such as exclusive file creation, in our design.

The current mechanism works as follows: each time a client generates a new version of
an inode, it timestamps the inode using the client’s local clock. The value of this timestamp
is actually that of the ctime field of the inode’s attributes. Next, the client inserts the new
version of the inode into the Past network by calling the insert Past call. The Past service
then sends a message containing the new inode to every live replica, so that their contents
can be updated. However, each replica first checks that the timestamp of the new inode is
greater than the existing one before it overwrites the existing replica. If this check fails, the
inode is considered to originate from a conflicting write, and the update is not performed.

Note that the decision of whether an inode will be overwritten or not depends on times-
tamps which are generated by different clients. Therefore, for this mechanism to work
correctly client should loosely synchronize their clocks using NTP or some other clock syn-
chronization protocol. A similar mechanism is employed by the Pangaea system [19].

This simple conflict resolution scheme has two serious limitations: first, loosely synchro-
nized clocks is not a realistic requirement for a global scale peer-to-peer system, and second,
directory conflicts cannot be automatically solved. We are currently reviewing our design
to adopt a more robust conflict detection and resolution mechanism, such as one that uses
version vectors and allows for automatic resolution by keeping old inode versions.

3.2 Consistency

Our system currently supports two consistency models: close-to-open and a variant of the
read-your-writes guarantee.

Close-to-open consistency [, [12] is a relaxed consistency model widely employed in dis-
tributed file systems such as AFS and NFS. In this model the open and close operations
determine the moment in which files are read from and written to the network. The advan-
tage of using close-to-open consistency is that local write operations need not be propagated
to the network until the file is closed. Similarly, once a file has been opened, the local client
need not check whether the file has been modified by other distant clients, an operation that
would require accessing the network. In other words, the local client can cache the file’s
contents while it is opened, and keep this cache until the file is closed.

INRIA

Pastis: a Highly-Scalable Multi-User Peer-to-Peer File System 11

In our system, the close-to-open model is implemented by retrieving the latest inode
from network when the file is opened and keeping a cached copy until the file is closed. Any
following read requests are satisfied using the data block addresses pointed to by the cached
inode. When data are written to a file the locally cached copy of the inode is updated to
reflect the new data. Immutable blocks containing the file contents are also buffered rather
than inserted into the network in order to avoid delaying the write operation. Finally, when
the file is closed all cached data are flushed to the network and removed from the local cache.

Note that this scheme works because the immutable data blocks that store the contents
of each different version of a given file (a new version appears each time the file is closed) are
never removed from the network. If they were, then the data blocks pointed to by a cached
inode could be no longer valid. Alternatively, a complex garbage collection mechanism would
have to be employed to safely remove unused immutable block from the DHT.

The close-to-open consistency model may be stronger than what many applications ac-
tually need. It focuses on the fact that files can be written by different distant clients,
hence the need for synchronization points (open and close operations) in which consistency
is guaranteed. Applications which access files that are seldom shared, or that are not shared
at all could benefit from a further relaxed consistency.

For these applications we have implemented another consistency model, based on the
read-your-writes session guarantee. Session guarantees were introduced by Bayou [I8] as a
solution to the problem of providing applications data which is consistent with their own
previous actions. An example of this is a program that writes some data to a file, and later
reads the file at the same offset only to discover that the previously written data are not
there. This behaviour can occur if the read operation retrieves the data from a replica which
has not been updated yet.

There are two advantages to using session guarantees: first, they set up consistency-
keeping rules on a per-process basis, and second, these guarantees concern only the process,
i.e. the instance of a given application, that requires them. In other words, a given file system
client may serve many local applications, each one requiring different session guarantees
according to their particular needs.

Our enhanced read-your-writes model ensures that read operations always reflects all
previous local writes, even if the file is closed and later reopened. However, it provides
better consistency than the original Bayou guarantee by making clients retrieve a close
replica of the file’s inode each time the file is opened, and by propagating writes when it is
closed. Therefore, it is highly likely that a file open will reflect any distant writes propagated
after a file has been closed. On the worst case, the application will only see its own previous
operations, but will not be aware of any distant writes.

The implementation of our enhanced read-your-writes models is as follows: each file
system client keeps a table of inode timestamps, which correspond to the latest version of
each inode that the client has seen. When a file is reopened, the client retrieves a replica of
the inode from the network, making sure that the timestamp of the retrieved inode is not
older than that contained in its timestamp table. This procedure consists of two phases:
during the first phase, the client instructs Past to retrieve a single replica of the inode.

RR n° 5288

12 Jean-Michel Busca , Fabio Picconi , Pierre Sens

Given Past’s locality properties, it is highly likely that Past will fetch the replica which is
closest to the client. This first phase is therefore relatively cheap in network terms. If the
timestamp of the retrieved inode is greater or equal than that stored in the client’s table,
then the replica is valid and the procedure has completed. Otherwise, a second phase is
executed in which the client retrieves all inode replicas and keeps that with the most recent
timestamp, which should be greater or equal than the one stored in the table. This second
phase is the same as that used when using the close-to-open consistency model during a file
open.

Since a file close updates all replicas of the file’s inode, it is highly probable that the first
phase will retrieve a replica that is valid, and that also reflects writes performed by distant
clients. This model will therefore produce better performance than close-to-open provided
the number of accesses that require the two phases remains small.

3.3 Past modification

As we saw in the previous section, retrieving an inode replica with the enhanced read-
your-writes guarantee may involve one or two phases. Since we use the FreePastry 1.3.2
implementation, the first phase makes use the lookup call, whereas the second phase employs
the lookupHandles and fetch calls. During the first phase, Past routes a request message so
that as soon as a replica is found the message is returned to the client along with the found
replica. In the second phase Past retrieves the handles of all live replicas (a Handlesconsists
of the replica’s address and a portion of the block’s contents). The application then decides
which replica is to be retrieved (using the partial data contained in the handles), and issues
a fetch call to retrieve the full block.

The modification we introduced allows applications to specify a constraint over the
block’s metadata when performing a lookup call. In this way, if the first replica that is
found does not meet the required criteria, the message continues its path until another valid
replica is found, or it goes back to the client producing a "valid replica not found" error. In
this case, the client falls back to the lookupHandles+ fetch method to find a suitable replica.

We use the new lookup call to specify a constraint on the inode’s timestamp when re-
trieving an inode replica during the first phase of the enhanced read-your-writes model. This
increases the probability that a valid replica will be found without resorting to the more
expensive second phase, thus improving performance.

We also introduced two optimizations in Past’s implementation of the lookupHandles
and insert calls. The lookup-Handle call returns a Handlesfor each of the replicas of the
block passed as parameter. It executes in two phases: during the first phase, the root node
of the block is queried to determine the list of nodes currently holding replicas of the block,
which we call the replicas set, and the response is returned back to the caller. In the second
phase, the caller queries each of the nodes in the returned set to retrieve the Handlesof the
replica it holds. Similarly, the insert call involves two phases: the caller first acquires the
replicas set of the block to be updated, and then contacts each of the nodes in the returned
set to update its copy of the block.

INRIA

Pastis: a Highly-Scalable Multi-User Peer-to-Peer File System 13

The first optimization we introduced relates to the lookup-Handle call only. It consists in
having the root node of the block directly forward the request for replica handles to the nodes
in the replicas set, thus saving the return trip to the caller for the nodes that are farther
than the root node. It is important to note, however, that the standard lookupHandles call
guarantees by construction that the handles it returns are sorted in ascending order with
respect to proximity. This property allows the application to call fetch on the closest replica
of the block, when it finds that all replicas are equivalent. The modified lookupHandles call
does not provide this guarantee, and thus must be used in combination with some mechanism
for determinig the distance between nodes, as for instance a mechanism based on IP address
prefixes.

The second optimization we introduced relates to both the lookupHandles and insert
calls. It consists in caching the replicas set of a given block, and using it as a hint to these
calls so that they bypass the first phase of execution. Since file access patterns exhibit
temporal locallity, there is a high probability that the replicas set does not change between
the time a file is opened for writting and the time it is closed, or even between two successive
opens occuring within a short time frame. The modified lookupHandles and insert calls,
however, check that the replicas set they are passed is still up-to-date: when the node which
considers itself the current root of the block is contacted to perform the requested operation,
it piggy-backs in the reply its current view of the replicas set. Upon reception, the caller
checks whether the set has changed, and if so, stores the new set in its local cache and
restarts the call using the new set.

Note that both optimizations apply to UCB only; CHB are retrieved from Past by using
the fetch call, not the lookupHandles call. Moreover, CHB are inserted in Past only once
since they are immutable, which defeats the caching of their replicas set.

3.4 Security

As we pointed out above, every inode in the file system is stored in a special block called
a User Certificate Block, or UCB. A UCB is stored in Past under the public half of the
private-public key pair which the owner of the file generated when she created the file. The
security scheme which Pastis implements is as follows. Each user of the file system has a
private-public key pair, and the owner of a file delivers a write certificate to each user she
allows to write to the file. A certificate is thus of the form:

{1: K,user, 2: Kyinode, 3: expiration, Sign(1+2+3, Kinode)}

and it proves that the user whose public key is K,user has write permission to the inode
whose public key is Kpinode, until the specified expiration date. Certificates are signed
using the inode’s private key Kginode. Since this key is known only to the user that created
the file (i.e., the file’s owner), only she can generate valid certificates. Note that the owner
of a file can remove write permission from a given user by not issuing a new certificate for
that user after the current certificate has expired.

RR n° 5288

14 Jean-Michel Busca , Fabio Picconi , Pierre Sens

In order to update a file, a user must sign the UCB reflecting the file’s changes with
her own private key, and provide a certificate which proves that she has write permission
on that file. Thus, determining whether a UCB is valid or not requires two signature
verifications: first, the certificate provided along with the UCB is authentified using the
storage key of the UCB K,inode, and its expiration date is checked. Then, the UCB’s
integrity and authenticity is asserted using the user public key K,user mentioned in the
certificate. This verifications are carried out by any Past node which is about to locally
store the UCB during an insert operation, as well as by Pastis clients after having retrieved
a UCB’s replica from the Past DHT. User Certificate Blocks are always sent and stored
along with the corresponding certificate so that their verification does not generate further
network accesses to find the certificate.

Note that the above discussion only considers write access control. Read access control is
not ensured by Pastis itself. As in the Ivy file system, users wanting to prevent the contents
of their files from being disclosed should encrypt data themselves before insertion.

Finally, our design also provides protection against Byzantine faults. Byzantine nodes
are those which having been subject to a malicious attack or because of software bugs exhibit
arbitrary behaviour. If a Past node becomes Byzantine-faulty it may deny the existence of
a previously stored block, or return an old version upon reception of a lookup message (this
is known as rollback attack). However, Byzantine nodes cannot compromise the integrity of
a UCB unless they come to possession of the UCB’s private key (which would allow them
to forge certificates), or of the private key of a user which has write permission. Note that
the integrity of CHBs cannot be compromised once their DHT key is known to be valid.

In the presence of a rollback attack, a Pastis client will still behave correctly provided it
can retrieve an inode’s replica which satisfies the consistency model. When using close-to-
open all inode replicas are retrieved on a file open, meaning that the number of Byzantine
nodes must be less than k, the replication factor, to guarantee correct behavior. When
using the read-your-writes model, the client will either keep the first replica that is found,
or retrieve all replicas during the second lookup phase. In either case, a valid inode replica
will be found provided less than £ replicas are faulty.

4 Prototype

Our prototype is written entirely in Java 1.4, and thus runs on any platform that supports
the JVM 1.4. Figure B shows a diagram of the different software components. All blocks
are coded in Java and are executed within the same Java VM. A core module contains an
asynchronous interface, which contains procedures which resemble those of NFS v3, and
a block handling module. The latter uses a block cache module, as well as a security
manager which performs the cryptography and key handling functions, such as signing a
UCB, determining the block key of a CHB, and verifying a block’s integrity. Finally, the Past
service is accessed through a generic DHT layer which provides the basic DHT abstractions
and hides the specified implementation details of the Past interface of FreePastry 1.3.2. This

INRIA

Pastis: a Highly-Scalable Multi-User Peer-to-Peer File System 15

~Sync
interface

A
'

~Sync
interface

Block Block
Handling [T ~| Cache

Security A CORE
Manager y
DHT
Interface
A
Y
PAST
Pastry
A]
Y |

Simulator TCP/UDP

Figure 2: Prototype Architecture

layer also uses the security module in order to verify a block’s integrity after it is retrieved
from the Past network.

At the bottom of the stack, the Pastry service relies on either the standard Java RMI /
TCP / UDP transports, or a simulator used for large-scale experiments. Finally, at the top
of the stack we implemented a layer that transforms the asynchronous interface provided by
the core module into a synchronous stateful interface for applications. This interface, called
FileAccess is a hybrid between Java’s File and RandomFileAccess classes. This interface
was used by our Java benchmark program for our tests.

There reasons for which we have not implemented an NFS v3 interface is that the commit
procedure does not correctly convey close information, since it may be called without the
file being closed by the application. Since both our consistency models are based on the
open and close calls, a proprietary interface that includes both calls gives the file system
client all the information it needs to implement our consistency models.

We developped a discrete event simulator, LS?, in order to conduct experiments on
large-scale configurations. LS® represents each Past node of the simulated network with
an in-memory object, in which it records the state of the node and its current virtual time.
Sending a message to a node amounts to schedule a reception event containing the destination
node, the message to deliver and the time of delivery. Events are enqueued in a central event

RR n° 5288

16 Jean-Michel Busca , Fabio Picconi , Pierre Sens

schedule and processed in time-of-occurence order. When a message is delivered to a node,
the node’s current virtual time is set to the message’s time of delivery.

To be as accurate as possible, LS? takes three execution parameters into account: net-
work latency, delays induced by network software, and processing time at the application
level. Network latency is set to be proportional to the distance between the source and the
destination nodes in physical space. We use two kinds of topologies: the flat topology, in
which all nodes are equally distant from one another, and the sphere topology, in which
nodes are randomly located on a sphere. Every time a node sends or receives a message, its
virtual time is incremented by a small value, which is proportional to the size of the mes-
sage. This is to reflect the processing of the message by network software on end computers,
including message’s serialization and deserialization, processing which does not take place
in the simulator. When a node completes the processing of a message, the simulator adjusts
its virtual time to reflect the real time elapsed since the node received the message. This is
to simulate the time it would take in the real world to process the message on a computer
with similar characteristics as the one used for the simulation.

It is important to notice that all layers from the generic DHT upwards are unaware of
whether they are executing on top a simulated or a real environment. In other words, the
executed code corresponding to tier 3 (i.e., client core, cache, security manager, etc.) is the
same in both cases.

5 Evaluation

In order to evaluate the performance of our prototype we implemented a Java program that
generates a pattern of file system accesses equivalent to that of an Andrew Benchmark [7].
Our benchmark program consists of five phases: (1) create directories, (2) copy files, (3)
read file attributes, (4) read file contents, and (5) simulate a make command.

The reason for which we implemented the Andrew Benchmark as a Java application is
that our current prototype implementation only provides a Java interface to the file system.
This is not a problem for the first four phases of the benchmark, but we had to implement
a make simulation for the fifth phase. We also included an option in our Java benchmark
program that allows us to run the same benchmark but redirecting file access to a local
directory instead of our peer-to-peer file system. We can thus compare our system to NFS
by specifying a local directory which is actually an NFS mount point. Local accesses are
transformed by the kernel into NFS RPCs directed to the NFS server of our choice.

Unless otherwise stated, we ran all our tests using a single instance of the Andrew
Benchmark program. The source directory we used as input to benchmark contains two
subdirectories and 26 C source and header files, for a total size of 190 Kb. The application
accesses the local file system client, which in turn runs on top of a local Past/Pastry node.
This node then communicates with other Past instances to store and retrieve Past blocks.
As shown in Figure B these communications can take place either through an emulated
network, or be confined to the local Java VM when using the LS?® simulator.

INRIA

Pastis: a Highly-Scalable Multi-User Peer-to-Peer File System 17

350

T T
Real Execution .
Simulation

300 q

250 B

200 B

150 B

Execution Time (s)

100 q

50 B

I RN RN NS

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Total
Benchmark Phases

Figure 3: Simulation vs. Real Execution on 16 Nodes

Experiments related to simulation vs. real execution (see subsection B.1l) and concurrent
clients (see subsection B are run on Pentiums 4 2.4 GHz with 512 Mbytes of RAM,
running Linux 2.4.x, except for the DummyNet router which runs FreeBSD 4.5. All other
experiments are simulations run on a Pentium 4 1.8 GHz with 2 Gbytes of RAM. Note
that this latter machine being slower explains the difference we observe on execution times
between Figure Bl and Figure Hl for similar network configurations.

5.1 Simulation vs. real execution

The first test that we carried out aimed at determining to which extent the execution of our
Andrew Benchmark using the LS? simulator differs from an equivalent test using real Pastry
nodes. In this configuration we use 16 machines located in the same LAN. Each machine
is configured to route IP packets through a DummyNet [5] router, which adds a fixed delay
of 100 ms to each packet. Each machine hosts a Past node which communicates with the
other nodes using the Pastry WIRE protocol, and Past’s replication factor is set to 4. LS? is
configured to simulate a network with the the same characteristics, and we run the Andrew
Benchmark both on the real and simulated networks.

The results are presented in FigureBl Notice that the total run-times of both benchmarks
differ in approximately 10%, the simulated execution being slightly faster than the one using
real Pastry nodes. There are two factors that may be causing this difference. First, the model
LS? uses in order to simulate message processing delay in network layers is too simple to
describe Pastry’s behaviour, which repeatedly switches between UDP and TCP sockets in

RR n° 5288

18 Jean-Michel Busca , Fabio Picconi , Pierre Sens

400 T

35

o
,
VU
E-;WQJ
3
g
-
¥
|
|
‘

250 B

200 q

Execution Time (s)

150 | B

100 q

50 T T i g

16 64 256 1024 4096 16384 65536
Number of Nodes

Figure 4: Network Size

order to adapt to network traffic. Second, the resolution of the clock we use to adjust nodes’
virtual time (1 ms) may be too coarse to yield accurate results.

In the following sections we make the assumption that this 10% difference between real
execution and simulation results will remain constant as we increase the number of nodes
in the network. Our hypothesis, however, may not necessarily hold, and we shall therefore
consider the benchmark results presented below as preliminary work to be confirmed later
by further evaluations.

5.2 Network size

After validating the simulator, we measured Pastis’ scalability with respect to the number
of nodes in the network. We ran the benchmark on simulated networks of various size, using
the sphere topology. The maximal network latency, which corresponds to two diametrically
opposed points, was set to of 300ms. We used the close-to-open consistency model, and
Past’s replication was disabled.

Figure M shows the total and per-phase execution time of the benchmark for network
sizes ranging from 16 to 32 768 nodes, averaged over four runs. We observe that the total
execution time increases only by 13.5% between 16 (311 s) and 32 768 nodes (353 s).

This good result is due to Pastry’s routing algorithm, which takes at most logys N hops,
where N is the number of nodes, to route a message between any two nodes. This experiment
confirms, however, that Pastis does not introduce any flaw in the overall design and preserve
Pastry and Past’s scalability over a wide range of network sizes.

INRIA

Pastis: a Highly-Scalable Multi-User Peer-to-Peer File System 19

400

35

=}
T
)
S
D
7]
@
w
!

300 B

250 B

Execution Time (s)
N
o
o
T
!

150 q

50 - e =

0 2 4 6 8 10 12 14 16
Number of Replicas

Figure 5: Replication Factor

5.3 Replication factor

Pastis’ performance depends on how close block replicas are to the client. By increasing
Past’s replication factor k, we increase replicas’s dispersion. On one hand, it raises the
probability that one of the replicas be closer to the client, thus improving read access time.
On the other hand, it raises the probability that a replica be farther to the client, which has
the counter effect on write operations. Moreover, increasing the replication factor generates
more network traffic and puts heavier processing load on nodes.

In order to measure the impact of these opposite effects, we ran the Andrew Benchmark
with different replication factors on a network of 32 768 nodes. The other settings were the
same as in the previous experiment. Figure [l shows the total and per-phase execution time
of the benchmark for replication factors ranging from 2 to 16.

We observe that the total execution time approximately follows a linear law, increasing
by only 4% between replication factors 2 (354 s) and 16 (369 s). Figure B takes a closer
look at phase 2 (file write) and phase 4 (file read) execution time. As expected, write time
increases with the replication factor, although block replicas are inserted in parallel. It
increases by 16 s (+17%) between replication factors 2 (93 s) and 16 (109 s), first steeply
between replication factors 2 and 6 (50% of the increase), then more gradually. We notice
the opposite effect on read time, which decreases by 9 s (-17%) between replica factors 2
(52.5 s) and 16 (43.5 s). Again, the decrease is steep in the first place between replication
factors 2 and 6 (50% of the decrease), and then more gradual.

Figure [explains these observations. It plots the distribution of access time to block
replicas as a function of the replication factor for the network configuration and source
directory we used in the experiment, as measured after the benchmark completes. For

RR n° 5288

20 Jean-Michel Busca , Fabio Picconi , Pierre Sens

Pﬁase 2 (file \}vrite) i i i i i
120 | Phase 4 (file read) ------- |
100 - ////—/ 1
s 80 g
o
£
£
s
S 60| B
2
o
;4
wr T e
woF q
20 + q
0 L L L L L L L L
0 2 4 6 8 10 12 14 16

Number of Replicas

Figure 6: Replication Factor - Detail

300 T - T T T T T T T
Reference min I
Reference max ——
UCB min Himmn
UCB max -------
L CHB min 1 - —— [itast
250 CHB max -------- - . M L
200
150

Access Time to Replicas (ms)

100

50

LLLLELCLLEELLEELL LU

~ HITemc
T

o HINIMMNNC

Number of Replicas

Figure 7: Distribution of Block Replicas

each replication factor, three distributions are depitected: the middle and right bars relate
respectively to the UCB and the CHB generated by the benchmark. The left bar correspond
to an hypothetical set of blocks, each of which rooted at a specific node of our configuration.
This latter distribution serves as a reference point and helps in controling that the UCB
and CHB distributions are not biased. The lower part of each bar represents the average

INRIA

Pastis: a Highly-Scalable Multi-User Peer-to-Peer File System 21

1.14

112

1.08

1.06 /
1.04 =

Total execution time (relative to 1 AB client)

0.98 L L L L L
1 2 4 8 16

Concurrent AB clients

Figure 8: Concurrent clients

access time to the closest replica of the set, while the upper part represents the average
access time to the farthest replica of the set. UCB distributions slightly differ from reference
distributions because the number of UCB is rather small (29), but CHB distributions closely
matche reference distributions. In both cases, we notice that the average closest distance
decreases as the replication factor increases, and conversely for the average farthest distance,
and that both distributions have similar shape as phase 2 and phase 4 execution time in
Figure @

5.4 Concurrent clients

In this test we evaluate the performance impact of running multiple file system clients
concurrently in a real environment. We ran from one up to 16 concurrent Andrew Benchmark
clients, each client writing to a different directory so that no conflicts are generated. In all
cases we use a Past network of 16 nodes, with £ = 4, and a 100 ms inter-node delay. The
consistency model is close-to-open.

Figure R shows that the total runtime for a single client is 311.2 seconds. As the number of
clients increases, runtime appears to grow linearly, with only a 2% increase for 4 concurrent
clients. This suggests that Pastis scales well in terms of concurrent clients. In comparison,
according to [I3] an equivalent test performed on the Ivy file system shows a 70% increase
when going from 1 to 4 concurrent clients. This is not surprising since having multiple logs
(one per participant) forces Ivy clients to traverse all the logs that have been modified, even
if the records appended by the other users do not concern the files accessed by the local

RR n° 5288

22 Jean-Michel Busca , Fabio Picconi , Pierre Sens

400

T T
CHB read+write IS
UCB write
UCBread -------
350 B

250 | I b

Execution Time (s)
N
o
o
T
!

150 - 1

100 | HH M g

50 - i 1

0 om0 oo
Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Total
Benchmark Phases

Figure 9: Consistency Models

user. In Pastis, running 16 concurrent client produces only a 11.3% increase compared to a
single client, which is very low considering that every node is running a benchmark client.

5.5 Consistency models

Pastis’s performance depends on the consistency model that is selected to access files. In
order to compare the performance of the two consistency models which Pastis currently
implements, we ran the Andrew Benchmark on a simulated network of 32 768 nodes. We used
the sphere network topology, with a maximum network latency of 300 ms and a replication
factor of 16.

We performed three test runs. In the first we used the close-to-open (CTO) consistency
model, and in the second we activated the read-your-writes (RYW) model. In the third run
we also used the read-your-write model, but this time we made 10% of the closest inode
replicas be stale. This simulates an execution in which the nodes holding these replicas
would be down when inodes are updated in phase 2, and would be up again when the file
system client must retrieve an inode replica in phases 3-5.

Figure @ shows the total and per-phase execution time for each of these three runs. The
left, middle and right bars represent the close-to-open, read-your-writes and read-your-write
with failures runs, respectively. The execution time is split into three categories: the lower
part of each bar represents the cumulated CHB read (fetch call) and write (insert call) time,
the middle part represents the UCB write time (insert call) and the upper part represents
the UCB read time.

INRIA

Pastis: a Highly-Scalable Multi-User Peer-to-Peer File System 23

We observe that in the close-to-open model, almost 75% of the overall time is spent in
UCB reads and writes. There are two reasons for this. First, although a file is represented
by one UCB and more than one CHB on average, CHB are written in parallel when closing
a file. Second, determining the latest version of a UCB, as implied by the consistency model,
requires a lookupHandles call and a fetch call. As a result, UCB read time alone amounts
to almost 40% of the overall time.

As expected, the read-your-writes model yield better performance than the close-to-open
model by reducing UCB read time. Finding a UCB replica newer than the last written by
the client only requires a lookup call in the general case. We observe that while CHB read-
write time and UCB write time remain the same as in the close-to-open model, UCB read
time decreases by 85% (144 s for close-to-open, 21 s for read-your-writes), yielding a 33%
increase in overall performance.

Finally, the results also show that the presence of stale UCB replicas the overall time
increases by 3% in the read-yrou-write model. The reason is that some lookup calls fail to
retrieve an appropriate replica, which forces the client to resort to the slower lookupHandles
+ fetch mechanism.

5.6 Past optimizations

After having compared the performance of the consistency models, we measured the impact
of the optimizations we introduced in Past (see section B3). We used the same network
configuration as in the previous experiment.

We performed five test runs. In the first we used as a reference point the close-to-open
consistency model without any optimization. Then we activated in the second run the fast
lookupHandles call, which directly forwards lookup requests to the replicas set, and the
caching of the replicas set for lookupHandles and insert calls in the third run. The fourth
run reproduces the same conditions as the third one, except that we simulated the fact that
cached replicas sets were stale in 10% of the calls. Finally, we combined both optimizations
in the fifth run, again with a ratio of 10% of stale replicas sets.

Figure [shows the total and per-phase execution time for each of these five runs in
order. We observe that using fast lookupHandles call yields a 23% decrease of UCB read
time, which corresponds to a 9% increase of the overall performance. Note that we assumed
in this test that we can rely on some mechanism to sort nodes according to network latency.
Other experiments, not reported in the figure, show that wihout such mechanism, the gain
obtained with the fast lookupHandles is almost overriden by longer fetch calls.

As expected, the caching of replicas sets improves both UCB read time and UCB write
time, by 38% and 30% respectively, which corresponds to a 25% gain on overall performance.
It is worth noting that this optimization yield lower performance (282 s execution time) than
the read-your-writes consistency model (252 s execution time), but the test is run with the
close-to-open model, which is more strict.

The fourth run shows an increase of UCB read and UCB write time in the presence of
stale replicas set in the cache. This is because the lookupHandles and insert calls have to

RR n° 5288

24 Jean-Michel Busca , Fabio Picconi , Pierre Sens

400

T T

CHB read+write IS
UCB write
UCBread -------

350 | - 4

300 | - g

250 H 4

Execution Time (s)
N
o
o
T
!

150

100

50

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Total
Benchmark Phases

Figure 10: Past Optimizations

be restarted using the up-to-date replicas set which was found. The fifth run shows that the
14% increase in UCB read time can be lowered to 7% by using the fast lookupHandles call.

5.7 NFS comparison

In this test we compare Pastis’ performance to that of NFS v3. This allows us to make an
indirect comparison to other peer-to-peer file systems for which a comparison with NFS has
been performed [I3, [T0]. First we run a single Andrew Benchmark client on a real network
of 16 machines, each running an instance of Past, with a replication factor of 4. We emulate
a WAN latency of 100 ms using the DummyNet router (a ping between any two machines
yields a 200 ms round-trip time). We then run an Andrew Benchmark client on an NFS
client accessing a single NFS server, and also emulate a 100 ms latency between client and
server (a RPC therefore takes 200 ms). Results are shown in Figure [l

When Pastis consistency model is set to close-to-open, total execution time is less than
twice that of NFS. With the read-your-writes model, Pastis is only 40% slower than NFS.
In comparison, other peer-to-peer file systems [I3, [I0] are between two to three times slower
than NFS.

A more detailed analysis of phase 5 shows that the NFS client took 87.8 seconds to
complete the phase, issuing 412 RPCs. The time consumed by network communications is
then 412 * 200 ms = 82.4 seconds. More than 80% of these RPCs are GETATTRs and
LOOKUPs, the remaining RPCs being 17 CREATESs, 42 WRITEs, and 17 COMMITs (17
files are created during phase 5). No READ RPCs are generated since the file contents are
available in the NFS cache. On the other hand, we can measure Pastis’ network accesses by

INRIA

Pastis: a Highly-Scalable Multi-User Peer-to-Peer File System 25

300

T T T T
NFS ==
Pastis RYW tZ7z72
Pastis CTO m—

250

200

150

Phase time

100

50

L N

P1 P2

) Vi
P3 P4
AB Phases

Figure 11: NFS comparison

looking at the number of DHT operations generated by the file system client. During Pastis’
execution of phase 5, which took 173 seconds, the client inserted 51 UCBs, with an average
Past insert time of 820 ms. The number 51, which is three times 17, is explained by the fact
that two UCBs are inserted at a file creation (one UCB for the file and one for the directory
in which it is located), and that the file’s UCB is reinserted after a file close. Other accesses
to the Past DHT include 92 CHB inserts (average time 949 ms), 58 lookups (312 ms), 106
fetchs (376 ms) and 106 lookuphandles (411 ms). It is worth noting than some inserts are
issued in parallel (e.g., CHBs containing file data that are inserted when the file is closed).

6 Related work

In this section we list some peer-to-peer file systems designs that have been proposed by
different research groups.

Ivy [13] is a distributed multi-user read-write file system. To the user, Ivy behaves much
like an NFS file system, providing consistency semantics similar to the close-to-open model
provided the network is not partitioned. Update serialization in Ivy is easily accomplished
by traversing all logs of a file system. Since clients insert updates into their own logs, no
central Byzantine-fault tolerant point is need to commit updates. However, Ivy’s one-log-
per-participant design poses a limit on the number of users that a file system may have. Ivy
relies on the DHash [I7] and Chord to store all file system data and route request between
nodes.

Oceanstore [I0] is a global-scale peer-to-peer persistent storage system. Its designers
envisage a global commercial storage service maintained by a number of provider companies,

RR n° 5288

26 Jean-Michel Busca , Fabio Picconi , Pierre Sens

which would offer storage space to users in exchange for a monthly fee. The storage space
is provided by the companies themselves, as well as by other smaller companies such as
Internet cafés, which receive a percentage of the benefits for their contribution in storage
space. Unlike Ivy, Oceanstore is not a Unix-like file system. Instead, Oceanstore provides
a proprietary interface that allows applications to insert, lookup, and update data objects
using a wide range of possible semantics. A primary tier of nodes using Byzantine-fault
tolerant replication serializes all updates and propagates them to the rest of the network.

The Cooperative File System [I7] is a read-only file system built upon the DHash dis-
tributed hash table and Chord routing layer [16]. Since its file system structures are very
similar to that of SFSRO [11], it suffers from the same problem: each time a file is modified
the file system owner must reinsert all CHBs from that file up to the root block, which must
also be resigned and reinserted.

Farsite [9] is a decentralized distributed file system that uses untrusted computers to
store file system data. Although it has several of the characteristics of peer-to-peer systems
(decentralization, each node behaving as client and server, etc.), Farsite is designed to be
deployed in a local area network, typically that of a large corporation or university. There-
fore, network topology is ignored and a scale no larger than 100.000 nodes is assumed. No
key-based routing algorithm is employed here. Instead, the IP addresses of the machines
that store the replicas of a given file are included within the file’s metadata. Since Farsite
is designed to emulate a local NTFS file system, its designers paid special attention to the
security and consistency aspects of the system, thus implementing a complex trust and lease
scheme.

Pangaea [19)] is a wide-area peer-to-peer file system designed at HP Labs. Rather than
using a KBR layer, Pangaea’s particular design keeps a graph of the nodes on which the
replicas of a given file or directory are stored. This graph is then used to disseminate updates
and to discover new nodes when a replica must be added. In order to maximize access speed,
when a nodes accesses a file it creates a local replica of that file and adds itself to the replica
graph. Although the cost of adding and remove a replica is constant, that of propagating
updates is proportional to the number of replicas, as this is done by flooding the replica
graph. Namespace conflicts in Pangaea are automatically solved using a combination of
techniques known as backpointers, namespace containment, and directory resurrection.

7 Conclusion and future work

We have implemented a multi-user read-write peer-to-peer system with good locality and
scalability properties. The use of Pastry and a modified version of Past is crucial to achieve
a high level of performance, a difficult task since large-scale peer-to-peer systems are partic-
ularly subject to network latencies.

Another equally important factor is the choice of the consistency model. A strict consis-
tency guarantee can impair performance significantly. Therefore, a large-scale peer-to-peer
file system should offer a range of different degrees of consistency, thus allowing applications

INRIA

Pastis: a Highly-Scalable Multi-User Peer-to-Peer File System 27

to choose between various levels of consistency and performance. Future work will involve
envisaging and adding new consistency models to the prototype.

Ongoing work focuses on developing a more complex conflict detection and resolution

scheme, such as one based on version vectors. We also plan to provide support for concur-
rency control primitives, such as exclusive file creation. This will support applications that
use file locks for concurrency control.

Finally, our prototype evaluation based on simulation and real execution suggests that

Pastis is only 1.4 to 1.8 times slower than NFS. However, our results are still preliminary
and must be corroborated by further evaluations.

References

1]

2]

[3]

[4]

[5]

(6]
(7]

[8]

[9]

C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing nearby copies of replicated
objects in a distributed environment. In Proceedings of ACM SPAA. ACM, June 1997.

A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and routing
orlarge-scale peer-to-peer systems. In Proc. IFIP/ACM Middleware 2001, Heidelberg,
Germany, Nov. 2001.

F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and I. Stoica. Towards a common API
for structured peer-to-peer overlays. In Proc. of IPTPS, 2003.

I. Clarke, O. Sandberg, B.Wiley, and T. Hong. Freenet: A distributed anonymous
information storage and retrieval system. In Proc. of the Workshop on Design Issues in
Anonymity and Unobservability, pages 46-66, July 2000.

L. Rizzo. Dummynet and Forward Error Correction. In Proc. of the 1998 USENIX
Annual Technical Conf., June 1998.

FreePastry. http://freepastry.rice.edu/

J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satyanarayanan, R. Sidebotham, and
M. West. Scale and performance in a distributed file system. In ACM Transactions on
Computer Systems, volume 6, February 1988.

A. Rowstron and P. Druschel. Storage management and caching in PAST, a large-scale,
persistent peer-to-peer storage utility. In Proc. of the ACM Symposium on Operating
System Principles (SOSP 2001), October 2001.

A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. R. Douceur, J. Howell,
J. R. Lorch, M. Theimer, and R. P. Wattenhofer. FARSITE: Federated, Available,
and Reliable Storage for an Incompletely Trusted Environment. In 5th Symposium on
Operating Systems Design and Implementation (OSDI 2002), Boston, MA, December
2002.

RR n° 5288

http://freepastry.rice.edu/

28 Jean-Michel Busca , Fabio Picconi , Pierre Sens

[10] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gummadji,
S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao. Oceanstore: An ar-
chitecture for global-scale persistent store. In Proc. ASPL0S’2000, Cambridge, MA,
November 2000.

[11] K. Fu, M. Frans Kaashoek, and D. Maziéres. Fast and secure distributed read-only

file system. In Proc. of the USENIX Symposium on Operating Systems Design and
Implementation (OSDI 2000), pages 181-196, October 2000.

[12] E. Levy and A. Silberschatz. Distributed file systems: Concepts and examples. In ACM
Computing Surveys, 22(4):321-375, Dec. 1990.

[13] A. Muthitacharoen, R. Morris, T. M. Gil, and B. Chen. Ivy: A Read/Write Peer-to-
Peer File System. In Proceedings of 5th Symposium on Operating Systems Design and
Implementation (OSDI 2002).

[14] M. Castro and B. Liskov. Practical Byzantine fault tolerance. In Proc. of USENIX
Symposium on Operating Systems Design and Implementation (OSDI 1999).

[15] D. Maziéres. A toolkit for user-level file systems. In Proc. of the Useniz Technical
Conference, pages 261-274, June 2001.

[16] I. Stoica, R. Morris, D. Karger, M. Frans Kaashoek, and H. Balakrishnan. Chord: A
Scalable Peer-to-peer Lookup Service for Internet Applications. In Proc. ACM SIG-
COMM, August 2001.

[17] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-area cooperative
storage with CFS. In Proceedings of the 18th ACM Symposium on Operating Systems
Principles (SOSP ’01), Chateau Lake Louise, Banff, Canada, Oct. 2001.

[18] A. Demers, K. Petersen, M. Spreitzer, D. Terry, M. Theimer, and B.Welch. The Bayou
architecture: Support for data sharing among mobile users. In Proc. of IEEE Workshop
on Mobile Computing Systems € Applications, Dec. 1994.

[19] Y. Saito, C. Karamanolis, M. Karlsson, and M. Mahalingam. Taming aggressive repli-
cation in the pangaea wide-area file system. In 5th Symp. on Op. Sys. Design and
Implementation (OSDI 2002), Boston, MA, USA, December 2002.

Contents

I__TIntroduction 3

2 Structured networkd 5
b1 Kevbased routine and DEHTY . .« . o o o o oo 5

INRIA

RR n° 5288

Pastis: a Highly-Scalable Multi-User Peer-to-Peer File System 29
B Desied g
B1_Updates and conflictd 9
% 10
.................................. 12

B4 Security 13

% Protao D€ 14
b__Evaluatiod 16
5.1 Simulation vs. real executionl 0o e e e e e e 17
B2 Network Sizd . .« o oo e e 18
B.3 Replication factorl 19
B4 Concurrentclientd o i 21
b5 Consistency madeld 22
%ﬂd 23
.................................. 24

6 Related work 25
tz__Conclusion and future work 26

/<

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)
Unité de recherche INRIA Lorraine : LORIA, Technopble de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lés-Nancy Cedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhone-Alpes : 655, avenue de I’Europe - 38334 Montbonnot Saint-Ismier (France)
Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)
http:/ /www.inria.fr

ISSN 0249-6399

	Introduction
	Structured networks
	Key-based routing and DHTs
	Pastry and Past

	Design
	Updates and conflicts
	Consistency
	Past modification
	Security

	Prototype
	Evaluation
	Simulation vs. real execution
	Network size
	Replication factor
	Concurrent clients
	Consistency models
	Past optimizations
	NFS comparison

	Related work
	Conclusion and future work

