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Abstract: In this paper we show the existence of weak solutions for a nonlinear ellip-
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Analyse théorique et numérique d’une classe de
équations non linéaires elliptiques

Résumé : Dans ce papier on montre I’existence de solutions faibles d’une équation ellip-
tique non lin eaire avec une croissance arbitraire de la non linéairité et des données mesure.
Un algorithme nous permettant de calculer une approximation d’une solution faible est pré-
senté et analysé. Dans un premier pas de ’algorithme on calcule une supersolution a l’aide
d’une méthode de décomposition de domaines. Par ailleurs on présente quelques exemples
numériques.

Mots-clés : Equations Différentielles Non Linéaires, Décomposition de Domaines
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1 Introduction

The principal objective of this work is to study existence, uniqueness and present a numerical
analysis of weak solutions for the following quasilinear elliptic problem:

—u”(t) + G(t,u/'(t)) = F(t,u(t)) + f in (0,1) (1)
u(0) =u(l) =0

where G, F : [0,1]x R — [0, +00[ are measurable and continuous with respect to v’ and w, f is
a given finite non negative measure on (0,1). Such problems arises from biological, chemical
and physical systems and various methods have been proposed for study the existence,
uniqueness, qualitative properties and numerical simulation of solutions(see [I1], [14]). When
f is regular, it is prouved in [12] that if () has a nonnegative supersolution in WO1 "> then
(M) has a solution in W, > (\W2?. Note that here the supersolution is required to vanish
at the boundary. This provides an a priori pointwise estimate for «/(0) and «/(1). The
boundedness on u’ on the whole set (0,1) is then obtained by a maximun principle applied
to the equation satisfied by |u’|?. The convexity of s — G(t,s) is the essential ingredient.
Many authors dealt with this problem when f is irregular and G is subquadratic with respect
to ¢’ namely:

G(t,7)] < e(g(t) + Irl*), g(t) € L'(0,1),¢>0 (2)

They showed that, if G satisfy(@), () has a solution v € H}(0,1) provided that (Il has a
supersolution in W1°°(0, 1) see [5], [4] and the references there in.

The case where the supersolution itself is irregular have been treated in [2], it is a solution
in H}(0,1) then (@) has a solution in H{ (0, 1) provided that G satisfy (&).

In this work we are particularly interested in situations where f is irregular and where
the growth of G with respect to v’ and F' with respect to u are arbitrary. Let us make some
precitions on model problem like:

—u"(t) + [u' ()| = [u(®)|” + f in (0,1)
{ w(0) = u(1) = 0 3)

where p,¢ > 1 and f € M} (0,1), the set of nonnegative finite measure on (0,1). We show
here that if the semilinear problem:

—w"(t) = [wt)[" + f in (0,1)
{ w(0) = w(l) = 0 4)

has a solution then (Bl has a solution. Remark here any restriction for p and ¢ is imposed.
For an elegant study of @) one can sen the work of Pierre and Baras [7]. If w’(0) = +o0 or
w'(1) = —oo then w ¢ Wol’oO and obviously the classical approach fails to provide existence
in @) and new techniques have to be used. We describe some of them here.

Another approach studied here is the numerical approximation of the solution to the
problem (). The most important dificulties are in this approach the uniqueness and the
blowup of the solution.

RR n° 5270
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The general algorithm for numerical solution of this equations is one application of the
Newton method to the discretaized version of problem ([I):

Find U € R™ such that AU = H(U) (5)

where A is a sparce matrix and H : R™ — R™ is a nonlinear operator.
The Newton algorithm is given by:

chosse U° in a neighbourhood of the solution
and solve until convergence (6)
(A—H'(UF)Id) (U — UF) = ~AU* + H(UF)

where H'(U") is the Jacobian matrix of the operator H computed in U* and Id is a matrix
of identity in R™. This method converges quadraticaly when it converges. Convergences
depend in particular in the choise of U® and the existence and uniqueness of solutions of the
linear system (). In the case of problem () the matrix A — H'(U*)Id is ofthen singular.
Consider the following example:

—u"(t) = au(t)+ S in (0,1)
{ w(0) = u(1) = 0 (™)

where « and (3 belongs to R. It is easy to verify that () have an infinity of solutions when
a = (27p)?. For all B € R, 3 up solution of (@) where:

up(t) = g(l —cos(pmt)) + Bsin(pnt) (8)

If we consider a classical discretization of v” by a finite differences schema and choose o an
eigenvalues of the matrix A. The Newton schema is written as follows:

(A—ald) (U — U = —AU* + HU") (9)

Clearly the matrix A — « Id is singular and the system (@) have not necessary a solution or
a infinite number of solutions if —A U* + H(U*) € Im(A — o Id).

To overcame this difficulty we introduce a domain decomposition to compute an approx-
imation of 6u* = u**1 —u* by the resolution of a sequence of problems of type () in subset

Q; of (0,1), such that Q@ = |J ;. The idea of the method cames from the following
i=1,K
remark [17]:

Lemma 1.1 Let 0 < a < b <1, a; € L*(0,1), for i =1,2. If |b — a| is small enough
2

then the operator —% —a (t)i — as(t)Id have an inverse in (a,b).

We have organized this paper in the following maner. In section 2 we give the precise
setting of the problem, we present a approximate equation for ([l) and we prove that the
existence of weak supersolutions implies the existence of weak solutions, without any restric-
tion of the growth of G with respect to «/, this result generalise the classical result of [12],
[5] and [2].

In section 3 we present an approximation scheme for problem () based on the Schwartz
overlapping domaine decomposition method, combined with finite element method.

INRIA
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2 Mathematical analysis of the problem
Throughout this paper we suppose
f is a nonnegative finite measure on (0,1) (10)

and G, F : [0,1] x R — [0,400) are such that G, F are measurable

The functions r — G(t,r), F(¢t,r) are continuous a.e. t (11)

F(t,.)is nondecreasing and G(t, .) is convex, (12)

Vr € R, G(.,r), F(.,r) are integrable on (0,1) (13)

G(t,0) = min{G(t,r),r € R} =0 and F(¢,0) = 0. (14)

Now we introduce the notion of weak solution, supersolution and subsolution used here.

Definition 2.1A4 function u is said to be a weak solution of ) if

u € WL(0,1) N Col0,1] 15)
—u”(t) + G(t,u'(t)) = F(t,u(t)) + f in D'(0,1)

(replace in [IA) = by > for a weak supersolution and by < for a weak subsolution)
Remark 2.2 In (@) v € W (0,1), using ([[F) we have G(t,u'(t)) and F(t,u(t)) €
L;,.(0,1). Hence every term in ([[5) makes sense.
This enables us to state the main result of this paper.
Theorem 2.3 Assume that ({I0)-(TJ) and f € M7 (0,1) hold. Assume that there ezists
a weak solution W for the problem,
{ we WL (0,1) N Colo, 1] (16)
-uw" =F(,w)+ f in D'(0,1)

Then W is a supersolution of () and there exist a weak solution v of {l) such that u < .
Remark 2.4 1) It should be noted that there is not growth restriction on the lower order
nonlinearity of F' and G w.r.t. u and v’ respectively. Hence the present theorem extends
some results in [2], [5].
2)For any finite nonnegative measure f, the problem:

), w >0 in (0,1)

w e W, (0,
{ ta') = f in D/(0,1) (17)

_w// + G( ,

has a unique solution w, see [0, and remark here that w is a subsolution of the problem

).
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2.1 An approximate equation

For n > 0, we consider the Yosida approximation G, (t,.) of G(t,.) defined by:

G(t,—n) + GL(t,—n)(r+n) if r < —n
Gn(t,r) = G(t,r) if |r| < n (18)
G(t,n) + GL(t,n) (r —n) ifr >n

where G, denotes a section of the subdifferential of G' with respect to .
Then G,, satisfies ([l -([&) and

Gn S G7 Gn S GnJrl (19)

then G, (t,.) increases a.e. to G(t,.) as n tends to infinity.
According to the result in [IJ, [5] there exists a sequence (u,,) of solution of the problem:

{ Uni1 € Wy™°(0,1)

Culiy + Gup(tdysy) = F(un) + f in D/(0,1) (20

where 1y = w.

2.2 Estimates-Passing to the limit

In order to proof the theorem 2.3 we propose to send n to infinity in Z0). For this we will
need some estimates passing to the limit.
Lemma 2.5 Let a(t) € L}, (0,1), v € W21 (0,1) N Co[0,1] such that

a(t)v'(t) € Li,.(0,1
{ —v” ()av’()z 0 én(’D’)(OJ) (21)

Then v > 0 in [0,1]. See a proof in [I]
Lemma 2.6 Let u € W21(0,1), v,5 € L>®(0,1) and u € M} (0,1) such that:

loc
v<u<win (0,1
—u” < p in D(0,1) (22)
v >up in D(0,1)
Then u € W1’°°(071), and

loc

1 —

()| < M(C(U’?b) + vl + |l + lellars) (23)
for all 0 < a < b < 1. Where d(t;a,b) = min(b—t,t — a) and c(a,b) is a constant
depending on a and b.

Lemma (2.6), will provide WllocOO (0,1) estimates for the approximate solution u,. But
this estimate don’t allow us to pass to the limit in the nonlinear terms. We need the strong

convergence of u,, in WllocOO (0,1). We obtain this result from the following Lemma.

INRIA
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Lemma 2.7 Let (uy), C Wy °(0,1) such that,
u, — u  strongly in  L°°(0,1) (24)
w<u<u, <W
—u”" < p i D(0,1) (25)

—w" >p in D (0,1)
Then u,, — v’ strongly in L7°.(0,1)

loc

Proof of lemma (2.6). Let 0 < a < b < 1 and let ¢ the capacity potential of [a,b]. The

fonction § = v — wu satisfies

—0" >0 in D'(0,1)
0 € Who°(0,1) N L>(0,1)

loc

We have

b b 1 b
/—w=/¥wws/—ww=/ew§dmwwwm+m&
a a 0 a

Then . .
[ =ur= [ =0+ w<cad) + ol + Nl + lllsaon
Using a similar technique, we deduce that for a < x < y < b, we have
W' (x) = u'(y) < c(a,b) + [Pllee + |12l + [1tllarz00,1)
Integrate w.r.t. y over (z,b), to find:

(b—z)u/(x) (b—) (c(a;b) + [[0lloc + [[ulloc + [ltllar5(0.1))

<
< c(a,0) + ([0l + l[tlloc + [l1llazs0.1)

Integrate w.r.t. « over (a,y), to obtain

u(y) —ula) < (y—a)(c(a,b) + [Plloc + [ulloo + [lpllars01)) + (v — a)u'(y)-

Then we deduce the following uniform local estimate

. 1
Vo € [a,0], |[u'(z)]] < Az ab)

mrap) @0 1Tl + llelloe + llillars0,1)

where d(z;a,b) = min(z — a,b — x).
Proof of lemma (2.7). By lemma (2.6), we have u € W,>>°(0,1) and

Vo € [a,0],  |[u(@) ] < c(a,b) + [IPlloe + [l2lloe + [l14llaz5(0,1)-

RR n° 5270
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We then consider the function 6,, = W — u,, satisfies the equation

g : /
{ 0 >0in D' (a,b) (34)

0<,<w—u € [0,1]

Let ¢ the capacity potential of [a, b], then we have:

b b b 1 1
/ 6] :/ g = / ews/ —9”90S/ C0,0" < cah)  (35)
a a a 0 0

0, = W — u, convergeto W — w in L*(0,1) (36)

and applying Ascoli’s theorem, the lemma follows.
Proof of the theorem (2.3). First we prove

w < Uy forall n>0 (37)
Thanks to ([Z0) and the definition of w, we obtain
= (Uns1 — )" + Glupyy) — G') 20 in D'(0,1) (38)
using () we then have

= (Un41 — w)" + an (Ut —w) 20 in D'(0,1)
Uns1 — w € Wy'(0,1) (39)
an (U4 — w') € L1(0,1)

where a,, € 0G(.,ul,,,) € L'(0,1). Now we can apply lemma (2.5), therefore w < w,41 in
[0, 1] wich proves &1).
Let us now prove by induction that

Unt1 < up < w in [0,1] forall n>0 (40)
For n = 0, using (@), @) we get

W — up € WEH0,1) N Col0, 1] (41)

—(w—wu) >0 in D'(0,1)
Applying lemma (2.5) we have W — u; > 0. Let us assume u,, < u,_1 < W, then from
0) and the monotonicity of F in r, we have

Uy — Uns1 € W' (0,1); (@ — uy,) € WHH(0,1) N Col0,1]
—(un = unt1)" + G(upyy) = Gluy) = 0 in D'(0,1) (42)
—(®W — up)" — Gul) >0 in D'(0,1)

n

INRIA
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using now ([Z), (Id) then we have from (E2)

Up — Upi1 € Wol’l(O,l)
—(tn, — Upt1)” + an(tbnyr — un) >0 in D'(0,1) (43)
an € 0G(t,u) 1) € L'(0,1)
T — u, € WEH0,1)N Col0,1] (44)
—(W — u,)” >0 in D'(0,1)

Applying lemma (2.5), we deduce u, 1 < u, < W in [0, 1] which proves (@) by induction.
Employing lemma, (2.6), we conclude that u,, is bounded in W,>>°(0,1) N Co[0, 1] indepen-
dently of n. Therefore, there exists a subsequence, still denoted by (u,,) for simplicity, such
that u, converges to u strongly in L°°(0,1) if n — oco. Also u;,,, converges to v’ strongly
in L},,(0,1) and a.e. in (0,1). Then from lemma (2.6) we conclude that u], , converges to

v’ strongly in L7° (0,1), and
lunllL=(ap) < K(a,b) (c(a,b) + [[@]|=0,1) + 1fllms + llwllr=(,1)) (45)

where K(a,b) =1/nand 0 < n < a <n+b < 1.
Since G(t,.) and F'(t,.) are continuous with respect the two last arguments, we have for
all0 <a <b<1

G(t,upyy), F(t,uy) — G(t,u'), F(t,u) ae. t € (0,1). (46)

On the other hand, for a.e ¢t € (a,b)

|Gt up ()] < max  [G(t,7)] = 0(t) (47)
|r| < C’(a,b)
and R
|F(t,un(t))| < max |F(t,s)]| = 6(t) (48)

|s| <max(||w]|Loo 0,1y llwllLoo(0,1))

and 0,0 € Lj,.(0,1) from (03). Using Lebesgue’s dominate convergence Theorem (see [6]),
we also have;

G(t,ul, ), F(t,uy) — G(t,u'), F(t,u) in L'(a,b) respectively (49)
Now, we can pass to the limit in (20), and if ¢ € D (0,1) with support of ¢ C [a,b] then

0 = limy oo (—u/ 1 + G )) — Flun), @)
= (—u" + G(u’)+i F(u) 7<PJSI (50)

where (.,.) denotes the duality pairing between D’(0,1) and D(0,1). This completes the
proof.

RR n° 5270
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3 Numerical method

3.1 Introduction

In this section we present the numerical method to solve the equation (). Formally the
iterative method construct a sequence of numerical solutions of @0) in H}(0,1) with a first
guess wich is a supersolution of (), in our case a solution of the problem (IHl).

Then the algorithm can be formulated in the following way:

1) Find w € H}(0,1) such that:

—w'(t) = F(t,w) + f in (0,1) (51)

2)Given ugp = W we compute a sequence, (u,), solution in Hg(0,1) of the non linear
equation:

= Upy1(t) + Grpr(tug ) = F(tun) + f in (0,1) (52)

Both problems (1) and (B2) are nonlinear, and if (BI) have a solution, in theorem 2.3
we prove that (B2) have also a solution. Let us start by considering the numerical resolution

of problem (&Il).

3.2 Numerical resolution of equation (&1

To solve the nonlinear equation (BIl), which presents some interesting difficulties, we consider
the Newton method. We construct a sequence @W* such that @w* is a solution of a linear
problem and @W* converges to .

Let @° = 0, we define W*"! = wW" + § where § is the solution of the following linear
problem:
—3"(t) = LT 5(1) = (W*)" (1) + F(tw*) + f i (0,1) (53)
5(0) = 5(1) =0

Then each iteration we have to solve the linear problem (G3)). To this aim we considered a
weak formulation of the problem and finite element method.
To simplify the text we reformulate (E3) in the following way: find v € Hl(a,b) such

e (@ + et)olt) = h in (a,b)
—v(t)” + c(t)v(t) = h in (a,b
{ v(a) =v(b) =0 (54)
where h € Mpg(a,b), the set of finite mesure in (a,b), and c(t) € L?(a,b), without any
restriction in it sign. We assume ¢, = ||c[|L(q4,5) Pounded.

In the previous section, Lemma 1.1, saids that the problem (B4) have a solution in a
domain (a, b) small enough.
If V. = H}(a,b) then the weak formulation (B4]) reads:

find v €V : alv,w) = (h,w) Vw € V (55)

INRIA
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where:
b
(v,w) = uvdz (56)
a(v,w) = (VW) + (c(t)v, w) (57)
Thanks to the Poincaré inequality we have:
2 Co 2 Co
(v, w') = w720 = —al lwllz2(ap = m(vaw) (58)

and in the case of the bilinear form a(w, v) we obtain:

Co

a(w,w) = (W', w") + (cw,w) > (m

— Coo)(w, w) (59)

Then the bilinear form a(w, v) should be coercive if [b — a| < CC—O.

This remark are of great interest, because they can be explc()xi)ted to obtain a numerical
solution of (B4) using a domain decomposition technique. In other words, this means that

—k
25

The aim of this section is to introduce the Schwarz overlapping domain decomposition
method [T15] applied to problem (B4).

First we decompose (a,b)in a set of m overlapping sub dommains (a;, b;)such that
(a,0) = Uy (a;, bi)and (i, bi) N (@iy1, biy1) # 0

Then, if v%is an initialisation function defined in (a,b)and vanishing in aand bwe define
for k > 0, m sequences v¥, i = 1,...m solving the following problems:

the domain partition should be determined by the behavior of H

k+1y/ ktl g p s
R T
fori =2,.m—1
{ @O ¥ e (@) = hinfab) (61)
v (@) = 07 @)y v (bi) = v (bs)
and k+1\m k+1 _ :
(RS e

The variationnal formulation of the overlapping Schwarz method for the problem [E3) can
be stated as follows, set V = Hl(a,b) , V? = H}(a;, b;), i = 1,...mand

b
a;(v,w) = / () w' (t) + c(t)v(t)w(t)dt (63)

7
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Given v” € V, solve for each &k > 0

ne VP ar(nt,w) = (fwn) —ar(vF,wi); Yuy € VP (64)
S = ok 4o (65)
fori = 2 -1
nf e VO ai(nf wi) = (frwi) = ai(o",w); Vi € VY (66)
e = ok 4 i (67)
777]37, € Vn(')L : a’l(nvl?rszm) (fa wm) _al(vk w’m) Vwm € VO (68)
R A /A8 (69)
where 7¥denotes the extension of ¥ by 0 in (a,b) \ (a;,b;).
To simplify, without lost of generality, we assume that we can consider a two domains
decomposition (a,b) = (a, B) J(a, b) such that:
< and (5= a), (b= a) < min( ", 57=)
o an a), « min W
for k > 0, 2 sequences v*

(70)
Then, if v"is an initialization function defined in (a,b) and vanishing in a and b we define

i = 1,2 solving the following problems
"

and

Wi (1) + c(t) v (t) = h in (a,f)
vt (@) = 0; v’““(ﬁ)

(71)

5 ()
(W5 (0) + (t) o5 () = hin(a,D) )
o @) = ol (a); 5 (b) = 0
Now to prove the convergence of the Schwarz overlapping domain decomposition algo-
rithm applied to problem (B4]) we consider two problems

{ —vi(t) + c(t)ui(t) = h € (a.f)
vi(a) = 0;
and:

v1(8) = v2(B) (73)
{omr s dom
Let v be

(74)
o { v in (a,0) .

With the restriction () we can suppose the existence of a solution of [3) in C(
solution of (@) in C(«,b).

(75)

a, B)and a

INRIA
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Theorem 3.3 Assume a,b,a and 3 with the restriction {Z0). Then the sequence v

converges to v in C(a,3) and C(a,b).
Proof:
Let d* = v¥ — vin (a,B) and ¥ = v§ — vin (a,b).
We prove the following inequality:

18" 2]l < 7 lld*]loc and [|"*2[Joc < v[le"]|

where v < 1.
The difference d* satisfies the following equation.

{ —d"(t)" + c(t)dM(t) = 0 in (a,B)
d**1(a) = 0 and d*T1(B) = v§(B) — v(B) = €"(B)

and e* satisfies a similar equation in (a, b):

{ — b ()" + c(t) eFFL(t) = 0 in (a,B)
*1(a) = vf(a) — v(a) = d*(a) and €"*(b) =0

If we consider the following equation:

{ —@(t)" = oo p(t) = 0 in (a,5)
p(a) = 0 and () = [*1()]

| k+1 (6) SZ?’L(\/@ (t — a))

then ¢ - , this solution is unique and positive if
(t) = - sin(y/cx (8 — a))
(B—a) < N In that case ||¢||oc = [e*T1(B)].

The difference z = ¢ — d**+? is the solution of:

{ —2(t)" + c(t) 2(t) = (c(t) + coo) 9(t) in (a,f3)
z(a) = 0 and z(B) = "1 (B)] — e"*1(B)
)

7T
Clearly z > 0if (8 —a),(b—a) < min(—,
Coo  2+/Coo

If now z = ¢ + d**? we have

{ 2(8)" + ct) 2(t) = (c(t) + coo) p(t) in (a, )
z(a) = 0 and 2(8) = [e"*1(B)] +*1(B)

Also z > 0 and —p < d**2(t), Vt € (a, ).
Then the inequality ||d**2|| < [e¥T1(B8)] < ||e**!||s holds.
To prove that [e*+1(3)| < 7||d¥||o with v < 1 we consider the equation:

{ —o(t)" = cod(t) = 0 in (a,b)
¢(a) = |d*(a)| and ¢(b) =

RR n° 5270
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sin(ye (b= 1)
Sinly/m (b—a)’
and then ¢(t) > |e**L(t)| Vt € (a,b).

This solution is

The solution of this equation is given by: #(t) = |d*(a)|

o
ositive if (b —a) <
At this step we consider z = ¢ — e*T!. Then z is the solution of:

—2()" + ¢(t) 2(1) = (¢(t) + coo) ¢(t) in (a,b) (83)
z(a) = |d*(a)] — d*(a) , and 2(b) =0

Clearly z > 0 and then ¢(t) > eF+1(t) for all ¢ in (o, b).
If now we consider z = ¢ + e+ we have also z > 0 because z(t) is the solution of the
following equation:

—z2(t)" + c(t) z(t) = (c(t) + coo) d(t) in (a,b)
{ z(a) = |d¥(a)| + d*(a) , and z(b) =0 (84)

Then [e"*!(t)] < ¢(t) in (o,b) and [*(B)] < ¢(B) < v[d*(a)]
sin(y/es (b= 5))
sin(y/cs (b— )
In conclusion with the restriction [@) we have ||d**2|| < ||d*||so-
Using the same technique we prove that ||e**2||c < ||€*|| if we have [@). First we
prove that ||e*+2||.. < |d**!(a)|. To this aim we consider the equation:

— A1) = e A(t) = 0 in (a,b)
{ Ma) = |d**1(a)| and A(b) =0 (85)

with v = . The coefficient ~ is smaller than one only if o < g.

sin(y/ex (b — 1))

The solution is given by A(t) = [d*(a)|— .
sin(y/Coo (b — @)

This solution is positive if

Co s
b—a < mzn( '3 \/_)
If 2(t) = )\( ) + eF*2(¢) then z(t) is the solution of the following equation:
{ —Z(t)” + c(t) z(t) = (c(t) + coo))\(t) in (a,b) (86)
z(a) = |d*1(a)| + d**1(a) and 2(b) =0
Clearly z > 0if (b—a) < mm( 0 , 2\;_)
If now z(t) = A(t) — e*2(¢) then z(t) is the solution of the following equation:
{ 2(t)" + c(t) z(t) = (c(t) + coo) At) in (,b) (&7)
2(a) = |d**(a)| — d*T'(a) and z(b) =0
then z > 0if (b— ) <mm( 2;@)

It is an easy consequence that le¥T2(t)] < A(t) and we conclude ||e*2||, < |d¥F1(a)].

INRIA
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Now we prove that |d**1(a)| < «|e*(3)|. To this aim we consider the following problem:

—n(t)" = coen(t) = 0 in (a,f)
{ n(a) = 0 and 7(B) = [e*(B)] (88)
sin(y/ex (8 —1))
sin(y/eo (8 — a))

The solution is given by n(t) = |e*(3)| . This solution is positive if f—a <

Co s

min(g,2@).
If 2(t) = n(t) + d**1(t) then it’s the solution of the following equation:
{ —2()" + c(t) 2(t) = (c(t) + coo)n(t) in (a, ) (89)
2(a) = 0 and z(B) = [*(B)| + "(B)
Then z > 0if (8 —a) < min(cc—o, %) In the same way if z(t) = n(t) — d**1(t) it’
the solution of: = 2V
{5 o0 = (€ o 9 %0)
z(a) = 0 and z(B) = [e"(B)| — *(B)
Then z > 0if (8 —a) < min(%,%).

We obtain that [d*T1(¢)| < n(¢) for all t € (a,3) and then |d**1(3)] < ~|e*(B)| with
_ sin(ye (B - a))
- sin(/e (B —a)

We conclude that the Schwarz overlapping domain decomposition method applied to the
problem (B4) converges.

. The coefficient v is smaller than one only if a < f.

3.3 Numerical solution of the problem (52

Let V be H}(0,1) and w € Hg(0,1) a solution of the problem (EI)). Appling the Newton
method to solve the equation (B2)) we obtain the following algorithm:

Ug = W
91
{ URp1 = Uk D
and uyy1 is the limit of the sequence:
“2111 = Uy +0 (92)
where 6 is the solution of the linear equation:

/ "

gty + 2l oy = Gt ) + gy,
F(t,ug) + f (93)

+

RR n° 5270
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Figure 1: example f = 8. x 5%,m:10

3.4 Numerical Results

The algorithm introduced in the previous section has been implemented numerically for the
model problem @) with p=¢=3 and f = d1.

in (0,1)

{ o= +o (94

u(0)=u(l)=0and p=qg=3

The number of subdomains is not fixed, its changes at each iteration according to the
criterion ([Z0). In figure 1 it can be observed the shape of the super-solution and the solution
when the algorithm converges with m = 10 sub-domains.

To study the convergence history of the numerical simulation plotted in figure 1 we
consider two steps. In the first step, where we compute a super-solution, we observe the
evolution of the number of sub-domains: it goes from m = 2 sub-domains to m = 10 sub-
domains in five iterations according to criterion ([[{d). Simulation stops after 17 iterations
when the residual is of the order 107 !!.

In the second step, starting with the super-solution computed in the previous step we per-
form nine iterations of the Yoshida approximation described in section 2 and the simulation
stops when the correction computed is in uniform norm of the order 10~11.

In figure 2 we consider the same exemple, but in that case we autotise a maximun of two
subdomains. Clearly tha classical method fails to compute a solution.

INRIA
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computed super-solution
Figure 2: example f = 8. x 6% ,m=2
In the next exemple we modifie the function G and F' in the following way:
—u"(t) + aft) [/ ()7 = B() [u(t)P + f in (0,1) (95)
u(0) =u(l)=0
where p =3, ¢ =4 and:
B 0 in (0,0.5)
alt) = { 10 % (t — 0.5) in (0.5,1) (96)
36« (0.5—1t) in (0,0.5
s = { 07 i (o7)

0 in (0.5,1)

In figure 3 it can be observed the shape of the super-solution and the solution when
the algorithm converges with m = 7 sub-domains. In the first step, where we compute a
supersolution, we can observe in figure 4 the evolution of the number of subdomains required
to satisfies criterion (Z0). At the first iteration the number of sub-domains are two, at the
fifth iteration we have four sub-domains and afther the eighteenth iteration we reach seven

sub-domains, the algorithme converges at the twentieth iteration.

Starting with the supersolution computed in the first step we perform eleven iteration of
the second step ([Z0). For each iteration of the Yosida approximation (Z0) we perform about
three step of the Newton method. The simulation stops when the correction computed is in

uniform norm of order 101!,
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Figure 3: example f = 5. % 5% ,m=7,p=3,q=4
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Figure 4: example f = 5. % 5% ,m=7
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