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Abstract: We present a method for the analysis of basal ganglia (including the thalamus)
for accurate detection of human spongiform encephalopathy in multisequence MRI of the
brain. One common feature of most forms of prion protein infections is the appearance of
hyperintensities in the deep grey matter area of the brain in T2-weighted MR images. We
employ T1, T2 and Flair-T2 MR sequences for the detection of intensity deviations in the
internal nuclei. First, the MR data is registered to a probabilistic atlas and normalised
in intensity. Then smoothing is applied with edge enhancement. The segmentation of
hyperintensities is performed using a model of the human visual system. For more accurate
results, a priori anatomical data from a segmented atlas is employed to refine the registration
and remove false positives. The results are robust over the patient data and in accordance
to the clinical ground truth. Our method further allows the quantification of intensity
distributions in basal ganglia. The caudate nuclei are highlighted as main areas of diagnosis
of sporadic Creutzfeldt-Jakob Disease (CJD), in agreement with the histological data. The
algorithm permitted to classify the intensities of abnormal signals in sporadic CJD patient
FLAIR images with a more significant hypersignal in caudate nuclei (10/10) and putamen
(6/10) than in thalami. Using normalised measures of the intensity relations between the
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internal grey nuclei of patients, we robustly differentiate sporadic CJD and new-variant CJD
patients, as a first attempt towards an automatic classification tool of human spongiform
encephalopathies.

Key-words: Brain MRI, multisequence MRI, grey matter, internal nuclei, Creutzfeldt-
Jakob Disease, sporadic CJD, new-variant CJD, image registration, image normalisation,
segmentation, human visual system model
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Analyse automatique de la distribution des intensités des
noyaux gris centraux en IRM multiséquences du cerveau
- Application a la maladie de Creutzfeldt-Jakob

Résumé : Nous présentons une nouvelle méthode d’analyse des noyaux gris centraux afin de
faciliter le diagnostic des encéphalopathies spongiformes humaines a partir d’TRM cérébrales
multiséquences. L’apparition des signaux hyper-intenses au sein des noyaux gris centraux
dans les IRM pondérées en T2 est un point commun entre la majorité des formes des mal-
adies & prions. Les séquences IRM T1, T2, et FLAIR-T2 sont utilisées pour la détection des
points aberrants dans les noyaux gris centraux. Tout d’abord, les images sont recalées sur
un atlas probabiliste et normalisées en intensité. Un filtrage anisotrope est ensuite appliqué
afin de préserver les contours. Les signaux hyper-intenses sont extraits par un algorithme
qui s’inspire d’'un modéle psychovisuel humain. Pour plus de précision, des informations a
priori sur anatomie issues d’un atlas segmenté permettent d’affiner le recalage et d’éliminer
les faux positifs. Les résultats sont robustes et conformes aux observations fournies par les
cliniciens. La méthode permet en outre une quantification de la distribution des intens-
ités des noyaux gris centraux. Les noyaux caudés sont désignés comme principales zones
d’interét diagnostic dans la Maladie de Creutzfeldt-Jakob (MCJ) sporadique, conformé-
ment aux données histologiques. La méthode a permis, de plus, de classer sans ambiguité
I’intensité des anomalies de signal chez les patients atteints de MCJ sporadique avec un hy-
persignal FLAIR plus marqué dans les noyaux caudés (10/10) et parfois les putamen (6/10)
que dans les thalami. A I'aide de mesures normalisées de relations d’intensité entre les gan-
glions de la base des patients, nous parvenons & différencier de maniére robuste des patients
atteints de CJD sporadique et nouvelle variante, ce qui représente une nouvelle approche
vers un outil de classification automatique d’encéphalopathies spongiformes humaines.

Mots-clés : IRM du cerveau, IRM multiséquence, substance grise, ganglions de la base,
maladie de Creutzfeldt-Jakob, MCJ sporadique, MCJ nouvelle variante, recalage d’images,
normalisation, segmentation, modélle du systéme visuel humain
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1 Context and Objectives

The identification of early diagnosis markers is a major challenge in the clinical care of
patients with Creutzfeldt-Jakob Disease (CJD). This disease raises a number of questions to
neuroradiological centres, due to the limited available knowledge that connects it to medical
imaging. Some recent studies [4, 13, 18, 44] found strong correspondences between CJD
patients and signal activation in the deep grey matter internal nuclei in Magnetic Resonance
Imaging (MRI) of the brain. Since CJD is extremely aggressive, detecting the earliest signs
of the disease becomes essential in studying its evolution.
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This work is completed as part of the GIS-Prions Project, a national project funded
by the French Ministry of Health, as a response to the increasing worries regarding the
spread and evolution of the Prion protein infection-based diseases. Its goal is to develop
techniques for the early detection and classification of various types of CJD, be it sporadic,
new variant, genetic or iatrogenic [4, 5]. Besides assisting to better understand the disease
evolution, our study aims to improve the early diagnosis of CJD envisaging the application
of a prospective treatment. The project involves several research centres across France and
a database aiming to include CJD patients from two main neuroradiological centres in Paris
and Marseille in the period between April 2002 and April 2004.

1.1 Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) has become a leading technique widely used for imaging
soft human tissue. Its applications are extended over all parts of the human body and it
represents the most common visualisation method of human brain. Images are generated
by measuring the behaviour of soft tissue under a magnetic field. Under such conditions,
water protons enter a higher energy state when a radio-frequency pulse is applied and this
energy is re-emitted when the pulse stops (a property known as resonance) [20]. A coil is
used to measure this energy, which is proportional to the quantity of water protons and
local biochemical conditions. Thus, different tissues give different intensities in the final MR
image. From the brain MRI perspective, this quality makes possible the segmentation of the
three main tissue classes within the human skull: grey matter (GM), white matter (WM)
and cerebrospinal fluid (CSF). Their accurate segmentation remains a challenging task in a
clinical environment.

The relative contrast between brain tissues is not a constant in MR imaging. In most
medical imaging applications, little can be done about the appearance of anatomically dis-
tinct areas relative to their surroundings. In MRI, the choice of the strength and timing of
the radio-frequency pulses, known as the MRI sequence [36], can be employed to highlight
some type of tissue or image out another, according to the clinical application. However,
the presence of artefacts due to magnetic field inhomogeneity (bias fields) and movement
artefacts may hamper the delineation of GM versus WM and CSF and make their depiction
difficult.

There is an entire family of MRI sequences that are used in common clinical practice.
T1-weighted MRI offers the highest contrast between the brain soft tissues. On the contrary,
T2-weighted and Proton Density (PD) images exhibit very low contrast between GM and
WM, but high contrast between CSF and brain parenchyma. In other MRI sequences, like
the Fluid Attenuated Inversion Recovery (FLAIR) sequence, the CSF is eliminated from the
image in an adapted T1 or T2 sequence. More about these specific MRI sequences and their
variations can be found in [6]. Multisequence MRI analysis combines the different informa-
tion provided by the employed sequences. Combining such knowledge gives substantially
more information about brain anatomy and possible occurring changes.

MR images depict a 3D volume where the organ or part of the body of interest is
embedded. This information can be used to build a 3D representation of the structure of

RR n° 5276
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interest. This applies both to 2D sequences, where images are acquired in slices, and to
recently developed 3D sequences, where the data are captured in the 3D Fourier space,
rather than each slice being captured separately in the 2D Fourier space [36, 6].

In the next section we will focus on the use of MRI for the detection and classification
of Creutzfeldt-Jakob diseases.

1.2 CJD and MRI

MRI is commonly used for non-invasive examinations of patients with neurological diseases.
For the last fifteen years, evidence of MRI hypersignals in patients suffering from CJD
has been found. However, the observations and studies describing its ability to help in the
diagnosis of CJD are in an early stage. Most of the studies are concerned with sporadic CJD
cases, which represent 80% of all forms of CJD. The first study cases describe activations
in T2-weighted images (and FLAIR T2 images) with higher incidence in the basal ganglia
(see Figure 1) in a bilateral symmetric form [15, 27, 32]. Schroeter [34] conducts a large
study on sporadic CJD patients and concludes that the MR sensitivity in detecting CJD is
67% with a specificity of 93%. No anomalies are generally reported in T1-weighted images
of sporadic CJD patients, with some exceptions, such as in [11].

A great concern in the scientific world has been the occurrence and rapid increase in the
number of cases of new-variant CJD in the 1990s, a form of human environmentally-acquired
CJD. This type of CJD related to the bovine spongiform encephalopathy shows a different
distribution of hyperintensities in brain MRI [29, 43]. In FLAIR and T2 sequences, abnormal
high signals are depicted in the thalamus, especially in posterior part of the thalamus or
pulvinar nucleus (see Figures 1 and 2). The sensitivity of MRI in diagnosing new-variant
CJD is reported as 78% with a specificity of 100%. Unlike the sporadic cases, the new-
variants have higher abnormal intensities in the pulvinar when compared to putamen [17].
The caudate, putamen and thalamic nuclei are studied in the neuroradiological diagnosis of
new-variant CJD [10].

Other forms of prion infections are genetic, such as Fatal Familial Insomnia (FFI) and
Gertsmann-Straussler-Scheinker syndrome (GSS), or iatrogenic CJD, which are much less
studied in MR imaging. The rarity of such cases makes them difficult to interpret from
a statistical point of view. An overview of the clinical aspects of human spongiform en-
cephalopathies can be found in [4].

Although the intensity of abnormal signals probably changes over time with the evolution
of the disease, there are cases where no increase is noted or even no hypersignals appear
in the internal nuclei. As mentioned above, cortical hypersignals are also associated with
CJD, but on a much more reduced scale. Abnormal cortical signals are best detected in
Diffusion Weighted Images (DWI) [2]. Areas of high signal in DWI are usually associated
with a decreased apparent diffusion coefficient (ADC) value. Although there are overlaps
between bright areas in FLAIR /T2 and in DWI, the MR sequences depict different types of
abnormal pathological features.

There are several hypotheses relating hyperintensities in MRI and CJD. In [12, 3§],
correlation between MRI studies and neuropathological data shows that an elevation of
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signal in MRI T2-weighted sequences correlates with gliosis in pathological analysis. In
[43, 44] it is also argued that hyperintensities in thalamus related to the variant CJD seem
more likely linked to the level of gliosis than to spongiosis or prion deposits. Bahn and
Parchi [3] relate the high signal in DWTI to spongiform changes. More recently, Haik et al.
[18] noted that, in a sporadic and a variant CJD cases, there is no clear association between
the high MRI signal and gliosis or spongiform changes, but seems to be closer related to
the accumulation of prion protein. Still, the relation between the prion deposits and strong
signal in MRI remains ambiguous.

Despite the given advances in the detection of CJD, to date, clear diagnosis can only
be performed post-mortem. In-vivo pathological examinations could rarely be carried out
through brain biopsy to confirm the diagnosis of CJD. However, brain biopsy is a risky
invasive procedure with far from perfect results, since it is dependent on the brain sampling
area. Through recent advances in the description of MRI abnormalities related to CJD,
MRI is considered an essential tool in CJD diagnosis.[14, 27, 28] make MR related image
processing an important tool in non-invasive CJD diagnosis. However, the interpretation
of MR images is usually limited to a visual inspection performed by the medical staff and
could lead to an under- or overestimation of the true incidence of CJD [5]. At present time,
MRI is not included as a diagnosis criterion for sporadic CJD, although, as argued in our
results and discussion sections, it presents valuable information to the clinician. It would be
certainly useful to include MRI in the diagnosis of sporadic CJD, as for the variant forms
[44]. Therefore, the necessity to further explore the advantages of Computer Aided Diagnosis
(CAD) techniques in the MRI clinical environment becomes obvious.

Leemput [39] proposes a method for automated quantification of MR intensity changes in
images of patients suffering from CJD. He acknowledges as common difficulties in processing
such images the limited resolution, partial volume effects, noise, low contrast and intensity
inhomogeneities, whether this is performed by the computer or the human expert. Hence,
low level segmentation methods are inappropriate for the detection of hyperintensities in
the affected areas of the brain. A mixture model of normal distributions combined with
the expectation-maximisation algorithm (EM) is proposed. However, the method does not
detect signal abnormalities in most of the CJD cases, while showing significant amounts of
false positives (FP) along the interface between grey matter (GM) and cerebrospinal fluid
(CSF).

Hojjat et al. analyse the putamen intensity gradient [19] in a series of sporadic and new-
variant CJD patients. They discriminate new-variant from sporadic and new-variant from
normal cases using T2-weighted and Proton Density MRI, but cannot separate sporadic
CJD patients from controls. Their segmentation of putamen is performed manually prior to
the intensity analysis.

1.3 Addressing the Problem

Little is known about the early evolution of CJD patients. Most of the studied cases are of
patients severely affected by the disease, as there is poor evidence of Prion infection at an
early stage of the disease. Early detection of CJD is essential for better understanding of

RR n° 5276
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caudate
nucle1

putamen

thalami

Figure 1: A map of deep grey matter internal nuclei in a normal T'1 weighted axial MR image.
The red arrows point towards the caudate nuclei, while blue and green arrows indicate the
thalami and the putamen respectively.

Figure 2: A map of deep grey matter internal nuclei reproduced from Talairach and Tournoux
atlas [37]. The caudate nuclei (CN) are shown in yellow, the putamen (Pu) in green and
the thalami (Th) in magenta. The pulvinar (P) is located in the posterior section of the

thalamus
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this lethal disease and for a shorter path towards finding its treatment. Likewise, little is
known about possible ways to visualise and represent signs of CJD in conventional medical
imaging.

Computer Assisted Diagnosis (CAD) algorithms have been introduced in clinical settings
and automatic computerised methods to assist clinicians in detecting and characterising
diseases are being developed. Their utility in a large number of clinical applications has
been proven by multiple studies. They simplify the complex laborious tasks of every day
clinical work, assist in the routine of investigating large numbers of medical images (which
makes the human factor prone to errors) and present a valuable second opinion in decision
making. Given the present knowledge and limitations in analysing medical images, namely
MRI of the brain, for CJD related applications, we aim to detect Prion infections at an early
stage and with the requested robustness and reliability desired in clinical applications.

The motion artefacts found in the set of images we work with (exemplified in Section
4) makes the use of statistical detection algorithms very difficult. Such algorithms rely on
finding consistent repeatable signs of a disease over a set of patients [22, 23, 40]. Also, they
need good contrast between GM and WM in T1-weighted images for stochastic analysis
according to a general atlas context. This is another major source of errors in cases of CJD,
where patients suffer of severe dementia with often uncontrolled movements. In Figure 10
we note the contrast between soft brain tissues in a typical T1 image versus a typical T1 of
a patient suffering from CJD.

The approach we propose is based on the use of a priori anatomical knowledge in the
form of an accurately segmented and labelled image (e.g. the Zubal Atlas [45]) for precise
segmentation and of a probabilistic atlas for intra- and inter-patient analysis. A feature
detection technique based on a model of the Human Visual System (HVS) is employed for
the depiction of hyper-signals. The remaining of this paper is organised as follows: Section
2 presents the complex pre-processing steps applied to the input images before the effective
segmentation of disease activations. This includes spatial and intensity normalisation, at-
las alignment and noise removal by anisotropic diffusion. Section 3 introduces the refined
registration of internal nuclei using a segmentation atlas. Then we present the HVS-based
detector, an adaptive thresholding method following the functioning of the human eye, that
is used to segment abnormalities in deep grey matter. Some results of our method are
illustrated in Section 4, before discussions and conclusion in Section 5.

2 Pre-Processing

In this section we will review the pre-processing stages used before the actual segmentation
of CJD hypersignals. This is a simplified model of data normalisation and regularisation,
which is required to put the images in the same general framework. The main advantage
of image normalisation is the drastic reduction of the number of parameters. We further
expand on these steps.

RR n° 5276
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2.1 Data

The image acquisition protocol is designed to include three MRI sequences for each patient.
As mentioned above, we can extract different kinds of information from each sequence rele-
vant to our application. The sequences used by our algorithm are: a T1-weighted acquisition
for its higher contrast between GM and WM and higher image resolution; T2-weighted im-
ages for the good contrast between the CSF and the brain parenchyma; and a T2-weighted
FLAIR sequence, well-established for the depiction of CJD related activation in the brain.
We use the T1 sequence to find the first estimate of the transformation for the registration
process, the T2 for segmentation of CSF and brain and the FLAIR for segmentation of
bright abnormalities in basal ganglia.

2.2 TImage Normalisation

The large variability inherent to human anatomy and imaging parameters leads us to con-
sider spatial and intensity normalisation as an approach to normalise patient images for
further abnormality detection. This is done both for localising the areas of interest with the
help of an atlas of the brain, but also for normalising specific imaging parameters for an
automatic detection of the affected brain areas. Furthermore, inter-patient analysis could
now be performed.

2.2.1 Spatial Normalisation

Data registration to an atlas has become a common technique with the introduction of
popular statistical algorithms for image processing, such as Statistical Parametric Mapping
(SPM) [1] or Expectation Maximization Segmentation (EMS) [40]. A well-known proba-
bilistic atlas in the scientific community is the MNI Atlas from the Montreal Neurological
Institute at McGill University [9]. It was built using over 300 MRI scans of healthy individ-
uals to compute an average brain MR image, the MNI template, which is now the standard
template of SPM and the International Consortium for Brain Mapping [26]. The averaging
is performed for the entire brain, but also on isolated GM, WM and CSF, providing a tool
for statistical segmentation. For these reasons, we chose the MNI template as the basis for
image alignment in our approach. Figure 3 shows the MNI template.

We propose the following registration scheme. T1 images have the highest resolution in
our data set, hence we register them to the MNI template first using an affine transformation.
The registration algorithm, previously developed in our group, is described in [31]. It uses
a block matching strategy in a two-step iterative method. The standard assumption behind
the algorithm is that there is a global intensity relationship between the template image and
the one being registered to it. The method proposes several types of correlation measures:
linear, functional or statistical. Using one of these, the correlation coefficient in our case,
the transformation between the two images is computed block by block and a displacement
field is thus generated. A parametric transformation, either affine or rigid, is then estimated

INRIA
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Y » Sagittal ? ., Goronal
R I 1

Figure 3: The MNI template. On the left, the probabilistic MNI atlas of the brain; on the
right, the corresponding GM atlas. Please note the arrangement of MR images in radiological
convention with an axial, a sagittal and a coronal view. This convention is reflected in figures
throughout the paper.

from this deformation field. To further improve robustness, this procedure is repeated at
multiple scales. More details can be found in [30].

Next, rigid intra-patient registration of all sequences is performed using the same algo-
rithm as above. Both the T2 and the FLAIR images are registered to the T1 image. By
combining this rigid transformations with the affine transformation matching T1 and MNI
template, we can find correspondences between the atlas and the T2 and FLAIR images.
This is illustrated in Figure 5. The final image resolution is that of the MNT atlas: 91x109x91
voxels. Figure 4 shows an example of spatial normalisation. With all images registered to
the atlas, intra- and inter-patient analysis becomes simple and statistical algorithms can be
applied.

2.2.2 Intensity Normalisation

In addition to geometric variability, MR images may also exhibit intensity variations. Con-
trast differences over a set of images are a common problem in image analysis. One can note
considerable variations between images of different patients, but also in images of the same
patient taken at different times. This makes identical anatomical parts of the imaged area
appear with different intensities from one image to the next. As a result, it is difficult to
tune processing parameters for robust repeatable results. To overcome problems, we propose
the use of an intensity normalisation algorithm for the FLAIR images, prior to the detection
of signal deviations. Our method performs an affine equalisation using the joint histogram

RR n° 5276
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 Sagittal ?

g |

Figure 4: An example of spatial normalisation. The image on left shows the MNI template;
the middle image is the subject’s T1 before registration; the right image is the subject’s T1

after spatial normalisation.

TZ-weighted

FLATR

Rigid

F

Registration

T1-weighted

Affine

P

Registration |

W template

Figure 5: Diagram of the spatial normalisation algorithm. Intra-patient images are rigidly
registered on the corresponding T1. The T1-weighted image is affinely registered to the
atlas template. The resulting transformation is used to align all other MR images to the

atlas.
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Figure 6: The joint histograms of the two MR patient images in Figure 7 before intensity
normalisation (left) and after the affine regularisation of intensities (right). We note the
realignment of the cloud of points in the middle of images to fit better the first diagonal
(shown in white) once the image normalisation has been performed. The dark lines appearing
in histogram of normalised images are caused by the dilation of the range of values in
the image to be normalised; as we work with discrete data and we do not employ any
interpolation, the affine normalisation will not cover the entire range between the minimum
and maximum values leading to this visual artefact.

of two images: a standard image onto which we align the intensity distribution of a second
input image [33].

The two images must be registered prior to normalisation in intensity to align anatomical
coordinates for the best use of the joint histogram between the two images. Ideally, the joint
histogram will be as close as possible to a straight line along the first diagonal of the intensity
plane, which is the result we aim to achieve with the affine intensity equalisation. In practice,
a joint histogram between MR images of different subjects following the same acquisition
protocol looks like a cloud of points centered around a line (I = al;+b) in the intensity
surface. The affine equalisation we employ finds the parameters a and b by minimising the
criterion C' in equation 1, where i relates to the points of coordinates (Iy;,Is;). Figure 7
shows an example of intensity normalisation between the MR images of two patients. Next
in Figure 6 we can note the change in the joint histogram of the images shown in 7 before
and after intensity normalisation.

Z |_[21 - a+b_[11)| (1)
Vi+b?

RR n° 5276
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Figure 7: An example of intensity normalisation on FLAIR images. On the left column, three
axial MR cross-sections of the first subject are shown; in the middle are the cross-sections
of the second subject before normalisation; on the right column are the cross-sections of the
second subject normalised in intensity with respect to the first subject.

INRIA
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Ed
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Figure 8: The anisotropic diffusion eigenvectors of the diffusion tensor. Smoothing is allowed
along the edge, while inhibited across the margin.

2.3 Noise Removal and Image Enhancement

MR images are noisy. Our application aims to detect areas of abnormal intensity in the
deep grey matter of the brain and noise can hamper the segmentation process. Thus, it
seems natural to smooth our images in order to remove unwanted noise. However, we
must ensure that the areas of interest (areas of high intensity) are preserved for accurate
segmentation. Therefore, an edge-preserving blurring technique is required. Anisotropic
diffusion offers the tool to perform image smoothing with edge enhancement, as our appli-
cation necessitates. Figure 8 illustrates the direction of maximal and minimal diffusion of
the nonlinear anisotropic diffusion model introduced by Weickert [41]. This model uses a
diffusion tensor with has two orthonormal eigenvectors (instead of a diffusivity function)
that determine the direction of diffusion. Smoothing will take place along edges, but will be
inhibited across boundaries. The choice of related eigenvalues determines the behaviour of
the feature detector. We employ a strong decreasing diffusivity-like function that encourages
strong smoothing within contours, while contrast at edges is enhanced. Equation 2 shows
the eigenvalue (A) corresponding to the eigenvector across the edge, where I is the image to

diffuse.
\ 1 |VI,| =0, @
= _ 2
1—exp (—D‘—(|VI,, ‘l/k) ) [VI,| >0

A few parameters are involved in the diffusion process, namely the scale of the Gaussian
used to smooth at each iteration (¢), the number of iterations over which smoothing is done
(t) and the contrast (k) which determines the presence of an edge. We employ a kernel
for the Gaussian of size 5x5 (to smooth only small areas in images that have already small
resolution) over 5 iterations, when the contrast approximates the mean of the image gradient
(to ensure the stability of more significant edges in the image). We show an example of image

RR n° 5276
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Figure 9: The effect of anisotropic versus linear diffusion on image smoothing. On the
left, we show the original image from a patient with typical CJD activations in the basal
ganglia; in the middle, the linearly diffused (Gaussian convolution) image after 5 iterations;
on the right,the anisotropically diffused image after 5 iterations with smooth areas and
well-preserved edges.

diffusion in Figure 9. After diffusion, images have a better Signal-to-Noise Ratio (SNR) and
small registration errors are also corrected.

3 Segmentation and Refined Registration

Our analysis is based on the abnormal MR intensities that can appear in the basal ganglia
(including the thalamus) of patients suffering from CJD. To be able to segment GM and WM
in MRI sequences, a good contrast between these types of tissues in T1-weighted images is
desired. Figure 10 shows a typical T1 with high contrast between brain’s soft tissues and a
common T1 image from our database. Under the given circumstances, the segmentation of
GM (where CJD affections are visible) cannot be done directly from the patient images. The
MNTI atlas can provide a probabilistic segmentation of GM, but this is not precise enough
for our application. We use instead a segmented anatomical atlas of the brain, the Zubal
Phantom [45], which is introduced in the next section.

3.1 A Priori Anatomical Data

The data we use were affinely registered to the MNI atlas. While we avoid direct non-rigid
registration, which may induce large interpolations and alter the MR intensities, the affine
registration is only approximate. A precise local intensity analysis of internal nuclei would
be erroneous at this stage (see Figure 16) and therefore a registration refinement becomes
necessary. The Zubal atlas offers a precisely labelled segmentation of brain structures from
the T1-weighted MR image of one single subject. Our interest focuses on the internal
nuclei, which are segmented in the phantom. First, the atlas must be aligned to our set of
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Figure 10: A typical T1-weighted MR image with good contrast between brain GM, WM
and CSF (left) versus a T1 image from our data set (right).
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Figure 11: The registration of Zubal Phantom onto the MNI template. On the right, the
original Zubal Phantom is shown; in the middle, we have the registered Zubal Phantom on
the MNI template, which is shown in the right image.

images, which have been previously registered to the MNI atlas. Thus, we register the Zubal
Phantom to the MNI template, again using our block matching algorithm [31], to estimate an
affine transformation. However, in order to preserve the correct values of the segmentation
labels posterior to the application of the transformation, nearest-neighbour interpolation
is performed, as opposed to the case of patient image registration, which employed spline
interpolation. Figure 11 shows the results of registering the Zubal Phantom to the MNI
reference without disrupting the Zubal labels.
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3.2 Detection of Internal Nuclei and Refined Segmentation

Once the Zubal Phantom is registered to the working framework, we can easily depict the
brain structures that are of interest, namely the deep GM internal nuclei. Reports in the
literature [4, 13, 18, 43, 44] mention the importance of analysing MR intensities in the basal
ganglia. Hence, we create a mask with the thalamus, putamen and head of the caudate -
which will be referred as internal nuclei for the rest of this paper - from the Zubal Phantom
registered on MNI (Figure 12). We aim to use this mask for the segmentation of internal
nuclei in patient images. Although the affine registration gives correct correspondences in
a general brain registration framework, the anatomical variability between patients makes
the correspondence between the Zubal internal nuclei mask and the corresponding internal
nuclei in each patient erroneous. A refinement of the registration in the deep GM between
the Zubal internal nuclei mask and the patient internal nuclei seems necessary to allow us
to use the a priori anatomical information resulting from the segmentation of the Zubal
Phantom.

The segmentation of internal nuclei in patient images is not an obvious task; this is
why we exploit the Zubal Phantom. Nevertheless, there are other important anatomical
landmarks in the brain that are easier to identify. We concentrate on the segmentation of
ventricles and cortex external boundary. Ventricles will give a good approximation of the
deformation field around the internal nuclei, whereas the cortex boundary will impose the
global spatial correspondence and stabilise the deformation field inside the brain. Figure
12 illustrates the segmentation of ventricles, brain contour and internal nuclei from the
registered Zubal Phantom.

To obtain similar images of segmented brain margin and ventricles for each patient,
we employ morphological opening on patient T2 images. The strong contrast that CSF
has against the brain in T2-weighted images allows us to segment the ventricles, while the
cortex boundary can be extracted from either T1 or T2 sequences. We prefer using the T1
sequence, since the T2 image we employ lacks some top and bottom slices. The ventricles
being located in the middle of the brain, it is correct to extract them from T2 images,
but the cortex would be incomplete. We now are in the possession of two binary maps
of ventricles and brain boundaries for each patient: one from the Zubal Phantom and the
other from the patient. Non-rigid registration is used to align the two images, employing
the algorithm described in [7]. Figure 13 shows typical results and Figure 14 shows the 3D
deformation fields related to the registration in Figure 13. The outer margin of the cortex
ensures that the deformation fields are spatially sound and do not pull the internal nuclei
over their location.

Having the deformation fields computed, we apply them to the mask of internal nuclei of
the Zubal Phantom, deforming the mask according to the position and size of the ventricles
in the patient image. A diagram of the algorithm is shown in Figure 15. The deformed
magk is used to segment the internal nuclei of the patient, mainly the putamen, head of
the caudate and thalamus, areas associated with strong signals in the diagnosis of CJD.
Figure 16 shows an example of registration of internal nuclei in 3D and the internal nuclei
segmentation results in a T1-weighted MR image of a patient. A segmentation of internal
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Figure 12: The segmentation of the Zubal Phantom. From left to right: column 1, the Zubal
Phantom registered on MNI; column 2, the ventricles segmented from the Zubal Phantom;
column 3, the cortex outer boundary is added to the ventricles; column 4, the internal nuclei
segmented from the Zubal Phantom.

nuclei is essential in discarding possible false positives in the detection of hyperintensities.
In Figure 17 we show more details about the segmentation of internal nuclei by browsing
through the MR slices (i.e. axial, coronal and sagittal) of a patient. More will be presented
about it in the results section.

3.3 Human Visual System

The detection of areas of CJD activation in the brain is completed by a foveal segmentation
algorithm. This is in essence a method of adaptive thresholding, which uses a mathematical
model of human vision. Its motivation comes from the better sensitivity and specificity that
the human eye has over classical algorithms in detecting and characterising image features.
Figure 18 shows the variation of the threshold C,,;, adopted in our model over the variations
in image intensity. Cl.ssic represented a classical non-adaptive threshold. A simplified
model for the computation of C,;, is shown in equation 3, where cp,p. is the minimal
perceivable contrast, b is constant, px the mean value of the intensity of neighbourhood and
14 a mean weighted value of neighbourhood and background (entire image). The model is
presented in greater detail in [25].
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Figure 13: Registration of the Zubal ventricle and cortex outer boundary on a patient with
very large ventricles. This is the most difficult case encountered, due to the patient’s brain
atrophy and the significant dilation of ventricles, next to the small ventricles in the Zubal
Phantom, where the subject is young. The algorithm gives robust results, as seen above.
From left to right: column 1, the T2 image of the patient registered on MNI; column 2, the
ventricles and brain margin of the patient (ventricles segmented from T2 and cortex from
T1); column3, the ventricles and brain boundary of Zubal Phantom; column 4, the ventricles
and cortex boundary of the Zubal Phantom registered on the patient.

45

Figure 14: Deformation fields of the non-rigid registration between the Zubal Phantom
ventricles and those of a patient with very large ventricles. On the left is the x field, the y
field is in the middle column and the z field on the right.
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Figure 15: Diagram of the refined registration of internal nuclei.

Figure 16: An example of internal nuclei registration and their segmentation in a T1-
weighted image of the patient. On the left, we have the T1 image of the patient; in the
middle column the internal nuclei maps; on the right, we show the segmentation of internal
nuclei according to the binary map. The rows show: top - before non-rigid deformation with
the head of the caudate superposed on the ventricles, bottom - after non-rigid deformation,
showing an accurate segmentation.
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Figure 17: Another example of internal nuclei registration and their segmentation in a T1-
weighted image of the patient. In the far left column, we present the axial T1 slices of the
patient; in the inner left column the segmentation of internal nuclei in the corresponding
axial slices; in the inner right column, we have the segmentation of internal nuclei in coronal
MR slice; while in the far right column we show the segmentation results in sagittal MR,
slices.
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Figure 18: The adaptive qualities of the HVS model. The threshold C,,;,changes according
to the values in its immediate neighbourhood and the mean intensity of the image.
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There are a number of parameters involved at this stage. Relevant for our application
are the size of the fovea and the minimal perceivable contrast of the human visual system
(HVS) model. Empirically, we noted that activations in deep grey matter are not very small,
as they usually involve a significant surface of the putamen, head of caudate or thalamus.
We set the size of the kernel of fovea to 15x15 pixels to be able detect small enough areas of
hyperintensity, but large enough not to depict high frequency noise. As argued in [25], the
minimal perceivable contrast must be computed as a function of the image gradient in order
to accommodate all possible variations of contrast. In MR images of the brain, the intensity
values of GM, WM and CSF can be regularised by intensity normalisation. Therefore,
hyperintensities can be regarded as an exception to the normal intensity distribution. In this
particular case, the minimal perceivable contrast can be constant over the whole collection
of images.

Pending on image quality and movement artefacts, there will still exist some contrast
variability especially between GM and WM and from one image to another. Using an
adaptive contrast measure both locally and globally, through the HVS foveal segmentation,
our algorithm is less sensitive to such artefacts and image quality and depicts more precisely
the abnormal intensity distributions in GM.
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4 Results

The data collected for the GIS-Prions Project was acquired in two major neuroradiological
centres of France: the Pitié-Salpétriére Hospital in Paris and the Timone Hospital in Mar-
seille. The databases comprise a total number of 21 MR images: 10 sporadic CJD cases, 3
new-variant CJD cases and 8 normal controls. The ages of patients vary between 31 and 79
years, with an outlier of 18 years and an average age of 55.61 years. The ages of controls
vary between 31 and 68 with an average age of 51.87 years. In the first two subsections
we present the two databases along with results of hyperintensity detection. Subsequently
we introduce the Intensity Quantification Study (IQS). The MR scanner used in the two
neuroradiological centres being from different manufactures and the acquisition protocols
slightly different, in a first instance we treat the two datasets differently for the presentation
of quantitative results, before addressing them in a common normalised framework.

We focus on the three groups of deep grey nuclei: thalamus, putamen and caudate nu-
clei, for the detection and quantification of hypersignals. Hyperintensities may be present
in several subthalamic nuclei (see the “hockey stick” abnormal intensities in new-variant
CJD patients in Figure 22) and we show detection results in the entire thalamus. How-
ever, previous clinical studies highlighted the relevance of pulvinar (the posterior part of
thalamus) in the CJD diagnosis, and we demonstrate the utility of quantifying the pulvinar
hyperintensities in the classification of CJD.

4.1 Paris Data

In this first part of the section, we show examples of detection of abnormal hyperintensities
in FLAIR MRI on images from patients suffering from CJD collected at the Pitié-Salpétriére
Hospital in Paris. We use T1-weighted (TE=20, TR=500), T2-weighted (TE=92, TR=3000)
and FLAIR-T2 (TE=148.5, TR=10002, TI=2200) MR images acquired using a GE Signa
scanner. Our database comprises 10 patient specific images with probable CJD-related prion
infection: 6 sporadic CJD, 3 new-variant CJD and 5 normal controls. Histological exams
are available for all three new-variant CJD patients and only three of the sporadic CJD
cases. For each patient we have a T1-weighted, a T2-weighted and a T2 FLAIR sequence.
In the examples shown below, we used all three MR imaging sequences for the registration
of images and segmentation of hyperintensities. Except for the three new-variant patients,
diffusion tensor MR images (DTI) are also available for the rest of the database. A review
of the different stages of our algorithm is shown in Figure 19.

The main areas of interest in CJD are the basal ganglia. Using the mask of internal
nuclei, we focused on these structures and did not take into account signal abnormalities in
other brain regions, such as white matter high signals that are known to correlate with age
and vascular risk factors.

Figures 20 and 21 show detection results on six patients suffering from sporadic CJD.
The diagnosis is confirmed by histological examinations in three of the cases. The main radi-
ological characteristic of sporadic forms of CJD diseases is the presence of higher intensities
in the caudate nuclei and putamen, while the thalami are less, if at all, affected. Visually,
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Figure 19: Flowchart of the algorithm proposed for the detection of CJD-related abnormal
hyperintensities in multisequence MRI of the brain.

the first two patients presented in each of the Figures 20 and 21 comply to this general rule,
while the third respective patient in each figure has high intensities (in yellow and red) in
the thalami as well. Also, we note the asymmetry of high signals in the second two cases in
Figure 20.

The detection of hyperintensities in new-variant CJD cases is further shown in Figure
22. The thalamic abnormal intensity distributions are present in all these cases and their
high intensities are comparable to those detected in putamen and caudate nuclei. Sporadic
cases may also show evidence of pulvinar hyperintensities and they can mimic new-variant
cases [18], but these intensities are lower in magnitude when referred to the caudate and
putamen intensities. The most affected subthalamic nucleus is the pulvinar and we note that
hyperintensities do not spread all over the thalamus and are localised in the posterior and
dorsomedial thalamic areas, which gives the “hockey-stick” appearance of the hypersignals,
as in Figure 22.

The data from Paris includes five normal controls and the results of our algorithm on
these images are shown in Figure 23. While no abnormal intensities are depicted in the first
four images (top row in Figure 23), a motion artefact leads to a false positive (FP) in the
third control image. The artefact lays within the left thalamus, but outside the pulvinar
area.
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Figure 20: Results on patient data - part I. All three sets of images reported above (one row
by case) originate from patients with histologically proven sporadic CJD. We present on the
left a cross-section of the FLAIR MR data with abnormal hyperintensities in the internal
nuclei; next to it we have the CJD detection map with corresponding intensities, as seen
in the attached colourmap; further to the right, we present a sagittal cross-section and a
coronal cross-section with their detection maps.
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Figure 21: Results on patient data - part II. All three sets of images reported above (one row
by case) originate from patients with probable sporadic CJD )no histological examination
available).
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Figure 22: Results on patient data - part ITII. All three sets of images reported above (one
row by case) originate from patients with histologically proven new-variant CJD. We present
on the left a cross-section of the FLAIR MR data with abnormal hyperintensities in the
internal nuclei; next to it we have the CJD detection map with corresponding intensities,
as seen in the attached colourmap (note the high intensities present in the thalamic area);
further to the right, we present a sagittal cross-section and a coronal cross-section with their
detection maps. On the top row case on the left, we show a magnified image of the “hockey
stick”-shaped thalamic hyperintensities characteristic to new-variant CJD.
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Figure 23: Results on control images from the Paris database. We show three images of
controls; in the first two cases, our algorithm does not signal any false positives (FP). In the
third case, a motion artefact is depicted in the left thalamus, outside of the pulvinar area.
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4.2 Marseille Data

In the second part of the results section, we show examples of detection of abnormal hyper-
intensities in FLAIR MRI on images from patients suffering from CJD collected at the Ti-
mone Hospital in Marseille. We use T1-weighted (TE=15, TR=644), T2-weighted (TE=22,
TR=4000) and FLAIR-T2 (TE=110, TR=8000, TI=2200) MR images acquired using a
Siemens Magnetom Vision scanner. Our database comprises 4 sporadic CJD patient specific
images, from which 2 are histologically proven, and 3 controls, which are used for the valida-
tion of the algorithm. Each patient or control has three images assigned: a T1-weighted, a
T2-weighted and a T2 FLAIR sequence that are used for the registration of images and seg-
mentation of hyperintensities. Diffusion tensor MR images are also available for all patients
and controls.

We employ the same algorithm as in the previous section on Paris data; its stages are
shown in Figure 19. In Figure 24, we present the detection maps on patient images with
hyperintensities in basal ganglia. All sporadic CJD patients from the Marseille database
show abnormal signal deviations in the internal nuclei, although at different extent. The
detection results are accurate over the control images, where no hyperintensities are present
nor signalled by our algorithm, as further seen in Figure 25.

The detection of abnormal intensities in basal ganglia are consistent over both databases
from Paris and Marseille, although the acquisition protocols vary, as well as the MR scanners
used to obtain the data. Through spatial registration and intensity normalisation, our
algorithm is not sensitive to imaging conditions in the acquisition and offers good results
over various data collections.

4.3 Intensity Quantitative Analysis

With the tools developed in this study, we can perform what seems to be the first computer-
aided quantitative analysis between intensities in caudate nuclei or putamen, on one hand,
and thalami or pulvinar nuclei, on the other hand, for CJD patients. We will refer to
it as intensity quantification study (IQS). In a similar manner to the segmentation and
registration of internal nuclei presented in Section 3.2, we create masks of the putamen,
caudate nuclei and thalami from the Zubal Phantom registered on the MNI template (see
Figure 26). Using the deformation fields of the Zubal ventricles on the patient ventricles, we
align the masks of the three groups of nuclei on the patient images and segment these three
anatomical regions on each patient FLAIR image. We prefer using FLAIR images before
intensity normalisation for the most accurate estimation of mean values in the segmented
internal nuclei.

The Zubal Phantom does not include labels for the subthalamic nuclei, such as pulv-
inar. According to Talairach and Tournoux [37], the pulvinar represents the “large posterior
portion of the thalamus”, which is “limited by a conventional verticofrontal plane through
the posterior commissure” (CP). This plane (VCP) goes through the ventricular margin of
CP and is perpendicular on the CA-CP biocommissural line of Talairach. We draw VCP as
described above and the result is shown in Figure 27 left, where the pulvinar is marked in
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Figure 24: Results on Marseille patient data. The top two sets of images reported above (one
row by case) originate from patients with histologically proven sporadic CJD. We present
on the left a cross-section of the FLAIR MR data with abnormal hyperintensities in the
basal ganglia; next to it we have the CJD detection map with corresponding intensities,
as seen in the attached colourmap; further to the right, we present a sagittal cross-section
and a coronal cross-section with their detection maps. All four image sets present abnormal
intensity distributions in the deep grey nuclei, which are correctly detected by our method.
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Figure 25: Results on control images from the Marseille database. We show three images of
controls, where our algorithm does not signal any false positives (FP).

green. In Figure 27 right we represent in red what we call “anterior thalamus”, an area in
the anterior part of the thalamus (above the VCP plane), which is used to compute mean
values of deep grey matter in a region with low probability to show hyperintensities in CJD
patients.

We consider an intensity being significantly higher than another when their subtraction
is superior in absolute value to the maximum difference between the mean intensities in
either putamen or caudate nuclei and the mean intensity in thalami over all controls. See
Table 1 for estimations of mean values and standard deviations in the internal nuclei in the
Paris database. The results in Table 1 are consistent over the sporadic CJD patients and
conform to the clinical observations.

The findings of the intensity quantification study over the data from Marseille are shown
in Table 2. As expected, there is no significant difference between mean intensities in
putamen or caudate nuclei versus thalami for our control data. However, there is a clear
differentiation between the mean intensities in caudate nuclei and thalami in the patient
data, while the putamen also show higher intensities than the thalami for two patients only.

Tables 1 and 2 show mean intensities of caudate nuclei, putamen, thalamus, pulvinar and
“anterior thalamus” over the used databases. In red, we highlight the higher mean intensities,
comparing values between caudate, putamen and pulvinar. All CJD cases have at least one
nucleus presenting higher intensities. We note that all sporadic CJD cases have a clear
hypersignal in the caudate (10/10), while the putamen is significant in 6/10 cases. Things
look different in the new-variant data, where one case shows higher thalamic intensities,
while the other two cases show similar behaviour to the sporadic cases. Nevertheless, all CJD
cases can be differentiated from the control, although a clear separation between sporadic
and new-variant cases is not obvious at this stage.
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Figure 26: Segmenting the putamen, caudate nuclei and thalami in patient FLAIR images.
The first mask on the left is the Zubal putamen mask; the mask in the middle is the Zubal
caudate nuclei mask; the mask on the right shows the segmentation of thalami on the Zubal
atlas; on the bottom row we have on the left the patient FLAIR image and on the right the
results of segmentation of putamen, caudate nuclei and thalami on the patient FLAIR image
(putamen in red, caudate nuclei in white and thalami in orange) after non rigid registration
between the Zubal and patient ventricles.
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Figure 27: The definition of pulvinar and anterior thalami in the Zubal Phantom. On the
left, the pulvinar is highlighted in green as the subthalamic area below the VCP plane; on
the right, the “anterior thalamus” is shown in red, a depicted region in the “healthy” area of
thalamus.

INRIA



Basal Ganglia Analysis 35
CJD Type THALAMUS PULVINAR FUTAMEN CAUDATE ANTERIOR
THALAMUS
Original FLAIR

Mean STD Mean STD Mean STD Mean STD Mean STD
PS001 - sp 101.3211( 17.5572 | 104.0877| 145721 |124.9429 | 21.1225 | 124.2278| 274265 | 96.0590 | 16,9928
PS005 - sp 124 4344 | 22,8243 | 1292296 | 17.6779 1364809 | 31.0321 | 1400176 | 423238 | 115.1518| 18.9427
PS006 - sp 104 35431 22,0801 | 108.0422 | 1834323 | 1104657 | 207253 | 117.8042 | 273066 | 101.4110| 23.0901
PS008 - sp 117.3514 | 23.8131 | 122.0662 | 205045 |136.6097 | 24.4164 | 138.5453 | 45,0268 | 110.3805| 22.5685
PSO09 —sp | 128.96%94| 2532224 | 1296028 | 190302 | 1614178 | 27.3789 | 165.4842 | 48,2458 | 11277062 | 21.0347
PSO13 —sp | 1359345| 28,1473 | 150.1629| 20.3538 | 159.7046 | 253126 | 179.0658 | 52.9171 | 1303907 | 25.1558
PSO15 — nv | 168.2022 | 402351 | 184.6294 | 259057 | 1535541 17.2660 | 1613147 | 36,8385 | 157.6517 | 28.5667
PRO16 — nv | 1460991 312645 | 152.8768| 225999 | 166.8163 | 22.6425 | 162.7461 | 37.9336 | 1275112 239369
PSO17 —nv | 1476160 338422 | 147.3342| 349935 | 164.1129 | 223687 | 166.6764 | 359803 | 132.6755| 17.1712
TPOOL —no | 99.3264 | 13.6407 | 102.1002| 13.4584 | 94.5854 | 11.7652 | 101.6060| 19.4837 | 942741 | 11.0434
TPO02 —no | 102.2425| 13.7454 | 1015871 11.3468 | 101.8790 | 10.9470 | 104.3992| 19.1006 | 1045873 | 12.8964
TPO03 —no | 116.8797| 15.8408 | 1203984 | 11.5168 | 115.5676 | 11.5025 | 119.1018| 239313 | 1119053 | 12.8964
TP004 —no | 1054514 | 14.3539 | 1087742 10.5430 | 99.9114 | 12.3135 | 107.5106| 18.9056 | 99.3524 | 97534
TPOO5 —no | 126.9743| 157937 | 129.1216| 12,1120 | 127.0515 | 13.1008 | 138.6021 245931 | 120.0333| 15.4481

Table 1: Mean and standard deviation values in putamen, caudate nuclei and thalami
for the Paris Pitié-Salpétriére patient data. We present results on images before intensity
normalisation in order to preserve the original intensity values. The higher mean values are in
red (when the difference between putamen or caudate and pulvinar mean intensities is greater
than the maximum difference between these nuclei over all controls). All the sporadic data
(“sp”) shows higher intensities in the caudate and sometimes putamen (usually both), which
verifies the reports in literature. The new-variant cases (“nv”) show different behaviours at
this stage with higher intensities in the pulvinar of one case and in the putamen and caudate
in the other two cases. No abnormal intensities are signaled in the internal nuclei of controls

(“nO”) )
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Patient

THATLAMUS

PUL VINAR

PUTAMEN

CAUDATE

ANTERIOR
THAL AMUS

Original FLATR

MMean

STD

Mean

STD

Mean

STD

Mean

STD

Mean

STD

MTO01 — sp

3952914

60,9558

410.3537

40,3537

467.6018

62,8236

488.1877

93,2875

356.0578

90,5271

MTO008 — sp

3477698

68.2656

34275971

67.5788

400.1305

62,6768

448.5681

108.5350

285.3062

108.1177

MTO009 — sp

334.9456

50.1386

341.0581

44.1661

356.1703

50.5199

403.1971

82.3212

302.5980

75.3768

MTO012 - sp

361.9343

45,3583

365.5803

435834

373.200%

45.3734

411.4626

70.3580

350.1048

452393

THO0] - no

363.7554

476175

371.4845

39.4533

360.5137

42.8549

383.3287

64,7482

3296178

43,1668

TMHO02 - no

367.6599

46.6720

369.3134

48,6692

369.1954

38.5165

394.8521

64,7379

35079338

58.4277

TMHO004 - no

376.3989

52,3517

390.9153

51.8887

365.2786

39.9349

391.158%

59,3861

343 8673

65,3041

Table 2: Mean and standard deviation values in putamen, caudate nuclei and thalami for
the Marseille La Timone patient data. We present results on the original images, where
MT refers to a CJD patient, while TM to a control. The superior mean values are in red
(when the difference between putamen or caudate nuclei and pulvinar mean intensities is
greater than the maximum difference between these nuclei over all controls). All sporadic
CJD patients (“sp”) have significantly higher mean intensities in the caudate nuclei and less
frequent in the putamen versus thalami. Mean MR intensities in control data (“no”) grey
nuclei are homogeneous.
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4.3.1 CJD Prompting

Intensity values in Tables 1 and 2 are different, due to the different scanners and protocols
used in the neuroradiological centres where our data was acquired. In Table 3 we introduce
a normalised measure for our database. We divide the mean values in the thalami, pulvinar,
putamen and caudate nuclei over the mean values in the “anterior thalami” of each patient
or control. We highlight in red the values in patient data that are greater than the highest
value of all divisions over the control data (this value is 1.155). All patients data provides
at least one suspicious value (in red) higher than 1.155. All 10 sporadic CJD cases show
suspicious values in the caudate, while 8/10 in the putamen too. 2/3 new-variant cases
present suspicious values in the pulvinar, while 2/3 in the putamen and caudate nuclei.
We use the input data in Table 3 and box plot the maximum value for each patient or
control into two groups: 1 - CJD cases (sporadic and new-variant) and 2 - controls. We
chose the maximum values in the table, as they will reflect the value in each control that is
closer to the patient data and therefore less discriminant, while in patients they highlight
the most suspicious grey nuclei (as not all nuclei are affected in a patient and different types
of CJDs affect stronger different nuclei). The results of this box plot are shown in Figure
28. For each group of data (CJD patients or normals), the plot shows the group median
value (in red line), the minimum and maximum values (at the end of the dotted lines), the
upper and lower quartiles (enclosing the box around the median) and the outliers (in blue
circles). Performing a T-test [8] between the two groups we get a value of p = 1.106e >,
which gives an excellent separation between patients and controls with mean values of 1.278
for the CJD patients and 1.093 for controls (shown in red lines). The p value states that
the assumption that the two classes (CJD patients and controls) are identical is significant
at the 0.001 per cent level. Two outliers are depicted (shown as blue circles in Figure 28),
one sporadic CJD patient (PS009) and one control (TP002), which present extreme values.

4.3.2 CJD Characterisation

We showed how CJD patients can be separated from controls using mean intensity values
from pulvinar, putamen and caudate nuclei and their relation with the mean intensity within
the “anterior thalamus”. As expected, pulvinar intensities are more significant than mean
thalamic intensities, as abnormal intensities are normally found on the pulvinar, but not
throughout the thalamus. The addressed internal nuclei do not show hyperintensities for all
patients (as seen in Figures 20, 21, 22 and 24), as sometimes the pulvinar or the putamen may
not present abnormal distributions; the caudate appears to be the only nucleus constantly
affected. Furthermore, only parts of the nucleus can show hyperintensities and therefore
the mean value computed over the entire nucleus does not always reflect the degree of
abnormality in the respective nucleus. It is important to compute mean intensities over the
entire nucleus (i.e. pulvinar, putamen or caudate) to be able to distinguish patients from
controls (which have no hyperintensities in the deep grey nuclei), as a second tool beside
the hyperintensity detection shown earlier in this chapter, but we cannot yet distinguish
different subgroups of patients, namely sporadic CJD from new-variant CJD. The ground
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CJD Type | Thalamus/| Pulvinar/ | Putamen/ | Caudate/ | CJD Type | Thalamus/| Pulvinar/ | Putamen/ | Caudate/

Anterior | Anterior | Anterior | Anterior Anterior | Anterior | Anterior | Anterior

Thalamus | Thalamus | Thalamus | Thalamus Thalamus | Thalamus | Thalamus | Thalamus
PS001- sp 1.0543 10832 1.3001 1.2927 |PSO015- nv 1.0669 1.1711 0.9740 1.0232
PS005 - sp 1.0810 1.1223 1.1852 1.2159 |PSO016 - nv 1.1458 1.1989 1.3082 12763
PS006 - sp 1.0289 1.0653 1.0892 1.1616 |PS017- nv 1.112¢ 1.1105 1.2369 1.2563
PS008 - sp 1.0631 1.1058 1.2375 1.2550 | TMOO1- no 1.0%60 1.1270 1.0837 1.1427
PS009 — sp 1.1443 1.2387 1.4322 1.4683 | TMO0Z —no 1.02%4 1.0528 1.0525 1.0823
PS013 — sp 1.0425 11516 1.2248 1.3733 | TMOO04 —no 1.0562 11173 1.0440 1.0927
MTO0L —sp| 1.0636 1.1525 1.3133 13151 | TPOOL1 - no 1.0536 1.0830 1.0033 1.0732
MTO008 —sp| 1.0828 1.1994 1.4000 1.3938 | TPOO2 — no 0.9776 0.9713 0.9741 0.9981
MTO009 —sp | 1.0527 11271 1.1770 1.2485 | TPOO3 - no 1.0445 1.0759 1.0327 1.0643
MTO012 - sp 10222 1.0442 1.0660 1.1666 | TPOO4 — no 1.0565 1.08%4 1.000% 1.0785
TPOO0S — no 1.0578 1.0757 1.0585 1.1547

Table 3: A normalised value to differentiate CJD patients from controls. For each CJD
patient and control in the database, we divide the mean computed intensity values in the
thalamus, pulvinar, putamen and caudate nucleus by the mean intensity value in the “ante-
rior thalamus”. For controls ("no”), the computed number must be closer to the ideal value
of 1, which would reflect no variation in intensity over the deep grey nuclei. Since patients
show abnormal intensity distributions, numbers must vary more substantially than in con-
trol. The table shows in red the values that are higher than the largest number over all
nuclei and over all controls. All 10 sporadic CJD (“sp”) patients show significant numbers
related to the caudate nucleus and 8/10 related to the putamen. At this stage, the situation
is less clear for the new-variant CJD patients (“nv”). All CJD cases how some abnormal
figures, which separate them from controls.
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Figure 28: The box plot of the two groups: 1 - CJD patients (on the left), including the
sporadic and new-variant cases; 2 -controls (on the right). The group medians are shown
in red and the outliers in blue. The boxes are limited vertically by the lower and upper
quartiles. Although there is some ambiguity around the maximum value in the control
group and the minimum value in the patient group (where values are very close), the two
groups have very distinctive distributions.
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truth states that new-variant patients have higher abnormal intensities in the pulvinar than
in the other deep grey nuclei, therefore we expect the relation between pulvinar and caudate
to vary between the two patient groups. The abnormal intensities we will refer to are the
hyperintensities found by our detection algorithm based on HVS (see Section 3.3).

We employ the masks shown in Figures 20, 21, 22 and 24 and compute mean intensity
values only over the hyperintense areas. This allows us to study the relation between the
abnormal intensities detected in the caudate nuclei of patients (which are relevant in each
patient, as seen in Table 3) and their pulvinar (as the pulvinar is the nucleus that can
discriminate sporadic cases from new-variant). We divide the mean hyperintensities in the
caudate over those in pulvinar; we also present the relation between putamen and pulvinar
in Table 4. When there is no hypersignal in the nucleus, this is marked as “no pulvinar” or
“no putamen”, whether the nucleus is the pulvinar or the putamen. In red we present values
greater than 1, while number inferior to 1 are shown in blue. All 10 sporadic CJD cases have
red values, while all 3 new-variant cases are presented in blue. Table 4 demonstrates the
utility of the IQS to separate the two subgroups of CJD patients: sporadic and new-variant.

The box plots of the two patient subgroups is presented in Figure 29. When no pulvinar
hyperintensity was detected (see PS005), we input instead the maximum value over the
other sporadic cases, namely 1. 277. The two distributions are clearly different and the
result of the T test shows that p = 1.847e %, which states that the assumption that the two
classes (sporadic CJD and new-variant CJD) are identical is significant at the 0.0018 per
cent level. The mean values of the two classes are 1.191 for the sporadic CJD and 0.980 for
the new-variant CJD (shown in red lines).

The IQS separates on a first instance the CJD patients from healthy controls using the
relation between the mean intensities in CJD most affected areas of the deep grey nuclei, (i.e.
pulvinar, putamen or caudate nuclei) and the mean intensities in the “anterior thalamus”,
an area in the deep grey nuclei less relevant to CJD. Once the CJD cases isolated, we use
the relation between the mean hyperintensities in the caudate nuclei, which stand out as
the most relevant nuclei to CJD according to Table 3, and the pulvinar nuclei, the nuclei
that can discriminate new-variant cases from sporadic CJD. The IQS allows to differentiate
without ambiguity three distinctive classes: healthy controls, sporadic CJD patients and
new-variant CJD patients.

4.4 ADC Analysis

The multisequence image acquisition protocol that we employed allowed us to explore the
information contained in the apparent diffusion coefficient (ADC) maps of each patient or
control data, with the exception of the new-variant cases, which were acquired using an
older protocol that did not allow the computation of their ADC maps. The ADC values
represent the average diffusion and can be expressed as the mean of the eigenvalues of the
diffusion tensor at each voxel of the brain [21, 35]. Their computation was done using the
diffusion tensor images (DTT) [42], which were included in the acquisition protocol (TE=91,
TR=5300 for Paris data and TE=100, TR=6000 for Marseille data). Thus, the ADC values
refer to the mobility of water in an area, which become a tissue specific measure. In an
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CJD Type | Putamen/| Caudate/ | CJD Type | Putamen/ | Caundate/

Pulvinar | Pulvinar Pulvinar | Pulvinar
PS001- sp 1.2310 1.2440 | MT001 —sp 1.1661 1.1721
PS005-sp | No pulvinar | No pulvinar | MT008 — sp 1.0816 1.1927
PS006 - sp 1.0609 1.0845 |MT009 - sp 1.0971 1.0983
PS008 - sp 1.2301 1.1981 | MTO012 - sp 1.0918 1.1015
PS009 —sp 1.1448 1.2610 |PS015-nv | Noputamen 0.9506
PS013 —sp 1.1168 1.2772 | PS016 - nv 0.9833 0.9990
PS017 - nv 0.9762 0.9915

Table 4: A normalised value to differentiate sporadic CJD cases from new-variant CJD. For
each CJD patient in the database, we divide the mean computed hyperintensity values in
the putamen and caudate nucleus by the mean hyperintensity value in the pulvinar. The
main assumption is that new-variant cases (“nv”) have more significant hyperintensities in
the pulvinar, which allows to differentiate them from the sporadic cases (“sp”). The table
shows in red the values that are greater than one, the case of all 10 sporadic CJD patients.
In blue we present values smaller than 1, as in all new-variant cases.
no hyperintensities detected, we marked “no pulvinar” or “no putamen”, according to the

unaffected nucleus.
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Figure 29: The box plot of the two groups: 1 - sporadic CJD patients (on the left); 2
-new-variant CJD cases (on the right). The group medians are shown in red; there are no
outliers. The boxes are limited vertically by the lower and upper quartiles. The plot shows
very distinctive distributions for the two groups.
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application of our type, theoretically, the ADC should to be able to discriminate gliosis and
spongiform changes occurring with the accumulation of prion protein [2, 18].

The ADC maps are computed directly from the raw DTI images. Once the map com-
puted, it is registered to the MNI atlas, as in 2.2.1. We use the deep grey nuclei segmented
from the Zubal Phantom and registered to the patient data, see Sections 3.2 and 4.1, to
localise the putamen, thalami and caudate nuclei in the ADC maps (Figure 30). The ADC
mean values and standard deviations of both Paris and Marseille data are presented in Table
5, since the ADC value is a tissue constant independent of the acquisition protocol.

Comparing controls with sporadic CJD cases over the two databases, we note lower mean
ADC values in the caudate nuclei and especially the putamen of patients, probably the effect
of spongiform changes. As in the intensity quantification study (IQS) in FLAIR images, the
ADC values analysis confirm in a quantitative form the previous neuroradiological observa-
tion regarding the tissue changes in the brain of prion disease patients. The box plots of
the two groups (1 - sporadic CJD case and 2 - controls) are shown in Figure 31. The T-test
between the putamen mean intensities of the two groups gave p = 0.0819, which states that
the assumption that the two classes (sporadic CJD and controls) are identical is significant
at the 8.19 per cent level. The mean values of the two classes are 755.1 for the sporadic CJD
and 804.6 for the controls (shown in red lines). In the case of caudate nuclei, p = 0.0868,
the mean of the sporadic CJD class is 874.7 and that of controls 942.9. The outliers of
distributions are shown in blue.

5 Discussions

The results presented in Tables 1,2, 3 and 4 represent a first attempt for quantitative nu-
merical analysis of in FLAIR-T2 images MR intensities of thalamus versus putamen and
caudate nucleus in CJD patients. They accurately quantify the clinical remarks related to
the possible classification of different types of human spongiform encephalopathies.

All ten sporadic CJD patients have higher mean intensities in the caudate nuclei and
generally putamen, as expected, although there are hyperintensities present in the pulvinar
too. All patients show abnormal intensities in the deep grey nuclei, which are correctly
detected by our algorithm. New-variant CJD cases show more significant hyperintensities
in the pulvinar than in the other deep grey nuclei, which makes them separable from the
sporadic cases. All our experimental results are in complete accordance with the neurological
findings in clinical practice and with the brain lesions profile described in each form of the
disease. As we do not detect any hyperintensities in controls basal ganglia (except for a
movement artefact in one control found outside the pulvinar area), we neither find significant
differences between the mean intensities in the three deep grey nuclei of interest (pulvinar,
caudate nucleus and putamen).

Similarly, we quantify the mean ADC values in the deep grey nuclei. Once more we
confirm the visually-based clinical observations, according to which we should expect lower
ADC values in caudate nuclei and putamen of sporadic CJD cases, which could be due to
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Figure 30: Segmenting the putamen, caudate nuclei and thalami in patient ADC images.
From left to right: the original patient ADC image computed from the DTI images; the
patient ADC images registered to the MNI atlas; the results of segmenting the putamen,
caudate nuclei and thalami on the patient ADC image (putamen in red, caudate nuclei in
white and thalami in orange) after the deformation of the Zubal deep grey nuclei on patient
data.
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CJD Type THALAMUS PUTAMEN CAUDATE
Original ADC x10¢
Mean STD Mean STD Mean STD

PR001-sp TEO.I0ES | 1802742 | 6010228 [ 171.8785 | 8417771 | 243.6028
PR005-sp 844.9140 | 1753000 | 7O7.2171 | 150.4142 | 903.9285 | 250.1414
PR006-sp TEO1DLE | 224.6700 | 721342 [ 161.8071 | 7791042 | 301.7885
PS00Ssp 802.5221 | 214.6474 | FORO7IT | 176.5826 | 680277 | 236.3068
PS00%-sp 1017.5346 [ 138.9045 | 8739627 | 161.0056 | 991.8637 | 202.4986
PS013-sp 9152556 | 183.3820 | 8101691 | 210.0798 [ 924 7875 | 240.0524
MTO01 —sp| 542132 205468 f46.871 166.586 907210 289693
MTO0S —sp| 536.653 233737 | TV1.A59 134,771 D85.3568 276.35%
MTO09 —sp| &18.547 185,842 | 732405 86.045 550.018 243 451
MTO012Z —sp| &50.054 178.328 | 795938 99 890 &73.030 2334
TPOO1 no | 860.5253 | 191.4680 [ 776.9819 | 101.4535 | B48.4627 | 226.2612
TPO02 no | 914.0199 [ 186.8770 | 903.5494 | 1384685 | 1071.2984 | 200.2259
TPOOZ —no | 350.8245 | 179.160%  B02.5307 | 94.7328 | 1001.13464 | 219.4340
TPO04 —no | 363745 | 1729676 [ 793.3540 | 100.9414 | 9244077 | 211.3301
TPOOS —no | 8622977 | 151.8246 | 763.9550 | 50.4142 | 09225055 | 208.7844
TMOO0L -no | &04.765 185453 | 750.781 80.308 E72.047 233261
TMO0Z -no | &41.571 164.240 815785 70.980 595, 561 214.039
TMO04 -no | &56:331 151.047 821.177 330.078 90517 150,790

Table 5: ADC mean and standard deviation values in putamen, caudate nuclei and thalami

for the Paris La Pitié-Salpétriére and Marseille La Timone patient data (in mm? /s). “Sp”

refers to a sporadic CJD patient, while “no” to controls. The ADC mean values in the
putamen of sporadic CJD patients are repeatedly lower than in the corresponding thalami
or caudate nuclei of controls, probably caused by the spongiform changes appearing in the

striatum.
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Figure 31: The box plots of the two groups: 1 - sporadic CJD patients (on the left); 2 -healthy
controls (on the right). On the left we have the plots of the putamen mean intensities in the
two groups; on the right the corresponding intensities in the caudate nuclei are plotted. The
group medians are shown in red and the outliers in blue. The boxes are limited vertically
by the lower and upper quartiles and the extremes of the groups are shown at the end of the
dotted lines. The plot shows some differences between the two distribution with a p=0.08
resulting from the T-test.
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Figure 32: The improved registration at deep grey matter level removes FP while detecting
correctly the abnormal signals. On the left, we see the results of detection when only a mask
of ventricles was used for the non-rigid registration. On the right, the cortex outer margin
is added as an anatomical boundary constraint in computing the deformation fields of the
non-rigid registration, providing corrected results (see Figure 13).

spongiform changes. Results are less impressive in the ADC map and more investigations
are required.

5.1 FP Analysis

In order to decrease the number of FP prompted by our detection algorithm, we refined
the registration of the segmented data (the Zubal Atlas) on the patient specific data. To
highlight the utility of using masks of the cortex outer boundary beside of those of ventricles
(see Section 3.2), we also tested the use of masks of only ventricles (therefore without
regularising the deformation within the brain). An example is shown in Figure 32 with a clear
outperformance in the case using the brain boundary as an anatomical constraint, where
FP are removed and the pulvinar intensities are more accurately detected. We further show
in Figure 33 an example of detection without employing the smoothing procedure presented
in Section 2.3. Once more, the results are superior when noise is removed preserving edges
and FP are eliminated.

A good balance between the sensitivity and specificity of results is highly desirable in
any computer-aided diagnosis (CAD) algorithm. In Figure 34, we show comparative results
obtained by varying the minimal perceivable contrast (see Section 3.3) for better specificity
or sensitivity. The effect of partial volume effects (PVE) [16] will also be investigated for
removal of FP, along with the improved segmentation of ventricles by phase congruency (PC)
[24]. We will also explore further quantitative analysis of MRI intensities for discriminating
between the different types of human spongiform encephalopathy, when more patient data
are available.

We investigated the response of well known algorithms, such as voxel-based morphometry
(VBM) [1] and expectation-maximization segmentation (EMS) [39], to detect CJD-related
abnormalities in brain MRI. The good contrast between brain structures is essential in
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Figure 33: Removal of FP by image smoothing and edge enhancement. On the left, we
see the results of detection on an image with no abnormal signal in internal nuclei; we
only detect high frequency structures. On the right, the FP are removed after employing
anisotropic diffusion as a preprocessing image smoother.

Figure 34: The influence of parameter choice in the segmentation of hyperintensity. Above,
we show the same MR slice (in original on further right) with detection maps superimposed.
We varied the value of the minimal perceivable contrast for higher sensitivity (further left
detection map) and higher specificity (further right detection map). The results presented
in Section 4 use the middle choice (second images from the left) of minimal perceivable
contrast with a good balance between specificity and sensitivity.
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statistically-based methods. Hence, the performance of EMS and VBM on CJD patient
data, which have important artefacts and no contrast between grey matter and white matter,
is inconsistent and irrelevant for clinical applications. Registration errors also influence the
quality of statistical results, as comparisons between equivalent areas in normals versus
patients or between different groups of patients are very sensitive to the correct delineation
of the regions of interest.

5.2 Validation

We collected two series of results: one from the foveal segmentation of hyperintensities in the
basal ganglia (HVS); and a second from the intensity quantification study (IQS) of intensity
differences between putamen/caudate/pulvinar nuclei versus “anterior thalamus”. Thus, our
database comprises 13 patients, from which 10 sporadic CJD cases and 3 new-variant CJD
cases, and 8 controls. All patient MRI sets show hyperintensities in the zone of interest.
The validation results are presented in Table 6. With a combination of HVS and IQS, we
are able to prompt 13/13 prion disease cases with no FP amongst the controls. We detect
all cases of hyperintensities in the basal ganglia employing the foveal segmentation of signal
deviations.

In Table 6, both HVS and IQS algorithms prompt correctly the suspicious cases of CJD
and the logical ’and’ (when both HVS and IQS must prompt a case simultaneously) shown in
the last row of the table may seem redundant. To prove its utility, we bring to the attention
of the reader the case of a patient with a severe brain atrophy (see Figure 35). The patient
was initially included in the CJD database, but the histological tests proved that there was
not a prion disease. The radiological exam found areas of possible stronger intensity in the
pulvinar, which combined with the signs of dementia led to an obvious case for a FP for CJD
diagnosis. Our HVS detection algorithm also detected abnormal areas in the thalamus, but
of low intensity. The results of IQS was nevertheless neutral, with similar mean intensities
in the pulvinar (129.3), putamen (127.5) and caudate nuclei (128.2). When we divided these
values to the mean intensity over the “anterior thalamus” (199.3), we obtain a maximum
value of 1.084, which is inferior to the threshold that separates CJD cases from normals
(1.155). Therefore, although the HVS detection of hyperintensities prompted suspicious in-
tensity distributions in the pulvinar (in accordance with the neuroradiological observations),
a logical ’and’ between HVS and IQS (as in Table 6) discarded this case from the possible
CJD cases. Nevertheless, the case is valuable for testing the non-rigid deformation in this
extreme case between the Zubal Phantom ventricles and the large ventricles of this patient,
as seen in Figure 24 on the second row. While there are small abnormalities in the patient’s
MRI, its data could not be included in the control database.

The detection of deep grey nuclei hyperintensities confirms the previous visually-based
clinical observations according to which the FLAIR /T2 MR images of sporadic CJD patients
show hypersignals in the caudate nuclei. Quantifying the intensities in thalami, caudate nu-
clei and putamen, we prove that there are always higher mean intensities in the caudate
nuclei (10/10) and sometimes putamen (6/10) than the pulvinar for the same sporadic CJD
patients. The caudate nucleus is also of high intensity in the new-variant CJD cases. This
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CJD Cases Controls False Positives
Sporadic New Variant (FP)
Human Visual System (HVS) 10/10 33 0/8 0/21
Intensity Quantification Study (IQS) 10/10 3/3 0/8 0/21
HVS and 1QS 10/10 3/3 0/8 0/21

Table 6: The validation of our algorithm. We present detection results using: (i) the foveal
segmentation of hyperintensities in basal ganglia (HVS); (ii) the intensity quantification
study (IQS); (iii) a logical ’and’ between HVS and IQS. While a both HVS and IQS give
excellent results when employed separately, a combination of the two is desired for the best
detection results to reject FP as seen in Figure 35.

Figure 35: Results on image data from a patient presenting a significant brain atrophy. The
patient was suspect of CJD after the radiological examination, but the histological results
proved that there is no prion infection present. There are still high intensities (of a lower
scale) in the thalami, as our detection algorithm reflects correctly.
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conclusion highlights the caudate nuclei as area of interest for the diagnosis of CJD, in com-
plete agreement with the neuropathological findings. The relevance of caudate nuclei is also
underlined by the decreased quantified mean ADC values in patient versus normal data.
With zero FP, our method of detection and quantification of basal ganglia intensity distri-
butions proves to reach maximum specificity with very high sensitivity. We differentiate
without ambiguity all CJD cases (sporadic and new-variant) from healthy controls. More-
over, the study of hyperintensities in the deep grey nuclei delineates different characteristics
between new-variant and sporadic CJD cases, in accordance with the clinical observations,
which allows us to characterise the CJD patients into two subgroups of human spongiform
encephalopathies, sporadic and new-variant.

6 Conclusion

We presented a method for the detection of hypersignals in grey matter internal nuclei
from multisequence MR images. The particular context of our application aims to indicate
the presence of human spongiform encephalopathies, prion protein diseases here referred
as Creutzfeldt-Jakob Diseases (CJD). The technique employs intensity and spatial normal-
isation, noise removal with feature enhancement, foveal segmentation for the detection of
hyperintensities and a priori anatomical information for refined registration and removal of
false positives.

Our method further allows the quantification of intensity distributions in basal ganglia,
a discrimination criterion between patients and normals, which confirms the visually-based
radiological observations related to CJD. The caudate nuclei are highlighted as main areas
of diagnosis of sporadic CJD, in agreement with the histological data. The caudate nuclei
and putamen show more significant hypersignal than in pulvinar in sporadic CJD patient
FLAIR data. In new-variant CJD patients, we find more significant hyperintensities in the
pulvinar than in the other internal nuclei. The relevance of caudate nuclei and putamen
is also underlined by their decreased quantified ADC values in patient versus normal data,
probably due to the accumulation of pathological prion protein. The intensity quantification
study is further developed for better detection results with a view to discriminate between
the different types of prion diseases. The detection results are in accordance with the
clinical ground truth. Our study demonstrates the value of MRI for a prospective non-
invasive diagnosis of sporadic CJD and the characterisation of prion diseases, as we clearly
differentiate sporadic from new-variant CJD cases. More validation will be performed in
future work, when a larger database is available.

In this preliminary study, our method proves as reliable as the interpretation of radiol-
ogists for the detection of basal ganglia hypersignals. Moreover, it allows to automatically
obtain quantitative data from MR patients with CJD, which could be used for the follow-up,
whether a treatment is available or not.
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