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Abstract:  Confocal laser scanning microscopy is a powerful and increasingly popular
technique for 3D imaging of biological specimens. However the acquired images are de-
graded by blur from out-of-focus light and Poisson noise due to photon-limited detection.
Several deconvolution methods have been proposed to reduce these degradations, including
the Richardson-Lucy iterative algorithm, which computes a maximum likelihood estimation
adapted to Poisson statistics. However this algorithm does not necessarily converge to a suit-
able solution, as it tends to amplify noise. If it is used with a regularizing constraint (some
prior knowledge on the data), Richardson-Lucy regularized with a well-chosen constraint,
always converges to a suitable solution. Here, we propose to combine the Richardson-Lucy
algorithm with a regularizing constraint based on Total Variation, whose smoothing avoids
oscillations while preserving object edges. We show on simulated and real images that this
constraint improves the deconvolution results both visually and using quantitative measures.
We compare several well-known deconvolution methods to the proposed method, such as
standard Richardson-Lucy (no regularization), Richardson-Lucy with Tikhonov-Miller reg-
ularization, and an additive gradient-based algorithm.
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Déconvolution en microscopie tridimensionnelle utilisant
I’algorithme de Richardson-Lucy régularisé avec la
variation totale

Résumé : La microscopie confocale (Confocal laser scanning microscopy ou micro-
scopie confocale & balayage laser) est une méthode puissante de plus en plus populaire
pour l'imagerie 3D de spécimens biologiques. Malheureusement, les images acquises sont
dégradées non seulement par du flou di & la lumiére provenant de zones du spécimen non
focalisées, mais aussi par un bruit de Poisson da a la détection, qui se fait a faible flux de
photons. Plusieurs méthodes de déconvolution ont été proposées pour réduire ces dégrada-
tions, avec en particulier I’algorithme itératif de Richardson-Lucy, qui calcule un maximum
de vraisemblance adapté & une statistique poissonienne. Mais cet algorithme utilisé comme
tel ne converge pas nécessairement vers une solution adaptée, car il tend a amplifier le
bruit. Si par contre on l'utilise avec une contrainte de régularisation (connaissance a priori
sur l’objet que 'on cherche & restaurer, par exemple), Richardson-Lucy régularisé converge
toujours vers une solution adaptée, sans amplification du bruit. Nous proposons ici de
combiner ’algorithme de Richardson-Lucy avec une contrainte de régularisation basée sur
la Variation Totale, dont ’effet d’adoucissement permet d’éviter les oscillations d’intensité
tout en préservant les bords des objets. Nous montrons sur des images synthétiques et sur
des images réelles que cette contrainte de régularisation améliore les résultats de la décon-
volution & la fois qualitativement et quantitativement. Nous comparons plusieurs méthodes
de déconvolution bien connues & la méthode que nous proposons, comme Richardson-Lucy
standard (pas de régularisation), Richardson-Lucy régularisé avec Tikhonov-Miller, et un
algorithme basé sur la descente de gradients (sous ’hypothése d’un bruit additif gaussien).

Mots-clés : microscopie confocale, traitement d’images 3D, déconvolution, réponse im-
pulsionnelle, bruit multiplicatif, variation totale, ...
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Notations and abreviations

<
==
N

> O S > M
—~
i/

)
N
|

PSF

T™
RL
NA

any conditional probability.

the conjugate complex of any complex number (.

the adjoint operator of any operator Z.

a vector of continuous coordinates. Could be (X,Y) in 2D or (X,Y, Z)
in 3D.

the continuous coordinates in the three dimentions in the direct space.
the continuous coordinates in the three dimentions in the frequency
space.

the vector of discrete coordinates (in 2D or in 3D).

the point spread function (PSF) of the system.

the observed image.

the initial object.

the background.

Poisson distribution.

the index for the algorithm iterations.

optical transfert function, the Fourier transform of the PSF.

point spread function, the 3D impulse response of the optical system.
Total Variation regularization.

Tikhonov-Miller regularization.

Richardson-Lucy algorithm.

numerical aperture of the objective.
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1 Introduction

Confocal microscopy was invented by Marvin Minsky [36]. The first working prototype
was constructed in 1955. Confocal microscopy offers several advantages over conventional
optical microscopy with its small depth-of-field?, its reduction of out-of-focus blur, and its
full three-dimensional (3D) image scanning ability. For biomedical applications, it can also
acquire images of living (fixed or moving) cells, usually labeled with one or more fluorescent
probes.

1.1 Confocal microscopy and the need for deconvolution

The confocal laser scanning microscope (CLSM) is an optical fluorescence microscope asso-
ciated to a laser that scans the specimen in 3D and uses a pinhole to reject most out-of-focus
light. The ability of CLSM to image optical sections of thick specimens explains its rapidly
increasing use in biological research [38].

Despite the advantages of the CLSM, the quality of confocal microscopy images suffers
from two basic physical limitations. First, out-of-focus blur due to the diffraction-limited
nature of optical microscopy remains substantial, even though it is reduced compared to
widefield microscopy. Second, the confocal pinhole drastically reduces the amount of light
detected by the photomultiplier, leading to Poisson noise [38]. The images produced by
CLSM can therefore benefit from postprocessing by deconvolution methods designed to
reduce blur and/or noise.

1.2 Proposed approach

The aim of this study is to propose a new approach for deconvolution of 3D confocal images.
Many deconvolution methods have already been proposed for confocal microscopy, such as
Tikhonov-Miller inverse filter [67], the Carrington [67] and Richardson-Lucy (RL) algorithms
[31, 44]. The latter has been used extensively in astrophysical or microscopic imaging [67],
and is of particular interest for confocal microscopy because it is adapted to Poisson noise.
An important drawback of RL deconvolution, however, is that it amplifies noise after a
few iterations. This sensitivity to noise can be avoided with the help of regularization
constraints, leading to much improved results. Conchello et al. [8, 66] and van Kempen et
al. [65] have presented a RL algorithm using energy-based regularization applied to biological
images. Conchello’s regularization term leaves oscillations introduced by RL iterations in
homogeneous areas. Tikhonov-Miller based term, on the contrary, regularizes too much,
resulting in smoothed edges.

We propose the following approach to our problem: we first define an image formation
model, and the statistics describing the image; we then propose a model for the point spread
function (PSF), and a deconvolution algorithm based on RL with Total Variation (TV)
regularization. This approach allows to avoid the noise amplification of the non-regularized

2Physical terms are defined in Appendix A.
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RL method, while preserving the edges of the image. The validation step is performed by
testing this method on simulated and real data, and comparing it to the results given by well-
known deconvolution algorithms: standard RL and RL with Tikhonov-Miller regularization
(see Appendix C).

Which is new in the method proposed in this research report is the regularization con-
straint: we use the Total Variation semi-norm, which helps to avoid the noise amplification
during the deconvolution. Compared to other kinds of regularization, the main advantages of
the Total Variation are that it preserves the edges in the image, and smoothes homogeneous
areas.

1.3 Contents

In section 2, we present different pieces of work closely related to our subject. We review
some of the existing deconvolution methods in confocal microscopy. In section 3, we first
describe the image formation in confocal microscopy, and we also present the image formation
model we are using. We insist on the image statistics (Poisson process) and the point spread
function modelling. Then we propose the theory of the deconvolution method we are using
in this paper. It is based on Richardson-Lucy iterative algorithm and is regularized with
Total Variation. We also present the quantitative criteria that are used to compare the
results on simulated and real data. We show results on simulated data in section 4, and
results on real data in section 5. We conclude in section 6, discussing the advantages and
the limitations of the method. We present some further tracks that should be investigated
to enhance the results or fully validate the method.

INRIA
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2 State of the art

In this section, we present different pieces of work that are very close to or related to this
paper. We first present some denoising techniques in confocal microscopy (section 2.1). We
then present some methods to model or measure the point spread functions (PSF) (section
2.2). A good PSF estimation is essential for any non-blind deconvolution algorithm presented
in section 2.3. We finally present some works about the Total Variation (section 2.4), the
regularization term we have chosen to introduce in our model.

2.1 Denoising in confocal microscopy

As a first approximation, 3D confocal images are not blurred compared to other microscopy
type (see Appendix A): the resolution of such microscopes is very fine [5]. If the blur is
not important relatively to the noise [39], one can only restore the images using denoising
methods without deblurring. For instance, if the resolution of the image is approximately
equal or less than the size of the PSF, the effects of the blur are important and noticeable.
If the resolution is too low compared to the PSF size, the effects of blur will be negligible
and only a denoising will be necessary.

In [67], van Kempen et al. apply a Gaussian filter as a pre-processing to their raw data.
After this, they use a deconvolution method to restore their data. They show that the
results are improved compared to deconvolved images with no pre-filtering.

Boutet de Monvel et al. [12] propose a denoising method for confocal image stacks,
using Daubechies’ wavelets for each direction, before applying a MAP or a non-regularized
Richardson-Lucy method for deconvolution. Wavelet denoising offers an alternative method
of regularization for deconvolution. Wavelet denoising followed by RL deconvolution pro-
vides a more efficient and more adaptive denoising, because denoising could be performed
in one time, by wavelet transform, and then noise-dependant coefficient removal, before an
inverse wavelet transform.

In [71], Willett et al. use a multiscale approach based on platelets to denoise 2D images in
the presence of a Poisson noise. Platelets are localized functions at various scale, locations,
and orientations [70], which produce piecewise linear image approximations. This platelet-
based method is very well suited to Poisson noise and preserves edges in the images. They
apply their method to several kinds of images with Poisson noise, particularly on phantom
and real 2D confocal images. Their method is applied to phantom and real data denoising,
and it gives better results than those obtained with Haar wavelet or wedgelet denoising
algorithms. They also use platelet-based method for deblurring 2D phantom confocal images
[70, 71].

In [28], Kervann and Trubuil propose a method to denoise confocal images as a pre-
processing before using a deconvolution algorithm based on Richardson-Lucy. In their
paper, they only present the denoising technique. It is based on a locally piecewise con-
stant modelling of the image with an adaptive choice of window around each pixel. They
model the image distribution as a Poisson distribution 4, and apply the Anscombe trans-

RR n° 5272
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form Ians(i,j,k) = 24/i(i,5,k) + 2 to obtain a Gaussian distribution Ia,, with variance
0% = 1. This way, Kervann and Trubuil are able to use well-known methods in presence
of Gaussian noise, and use an inverse Anscombe transform after denoising. They use an
adaptive weights smoothing method [42] with adaptive windows to perform the denoising
on 3D confocal images. They use the I-divergence (see section 3 for a definition) normalized
with the maximal occuring value to estimate the convergence of the denoising. This method
reduces the Poisson noise and is a good pre-processing before any deconvolution.

2.2 The point spread function in confocal microscopy

Confocal microscopy is a 3D imaging technique. The physics of the system generates a 3D
PSF, thus we model 3D PSF. The PSF can be physically modelled or directly measured.
We present here some formulations of the PSF with different approximations.

Diffraction approximation The simplest confocal PSF we can model is the following
approximation: we suppose that the confocal PSF is the square of the conventional fluo-
rescence PSF. This is mostly verified for a confocal microscope used in reflexion mode® or
for a confocal fluorescence microscope with the same excitation and emission wavelengths
[29] (see Appendix B). In fluorescence mode, the emission and excitation wavelengths are
generally not the same, and the PSF is best modelled as:

~ 2 ~ 2
MX,Y,2) = P, (XY, 2)| .| B, (X.V,2) 1)

where P (z,y, z) is the pupil function [50, 51] for a wavelength A, which is defined in section
3. The 2D pupil function is a diffraction-limited aperture. Due to the wave nature of light,
this transforms one single point to a small patch of light, presenting some oscillations: it is
known as an Airy diffraction pattern [4]. This generates the XY blur. The Z blur is also
due the nature of the light in the third dimension, because of the diffraction-limited optical
system. In the Z dimension, authors often relate it to the optical slice thickness or the axial
resolution [5, 49, 72].

A more precise model To improve again the PSF model, we can model the pinhole (see
Appendix A) as in [62]:

N 2 N 2
WX,Y,Z) = |Ap(X,Y) % P, (X,Y,Z)‘ .‘PAM(X,Y,Z) )

em

3"Confocal reflection microscopy (CRM) provides information from unstained tissues, tissues labeled
with probes that reflect light, and in combination with fluorescence. [...] A major attraction of CRM
for biomedical imaging is the ability to image unlabeled live tissue." in S. Paddock, Confocal Reflection
Microscopy: The "Other" Confocal Mode, Bioimaging, 32(2):274-278, 2002. CRM uses confocal system
with a single laser beam; there is no excitation, nor emission light, only a scanning laser that could be
reflected back to the detector. The closer conventional microscope to this scanning mode is a light reflexion
microscope, observing opaque object by lighting them from the top.

INRIA
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where AR characterizes a pinhole with a radius of R, mathematically defined as Agp(X,Y) =
1if R?2 < X2 4+Y? and 0 elsewhere. The product * denotes the 2D convolution over X and
Y. We will use this model in this research report (see section 3). It is now easy to obtain
Eq. 1 from Eq. 2 in the limit where the pinhole radius R tends to zero. In this case
Ap(X,Y) = §(X,Y).

In [58, 59, 60], van der Voort et al. are describing a PSF model based on electromagnetic
diffraction theory. To calculate the overall PSF of a confocal microscope, they have to
compute the time-average of the electrical energy distribution near focus, for both excitation
and emission. The final PSF is the product of the time-averaged field excitation lens system,
and the emission spectrum of the system. For further details, the interested reader should
refer to [58, 59].

Computing a 3D PSF from a 3D pupil function Stokseth’s [55] 2D approach is the
following: for any defocusing of Z, he can compute the defocus path of the wavefront, and
then derive the 2D pupil function for this defocusing. The next step is to calculate the
corresponding 2D PSF for this defocusing. Another approach, like Arnison’s [3] or Schonle’s
[48], is to directly compute a 3D pupil function, containing all the defocusing, and then
use it to compute the 3D PSF. This is suitable for any optical system, in particular for a
confocal microscope. A focused 2D pupil function is a thin disk, whereas a focused 3D pupil
function is a part of a thin spherical shell. In both cases, coefficient are constant if we are
in-focus; but the defocusing introduces some coefficient variations on the defined surface.

Real PSF measurement Another approach is to measure and use the real PSF for a
confocal microscope [12, 13] by using small (a hundred of nanometers) fluorescent beads.
The image of such small beads are very sensitive to noise, and the beads themselves are
not perfectly spherical, and the diameter is slightly different between two beads. As rec-
ommended in the software Huygens*, we have to average some PSF measurements with
different acquisitions of microspheres of known-diameter, in the strictly same conditions. In
Huygens, they recommend to acquire an image field containing at least five beads with the
same diameter. In [12, 13], the authors also explain that they need to average the PSF over
several different beads to get an accurate measurement. Their averaging consists in four
steps:

e extracting some stacks of single beads from raw image acquisition;

e selecting the convenient bead for processing (avoiding bead clusters for instance);
e aligning the selected beads together;

e computing the average PSF.

Doing this, it is possible to reduce the noise of the bead images and to limit the effects of
size variations among beads.

4Huygens is a deconvolution software proposed by Scientific Volume Imaging, http://www.svi.nl.

RR n° 5272



12 Dey et al.

2.3 Deconvolution in confocal microscopy

Many deconvolution methods have been used in fluorescence (conventional or confocal) mi-
croscopy. A well-known 2D deconvolution algorithm is the one developed by Agard et al.
[1, 2]. It is very fast because it uses only 2D Fourier transforms. Agard initially designed
it for widefield microscopy. He makes the assumption that the main part of the blur that
appear on an optical section is only due to the nearest section contribution. He uses a the-
oretical PSF model developed by Stokseth [55]. In [6], Castleman presents Agard’s method
and apply it with his own widefield PSF model.

In fluorescence confocal microscopy, many 3D deconvolution algorithms have been pre-
sented. One of the most common ones is Richardson-Lucy [31, 44] algorithm: this is an ex-
pectation maximization algorithm which computes the maximum likelihood estimate (EM-
MLE). It is used with different regularization terms; other famous ones are the iterative
constrained Tikhonov-Miller (ICTM) algorithm [63, 67] and Conchello’s algorithm [9]. Each
method assumes that we know the real PSF or an approximation (a model) of the real PSF.
For blind deconvolution in 3D fluorescence microscopy, the interested reader should refer to
[34, 35]. In these papers, the authors are using an EM algorithm (Richardson-Lucy) with
an unknown PSF.

We are presenting here the main deconvolution algorithms that are used in 3D confocal
fluorescence microscopy.

Bayesian approach and Richardson-Lucy algorithm Confocal microscopy is a low-
photon imagery technique. Light emission is well-approximated by a Poisson process, and
so is the 3D image. If an object o is observed as an image ¢ through an optical system with
a PSF h and degraded by a Poisson noise, we can write the likelihood as [30]:

£0) (2)]4®) g—(hxo)(z)
i o) =1] (Kh Mo ) ®

Maximizing this probability with respect to o and using a multiplicative gradient-based
algorithm leads to RL algorithm (see Appendix C for derivation):

Op1(x) = {[%] * h(—x)} 0 (x) (4)

This algorithm has the property of non-negativity: if the first estimate is non-negative,
the further estimates are non-negative. In the presence of noise, the algorithm converges to
a solution dominated by the noise, which is not suitable: the noise is amplified after several
iterations [62]. But it is nevertheless usefull to use RL because it ameliorates the images
both qualitatively and quantitatively before it amplifies the noise [12].

It is also possible to use non-regularized RL with pre-denoised images. In [12], the
authors are using a wavelet denoising algorithm before using RL with no regularization; in
[28] Kervrann et al. propose an adaptive weight smoothing method for denoising. As the
second step, they plan to use a RL algorithm to deconvolve the images.

T

INRIA
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Richardson-Lucy algorithm with Tikhonov-Miller regularization To force RL to
converge to a suitable solution, we can add a prior model on the object, which introduces a
regularization term. This a priori functional is designed to avoid noise amplification. Instead
of maximizing only the likelihood probability, we maximize the a posteriori probability
p(i | 0) = p(o | i)p(i) / p(o) to take into account the regularization (a priori) term. Tikhonov-
Miller (TM) [62, 64, 66] regularization based algorithms are the mainly used algorithms in
3D image restoration. Its expression is given in Appendix C. RL regularized with this
functional gives (see Appendix C for derivation):

o) = { |G ] M} T e ®

Conchello et al.> [9] have derived another form of this algorithm which incorporates
TM regularization into RL algorithm for parametric blind deconvolution: the algorithm
estimates both the image and the PSF.

Richardson-Lucy algorithm with maximum entropy regularization In Boutet de
Monvel et al. [12, 13], the authors use a RL algorithm with maximum entropy regularization
(which is clearly explained in [12]). The algorithm scheme is the following:

i(x)
= | — — ) — ) 1
Ok+1(X) { |:(Ok " h) (X):| * h( X)} O (X) )\entropy Of (X) n (Ok (X)) (6)
The regularization parameter is Aeptropy- As reported in [12, 13], for high values of Aentropy,
the algorithm of Eq. 6 becomes unstable.

The iterative constrained Tikhonov-Miller algorithm Another famous algorithm is
the iterative constrained Tikhonov-Miller algorithm (ICTM). This algorithm finds iteratively
the minimum of the TM constraint [57] in the case of Gaussian noise. The non-negativity
constraint is ensured by setting to zero each negative values at each iteration [62, P.40]. In
[60, 62], they consider the image formation model: i = o h + n where i is the image, o
the object, h the PSF and n a Gaussian noise. The non-iterative form of TM regularized
inversion has to fulfill several criteria. Defining the norm ||.||* as:

15 = [ [ [ 150 dedya (7)

the first criterion is ||i — h x o|| < ¢ with ¢ an estimate of the noise. The second criterion is
used to exclude wildely oscillating functions, and to stabilize the functional: ||o|| < &, £ being
an energy bound. The non-iterative algorithm have to minimize the following functional:

@ (0) = i~ hwoll* + (Z) ol ®)

5Conchello, Preza [43] and McNally have developed a deconvolution freeware known as Xcosm which is
available for 8-bits X servers on several Unix platforms. See http://www.essrl.wustl.edu/ preza/xcosm/.
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Using capital letters to denote Fourier transform, and minimizing the functional ®(O), the
unconstrained TM solution is:

_ H*.1
=—03
15" + (&)
This algorithm requests a modest computational effort, but has to be used with images
acquired under very precise conditions to estimate the parameters (¢ and &) accurately.
ICTM algorithm, used with non-negativity constraint, is less sensitive to errors than

non-iterative TM restoration. But it is also more computationally consuming. It is based
on iterative conjugate gradient optimization. The ICTM algorithm is computed as:

9)

Or+1 = O + B-Dr (10)

[ is a stepping distance, and k is the iteration number. For each iteration, the non-negativity
constraint is applied. The functional py is recursively defined by:

2
[l
=y

The steepest descent 7y is the negative gradient of the functional ®:

P =Tk + Pr—1 (11)

1
’r‘k:—§V0¢(6)I)\]CTMék-l-h*h**ék—h**i (12)
Arcrar being a parameter containing the term (%)2

The Carrington algorithm In [62, 66, 67], van Kempen et al. are using a derivate of the
ICTM, known as the Carrington algorithm. This algorithm also minimizes the Tikhonov
functional under the constraint of non-negativity and a finite support [62]. The method is
not too much noise-sensitive. For a derivation, see [62, p.42].

2.4 Total Variation

Total Variation (TV) is a well-known method for denoising images. It has been introduced
by Rudin, Osher and Fatemi [45]. This functional has a £! norm and its effects are to
smooth homogeneous regions while preserving edges. On the contrary, a £2 as TM tends to
smooth edges. Nevertheless, even if TV preserves the contours, one drawback of the method
is to round the corners [16].
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2D Total Variation in image processing The Total Variation norm (TV) was first
described in [45] as an iterative denoising method. It is non-quadratic and preserves edges
in blurred and noisy images. According to [45], the 2D TV semi-norm is given by:

[ 2 2
TV(o) :/|Vo| dxdy:/ % +g—: dz dy (13)

The discrete form of this equation is Zl,m\/(ol“,m — o;c,m)2 + (o1, m+41 — ok,m)2 +n2. It

needs an arbitrary parameter n < 1073 to ensure differentiability at points where (0741 m—
ok,m)2 + (01,m+1 — o;wn)2 = 0 (see Appendix D and [41] for the discrete form of the 3D TV
semi-norm). In [16, 45], the authors use the hypotheses of a Gaussian noise to minimize the
following functional:

Erv (o) :/|Vo|+)\/|h*o—z'|2 (14)

where h is the PSF, o the object and ¢ the measured image, A being the regularization
parameter. With the Rudin et al. denoising approach, smaller details, such as textures, are
destroyed if A is too small [37]. In [21], the authors propose to use an adaptative fidelity
term to preserve textures. They impose a spatially varying fidelity term which modulates
the amount of denoising over image regions.

To our knowledge, TV is used in 2D for noisy images restoration, mostly in presence of
an additive noise [45]. TV is very efficient for non-textured objects, because it smoothes ho-
mogeneous regions and keeps sharp edges, but the performance on textured images are poor.
To avoid texture loss, Malgouyres [32, 33] used an approach combining TV for smoothing,
and wavelet decomposition to preserve small details. Moreover, he shows that the com-
bination of these two methods avoids ringing (from wavelets) and staircasing (from TV).
The degraded image model is a 2D image convolved with a low-pass filter, and corrupted
by Gaussian noise. Another proposed approach is to solve this problem by computing an
adaptive regularization parameter [21].

3D Total Variation in tomographic image restoration In the domain of 3D tomog-
raphy, Charbonnier [7] used a similar method to reconstruct 3D images in the presence of
Poisson noise. He used a Richardson-Lucy algorithm regularized with Total Variation but
incorporated the TV in a different way. Another difference with our method is also that the
PSF is not normalized as ours.

On simulated images which present several homogeneous regions, the algorithm gives
good restoration results after a hundred iterations. Charbonnier applied this algorithm on
synthetic data containing ellipses, and he observes a good restoration but a loss of small
object after the restoration, due to the regularization.

Still in 3D tomography, Persson et al. [41] present an iterative Bayesian reconstruction
algorithm based on three-dimensional TV semi-norm. This is a 3D extension of Rudin et al.
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[45] 2D iterative noise removal algorithm. Persson et al. assume Poisson statistics for their
data. Their algorithm was designed in the limited view angle case.

Concerning the 3D implementation of the TV, more details can be found in Appendix
D of this document, where we clearly write the derivative form of the TV we are using in
the deconvolution method presented in this research report.

2.5 Summary

We have presented here the works related to ours. In confocal microscopy, denoising could
be sufficient to obtain degradation-free images. But if the blur is important, one have to
take into account the PSF of the system: the PSF can be approximated knowing the physics
of the optical system, or measured using methods that are very precise. An other method
is to estimate this PSF during the image restoration process. By knowing this PSF or by
estimating it, we are able to perform 3D image deconvolution.

For our purpose, the most interesting algorithms we have presented are those using
iterative RL and a regularization constraint. We have presented a TM constraint [62, 64, 66]
and a maximum entropy constraint [12, 13]. We remind that we are presenting in this
research report an algorithm based on RL with a new regularization term based on Total
Variation.
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3 The proposed deconvolution method

We model the blur as the convolution of the object with the point spread function (PSF)
of the microscope. The noise is mainly shot noise due to low-photon imagery, modelled as
Poisson statistics. We present here the deconvolution method we are using: the well-known
Richardson-Lucy multiplicative algorithm. Since it does not converge to a noise-free solution
(it amplifies the noise after several iterations), we regularize it using a functional derived
from the Total Variation.

We then present some quantitative criteria, as I-divergence and mean square error, to
quantify the results. The criteria are not used the same way if we are dealing with real data
or with simulated objects. The last point of this section is about the criterion that stops
the iterative algorithm.

3.1 The image formation model

In this section, we present the image formation process for a confocal microscope. We
first describe the global model for image formation: the point spread function (PSF) which
characterizes the optical system, and the noise model (Poisson noise).

The image statistics Confocal microscopy is a low-photon imagery technique. To obtain
a sufficient number of photons, a photomultiplier tube (PMT) converts the light to an
electrical impulse, that is stored as a discrete value after a A /D conversion [28, 39]. Because
each detected photon gives an electrical impulse, the PMT works as a photon counter, and
the image statistics is best described by a Poisson process. The noise model is a Poisson
multiplicative noise, or shot-noise.

When acquiring real images with a confocal microscope, an averaging can be performed
during acquisition: the acquisition process is done point by point, and then line by line.
Averaging is done by acquiring two or more times the same line, and by averaging all the
values. Doing this changes the image statistics, but the Poisson model is still valid. The
higher the averaging, the more the statistics tends to Gaussian statistics.

The global image formation model for a confocal microscope For any optical
system, the image formation model is described by combining a PSF convolution and a
noise degradation on a perfect undegraded image. According to [47, 62, 65], the most used
image formation model in confocal microscopy is:

i=gp(oxh+Db) (15)

g is a Poisson noise, i the observed image, o the object, h the PSF and b the background
signal. We choose a well-known Confocal Laser Scanning Microscope (CLSM) image forma-
tion model, under the assumptions of a translation invariant PSF, incoherent imaging and
monochromatic light (excitation and emission). CLSM is a low-photon imagery technique,
therefore the noise obeys a Poisson multiplicative law.
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As a first approximation in the model we use, we omit the modelling of the background.
With no background estimation, the image formation model with the same notations as Eq.
15 becomes:

i = p(oxh) (16)

In section 4.4, we discuss about the use of a background term in the model, and for our
purpose we show on results that there is no improvement by modeling a background.

3.2 The confocal point spread function

We discussed about PSF measurement and modelling in section 2.2. For our purpose, we
are using a PSF model that is used both for the creation of simulated images and for the
deconvolution. It has been already used in [62], and is derived from [53]. For a defocusing
Z, the 3D PSF [53] is given by:

~ 2 ~ 2
BX,Y, Z) = |AR(X,Y)  Pr,, (XY, 2)] |y, (XY, 2) (17)

with the same notation as in section 2.2. The excitation (resp. emission) wavelength is
Aex (resp. Aem). Ag denotes a circular aperture (as in Eq. 2), and Py is the 2D Fourier
transform on X,Y of the pupil function Py, given by [4, 19, 22]:

P(U,V, 2) =TI, (VUZ +V2) 5 Wi (U:V:2) (18)

Here the complex term Wi, (U,V, Z) = 1Z (1 — cos2a) is the aberration phase® derived
from [22]. Its general form is complex, the real part describing the default of focus and its
imaginary part the spherical aberration of the lens, after Stokseth [55]. Here Wj,, is real, as
we do not take spherical aberrations into account. p = 1;’—;‘ is the lateral cut-off frequency,
and NA = n,sin « the numerical aperture which is related to the amount of light entering
the microscope (see Fig. 1) and the immersion medium refractive index n,. The phase Wi,
depends only on the defect of focus. This theoretical model of the confocal PSF does not
take into account geometrical (e.g. spherical) lens aberrations and refractive index induced
diffraction.

The model takes into account the finite size of the pinhole used for the image acquisition.
The pinhole is represented here by the distribution Ag(X,Y’). We have represented the PSF
model in Fig. 2.

3.3 The multiplicative Richardson-Lucy algorithm

We summarize here how to obtain the RL algorithm (for more details see Appendix C). A
common approach to image restoration uses a probabilistic framework. One way to estimate

691pe" stands for "length path error". This is the wavefront difference of path between a focused beam
and a defocused one [4, 55].
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microscope
objective

entrance lens

. a-
+ + + impinging light

Figure 1: The numerical aperture NA = n,sin o the numerical aperture which is related
to the amount of light entering the microscope. It is the half angle of the maximum ray of
light that could enter the objective according to Snell’s law [4, p.40].

Figure 2: The PSF calculated with the model defined on Eq. 17. We represent it with the
same sampling in each direction to reveal the ratio of 1 : 3 usually observed for a confocal
microscope. We use this PSF for all the computations we are presenting here, for blurring
synthetic objects, and for deconvolving both synthetic and real data. For the computations
we use it with the sampling values of the considered image stack. To simulate this PSF, we
used the values defined in section 5.1.

the initial image (before degradations occur) is to maximize the likelihood probability p(i |
0). In CLSM, the detected light can be modelled as a Poisson process. We suppose that
the noise is independent from one pixel to another. The recorded image is also a Poisson
process, and the likelihood is then:

£ 0)(x)] ) = (hro)()
wilo)=]] (“h M ) (19)

X
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Figure 3: An approximation of the real PSF. Two views of the image of a small bead of
diameter 175nm: (a) is the lateral XY view, (b) the axial X Z view. Initially, the size of
a voxel is 89x89x230nm in X, Y and Z. In the figure, it is now 89nm in each of the three
directions. Note that there was no resampling. This is the best approximation we have to
illustrate the real PSF; the lateral size is 491 nm (6 pixels). and the axial size is 1150 nm.
An good estimation of the size of the PSF is to remove this approximate size of 175 nm of
the bead, that gives a PSF with a size of 316 nm in XY and 975nm in X Z.

The non-regularized Richardson-Lucy [31, 44] algorithm minimizes the functional —log p (i | 0) =
J1(0) (up to an additive constant), giving the maximum likelihood (ML) estimation:

Ji(0) = Y (=i(x) log [(h % 0)(x)] + (h ¥ 0)(x)) (20)
RL is a multiplicative gradient-based iterative algorithm. Let op(x) be the estimate at
iteration k. Then one RL iteration is given by:

i(x)
op+1(x) = { [(Ok “h) (X)] * h( x)} .0x (%) (21)
Let us note that Eq. 21 can also be obtained by deriving an expectation maximization
(EM) algorithm for the ML estimation (Eq. 19). An important property of this scheme
is that it ensures non-negativity if the first estimate (here taken as a constant 3D image,
with a value equal to the mean of the image stack) is non-negative. However, because the
inversion problem is ill-posed and the ML estimator is non-regularized, the solution given
by Eq. 21 when k¥ — +o00 is only noise, due to noise amplification during the inversion
process. To obtain good results, the algorithm is stopped before the noise amplification.
In order to improve the trade-off between a good deconvolution with sharp edges and noise
amplification, we propose to regularize the solution by minimizing its TV. Fig. 4 shows the
evolution of the standard RL deconvolution: the estimate seems to converge to a non-optimal
solution according to us, and according to the I-divergence criterion.
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(a) () (d)

Figure 4: Standard RL does not converge to a suitable solution. Each image (a)-(d) shows
one section of a synthetic 3D image stack. (a) degraded image before any deconvolution
(I-divergence is 6.11); (b) the best deconvolved image after 17 iterations (I-divergence is
1.36); (c) after 100 iterations, some intensity rebounds inside the objects are noticeable
(I-divergence is 1.45); (d) after 4075 iterations, many intensity oscillations are visible (I-
divergence is 6.19). This figure shows the need of a regularization term to avoid.

3.4 Total Variation regularization

Here we choose a regularization by Total Variation, as in [45]. It results in minimizing the
sum of J; and the Total Variation J,., (See Appendix C for the derivation.):

J1(0) 4+ Jreg(0) = Ji(0) + )\Z |Vo(x)] (22)

Using the £! norm over Vo rather than the £2 norm as in Tikhonov regularization [8, 66]
allows to impose edge preserving smoothing of the solution. It can be shown that the
smoothing process introduced by J,., acts only in the direction tangential to level lines
(edges) and not in the orthogonal direction, so edges are preserved. The derivative of Jy.,

Vo
[Vol

minimize Eq. 22 using the multiplicative gradient-based algorithm (or equivalently by using
EM algorithm for the penalized criterion of Eq. 22), and we adopt an explicit scheme, as in
[23], defined by:

Ok1 (%) = { [(Ok’*(%] * h(—x)} — Ad;: ((Xiiz(") ) (23)

(Vo (x)]

w.r.t. ois a nonlinear term %Jwg = —\div < ) where div stands for the divergence. We

3.5 Quantification of the results

To quantify the quality of the deconvolution we use the I-divergence [11] and the mean square
error (MSE) criteria. According to [11], the I-divergence is the only consistent measure in
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the presence of a non-negativity constraint. The I-divergence between two 3D images A and
B is given by:

Ay
Iap = Z {Aijk-ln [sz] = (Asjk — Bijk)} (24)
17

ijk

while the mean square error is given by:

MSEy B = Z {Asjk — Bijlc}2 (25)
ik

We can notice that the I-divergence is non-symmetric: T4 g # Ip,a, but MSE is.

Quantifying simulated data For simulated data, we simulate an object, and then we
add some degradations (blur and noise) according to physical assumptions described in
section 3.1. We have two advantages by working with synthetic degraded images:

e we know exactly the initial object we want to estimate. Then, it is easy to quantify
results by comparing them to the initial undegraded object.

e the degradation model is exactly known: we perfectly know the PSF and the noise
statistics obeys a Poisson law.

Thus, to quantify the results, we compute the I-divergence and the MSE values by
comparing the final estimate to the initial undegraded object. In this case, both criteria have
to decrease with iterations. Ideally, a perfect deconvolution should end with I-divergence
and MSE both equal to zero. A typical final value for I-divergence is around 1072 if it is
normalized to the object. Here the I-divergence is not normalized to the object.

Quantifying real data We have problem for real data because we do not know exactly
what the initial object before degradations was, as we only know it after the image acquisition
(and the degradations). In this case, we can only compare the estimate to raw data. But it
is not as well adapted as in for simulated data:

e the image restoration generates an image that is more or less free of noise and blur.
The I-divergence and the MSE values between this estimate and the raw data are
positive, and strictly increasing.

e 3 high value of these criteria could correspond to a good restoration or a very poor
one: the only thing which is measured is the distance between the estimate and the
initial object.

Huygens computes after each iteration a "quality factor", which is based on I-divergence
[61].
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Ending the iterations To stop the iterations, we define a difference measure between two
successive iterations. If the difference is smaller than a threshold, we stop the computation,
and we suppose that the last estimation is the best one. The criterion is defined as the
following;:

nNews ok+1(x,y,2) — op(x,y, 2
Xkg1 = z,y,z-l' N—:y(z Y ) ( )| <t (26)
Ez,y‘,.z‘:lok(x7yvz)

Typical threshold values ¢ used are around 10~* or 10~%, depending on the precision we
want. It also depends on the regularization parameter. For high values of the regularization
parameter, the stop criterion should not be too small, because we noticed that the x; could
oscillate between two values.

3.6 Summary

We have presented the point spread function model we are using, which is based on physical
theory of the image formation in a confocal microscope. We use this model to simulate the
image formation on simulated data, and then evaluate the results after deconvolution. On
real data, we use the PSF as an approximation of the real one to deconvolve real images,
using all the physical parameters that are involved in the PSF model (light wavelengths,
pinhole diameter, objective numerical aperture). We have presented an algorithm based on
Richardson-Lucy with Total Variation regularization, and also the quantitative criteria that
are used to quantify the results, for real and simulated data.
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4 Results on simulated data

In this section, we present some results on simulated data. In section 5, we will present
results on real data. It is more convenient to begin with simulated data, because we know
exactly the point spread function (PSF) for degradation simulation and deconvolution, and
we are able to use quantitative criteria to measure a distance between the original data and
the estimate.

4.1 Operating mode

As in [14], we use the following scheme to perform the validation of the method on simulated
data:

e Step one: create the object. We generate a 3D object that has some specific charac-
teristics: smoothness, corners, borders, textures, fine structures,... and then, we add a
constant background. The simulated images are 3D images created with some default
brushes of The GIMP?. We have both geometrical (stars, crosses) and non-geometrical
objects. Some are smooth, others have fine structures.

e Step two: simulate object degradations. We simulate the point spread function (PSF)
at a chosen resolution, and we blur the initial object. After that, we add Poisson noise.
We obtain a degraded object which can be used to test the deconvolution algorithm.

e Step three: perform the deconvolution. We know exactly the PSF and use it to perform
the iterative deconvolution. The algorithm ends when the difference (see paragraph
3.5) between two consecutive image estimates falls below a defined threshold.

e Step four: qualitatively and quantitatively interpret the result. Since we know exactly
the original object, it is easy to compare qualitatively the final estimate to the original
non-degraded image. It is also very easy to define quantitative criteria between original
and final estimated images.

We use this procedure for each 3D synthetic image presented in this section.

4.2 Results on 3D simulated data

Here we present experimental results of the proposed deconvolution model on 3D simulated
data. These results have been originally presented in [14]. Fig. 5 represents three different
objects. These objects (a)-(c) are artificially blurred using the image formation model (see
section 3), and corrupted by a Poisson noise to give the degraded images in fig. 5 (d)-(f).
Deconvolution results using standard RL are shown in fig. 6 (a)-(c). For standard RL, we
present the results for the number of iterations that achieve minimum I-divergence. The
algorithm amplifies the noise after that point.

"See http://www.gimp.org
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object type cylinder | composed | sphere
I-divergence for standard RL 0.766 1.365 1.599

I-divergence for RL and TV 0.220 0.691 0.725

improvement (I-divergence) 71.3 % 49.4 % 54.7 %
MSE for standard RL 169.965 | 262.813 | 411.727
MSE for RL and TV 49.225 100.412 212.977
improvement (MSE) 71.0 % 61.8% | 48.3 %

Table 1: I-divergence (top) and MSE values (bottom) for various objects (see Fig. 5). The
first row gives object type; the second row is the minimal value obtained with non-regularized
RL; the third row is the value obtained at convergence of the regularized method with TV;
the fourth row gives the improvement obtained by RL with TV regularization compared to
standard RL. Fith and sixth rows gives the MSE value for standard RL and RL with TV.
Last row shows the improvement between standard RL and RL and TV.

The deconvolution results using RL with TV regularization are represented in the second
row (d)-(f) of Fig. 6. Even if RL regularized with TV is theoreticaly always convergent,
numerically we noticed that the regularization parameter A7y should not be too small
(less than 1079, RL is dominated by the data model), nor too large (of order unity, RL is
dominated by the regularization term). If Ary is too large, the denominator of Eq. 23 can
become zero or negative: this must be avoided because small denominators create points
of very high intensity, that are amplified at each iteration. A negative value violates the
non-negativity constraint. We use a parameter A7y = 0.002 for computations and iterations
stop when the difference between two images is less than a chosen threshold (107°).

For each simulation, we choosed the PSF represented in fig. 2 to blur original objects
and then to deconvolve the degraded data. We can compare the two methods by considering
the deconvolved images in fig. 6 (a)-(c) and (d)-(f): the images (d)-(f) obtained with RL
regularized with TV are smoother (oscillation artefacts almost absent) than (a)-(c), obtained
with standard RL; there is no noticeable noise, only some weak variations in the background;
the images are sharper at the borders, and finally, the sizes of the objects are closer to those
of the non-degraded images. Compare, for instance, axial and lateral views in subimages
(b) and (e). Table 1 presents the improvement in restoration quality. As measured by
I-divergence (resp. MSE), this improvement ranges from 49 to 71% (resp. 48 to 71%)
depending on the image.

4.3 Results on 3D fine structures and textured surfaces

Fine structures often exist in real biological specimens. We study the limits of the proposed
method on such simulated fine structures before applying the method on real data. We
represent these structures as lines of width of order of a pixel.

In Fig. 7, we have represented a 3D synthetic object combining texture and fine structure
(a). The degradation (b) is sufficiently strong to almost hide these details. Standard RL (c)
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Figure 5: Simulated test objects and degraded images. First row represents original synthetic
objects, and second row blurred and noisy objects. First and second columns represent
128x128x64 test objects with voxel size 250x250x600nm in X, Y and Z. Dotted lines in
XY images (top row) show where the Y'Z cut (bottom row) is taken. (a): cylinder with
intensity of 250 and background of 20. (b): composed object with different intensities: 255
for the cylinder, 221 for the annulus, 170 for the cross, 102 for the triangle, 238 and 102 for
the equal sign, background 10. (c): sphere with intensity of 200 and a background of 40.
Same lateral scale but axial scale is double. (d)-(f): the degraded objects.

gives very good results if we stop it before it amplifyes the noise: we recover the fine structure
and a part of the texture. In Z, there is still some blur. With the deconvolution using RL
with TV, the blur is almost completely removed, and the fine structure is discernable again.
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Figure 6: Deconvolution with and without TV regularization. Deconvolution of synthetic
test images using standard RL (first row) and RL with TV regularization (second row) with
Ary = 0.002. First row: images deconvolved with standard RL. There is still some intensity
oscillations and some blur; second row: images deconvolved with RL and TV regularization.
The homogeneous regions are smoothed and the borders are sharp.

Concerning the texture, however, we see one drawback of TV regularization on the XY
section: a stair-casing effect. The quantitative values of I-divergence are quite similar, and
even if RL with TV visually gives a better result by improving the contours, standard RL
results are acceptable.
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(d)

Figure 7: Deconvolution of a textured image with fine structure. Deconvolution of synthetic
test images using RL with Ay = 0.002. First line represents the lateral XY view of the
image (center of the stack), and the second line represents a Y Z view (taken were dotted lines
are figured in (a)). (a): original synthetic image; (b): blurred and noisy images degraded
as described in section 3; (c): images deconvolved with standard RL (I-divergence is 0.462);
(d): images deconvolved with RL regularized with TV (I-divergence is 0.404).

4.4 Background estimation

In [65], the authors are studying the influence of the background estimation on the quality
of the results and the speed of the convergence. In our experiments, the speed of the
convergence is improved with b = 0, but the restoration results are the same with or without
background estimation.

We have used a simple method of background estimation. The background estimation we
use is only computing one histogram, and finds the first maximum of this histogram; the first
maximum corresponds to the mean value of the background. We substract this estimated
value 3D image and set negative value to zero. It is valid with (real or simulated) images
that fullfill the following hypothesis: the background volume must be the most important
class of the 3D image in term of voxel number. It is often the case for small specimen
observations, and it will be always the case in the present report. Under these hypothesis,
this is equivalent to find the grey-level global maximum of the satck.

This imposes a strong support constraint®, that we are not using here. We present in fig.
8 the results of the deconvolution on a 3D simulated image stack. On the original object,
the modelled background is 8, and on the degraded data, we compute a mean background
of 10, which is the maximum value to remove. We can see in fig. 8 the original object (a),
the degraded object (b), and the results of the deconvolution (Richardson-Lucy with Total
Variation) (c¢) without and (d) with background estimation and substraction. Qur purpose

8 A support constraint is a constraint on the spatial localization of the object. It generally supposes that
everything outside this support is zero.
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Figure 8:  The influence of the background estimation on the deconvolution using
Richardson-Lucy with Total Variation regularization. The regularization parameter is fixed
to 0.002. First and second columns represent synthetic object (a) and degraded image (b)
simulated using Eq. 16 ; third and fourth columns show the results of the deconvolution
without background estimation (c) and with background estimation and substraction (d).
The computed estimation is 10 (real value is 8). The object is a 128x128x64 object with a
voxel size of 250nm in XY and 600nm for Y Z. Dotted lines in XY images (top row) show
where the Y Z cut (bottom row) is taken.

is to compare the quality of the results (c) and (d), with and without background estimation
and substraction. Qualitatively, the images are the same in each directions, except for a
small difference of contrast: the contrast in part (d) is higher than the contrast in part
(c), but we see some oscillations in the background in part (d). Moreover, we can notice a
decrease in the intensity of the objects at their extremities. This leads to a high value of the
final I-divergence: the I-divergence final value is greater with background removal (around
42) than with no background removal (around 0.69). Quantitatively, the final background
is estimated to 3 in both case.

In some other experiments, we tried to remove greater values than those we estimate,
and we performed the deconvolution. Even if we remove a background greater by only 1
grey-level, the results are not satisfying: we observe some intensity oscillations at the borders
of the objects, that are not suitable.

4.5 Tikhonov regularization

If we choose another prior model for the object, the algorithm will be different. One of
the most famous regularization term in inverse problems is Tikhonov-Miller (TM) [56, 57]
regularization, often used in confocal microscopy [58, 62]. The main difference with TV
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regularization (Eq. 23) is the square in the term corresponding to the object model (see
Appendix C). TM-based algorithms have some known limitations, the main one being that
they do not preserve object edges. Minimizing this functional in the way of obtaining a
RL-based algorithm yields®:

Here again, we see that if the regularization parameter Ay is too high, we risk to violate
the non-negativity property of the RL algorithm. From experiments we learned that we
have to use smaller values for TM regularization parameter than for TV. The chosen values
are around 10~%. In Fig. 9, we choose A7y = 2.10~%; we see the original objects (a), the
degraded objects (b), and the deconvolution results for TV (¢) and TM (d).

(¢) (d)

Figure 9: Comparison between Tikhonov-Miller and Total Variation regularization. The
regularization parameter was fixed to Ay = 3.10~* for TM and to Ary = 0.002 for TV.
For TM, this is the highest value we can choose without obtaining negative values in the
algorithm. First column represents the synthetic object (a) and second column the degraded
object (b); third and fourth columns show the results of the deconvolution with TV (c¢) and
with TM regularization (d). The I-divergence for (c) is 0.69, and for (d) 1.25.

We have to compare third and fourth columns of Fig. 9. The results obtained with TV are
better than those obtained with TM: Fig. 9 (d) is more blurred after processing than (c).
This is a known effect of the TM regularization that does not respect the object edges and
smoothes them. The denoising is well performed, and the sizes of the deconvolved objects
are smaller than in reality. TV regularization preserves sharp edges and better respects the
sizes of the object, especially on the Y Z view. At convergence, the I-divergence value for
TM is 1.25 and 0.69 for TV. The stop threshold is fixed to 10~ for Fig. 9.

9See Appendix C for derivation.
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4.6 Additive algorithm with Gaussian statistics

In this section, we no longer assume that the image statistics is given by a Poisson distribu-
tion. Here we suppose that the image statistics is Gaussian and obeys the following image
formation model:

i(z) = o(z) x h(z) + ng(x) (28)

where ng is an additive white Gaussian noise. By choosing the Total Variation (TV) as a
prior model on the object, we obtain the following algorithm (see Appendix C for derivation):

/\d, Vok
a™ |Vor|
This is an additive gradient-based algorithm with TV regularization. We choose the same
regularization parameter of 0.002. In a gradient-descent algorithm, one must choose a suf-
ficiently small step « for the descent to converge slowly to the solution, to limit the risks
of stopping at a non suitable (insufficiently restored) solution. We choose a gradient step
of @ = 1.0. The results are shown in fig. 10. One advantage of using a gradient-descent
algorithm is that there is no chance to violate the non-negativity constraint (as for RL-based
algorithms) because it is not an intrinsic propertiy of the algorithm: we just have to impose
ourself a non-negativity by setting to zero at each iteration the negative values of the inten-
sity. We are now able to use large value for the regularization parameter, larger than for RL
(see in fig. 10, 0.002 for RL and 0.1 for the gradient-descent algorithm).

The results obtained under the hypothesis of a Gaussian noise are very satisfying: the blur
is removed, and there is no intensity oscillations inside the objects. Moreover, the object
dimensions are of the same order than in reality (see YZ view of Fig. 10). Even if the
simulated blur follows a Poisson law, the deconvolution of the images under the assumption
of a Gaussian noise and a TV regularization gives very good results.

ok+1(X) = o (X) + a | (A" % i) (x) — (h* x h) x 0 (x) — (29)

4.7 Conclusion

The deconvolution method based on a Richardson-Lucy algorithm with Total Variation
regularization gives very good results on 3D synthetic images. The images are degraded
using a PSF model and a multiplicative Poisson noise. It is possible to measure the amount
of restoration by using the I-divergence between the non-degraded image and the result of
the deconvolution. On geometrical object, we can see that the method does not smooth the
edges, but rounds the corners (see Fig. 6).

For fine structures and textured objects, we have tested the same algorithm on a synthetic
object in fig. 7). We can still notice some noise in deconvolved data (d), but the object
itself is well localized. Concerning the texture, we recover some of the larger scale features
(compare for instance subimages (a) and (d)), but very fine details of the texture are lost.
Moreover, we can notice the well-known stair-casing effects of the TV inside the object. The
improvement of the image using RL with TV is very high, but we have to be careful with
small details (like texture).
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() (d)

Figure 10: Under the assumption of Gaussian noise or Poisson noise. We compare the use
of Total Variation regularization for images degraded by a Poisson noise, supposing that the
noise is Poissonian (c¢) or Gaussian (d). First column represents the synthetic object (a) and
second column the degraded object (b); third and fourth columns show the results of the
deconvolution with TV (c) supposing Poisson noise, and with TV (d) supposing a Gaussian
noise. In the first case (c), the deconvolution is processed with a multiplicative algorithm
(RL) with TV regularization. In the second case (d), and the deconvolution is performed
using an additive gradient-descent algorithm. The regularization parameter was fixed to
to 0.002 for RL and to 0.1 for gradient-descent algorithm. Qualitatively, the Gaussian
approximation leads to worst results (I-divergence is 2.71 for (d)) than if we suppose a
Poisson noise (I-divergence is 0.69 for (c)).

We have also compared some other approaches as RL with Tikhonov-Miller (TM) regu-
larization. The proposed method using TV gives better results than TM, both qualitatively
and quantitatively: TM does not preserve the edges of the objects (they appear blurred),
but TV does.

We also made the assumption for the noise to be white Gaussian noise instead of Poisson
noise. We then used a gradient-descent type algorithm for deconvolution, regularized with
TV. This time, the results are very good and close to those obtained with RL with TV
regularization. Even if the noise statistics in confocal microscopy is proved to follow a Poisson
law, we can say that the assumption of a Gaussian noise for confocal data is acceptable and
leads to good results too.

INRIA



Richardson-Lucy with Total Variation Regularization 33

5 Real data

We have also tested the proposed deconvolution algorithm on real data acquired with a
confocal microscope. We have tested it on simple objects of known geometry: beads and
spherical shells. We study the limit of the Poisson distribution hypothesis by deconvolving
the same object acquired with different amounts of noise. It is more difficult to define a
quantitative measure of the deconvolution results because we do not have any reference on
the initial undegraded object (see section 3.5), but the geometrical data of the objects.

5.1 Microscope settings

The microscope and the objective we used were the same in all experiments. The microscope
is a confocal / multi-photon Zeiss Axiovert 200M, with an internal magnification (given by
the manufacturer) of 3.3x. The objective is an immersion oil Apochromat!® 63x with numer-
ical aperture NA = 1.4. The oil refractive index is 1.518 (23° C). The acquisition software
is Zeiss LSM 510 Meta which stores image stacks together with acquisition information in
its file format. It is a kind of 3D TIFF format including many owner tags. We extract a 2D
TIFF image sequence from this stack that we can read with standard libraries.

Here we define the noise level as the number of scanner passes for each line of the image
acquisition: this is the "line average" function, in the microscope’s acquisition software. A
noise level of 2 means that the scanner has measured 2 times each line of the acquired image
before taking the mean. Note that a noise level of 2 corresponds to a less noisy image than
a noise level of 1.

5.2 Test objects

We are using several real specimens shown in fig. 11. We are working with small fluorescent
beads!! (with diameters 6 (a) and 15 um (b)) and a spherical shell (c) of diameter (15 um)
and thickness between 0.5 to 0.7 um according to Molecular Probes'2.

5.3 Deconvolution of real data

We present the deconvolution of the test objects using the proposed method, based on
Richardson-Lucy (RL) algorithm with Total Variation (TV) regularization. The simulated
point spread functions (PSF) used for the deconvolution of Fig. 12 and Fig. 14 are not
represented here, because these are resampling of the one represented in fig. 2. Fig. 3 shows
the best observation of the real confocal PSF, not taken at Nyquist rate, that have to be
compared to Fig. 2.

10 Apochromat is a chromatic aberration correction. From wordreference.com, that is a microscope ob-
jective composed by "a lens, consisting of three or more elements of different types of glass, that is designed
to bring light of three colours to the same focal point, thus reducing its chromatic aberration".

1 Pluorescent microspheres are FocalCheckT™ F-24634.

12)\[olecular Probes is the main manufacturer of fluorescence test objects such as microspheres, calibration
grids, etc. http://www.probes.com
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Figure 11: Fluorescent beads used in experiments. (a) and (b) are spherical beads with
diameters 6 (a) and 15um (b); (c) is a spherical shell of diameter 15 um stained with a
fluorescent dye only on its surface (penetration depth between 500 to 700nm, according to
manufacturer specifications).

Spherical shell We propose the deconvolution of a spherical shell of 15 um. The acquisi-
tion parameters are the following:

e excitation wavelength: ., = 520nm;
e emission wavelength: A.,, = 488 nm,;
e pinhole size: 1 Airy;

e line average: none;

XY sampling: 89 nm per pixel (Nyquist);
e Z sampling: 230 nm per pixel (Nyquist);
e image volume: 256x256x128 pixels.

The results are shown in fig. 12: (a) are the raw data, (b) are the results of the decon-
volution by standard RL, and (c¢) the results of the deconvolution using RL with TV. The
noise amplification by RL occured after 486 iterations for (b) (I-divergence is 60.65), and the
convergence of RL with TV (threshold of 10~*) after 359 iterations (I-divergence is 60.63).
There is no quantitative improvement between these two methods. Qualitatively, the results
are nearly the same. The improvements we obtain from TV are better localization of the
borders (see Fig. 13) and a better estimation of the shell thickness. As we have seen in
section 5.2, the actual thickness of the shell is known to lie between 0.5 to 0.7 um; in the
restored image (a) we measure a thickness of 0.93um which is too large, 0.26 in image (b)
which is too small, and 0.40 in image (c), which also too small, but lies closer to the real
value.
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(©)

Figure 12: Deconvolution of a spherical shell image. First row represents the central XY
image, and second line the central axial section of this stack corresponding to the dotted
line. There is no resampling to obtain the same scale in X, Y and Z, only a resizing of the
image. (a) represents the raw data, (b) the processed data using standard Richardson-Lucy,
and (c) the processed data using RL and Total Variation regularization. The final values of
I-divergence are 60.65 for standard RL and 60.63 for RL with TV.

Multiple object deconvolution We have tested the proposed deconvolution algorithm
on a cluster of almost touching beads of diameter 6 um (Fig. 11 (b)) to see if there is any
interaction between objects during the deconvolution process. As we can see in fig. 14, the
objects appear separate and the restoration intoduce no overlap.

For the deconvolution, we used a regularization parameter Ary of 0.005. The results
of the deconvolution is not perfect, since there is still some blur in the three dimensions.
However the residual blur may be due to a smooth gradient of the actual bead intensity.
Nevertheless, there is no more noise in processed images (c), and there is no bead overlapping.
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Figure 13: The TV reinforces the edges. Intensity profile of two XY images represented
in fig. 12 (b) and (c), in the middle (cf. dotted line of Fig. 12 (a)). This is the right part
of the ring. The outer (red) curve is the result of RL with TV and the inner (green) curve
the result of standard RL. We can see that the TV regularization reinforces the edges of the
shell, and that the restored shell thickness is larger. 1 pixel is 89nm.

5.4 The noise level and the deconvolution

We are working here on a single spherical shell, the same presented in section 5.3. We
propose to study the influence of the noise on the deconvolution results by acquiring the
same specimen four times under identical conditions except for a different line average (see
section 5.1): no line average in fig. 12, a line average of 2 in fig. 15, of 4 in fig. 16 and of 8
in fig. 17. Poisson statistics is always verified, but we mathematically know that averaging
Poisson distribution tends to a Gaussian distribution. We use the same parameters as
previous experiments, except for the line averaging which is 2.

In each figure, from Fig. 15 to 17, the first row represents raw data, the second row
processed data. As we have already seen, there is no line average in fig. 12 (the noise level
is highest). On each figure, we can qualitatively see very good results with RL with TV: the
blur and the noise are removed from each represented section, and the thickness of the shell
is closer than the true value.

For each level of noise, the deconvolution creates a gap inside the image. This always
corresponds to a transition zone (see Y Z views on Fig. 12 to 17) between two non-connected
circular arcs: one (top) is due to the fluorescence (image formation) but the other (bottom)
circular arc is partially due to the reflexion of the laser on the mounting glass. But this
gap can be easily explained knowing the properties of the TV. There are two zones of lower
intensity at the extremities of the bottom circle arcs (Y Z views of Fig. 12 to 17). As TV
reiforces the edges, this intensity loss is considered as a "gap", and the borders are not
connected together.

INRIA



Richardson-Lucy with Total Variation Regularization 37

(c)

Figure 14: A cluster of 4 fluorescent beads of 6 um. Top row shows XY views and bottom
row shows Y Z views. The stack is initially 256x256x128 with voxels of size 89x89x230nm.
(a) raw data, (b) processed data using standard RL, and (c) processed data using RL with
TV regularization (Ary = 0.005). (b) presents a high level of noise and the axial view shows
some oscillation artefacts. In image (c), these degradations are no longer visible.

In contrast, we have a very good denoising and deblurring on all images, and we can
notice that the thickness of restored shell decreases when the line average increases. This
thickness decrease is most evident in Y Z cuts (see Fig. 12 to 17, right column, Y Z views).
This is normal, as the noise becomes less important with increased averaging. But in fig.
17, for the most averaged acquisition, the thickness is too low compared to the values given
by the manufacturer. For a line average of 8, as the image statistics is closer to a Gaussian
statistics, the deconvolution algorithm based on Poisson statistics reaches its limits and
should not be used.

5.5 Summary

We have tested the deconvolution algorithm on several types of real objects: beads and
spherical shells. The method gives good results both qualitatively and quantitatively: edges
are sharper and noise is removed in the three dimensions. Nevertheless, we have noticed
some limitations of the method. For images with moderate noise levels, the standard RL
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(b) (c)

Figure 15: The spherical shell imaged with a line average of 2. Otherwise as in Fig. 12.

algorithm is sufficient to deconvolve the data (see, for instance, the images of the shell in
fig. 12 to 17). The TV regularization effects are to make the edges sharper and more easy
to detect for measuring the shell thickness. For objects with a high level of noise (see Fig.
14), standard RL is not sufficient for denoising.
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(b) (c)

Figure 16: The spherical shell imaged with a line average of 4. Otherwise as in Fig. 12.
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(b) (c)

Figure 17: The spherical shell imaged with a line average of 8. Otherwise as in Fig. 12.

INRIA



Richardson-Lucy with Total Variation Regularization 41

6 Conclusion

6.1 Summary

In this research report, we have presented a new deconvolution approach for 3D confocal
microscopy. It is based on the well-known Richardson-Lucy (RL) algorithm which is regular-
ized using the Total Variation (TV) norm. RL with no regularization does not converge to an
acceptable solution, since the solution is either non-convergent or dominated by the noise.
In the literature, many authors have proposed to regularize this algorithm with different
functionals (see section 2). Tikhonov-Miller functional is often used, but it over-smoothes
the edges of objects in the image. We have proposed in this research report to use a new
regularization term based on Total Variation, which is not quadratic and does not smooth
edges (section 3). We have presented some results on simulated data (section 4) and on real
data (section 5): the method gives very good results both qualitatively and quantitatively.

In [62, 65], van Kempen et al. have studied the influence of the background on the
deconvolution. Actually, it speeds the convergence of the algorithm. They model the image
formation process including the background. We do not take the background into account
in the present paper because we make the assumption that estimating the background is a
very hard regularization as it defines a strong support constraint. As we can see on results
(see sections 4 and 5), the background is removed even with no early background estimation.
We have studied the influence of the background in section 3.

The limitations of the proposed deconvolution algorithm with Total Variation regulariza-
tion are known: for geometrical objects, the corners are rounded, and small details as well
as texture are lost. This is an effect of the Total Variation, and this should be improved.

6.2 Future work

There are two different ways to improve the method: on the one hand, improving the
functional that leads to the RL algorithm and the algorithm itself to avoid some numerical
effects; on the other hand, the improvement concerns the point spread function (PSF) model,
taking into account more details of the physics of the system. Another enhancement which
could lead to a more user-friendly application would be an automatic parameter estimation
(as done in 2D in [21, 26]), to have a more general method.

Improving the global image processing model As we already said, the TV regu-
larization is not very adapted for fine structures such as actin filaments, which are often
observed in biology and have diameters of around 8 nm and textures. The deconvolution
of these kinds of objects will not lead to good results. In 2D, Malgouyres [33] proposes a
hybrid model based on wavelet decomposition on the one hand, and a Total Variation based-
denoising on the other. The wavelet decomposition permit to express and save the texture,
while the algorithm based on TV is processing the rest of the image (only homogeneous
part and noise). We plan to extend to 3D this idea by using both wavelets and TV-based
deconvolution to restore real confocal images.
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Another approach will be to extend the 2D non-iterative deconvolution model from
Jalobeanu et al. [27]. This algorithm was designed for satelite image processing, but could
be adapted to 3D confocal image restoration. This is a one-pass algorithm that first roughly
deconvolves the image, with no regularization: the noise is strongly amplified, but the signal
is still present. An adapted decomposition on a wavelet basis, followed by a thresholding
(to remove noisy coefficients) leads to very good results in 2D.

Improving the image formation model On simulated data, we do not have to model
a very precise PSF. Actually, as the same PSF is used for simulating the degradations over
the image, and for the deconvolution, there is no risk of error for the PSF estimation. That
is no longer the case when we are working with real data. Then we have to model accurately
the PSF to have a suitable representation of the real PSF. To do this, we have to study very
carefully the optical system and the specimen, to propose the most adapted model of PSF
for the deconvolution.

We have seen (in section 2) that there are several possible models for a confocal mi-
croscope PSF. A direct measurement of the PSF is also possible but extremely sensitive to
experimental conditions. However, this method has the advantage of taking into account the
imperfections of the whole optical system. Any imperfection in the optical system influences
the PSF: it is aberated.

When the PSF is aberated, it is not symmetric in the axial direction. These aberrations
come from different sources: objective design (spherical aberration), bad alignment of the
optical components, medium refractive index far from specimen refractive index (also known
as refractive index mismatch), and many other.

Concerning the optical system of the microscope, spherical aberrations [17, 18, 20, 54]
are the main optical aberrations. But some other aberrations come from the specimen and
its preparation. Actually, the specimen itself and the mounting medium may induce many
other aberrations if their refractive indexes are too different. This refractive index mismatch
is discussed in [40] and [54].

In addition, to have a very precise PSF model, we have to take into account most of
these aberration effects.
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A Introduction to confocal microscopy

In this appendix, we briefly review the confocal microscopy principles. A very good reference
can be found in [69] or on the website of Molecular Expression'3. The confocal microscope
was introduced by Minsky [36] in the 50", First we give some definitions of optical and de-
convolution terminology. The second section explains how a confocal microscope works. We
finally discuss the improvement of confocal microscopy relative to conventional microscopy.

Some definitions

Here we list terms that are used in this research report. Fig. 19 illustrates the main part of
the microscope.

e objective: the objective (see Fig. 19) is an assembly of lenses which introduces the
primary magnification of the system. It also defines the numerical aperture (NA) of
the system;

e numerical aperture: the numerical aperture (N A) is related to the maximum angle
of light ray a,,q, that can be collected by the objective. The N A is also proportional
to the index of refraction n of the objective immersion liquid: NA = n sin pqz-
The resolution of an objective is proportional to the N A, and the amount of light
collected by an objective from an isotropic emitter (such as an excited fluorophore) is
proportional to N A?;

e immersion medium: an objective which is used without immersion medium is said to
be dry, and then the N A value is at most 1. To increase this value, manufacturers
have developped immersion objectives, often used with an oil'* of refractive index of
1.515;

e pinhole: the pinhole is a small diaphragm (typically diameter around 1Airy Unit ~
230 nm) which lets light emitted from the focal point pass through but rejects light from
out-of-focus regions of the specimen. A completely opened diaphragm causes total loss
of confocality of the microscope and the microscope is then completely equivalent to
a widefield conventional fluorescence microscopy;

e lateral directions: these are the directions perpendicular to the observation axis,
denoted by X and Y;

e axial direction: the direction along the observation axis, denoted by Z;

e out-of-focus blur: when imaging thick specimens, some parts of the specimens
appear blurred. They are blurred because they are not exactly focused by the micro-
scope. The PSF becomes wider with distance from the focus, although the integrated

13http://www.microscopyu.com/articles/confocal/index.html
14Bjologists also use water-immersion objectives to observe directly live cells, tissues and embryos.
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intensity of out-of-focus contributions is practically the same as in focus. The pinhole
in the observation path reduces the out-of-focus blur;

low-photon imagery: in low-photon imagery, only a few photons are detected per
image pixel. The process of low photon counting is well represented by a Poisson
process, and leads to multiplicative noise accumulation;

wavelength: the wavelength A of a light radiation (or for a photon) is related to the
distance (measured in the direction of propagation) between two points in the same
phase in consecutive cycles of a wave. The wavelength is related to the energy and the
color of the radiation. It determines the minimal width of interference patterns, and
therefore the resolution of an imaging system;

excitation wavelength: the wavelength of the light that is generated by the laser,
and used to excite fluorophores in the specimen;

emission wavelength: the wavelength of the fluorescence light that is emitted by the
fluorescent dye in the specimen;

Stokes shift: the difference between the excitation and the emission wavelengths;

cut-off frequency: the cut-off frequency of an optical system is the maximum spa-
tial frequency that can enter the microscope objective. It is given by the physical
limitations of the system, and the diffraction theory. For a confocal microscope, see
[62, pp. 31-32];

lateral cut-off frequency: the cut-off frequency F.,, in the XY directions;
axial cut-off frequency: the cut-off frequency F., for Z direction;

Nyquist lateral frequency: the Nyquist lateral frequency 4z, is the minimum
sampling frequency that avoids spectral aliasing. The Nyquist lateral frequency is
twice the lateral cut-off frequency Frozyy > 2 Feyy , and gives the smallest sampling
frequency that allows to reconstruct the signal with no loss of information;

Nyquist axial frequency: like Nyquist lateral frequency in XY, Fiyqz, is twice the
axial cut-off frequency to avoid aliasing when sampling the image in Z;

lateral sampling resolution: dxy is the sampling in XY at the lateral Nyquist
frequencys;

axial sampling resolution: dz is the sampling in Z at the axial Nyquist frequency;
Nyquist lateral sampling: the maximal sampling in XY that avoid aliasing;

Nyquist axial sampling: the maximal sampling in Z with no aliasing;
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Preparation of the specimen

Let us suppose that we want to observe a specimen using a confocal microscope. Before
mounting the specimen on a glass slide, we choose one or more dyes to specifically label
some parts of the specimen. These dyes are absorbed by the target parts of the specimen
and fluoresce when they are illuminated by a beam of a specific wavelength. Fluorescence
is explained in Fig. 18. When a photon is absorbed by the molecule, it is excited to a
high electronic level. The molecule will quickly loose this energy in one or several ways, e.g.
collision with other molecules or transition to other possible modes of vibration. Fluorescence
occurs when the molecule returns to the electronic ground state, from the excited singlet
state, by emission of a photon. This is not the only possible transition, but the only one
leading to fluorescence.
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Figure 18: The process of fluorescence: if a photon of wavelength .. is absorbed by a
molecule of a dye, the molecule is excited. F, is the ground state and E.,, and E., two
different excitation states. The vibrational energy of the excited state is usually different
from the ground state; therefore the dye relaxes with p seconds losing some energy (non-
radiative desexcitation) and then, after n seconds decay, emits a photon (fluorescence) or
may also loose energy by creating a radical. During an image acquisition, this is known as
the bleaching effect, which appears as a loss of intensity in time inside the specimen: more
and more dye molecules are chemically transformed into other non fluorescent molecules.
For more information, you can have further explications on the Jablonski energy diagram
on http://www.microscopy.fsu.edu/primer/java/jablonski/lightandcolor/.

RR n° 5272



46 Dey et al.

Confocal principle

Fig. 19 represents the image formation process in a confocal laser scanning microscope
(CLSM). The excitation light is generated by a laser of wavelength \.,. The condenser
lenses create a parallel beam which is mostly reflected by a dichroic beam splitter to the
objective lens. The objective lens focuses the light onto one point on the specimen. If this
point contains a fluorescent dye, the dye will absorb the impinging light and become excited.
After few nanoseconds, the fluorescent molecule returns to the ground state and reemits light
isotropically. Due to the Stokes shift, the emitted light (i.e. the detected light) wavelength is
longer. The intensity of the fluorescent emission is 10~ or less of the intensity of the excited
light, due to the absorption cross section, the fluorescent yield and the collection efficiency
of the fluorescence detection. We can now understand why there is so little emitted light.
The part of the light which goes through the objective passes through the beam splitter and
the image formation lens focuses it to the pinhole, and behind to the photomultiplier. As
the emission volume in the specimen is not infinitely small, some out-of-focus light is also
collected by the objective. The pinhole (i.e. a very small aperture) between the imaging lens
and the photomultiplier dramatically attenuate fluorescence which comes from out-of-focus.

Advantages of confocal over conventional microscopy

Reduction of the blur The comparison of imaging biological structures in conventional
and confocal microscopy is discussed in [68]. The main advantage of confocal microscopy is
the reduction of blur in the axial (Z) direction. It is also known as "background rejection"
[46]. In Fig. 20, we represent in a geometrical way the principle of the confocal pinhole.
For a conventional widefield microscope, there is no pinhole, and the contributions of blur
in this case is very high compared to a confocal system.

In the lateral (XY") directions, the reduction of blur exists too. Looking at the formu-
lation of the PSF (see Appendix B), the confocal PSF is approximatively the square of the
widefield PSF. Its lateral size is thus considerably reduced'®. These reductions of blur in
all directions have the further advantage that it theoretically increases the resolution in the
three directions.

Resolution increase The most common lateral resolution definition is given by the
Rayleigh criterion. In any optical system, the image of one point is a diffraction pattern
with maxima and minima. Considering the image of two source points of the same intensity,
the Rayleigh criterion is:

15We cannot use the criterion of the first minima (i.e. the size of the PSF is defined between the first
minima), because the widefield PSF and the confocal PSF have the same first minima. As there is an
intensity loss, we have to define and estimate the new minimum that will define the resolution. This is
really user dependant, but most of the specialists use a value of % or ﬁ If we want to compare this to
a Gaussian (no minimum mathematically speaking), we may define the resolution limit as the full width at
half maximum (FWHM); if the widefield PSF is a Gaussian, the confocal PSF is a Gaussian with a FWHM
of % times the widefield one. In [10], the authors are discussing about the practical limits of the resolution
in confocal microscopy.
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Figure 19: Confocal laser scanning microscope. The laser is the excitation light source. After
spatially extending the laser beam, the light is partially reflected on a beam splitter. The
reflected light arrives at the objective lens (bottom lens), which focuses it onto a specimen
point. If it is fluorescent, it reemits some light. A part of this emitted light goes through
the objective lens, and then the beam splitter. The image forming lens focuses the light on
the photomultiplier (top), located just after the pinhole.
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out-of—focus = pinhole——

Figure 20: In a confocal system, the pinhole reduces the contributions of out-of-focus parts
of the specimen: only focused regions are detected in full intensity.

"Two components of equal intensity should be considered to be just resolved
when the principal intensity maximum of one coincides with the first intensity
minimum of other."[4, p. 371]

For a widefield microscope, the lateral resolution'® is given by [4, p. 466]:

0.61),
NA

A, is the excitation wavelength [61, p.4] in the vacuum, N A is the numerical aperture, and
the factor 0.61 comes from the distance of the first minimum of an Airy function, the most
common diffraction pattern when having a circular symmetry. The axial resolution is related
to the depth-of-focus!” of the microscope and is discussed in [52] in the widefield case. For
a high aperture, and no paraxial approximation, the most common formulation is:

Xy = (30)

_0.885),
vz N, — /N2 — N A2

N, is the refractive index of the immersion oil of the objective. vz is the distance over which
the intensity is more than half the maximum. In confocal microscopy, resolution in XY and

(31)

16Many definitions of lateral resolution does exist. The main difference is the definition of the criterion
concerning the higher maximum of the diffraction pattern, and the only change is the multiplicative constant:
Rayleigh criterion has a constant of 0.61; sometime the definition could be the full width at half maximum
(FWHM) of 0.51.

17Depth-of-focus is a subjective value depending on a definition. This explains why we can see different
definitions for the depth-of-field in the litterature. In his paper, Sheppard [52] try to present the different
formulations for a conventional microscope.
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Z are divided by a factor 2 [61, p. 4]: the resolution in each directions is better. Thus, for
a confocal microscope:

(32)

conf __

vy = Txy
77 = 3z

Sampling at a good rate

In the physical space, we have to deal with the system cut-off frequency that is pi"® = 21}7—(‘)“
for a widefield system, or the system resolution given by the Rayleigh criterion, that is
approximately the inverse v = %8120,

The Nyquist sampling theorem tells us that for a bandlimited system, the ideal sampling
frequency should not be less than twice the cut-off frequency: psampiing > 2pic. In the

direct space, it is equivalent to set sampling distance (the "size" of one pixel) to less than

A
WF _ 0
AmyNyq'u.is't - m (33)
For an immersion objective with 1.4 NA and a wavelength Ay = 488nm, we found

Azxy = 87nm for a widefield system.

The fluorescent confocal case

In the fluorescent confocal case, the cut-off frequency is higher than the cut-off frequency
for a conventional system: pin¢ conf = 4]X—f. The Nyquist sampling distance is then

A

conf _ 0

AmyNyquist - m (34)
For a confocal system with NA = 1.4 and \g = 488nm, we find Azy," qu’st = 43.6nm.

Actually, if we suppose the confocal to be perfect (infinitelly small pinhole), the PSF of

~ 2 |4
the fluorescent system is [38, 53, 58, 59, 60] PSF = ‘PAM . ‘P,\m

that is equivalent to say that the OTF is the autocorrelation of the autocorrelation of the
pupil function: the cut-off frequency is then four time the cut-off frequency of P.

2
. Supposing Aep ~ Aeg,

The axial cut-off frequency

The axial cut-off frequency is related to the depth-of-field (DoF) of the microscope. The
DoF is defined as the distance over which the intensity is more than half the maximum [52]:

/\0 )\0 /\0
Az=171T—F=F—=1TT—/——-==0.885
¢ 4n sin’ 5 2n(1 — cos ) (n —v/n? — NA2)

As for the xy resolution, we take the cut-off frequency in z to define the sampling distance:
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(n — vn? — NA?)
c AO

for a widefield system and w"®°°™f = 2" for a confocal system. The Nyquist distance
in the axial direction is

Azconf _ 1 A0
Nyauist = 4 (p — \/n? — NA2)
For \g =488nm, NA = 1.4 and n = 1.515, we compute Azf\f;;cuist = 130nm.

Fixing a sampling value

Let us suppose we want to sample our image according to Nyquist’s sampling rule. The phys-
ical size of one voxel becomes, in the confocal case, Azy$e™ . xAz%™ We aquire an im-

Nyquist Nyquist*
age volume of 256x256x32 which corresponds to a volume of 256 Azy " qfu 15 X256 ATy qfu ierXe

32Azf\‘,’;fmst which correspond approximately to a volume in space of 11.1x11.1x4.2um. In
the frequency space, this is equivalent to say that the cut-off frequency is exactly on the

(3D) boundaries of the image volume.
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B The physics of the point spread function

The pupil function of an optical system

In an optical system, it is well-known that the image of one single point (written as the
Dirac distribution §(X,Y")) is not really a point, but a diffraction pattern resulting from the
limited apertures of the optical system and finite wavelength of light. Actually, only one
finite-size aperture could be taken into account by considering only the exit pupil, defined
as the most light limitting pupil inside all the optical system. Mathematically, the light
wavefront in this pupil is written with a function called the pupil function P. We assume
that we are working with incoherent monochromatic light'®, and the theory [4] shows that
the image of one point is related with the squared modulus of the Fourier’s transform of the
pupil function.

Circular pupil function

Many shapes of pupil could be considered, but we only study here the case of a circular
pupil of radius R giving the following pupil function:

1if vVX24+Y2<R

PX, Y) = { 0  otherwise (35)

This pupil function is circularly symmetric, so we can redefine it as P(r), r = v/ X2 + Y2
being the radius from the origin. Now it is easy to calculate the Fourier’s transform (FT)
of this function, introducing p = VU2 + V2, § = arctan ¥ and ¢ = arctan %:

R 2w
?(p) — / / e—217rpr(cos 6 cos ¢+sin 0 sin (;5)7, dr db (36)
0 0
R 2w )
— / r dT/ 67217rpr cos(07¢)d0 (37)
0 0

The zeroth order Bessel function is defined as Jy(z) = fo% et cos(6-%) 4@ then we can
write:

18First assumption is monochromatic light and second assumption incoherent light.
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R
(o) = / Jo(2mpr) T dr (38)
0
1 2wpR
= 271'p2 Jo(w)wdw (39)
1
-__ 9 2 4
s 2ROR (21 F) (40)
J1 (27I'pR)
_ 2
=7R (2727rpR (41)

J1(z) being the first order Bessel function. The first zero of this function oceurs for pR = 0.61

, well-known as

(no unit). The incoherent PSF is proportional to the quantity | R

the "Airy pattern".

Circular pupil function in microscopy

In microscopy, we never access directly the radius of the pupil R, but microscope objectives
always relate a dimensionless quantity, the numerical aperture (N A). Moreover, we know
[4] that the first zero of the Airy pattern is given by the Rayleigh criterion v = & 61’\0 . This
gives the resolution of the optical system, supposing that two points in the ob Ject space give
two resolved points in the image space if the maximum of one’s Airy pattern corresponds to

the first zero of the other’s. We deduce that the PSF is proportional to |2% with
ko = i—’g is the wave vector. The relation between p and r is p = %

The 2D incoherent PSF and OTF

As we have already seen, the PSF of an optical system with monochromatic incoherent light
is the squared modulus of the Airy pattern PSF = |Airy|2. An Airy function is given by

|2
the FT of a circular pupil function, P. The PSF of the system is then PSF = ‘P‘ . The
normalized PSF is:

Jl ]C()NAT‘)
N koNAT

inc (

+o0 2
WrE ithN:/ ‘QM dr (42)

koNA’f‘

2
The optical transfer function (OTF) is the FT of the PSF. As PSF = , the OTF is the

autocorrelation of the pupil function OT'F = P x P where x denotes the convolution product
and P the complex conjugate of P. P has a limited bandwith attained for r = R. Then,

INRIA



Richardson-Lucy with Total Variation Regularization 53

the autocorrelation product (the OTF) has the double of this bandwith!®. We can deduce
the incoherent cut-off frequency of the system given for r = 2R, thus pi"® = 21;’—?. To find
an analytical form of the OTF, refer to [24, 55].

Numerical calculation of the PSF

Calculating the numerical values of the PSF knowing its analytical definition is very time
consuming because of Bessel function computations. The best way to perform this, is to
calculate first the OTF, and then the PSF with a Fourier transform. The autocorrelation
product is calculated using the FT:

1. sample the defocused pupil function (frequencies space (U,V, Z));
2. perform its 2D FT (direct space (X,Y, Z));

3. take its squared modulus (PSF) (direct space (X,Y, Z));

4. perform its inverse FT (OTF) (frequency space (U,V, 2));

Please note that we are working in 2D: for each Z, we calculate the defocused pupil
function, then perform a 2D FT, etc. To have a 3D PSF, we pile each 2D plane in the order
of the Z value. The 3D OTF is then obtained by applying a 3D FFT on this 3D PSF.

The 3D incoherent PSF
In the widefield case, the 3D OTF for wavelength A is defined by:

OTF,\(U,V,W) = (P« P) (U, V,W) (43)
As a definition, the 3D PSF is the FT of the OTF:

PSF\(X,Y, Z) = Fouriersp [OTF\(U,V,W)] (44)

As the light passes 2 times through the objective, with two different wavelengths, the ideal
confocal OTF is defined as:

OT Foons(U,V,W) = (pa.. * Px..) * (Px... * Px...) (U, V,W) (45)
and its PSF:

PSFcons(U,V,W)=(PSF\,,)(PSFy,, ) (X,Y,Z) (46)

197t is easy to demonstrate with a scheme: the autocorrelation product is proportional to the common
area of the P spectrum and its sliding complex conjugate spectrum. It is zero when these two spectrum stop
to overlap, which is when the zero frequencies are distant from one time the bandwith.
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Aez being the excitation wavelength and A, the emission wavelength. If the Stokes shift
(see Appendix A) is zero, the confocal PSF is the square of the widefield PSF:

PSFgons(U,V,W) = (PSF\)* (X,Y, Z) (47)

which is a usual approximation.

The size of the pinhole

Until now, we have supposed that the pinhole (which limits the out-of-focus contributions
of the light) was a perfect one. Its mathematical definition is then given by a 2D Dirac
function A(X,Y) = §(X,Y). Using the definition 72 = X2 + Y2, we have A(r) = §(r).
On real confocal systems, the pinhole has a non-zero physical size, because it can not be
infinitely small. Its size is more often given in Airy units (AU) than in nanometers?’. The
advantage of the AU is that it takes the light wavelength into account. A typical size of
a usable pinhole is 1 AU, since it allows more than 70 % of the in-focus light to reach the
PMT detector. The final PSF, containing both the contributions of the excitation light, the
emission light and the pinhole, is given by:

(48)

PSF(r,Z) = {A(r) « ‘2

~ 2 ~
P2} P 2)

If the pinhole is perfect, we find the FT of Eq. 45, and if the pinhole is very large, the
first part of Eq. 48 vanishes and we have the PSF of a widefield system. The pinhole of a
radius of R’ is given by:

_ [ 1lifr <R

Ar) = { 0 elsewhere (49)

The final computation of the PSF in our model

We describe here how we compute the 3D PSF of a confocal microscope in our implemen-
tation. We just suppose that we know the needed physical values of our system:

e for the objective, its magnification (M) and its numerical aperture (N A);
e for the pinhole, its diameter;

e for the light, both its emission (\en,) and excitation (A.;) wavelengths;

20gcale: 1 AU = O.GIﬁ nanometers, if A is in nanometers.
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2

The first part A(r)  |Py,(r, Z)

1. Calculate the pupil function P,(r) = P(r, Z) for a given defocus Z;
2. Doing the same for all Z in the range of the axial cut-off frequency;
3. Performing a 2D FT to obtain Py (r);

4. Take its square modulus;

2

?

5. Piling up numerically all the ‘f’z (r)

6. Convolve it with A(r).

The computation require many 2D FT (depending on the Z sampling) for step 3, and
two 3D FFT for step 6..

The second part ‘ﬁ,\em (r, Z)‘

1. Calculate the pupil function Pz(r) = P(r, Z) for a given defocus Z;
2. Doing the same for all Z in the range of the axial cut-off frequency;
3. Performing a 2D FT to obtain Py (r);

4. Take its square modulus;

2

Y

5. Piling up numerically all the ‘]32 (r)
~ 2
6. Multiply it by the first part A(r) ‘PACI (r, Z)‘

The computation require many 2D FT depending on the Z sampling for step 3, and no
3D FFT.
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C The deconvolution algorithms in detail

In this appendix, we present the algorithms that are used in this research report in more
detail. We also give the derivations that lead to these algorithms. First we present some
algorithms derived under the hypothesis of a Poisson noise: the standard Richardson-Lucy
(RL) algorithm and then, RL with different regularizations such as Tikhonov-Miller and
Total Variation. At the end of this appendix, we propose an additive gradient-descent
algorithm based under the assumption of a Gaussian noise. We present this algorithm with
and without Total Variation regularization.

Image formation

We assume the following image formation model: i(z) = (o * h)(X). ¢ is the image, o the
object and h the impulse function of the system, known as the point spread function (PSF).
The variable x is 2— or 3—dimensions and is (X, Y) or (X, Y, Z). This equation is written
under the assumption of no noise. If we have Poisson noise (such in confocal microscope
imaging), we have to deal with i = p (0 * h), p being the Poisson distribution. We remind
that with a Bayesian approach, we can write:

~

p&wé>=p@|o>§%} (50)

where p(i | 0) is the likelihood probability, p(o | i) the a posteriori probability, and p(o) a
prior model on the object.

In the presence of a Poisson process

In a deconvolution problem, if we assume that the image statistics is described by a Poisson
process, the likelihood probability could be expressed as [30]:
]i(z) e—(hxo)(z)

pii o) =[],

where i = @ (h * 0), p being a Poisson process. One way to solve this problem is to maximize
equation 51, which is equivalent to minimize:

(51)

—logp(i | o) = / [(h*0)(z) —i(z).log (h x 0) (x) + log (i(z) )] dx (52)

where the term log (i(x)!) in Eq. 52 is a constant relatively to o. We can thus define the
new functional to minimize as:

Ji(o) = / [(h*0)(z) —i(z).log (h*0) (x)] dx (53)
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Early minimization

Let us suppose that the functional s(z) is a 2D or 3D image, and that the variable x could
be (X,Y) or (X,Y, Z); p is a parameter. Considering a small perturbation ps of o, Eq. 53
becomes:

Ji(o+ ps) = / [(h*(0+ ps)) (x) —i(x).log (h * (0 + ps)) (z)] dz (54)

Omitting the (z) dependence in the notations, we rewrite Eq. 54 as:

J1(0+ps):/$[(h*o)+p(h*s)—i.log [(h*o) (1+pEZ:Z;)”daz (55)
:/m[(h*o)+p(h*s)—i.log(h*o)—pz’.g:iz;] dz (56)
:J1(o)+p/$ [(h*s)—i.gzzzg]dx (57)

Calculating the solution of VJ; =0

Defining the scalar product (f, g) = (g, f) = [ (f.g) (x)dz, we have the following equality
for the derivative of Ji:

Expressing the second term of Eq. 57 as a scalar product leads to:

/Z[(h*ﬂ—i.EZiz;]dw:(l,s*h)—<ﬁ,h*g> (59)
:<h*78>_<ﬁ*h*’s> (60)

- /z s. [h* — B x (Z(tho)ﬂ dx (61)

Here we have used the notation h* for the adjoint of the operator h, using the fact that
(g9, f*s) = (g*s*, f) (not shown here). For the PSF h, we may also write that h*(z) =
h(—x). We are now able to express V,J; = % as:

VJi(o) = h(—z) * [1 - &] (62)
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We can now minimize Eq. 62, i.e. solve V.J;(0) = 0:

i(z)
h(—z)dx — h(— —— =0
[ )iz =)« (63)
We assume that the PSF h(z) is normalized to 1, then [ h(—z)dxz = 1. This is a well used
assumption in optics. We have:

’“‘x)*(h*oﬂx)

=1 (64)

The multiplicative algorithm: Richardson-Lucy

By solving Eq. 64 in a multiplicative way, we can derive the following algorithm, by assuming
that at convergence, the ratio "(’j:—(lx) is 1:
i(z)

D * G on) (@)
This is the well-known Richardson-Lucy (RL) algorithm. RL algorithm has the interesting
property of non-negativity: if the first estimate (actually og(z)) is non-negative, none of the
further estimate will be negative. Nevertheless, for noisy images, RL does not converge to
a suitable solution in the general case, as it amplifies the noise after several iteration; one
must stop iterations before this happens. Note that the algorithm usually converges slowly
to the suitable solution at first, and wanders slowly from this solution after a while. We can
choose a stop criterion based on the absolute number of iterations, or based on the difference

ok+1(z) = or(z) |h(= (65)

between two estimations o, and oy for instance, such as s = W Another
problem with RL is its non-convergence with no regularization and the denominator which
may have some zero values. We choose to set to 0 every value for which the denominator of

or+1(x) is too small.

The additive form of the algorithm

Still under the assumption of a Poisson process, we can also use the additive version of the
RL algorithm given by Eq. 65:

Okt+1 =0 + 6t (1 — h(—zx) * %) (66)

This is an additive gradient-descent algorithm based on a Poisson process; the parameter 6t
regulates the step of the descent, i.e. the step between two iterations.
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Regularizations

We have seen that the standard RL does not always converge to a suitable solution. That is
because we have not introduced any information on the object. If we propose a prior model
on the object, we regularize the solution. We will now maximize the a posteriori probability
instead of maximizing the likelihood probability.

The Tikhonov-Miller regularization Tikhonov-Miller have introduced a regularization
term based on the L2 norm of the image. It could be modelled as an a priori model on the
object, thus we can write the statistics on the object as pra(0) = Nyyre ra LoIVo(@)*,
A7 is the regularization parameter for TM regularization term, and N7y is the normal-
ization constant for the probability. To take into account the object model, we have to
maximize the a posteriori probability p(o | 7). We have to minimize the functional:

Jr(0) = / [(h % 0) (z) — i(2). 1og ( * 0) (2)] dz + Aras / Vo(z)[? do (67)

The derivative of the first term gives the same result as Eq. 62, and the minimization of the
regularization term (that we call Jrys) gives:

Jra(o+ ps) = /|V(o+ps)|2 (68)

~ /|Vo|2 +2p/(VsV0) (69)
= Jru(o) + 2p(Vs, Vo) (70)
= Jru (o) + 2p{s,V*Vo) (71)
= Jru(o) — 2p (s, No) (72)

where A = —V*V stands for the Laplacian (Ao = 227‘2? +giy‘2’ +%). We can apply for Jr
the same equation as Eq. 58 to finally obtain the functional minimized relative to o:

/ h(—z)dz — h(—x) * % =2 rmDo(z)dzr =0 (73)

To solve this equation by using a multiplicative approach (see Eq. 65), we obtain a regular-
ized version of the RL algorithm:

~ i(x) o (%)
ore1(x) = { [m] ’ h(_x)} 1+ 2>\TkM Doy,(x) (™
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The Total Variation regularization The Total Variation (TV) is a regularization method
introduced by Rudin et al. [45] on the gradient of the image. The continuous and the dis-
crete forms are described in Appendix D. When used as a prior model for the object, we
have to minimize the following functional:

Min, [Jl (o)) + A / |Vo(;v)|d;v] (75)

We first replace the Total Variation member by its smooth approximation, by adding a
small constant 3? that avoid some problems near the origin (see [15]). Expanding the Total

Variation term Jrv (o) = [ 1/|Vo(z )|? + B2dz of a small perturbation o + ps of o yields:

Trv(o+ ps) = / V(Vo(2))> + 52 (Vs)? +20V0.Vs + f2da (76)

/\/ (Vo(z +52\/ +2p VoviﬁQd (77)

~ Jry(o) + p/ ——Vsdx (78)
\/ (Vo(z 2
~ Jry (o) + p/ st dx (79)
Vo
= Jry (o) + p< Vs> (80)
[Vol’
Vo
= Jry(o) + <V* > (81)
[Vol”
Jrv (o) — /le ( Vo ) dx (82)
=Jry
Vol
Where we used the notation V* = —div. The minimization of J; (o) is the same as Eq. 62

and gives, for the first terms:

/ h(—z)dz — h(—z) * % Adiv (lg"') 0 (83)

A being the regularization parameter that could be adaptive [21] or a constant [14]. If we
derive a multiplicative algorithm in the same way as we obtained Eq. 65, we have RL
regularized with TV:

or(z) i(x) ]

) = (Re) [h(_x) RRIR

(84)
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The greatest problem with the multiplicative form (Eq. 84) is that the regularization term is
in the denominator. The whole denominator could be zero or negative, violating the major
property of the standard RL. That forces us to choose a small value for A around 1073.
Nevertheless, this version of the algorithm is prooved to be convergent.

To avoid these problems and still under the assumption of a Poisson process, we can propose
the additive form of the algorithm. The additive form regularized with TV from Eq. 66 is:

ok+1(z) = or(x) + 6t [—1 + Adiv (|§—Z:|> + h(—z) = % (85)

Properties and limitations of Total Variation

Briefly, the main property of the Total Variation regularization is that it regularizes the
images while preserving the borders [33]. The linear Tikhonov-Miller regularization, for
instance, has not this property and tends to smooth the borders in the image. The limitations
of Total Variation based methods is that the textures (actualy, the small structures close to
the noise) are not well restored (staircase effect) and that some corners are enlarged [33].

Under the assumption of a Gaussian distribution

If we suppose that the image statistics follows a Gaussian distribution instead of a Poisson
one, we can model the image formation as:

i(z) = o(x) * h(z) + ng(z) (86)
where i is the observed image, o the initial object blurred by the optical system PSF h, and
corrupted with an additive white Gaussian noise ng. Under this hypothesis, the likelihood
becomes [25, pp.32]:

, 1 _lli=(oxm?
p(i|o)= ——mm—e (87)
2r)” 2 o
where o is the standard deviation of the noise, IV, , . are the size of the image in the z, y
and z directions. The maximization of this likelihood leads to the following functional to
minimize:

T1,(0) = A+ Blli — (0% h)| (88)

A and B being two positive constants with no need to be expressed. The resolution of the
minimization of J  in an additive way leads to a gradient-descent based algorithm:

Ok+1(X) = op(x) + a[(R" * i) (x) — (h™ * h) * 0 (%)) (89)

The index k is the iteration index, the variable x represents the 3D discrete directions along
z, y and z, and the exposant * denotes the adjoint operator (here the adjoint of h is h*, and

h*(x) = h(—x)).
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If we introduce the Total Variation (TV) as a prior model on the object, we now have to
maximize the a posteriori probability p (o | 7). The new functional to be minimized relatively
to o becomes:

Ti(0) = Ty, (0) + A [Vo(x)| (90)
A is the regularization parameter like in Eq. 22. we get:
A \Y
op+1(x) = op(x) + a [(h* x4) (x) — (A" * h) * op(x) + adiv (ﬁ)] (91)

We express the regularization parameter as % instead of another A;. To do a comparison, we
use the same values of A as with RL algorithm with a TV regularization. This gradient-based
algorithm is additive, and is more stable than a multiplicative algorithm.
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D The 3D total variation routine

The 3D total variation is used to regularize Richardson-Lucy algorithm presented in Ap-
pendix C. In a continuous form, the total varition of any 3D functional f is given as:

Trv(f) = A / Vf(@)| da (92)

where ) is the TV regularization parameter. Using L? norm, we have:

Trv(f) = A / / / S+ 2+ fPdedyds (93)

Its derivation gives:

9Jrv . (Vf
f)=-Adiv (— (94)
o7 ) V]
The discrete form of div (%) for a stable numerical scheme is the following [45]:
div (95) = LAz A%
IVl he \/(Aifijk)z‘Fm(Aifijk,Aqifijk)2+m(AifijkaAz_fijk)2
AL fijk
+EAY 91
Py \/(A?,.fijk)2+m(Aifijk,A’_fijk)2+m(A1fijk1Aifijk)2 (95)
+}11_ZAZ— Aifijk

\/(Aifijk)2+m(Aifijk,Aifijk)2+m(A1fijk,A1ifijk:)2

defining the derivation as:

AL fige = 55 (favngn = fir) AL fige = % (fise = Fi-1)n)
AL fige = 5o (figror = fir) - A% fige = 5o (fige = fug—1)r) (96)
A% fige = 2 (Fijerr) = fise)  AZ fige = 5= (Fige — fis—))
and the function m(a,b) as:
m(a,b) = TS i o] ) (97)

The function sign(a) returns 1 for z > 0, —1 for z < 0 and 0 for z = 0. One advantage of
m(a, b) is that this function equals zero if @ and b have the opposite sign. Thus, if ATY" fi,
and ATY"f, ;. have not the same sign, we choose ATY*f,;, = 0. We use the following
boundary limits g_zi =0 (z1 =z, x2 = y, 3 = 2) for a continuous space. For a discrete
functional, this leads to:

foix = fijk fiok = fitk fijo = fij1 (98)
Jvo+1)ik = f(voyie Jun,+0k = famyre  fizve+1) = fizve)

This is exactly the algorithm that has been implemented in C++.
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E Preliminary results on biological samples

Figs. 21 and 22 show views extracted from a 3D sequence, imaging a real biological specimen
with some very fine structures. Fig. 21 shows a regenerating mammalian skin with an
alveolus network, while Fig. 22 shows the same specimen with some filaments. We use
different values for the regularisation parameter from Ary = 0.001 to 0.01. We do not
show Y Z views because of the low number of samples we have (30). We clearly see the
disappearance of some details if the regularisation parameter is too high, and the presence
of noise if it is too small.

(d) (e) (f)

Figure 21: A sample of a regenerating mamalian skin showing alveolus structures. It is
extracted from a sequence of 30 images. The microscope is a Zeiss Axiovert 200 with an
objective of 40x, NA = 1.3. (a) raw images; (b) standard RL deconvolution; (c)-(f) RL
with TV with different values of the regularisation parameter Azv: (c) 0.001; (d) 0.0025;
(e) 0.005; (f) 0.01. The raw image (a) is very noisy. The noise is still present for standard
RL deconvolution (b) and more and more disappears while Ary is increasing ((¢) to (f)).
Qualitatively, (f) gives the best results. (€ UMR 6543 CNRS/Laboratoire J.-A. Dieudonné)
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(d) (e) (f)

Figure 22: RL with TV on real fine structures (same specimen as in Fig. 21). (a) raw
images; (b) standard RL deconvolution; (c¢)-(f) RL with TV with different values of the
regularisation parameter Ary: (c) 0.001; (d) 0.0025; (e) 0.005; (f) 0.01. We can see that
the filaments are strongly degraded by the noise (top of figure (a)). The deconvolution with
standard RL (b) or with RL with TV with a small parameter (c) leaves some noise. With
RL and TV with intermediate parameters (d)-(e), the noise is strongly removed and the
filaments are visible, but for strong value (f) of Az, the noise is removed but the filaments
are smoothed together. (© UMR 6543 CNRS/Laboratoire J.-A. Dieudonné)

RR n° 5272



66 Dey et al.

References

[1] D.A. Agard, Y. Hiraoka, P. Shaw, and J.W. Sedat. Fluorescence microscopy in three
dimensions. Methods Cell Biol., 30:353—-377, 1989.

[2] D.A. Agard and J.W. Sedat. Three-dimensional architecture of a polytene nucleus.
Nature, 302:676—-681, April 1983.

[3] M.R. Arnison and C.J.R. Sheppard. A 3D vectorial optical transfer function suitable
for arbitrary pupil functions. Optics Communications, 211:53-63, 2002.

[4] M. Born and E. Wolf. Principles of Optics. Cambridge University Press, 7th (expanded)
edition, 1999.

[5] K. Carlsson. Confocal imaging for 3-D digital microscopy. Applied Optics, 26(16):3232—
3238, August 1987.

[6] K.R. Castleman. Digital Image Processing. Prentice Hall, 1996.

[7] P. Charbonnier. Reconstruction d’image : régularisation avec prise en compte des
discontinuités. PhD thesis, Université de Nice-Sophia Antipolis, 1994.

[8] J.-A. Conchello and J.G. McNally. Fast regularization technique for expectation maxi-
mization algorithm for optical sectioning microscopy. In Three-Dimensional and Mul-
tidimensional Microscopy: Image Acquisition and Processing III, pages 199-208, 1996.

[9] J.-A. Conchello and Q. Yu. Parametric blind deconvolution of fluorescence microscopy
images: preliminary results. In Proceedings of the 1996 IS&T/SPIE symposium on
electronic imaging: Science and technology, pages 164-174, April 1996.

[10] G. Cox and C.J.R. Sheppard. Practical limits of resolution in confocal and non-linear
microscopy. Microscopy Research and Technique, 263:18-22, January 2004.

[11] I. Csiszar. Why least squares and maximum entropy? The Annals of Statistics, 19:2032—
2066, 1991.

[12] J. Boutet de Monvel, S. Le Calvez, and M. Ulfendahl. Image restoration for confocal
microscopy: Improving the limits of deconvolution, with application to the visualization
of the mammalian hearing organ. Biophysical Journal, 80:2455-2470, May 2001.

[13] J. Boutet de Monvel, E. Scarfone, S. Le Calvez, and M. Ulfendahl. Image-adaptive
deconvolution for three-dimensional deep biological imaging. Biophysical Journal,
85:3991-4001, December 2003.

[14] N. Dey, L. Blanc-Féraud, C. Zimmer, Z. Kam, J.-C. Olivo-Marin, and J. Zerubia. A
deconvolution method for confocal microscopy with total variation regularization. In
Proceedings of ISBI’2004, April 2004.

INRIA



Richardson-Lucy with Total Variation Regularization 67

[15] D.C. Dobson and C.R. Vogel. Convergence of an iterative method for total variation
denoising. SIAM Journal of Numerical Analysis, 34(5):1779-1791, October 1997.

[16] S. Durand, F. Malgouyres, and B. Rougé. Image deblurring, spectrum interpolation
and application to satellite imaging. Control Optimisation and Calculus of Variation,
5:445-477, 2000.

[17] L. Baker Editor. Selected papers on : Effects of Aberrations in Optical Imaging. SPIE
Milestone Series, Volume MS 59, Optical Engeneering Press, 1992.

[18] V.N. Mahajan Editor. Selected papers on : Effects of Aberrations in Optical Imaging.
SPIE Milestone Series, Volume MS 74, Optical Engeneering Press, 1994.

[19] A.R. FitzGerrel, E.R. Dowski, and W. T. Cathey. Defocus transfer function for circu-
larly symmetric pupils. Applied Optics, 36(23):5796-5804, August 1997.

[20] S.F. Gibson and F. Lanni. Experimental test of an analytical model of aberration in
an oil-immersion objective lens used in three-dimensional light microscopy. Journal of
Optical Society of America A, 8(10):1601-1613, October 1991.

[21] G. Gilboa, N. Sochen, and Y.Y. Zeevi. Texture preserving variational denoising using
an adaptive fidelity term. In Proceedings of VLSM’2003, October 2003.

[22] J. W. Goodman. Introduction to Fourier Optics. McGraw-Hill Book Company, 2nd
edition, 1996.

[23] P.J. Green. On use of the EM algorithm for penalized likelihood estimation. Journal
of Royal Statist. Soc. B, 52(3):443-452, 1990.

[24] H.H. Hopkins. The frequency response of a defocused optical system. Proceedings of
the Royal Society of London Serie A, 231:91-103, February 1955.

[25] A.K. Jain. Fundamentals of digital image processing. Prentice-Hall, 1993.

[26] A. Jalobeanu, L. Blanc-Féraud, and J. Zerubia. Hyperparameter estimation for satellite
image restoration by a MCMC maximum likelihood method. Pattern Recognition,
35(2):341-352, 2002.

[27] A. Jalobeanu, L. Blanc-Féraud, and J. Zerubia. Satellite image deblurring using com-
plex wavelet packets. IJCV, 51(3):205-217, 2003.

[28] C. Kervrann and A. Trubuil. An adaptive window approach for poisson noise reduction
and structure preserving in confocal microscopy, April 2004.

[29] S. Kimura and C. Munakata. Calculation of a three-dimensional optical transfer func-
tion for a confocal scanning fluorescent microscope. Journal of Optical Society of Amer-
ica A, 6(7):1015-1019, July 1989.

RR n° 5272



68 Dey et al.

[30] K. Lange. Convergence of EM image reconstruction algorithm with Gibbs smoothing.
IEEFE Transactions on Medical Imaging, MI-9(4):439-446, December 1990.

[31] L.B. Lucy. An iterative technique for rectification of observed distributions. The As-
tronomical Journal, 79(6):745-765, 1974.

[32] F. Malgouyres. A framework for image deblurring using wavelet packet basis. Applied
and Computational HArmonic Analysis, 12(3):309-331, 2002.

[33] F. Malgouyres. Mathematical analysis of a model which combines total variation and
wavelet for image restoration. Journal of Information Processes, 2:1-10, 2002.

[34] J. Markham and J.-A. Conchello. Parametric blind deconvolution: a robust method for
the simultaneous estimation of image and blur. Journal of Optical Society of America
A, 16(10):2377-2391, October 1999.

[35] J. Markham and J.-A. Conchello. Fast maximum-likelihood image-restoration algo-
rithms for three-dimensional fluorescence microscopy. Journal of Optical Society of
America A, 18(5):1062-1071, 2001.

[36] M. Minsky. Memoir on inventing the confocal scanning microscope. Scanning, 10:128—
138, 1988.

[37] S. Osher, A. Solé, and L. Vese. Image decomposition, image restoration, and tex-
ture modeling using total variation minimization and the A~! norm. In Proceedings of
ICIP’2008, September 2003.

[38] J.B. Pawley. Handbook of Biological Confocal Microscopy. Plenum Press, New York,
2nd edition, 1996.

[39] J.B. Pawley. Sources of Noise in Three-Dimensional Microscopical Data Sets. Academic
Press, Inc., 1996.

[40] J.B. Pawley. Limitations on optical sectionning in live-cell confocal microscopy. Scan-
ning, 24(5):241-246, September 2002.

[41] M. Persson, D. Bone, and H. Elmqvist. Total variation norm for three-dimensional
iterative reconstruction in limited view angle tomography. Physics in Medecine and
Biology, 46:853-866, March 2001.

[42] J. Polzehl and V. Spokoiny. Adaptive weigths smoothing with application to image
restoration. Journal of Royal Statistical Society B, 62(2):335-354, 2000.

[43] C. Preza, M.I. Miller, L.J. Jr. Thomas, and J.G. McNally. Regularized linear method for
reconstruction of three-dimensional microscopic objects from optical sections. Journal
of Optical Society of America A, 9(2):219-228, February 1992.

INRIA



Richardson-Lucy with Total Variation Regularization 69

[44] W. H. Richardson. Bayesian-based iterative method of image restoration. JOSA, 62:55—
59, 1972.

[45] L.I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal
algorithms. Physica D, 60:259-268, 1992.

[46] D.R. Sandison, D.W. Piston, and W.W. Webb. Background rejection and optimization
of signal to noise in confocal microscopy. Academic Press, San Diego, 1994.

[47] L.H. Schaefer, D. Schuster, and H. Herz. Generalized approach for accelerated maximum
likelihood based image restoration applied to three-dimensional fluorescence microscopy.
Journal of Microscopy, pages 99-107, January 2001.

[48] A. Schénle and S.W. Hell. Calculation of vectorial three-dimensional transfer functions
in large-angle focusing systems. Journal of Optical Society of America A, 19(10):2121—
2126, October 2002.

[49] Z. Shao, O. Baumann, and A.P. Somlyo. Axial resolution of confocal microscopes with
parallel-beam detection. Journal of Microscopy, 164(1):13-19, October 1991.

[50] C.J.R. Sheppard. The spatial frequency cut-off in three-dimensional imaging. Optik,
72(4):131-133, 1986.

[51] C.J.R. Sheppard. The spatial frequency cut-off in three-dimensional imaging II. Optik,
74(3):128-129, 1986.

[52] C.J.R. Sheppard. Depth of field in optical microscopy. J. of Microscopy, 149:73-75,
January 1988.

[63] C.J.R. Sheppard and C.J. Cogswell. Three-dimensional image formation in confocal
microscopy. Journal of Microscopy, 159:179-194, August 1990.

[54] C.J.R. Sheppard and P. T6rok. Effects of specimen refractive index on confocal imaging.
Journal of Microscopy, pages 366—-374, March 1997.

[55] P.A. Stokseth. Properties of a defocused optical system. Journal of Optical Society of
America, 59(10):1314-1321, October 1969.

[56] A.N. Tikhonov. Solution of incorrectly formulated problems and the regularization
method. Soviet Math. Dokl., 57(4):1035-1038, 1963.

[57] A.N. Tikhonov and V.Y. Arsenin. Solution of ill-posed problems. Winston-Wiley, New
York, 1977.

[58] H.T.M. van der Voort. Three Dimensional Image Formation and Processing in Confocal
Microscopy. PhD thesis, Amsterdam University, November 1989.

RR n° 5272



70 Dey et al.

[59] H.T.M. van der Voort and G.J. Brakenhoff. 3-D image formation in high-aperture
fluorescence confocal microscopy: a numerical analysis. Journal of Microscopy, pages
43-54, April 1990.

[60] H.T.M. van der Voort and K.C. Strasters. Restoration of confocal images for quantita-
tive image analysis. Journal of Microscopy, pages 165—181, May 1995.

[61] H. van der Voort et al. SVI Image Restoration Recipes. 2002.

[62] G.M.P. van Kempen. Image Restoration in Fluorescence Microscopy. PhD thesis,
Technische Universiteit Delft - Holland, January 1999.

[63] G.M.P. van Kempen, H.T.M. van der Voort, and L.J. van Vliet. A quantitative com-
parison of two restoration methods as applied to confocal microscopy. In Proceedings of
ASCI’96, 2nd Annual Conference of the Advanced School for Computing and Imaging,
pages 196-201, June 1996.

[64] G.M.P. van Kempen and L.J. van Vliet. The influence of the background estimation on
the superresolution properties of non-linear image restoration algorithms. In Proceed-
ings of the SPIE Conference on Three-Dimensional and Multidimensional Microscopy:
Image Acquisition and Processing IV, volume 3605, pages 179-189, January 1999.

[65] G.M.P. van Kempen and L.J. van Vliet. Background estimation in non linear image
restoration. Journal of Optical Society of America A, 17(3):425-433, March 2000.

[66] G.M.P. van Kempen and L.J. van Vliet. The influence of the regularization parameter
and the first estimate on the performance of Tikhonov regularized non-linear image
restoration algorithms. Journal of Microscopy, 198:63—75, April 2000.

[67] G.M.P. van Kempen, L.J. van Vliet, P.J. Verveer, and H.T.M van der Voort. A quan-
titative comparison of image restoration methods for confocal microscopy. Journal of
Microscopy, 185:354-365, March 1997.

[68] J.G. White, W.B. Amos, and M. Fordham. An evaluation of confocal versus conven-
tional imaging of biological structures by fluorescence light microscopy. Journal of Cell
Biology, 105:41-48, July 1987.

[69] S. Wilhelm, B. Grobler, M. Gluch, and H. Heinz. Confocal Laser Scanning Microscopy:
Optical Image Formation - Electronic Signal Processing. Carl Zeiss Advanced Imaging
Microscopy, 2001.

[70] R. Willett and R.D. Nowak. Platelets for multiscale analysis in photon-limited imaging.
In Proceedings of ICIP’2002, 2002.

[71] R. Willett and R.D. Nowak. Platelets: a multiscale approach for recovering edges
and surfaces in photon-limited medical imaging. IEEE Trans. on Medical Imaging,
22(3):332-350, March 2003.

INRIA



Richardson-Lucy with Total Variation Regularization 71

[72] L.T. Young, R. Zagers, L.J. van Vliet, J.Mullikin, F. Boddeke, and H. Netten. Depth-
of-focus in microscopy. In Scandinavian Conference on Image Analysis, volume 1, pages
493498, 1993.

RR n° 5272



/<

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)
Unité de recherche INRIA Lorraine : LORIA, Technopdle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lés-Nancy Cedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhone-Alpes : 655, avenue de I’Europe - 38334 Montbhonnot Saint-Ismier (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)
http:/ /www.inria.fr

ISSN 0249-6399



