N

N

A Decision Procedure for a Fragment of Set Theory
Involving Monotone, Additive, and Multiplicative
Functions

Calogero G. Zarba, Domenico Cantone, Jacob T. Schwartz

» To cite this version:

Calogero G. Zarba, Domenico Cantone, Jacob T. Schwartz. A Decision Procedure for a Fragment of
Set Theory Involving Monotone, Additive, and Multiplicative Functions. [Research Report] RR-5267,
INRIA. 2004, pp.22. inria-00070731

HAL 1d: inria-00070731
https://inria.hal.science/inria-00070731
Submitted on 19 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00070731
https://hal.archives-ouvertes.fr

ISRN INRIA/RR--5267--FR+ENG

N 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

A Decision Procedure for a Fragment of Set Theory
| nvolving Monotone, Additive, and Multiplicative
Functions

Calogero G. Zarba — Domenico Cantone — Jacob T. Schwartz

N° 5267
July 2004

Théme SYM

apport

derecherche

% I N RIA

LORRAINE

A Decision Procedure for a Fragment of Set Theory
Involving Monotone, Additive, and Multiplicative
Functions

Calogero G. Zarba* , Domenico Cantone' , Jacob T. Schwartz*

Théme SYM — Systémes symboliques
Projet CASSIS

Rapport de recherche n° 5267 — July 2004 — 22 pages

Abstract: 2LS is a decidable many-sorted set-theoretic language involving one sort for
elements and one sort for sets of elements. In this report we extend 2LS with constructs for
expressing monotonicity, additivity, and multiplicativity properties of set-to-set functions.
We call the resulting language 2LSmf. We prove that 2LSmf is decidable by reducing
the problem of determining the satisfiability of its sentences to the problem of determining
the satisfiability of sentences of 2LS. Furthermore, we prove that the language 2LSmf is
stably infinite with respect to the sort of elements. Therefore, using a many-sorted version
of the Nelson-Oppen combination method, 2LSmf can be combined with other languages
modeling the sort of elements.

Key-words: Automated deduction, Decision procedures, Computable set theory.

* LORIA and INRIA-Lorraine, 615, rue du Jardin Botanique, BP 101, 54602 Villers-lés-Nancy Cedex,
France, Email: calogero.zarba@loria.fr.

 Dipartimento di Matematica e Informatica, Universita di Catania, Viale Andrea Doria 6, 95125 Catania,
Italy, Email: cantone@dmi.unict.it.

¥ Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY
10012, USA, Email: schwartz@cs.nyu.edu.

Unité de recherche INRIA Lorraine
LORIA, Technopéle de Nancy-Brabois, Campus scientifique,

Une procédure de décision pour un fragment de la
théories des ensembles qui considére fonctions
monotones, additives, et multiplicatives

Résumé : 2LS est un sous-langage décidable de la théorie des ensembles avec une sorte pour
les éléments et une sorte pour les ensembles d’éléments. Dans ce rapport nous étendrons 2LS
avec symboles pour exprimer propriétés de monotonicité, d’additivité, et de multiplicativité
des fonctions sur les ensembles. Nous appelons le langage résultant 2LSmf. Nous prouvons
que 2LSmf est décidable par une réduction du probléme de la satisfiabilité de ses mots a le
probléme de la satisfiabilité des mots de 2LS. En plus, nous prouvons que le langage 2LSmf
est stable-infini en ce qui concerne la sorte des éléments. Donc, en employant une version de
la, méthode de combinaison de Nelson-Oppen avec sortes, 2LSmf peut étre combiné avec
autres langages qui modélent la sorte des éléments.

Mots-clés : Deéduction automatique, Procédures de décision, Théorie calculable des en-
sembles.

A Decision Procedure for a Fragment of Set Theory Involving Monotone Functions 3
Contents
1 Introduction 4
1.1 Related work e 5
1.2 Organization of thereport 5
2 Preliminaries 6
2.1 Two-level syllogistic 6
2.2 Two-level syllogistic with monotone functions 7
2.3 Normalized literals e 8
3 The reduction algorithm 9
4 Correctness 13
4.1 Soundness e e e e e e e e e e e e e 13
4.2 Completeness ot e e e e e 14
4.3 Complexity i e e e 18
5 Combination results 18
6 Conclusion 20

RR n° 5267

4 Calogero G. Zarba , Domenico Cantone , Jacob T. Schwartz

1 Introduction

Sets are ubiquitous in automated reasoning and program verification. For instance, set
theory forms the central kernel of the high-level programming language SETL [SDDS&6], as
well as of the specification languages Z [Spi88] and B [Abr96]. Even for programming and
specification languages that are not entirely based on set theory, sets still play a crucial role
because they can be used either at the meta-level or as a data structure.

Because of the importance of sets in automated reasoning, it would be desirable to have
an efficient proof system completely based on set theory. However, this “dream” is not
realizable because:

o the full language of set theory is undecidable;

e when reasoning about sets over elements of a given nature (such as integer, reals, or
lists), it is more efficient to target the elements by employing a specialized decision
procedure for them.

Therefore, a more realistic approach consists of designing and implementing a proof
system based on the combination of decision procedures for fragments of set theory with
decision procedures for elements.

This approach can be conveniently achieved by using the many-sorted language 2LS
(two-level syllogistic), which contains a sort elem for the elements, a sort set for sets of
elements, a symbol = for equality, and the set-theoretic constructs membership, inclusion,
singleton, union, intersection, and difference. The decidability of 2LS was proved for the
first time by Ferro and Omodeo [FOT78].

In this report we introduce the fragment of set theory 2LSmf (two-level syllogistic with
monotone functions), which extends 2LS with free set-to-set function symbols and the
following predicates for expressing monotonicity, additivity, and multiplicativity properties
of set-to-set functions:

e inc(f), which holds iff f is increasing, that is, a C b — f(a) C f(b), for all sets a, b;

o dec(f), which holds iff f is decreasing, that is, a Cb — f(b) C f(a), for all sets a, b;

e add(f), which holds iff f is additive, that is, f(a Ub) = f(a)U f(b), for all sets a, b;
(

e mul(f), which holds iff f is multiplicative, that is, f(a Nb) = f(a) N f(b), for all sets
a, b;

e f =< g, which holds iff f(a) C g(a), for every set a.

We prove that 2LSmf is decidable by providing a reduction algorithm which maps each
sentence of 2LSmf into an equisatisfiable sentence of 2LS. Then the decidability of 2LSmf
follows from the decidability of 2LS.

INRIA

A Decision Procedure for a Fragment of Set Theory Involving Monotone Functions 5

Furthermore, we prove that the language 2LSmf is stably infinite! with respect to the
sort, of elements. Therefore, using a many-sorted version of the Nelson-Oppen combination
method [TZ04], it is possible to combine 2LSmf with other languages modeling the sort of
elements.

1.1 Related work

Computable set theory [CFO89, COPO01] is that area of mathematics and computer science
which studies the decidability properties of fragments of set theory. This field was initiated
in 1980 by the seminal paper of Ferro, Omodeo, and Schwartz [FOS80a|, who proved the
decidability of the pure fragment of set-theory MLSS (multi-level syllogistic with singleton).
Intuitively, MLSS is a one-sorted version of 2LS in which all variables are of sort set.

The literature abounds with decidability results for set-theoretic languages involving free
function symbols. Ferro, Omodeo, and Schwartz [FOS80b] and Beckert and Hartmer [BH9S§]
proved the decidability of an extension of MLSS with free function symbols, but with no
monotonicity, additivity, and multiplicativity constructs. Cantone and Zarba [CZ00] proved
the decidability of an extension of 2LS involving monotonicity constructs, but no additivity
and multiplicativity constructs.

Our reduction algorithm is an augmentation method, that is, a method that uses as a
black box a decision procedure for a language L in order to obtain a decision procedure for
a nontrivial extension L’ of L. Other augmentation methods for set-theoretic languages can
be found in [Zar02a, Zar02b].

This report is inspired by the results in [CSZ03], where we proved the decidability of the
language MLSSmf. Intuitively, MLSSmf is the one-sorted version of 2LSmf in which all
variables are of sort set.

Our decision to shift our focus from MLSSmf to 2LSmf is due to the following reasons:

1. As explained above, a one-sorted set-theoretic language is not directly suitable for
practical applications in program verification.

2. The correctness proof of MLSSmf is extremely complicated and difficult to read. Due
to feedback from the research community, we commited ourself to simplify the cor-
rectness proof. Indeed, it turned out that a considerable simplification of the technical
details could be achieved by considering instead the language 2LSmf.

1.2 Organization of the report

The report is organized as follows. In Section 2 we formally define the syntax and semantics
of the languages 2LS and 2LSmf, and we give other useful notions which will be needed
in what follows. In Section 3 we present our reduction algorithm for mapping sentences
of 2LSmf into equisatisfiable sentences of 2LS. In Section 4 we prove that our reduction
algorithm is correct, and we assess its complexity. In Section 5 we show how 2LSmf can

1See Definition 22.

RR n° 5267

6 Calogero G. Zarba , Domenico Cantone , Jacob T. Schwartz

be combined with other languages modeling the sort of elements. Finally, in Section 6 we
draw conclusions from our work.

2 Preliminaries

2.1 Two-level syllogistic

The language 2LS (two-level syllogistic) is a quantifier-free many-sorted language with two
sorts, elem and set, plus the following symbols:

e arbitrarily many variables of sort 7, for each 7 € {elem, set};

the constant), of sort set (empty set);

the operators

— {-}, of sort elem — set (singleton set);

— U,N,\, of sort set x set — set (union, intersection, and set difference);

the predicates

— €, of sort elem x set (membership);

— C, of sort set x set (set inclusion);
e an equality symbol =,, for each 7 € {elem, set};?
e the propositional connectives -, A, V, —, and .

2LS-terms (respectively, 2LS-formulae) are well-sorted terms (respectively, formulae)
constructed using the symbols of the language 2LS.

Example 1. Let u be an elem-variable, and let x,y be set-variables. Then the expression
[@\y=0ANuez) — y#0 (1)
is an example of a 2LS-formula. O

An interpretation A is a mapping of the sorts, variables and symbols of the language
2LS satisfying the following conditions:

e each sort 7 € {elem,set} is mapped to a set A, such that:

- Aelem 7é @;
- Aset = P(Aelem);

2We will write = in place of =, when 7 is clear from the context.

INRIA

A Decision Procedure for a Fragment of Set Theory Involving Monotone Functions 7

e each variable z of sort 7 is mapped to an element 2 in A,;

e the symbols 0, {-}, N, U, \, €, C are interpreted according to their standard interpre-
tation;

e —_ is interpreted as the identity in A, .

Unless otherwise specified, we follow the convention that calligraphic letters A, B,
...denote interpretations, and that the corresponding Roman letters, opportunely sub-
scripted, denote the domains of the interpretations.

For a term t, we denote with ¢ the evaluation of ¢ under the interpretation A. Likewise,
for a formula o, we denote with ¢ the truth-value of ¢ under the interpretation A. If T is
a set of terms and A is an interpretation, we denote with 7 the set {t4 : ¢ € T'}.

A model of a 2LS-formula ¢ is an interpretation A such that ¢ is true. A 2LS-formula
is satisfiable if it has a model.

The satisfiability problem of 2LS is the problem of determining whether or not a given
2LS-formula is satisfiable. This problem is decidable [FOT78].

Example 2. The 2LS-formula (1) in Example 1 is not satisfiable. In fact, for every inter-
pretation A, if 24\ y* = () and u* € 2, it must be the case that u* € 2 Ny, which
implies that y* # (). o

Lemma 3 ([Zar04]). Let T’ be a satisfiable conjuction of 2LS-literals, and let U be the
collection of elem-variables occurring in I'. Assume that T’ does not contain any literal of
the form s #st t or s L t.

Then T has a model A such that Agem = U™ . O

2.2 Two-level syllogistic with monotone functions

In this report we are primarily interested in the satisfiability problem of the language 2LSmf
(two-level syllogistic with monotone functions), which extends 2LS with arbitrarily many
free function symbols of sort set — set, and the special symbols inc, dec, add, mul, and <.

The semantics of 2LSmf is defined on top of the semantics of 2LS, by requiring that if
A is an interpretation and f is a free function symbol of sort set — set, then f4 is a function
from Ager into Aget. Moreover, for any interpretation 4, we agree that:

e inc(f) holds in A if and only if f4 is increasing, that is, a C b implies f*(a) C fA(b),
for all sets a,b in Aset;

e dec(f) holds in A if and only if f4 is decreasing, that is, a C b implies f(b) C f*(a),
for all sets a,b in Ag;

e add(f) holds in A if and only if 4 is additive, that is, f*4(aUb) = fA(a) U fA(b), for
all sets a,b in Age;

RR n° 5267

8 Calogero G. Zarba , Domenico Cantone , Jacob T. Schwartz

e mul(f) holds in A if and only if f* is multiplicative, that is, fA(anb) = fA(a)NfA(b),
for all sets a, b in Ase;

e f < gholds in A if and only if f4(a) C g*(a), for every set a in A;.

Example 4. Let f, g be two free function symbols of sort set — set, and let u be an elem-
variable. Then the 2LSmf-formula

= [(add(f) N f=g) — f(0)Cg({u})]

is not satisfiable. Intuitively, this is due to the fact that every additive function is also
increasing. a

Example 5. Let A be a nonempty set. Then, for every function f : A — A and every
subset B of A, the function F : P(A) — P(A) defined by

F(X)={f(z) | = €X B}
is additive and multiplicative. O

Example 6. Let ¥ = {ay,...,a,} be an alphabet, and let A = ¥* be the set of words over
Y. Convene that ¥ C ¥*. In other words, we identify the symbols in ¥ with the words in
¥* of length 1.

Then the function F': P(A) — P(A) defined by

F(X)={a€X | aoccursin some word w € X}
is additive, whereas the function G : P(A) — P(A) defined by
GX)=[FX)|"={w=z1-2, | ;;€XNX, fori=1...n}

is multiplicative. O

2.3 Normalized literals

In order to simplify the presentation, we will often consider conjunctions of normalized
2LSmf-literals of the form:

xCuy, x ={u}, r=yUz, x=y\z,
= f(y), inc(f), dec(f), add(f), (2)
mul(f), f=g,

where u is an elem-variable, z,y, z are set-variables, and f, g are free function symbols of
sort set — set.

Let ¢ be a 2LSmf-formula. By suitably introducing new variables, it is possible to
convert into an equisatisfiable formula ¥, V ...V 9} in disjunctive normal form, where
each v; is a conjunction of normalized 2LSmf-literals of the form (2). Thus, we have the
following result.

Lemma 7. The satisfiability problem of 2LSmf is equivalent to the satisfiability problem
of conjunctions of normalized 2LSmf-literals of the form (2). O

INRIA

A Decision Procedure for a Fragment of Set Theory Involving Monotone Functions 9

€2

A V = {131,562,563}
I3} {1}
P12 {1,2}
B13 {1,3}

1 = A{B1, P2, B13, P23}

Z1

zs3

Figure 1: Intuition behind the notation ¢;.

3 The reduction algorithm

Let T be a conjunction of normalized 2LSmf-literals, and denote with V' = {z1,...,z,}
and F the collections of set-variables and free function symbols occurring in I', respectively.
In this section we describe a reduction algorithm for converting I" into an equisatisfiable
conjunction I'* of 2LS-formulae.

We will use the following notation. Given a set a, P*(a) denotes the set P(a) \ {0}.
Moreover, we denote with /; the set

ti={aePt({l,....,n}) | j€a}, for 1<j<n.

Remark 8. The intuition behind the notation P is as follows. Given a collection V =
{x1,...,x,} of set-variables, each « € P*({1,...,n}) can be thought as representing a Venn
region. For instance, in Figure 1, the Venn region (x1Nx2)\ z3 is represented by 12 = {1, 2}.
In general, a set &« € P*({1,...,n}) represents the Venn region (,c, z: \ U, ¢, -

The intuition behind the notation ¢; is to represent the union of all Venn regions that
are contained in the set z;. For instance, in Figure 1, the set x; is represented by ¢; =

{ﬂ15612761376123}‘ O

The reduction algorithm is shown in Figure 2, and consists of three steps. In the first
step, we generate new variables whose intuitive meaning is as follows:

e for each o € P*({1,...,n}), the new variable v, is intented to represent the Venn
region (., =i \ Ujga xj;

e for each ¢ C P*({1,...,n}), the new variable wy , is intended to represent the value
of the function f over the set | J,,va-

RR n° 5267

10 Calogero G. Zarba , Domenico Cantone , Jacob T. Schwartz

Reduction algorithm

Input: a conjunction I' of normalized 2LSmf-literals.

Output: a conjunction I'* of 2LS-formulae.

Notation:
o V ={z1,...,z,} is the collection of variables occurring in I’
e F'is the collection of function symbols occurring in T
Pt (a) = P(a) \ {0}, for each set a;
¢; stands for the set {o € PT({1,...,n}) | j€a},for 1 <j<n.

Step 1. Generate the following new variables:

Vo s for each o € PT({1,...,n}),
wye, for each f € Fand £ C PT({1,...,n}).

Step2. Add to I' the following 2LS-formulae:

va:ﬂxi\Umj7 for each o € PT({1,...,n}),
ica j¢a
and
Uva: U vg — Wi = Wi m , for each f € F and
acl BEM €7m§73+({1,,n})

Step 3. Replace the 2LSmf-literals in I" containing free function symbols with 2LS-formulae

as follows:

zi = f(x;) = T =Wy,

inc(f) == /\ (wre C wym)
£Cm

dec(f) = /\ (wg,m C wy,e)
£Cm

add(f) - /\ (We,e0m = wge UWem)
Zm

mul(f) - /\ (Wt,enm = Wre NWem)
Zm

=29 = /\ (wre € wg)

L

Figure 2: The reduction algorithm.

INRIA

A Decision Procedure for a Fragment of Set Theory Involving Monotone Functions 11

T
X1 2

AN

zs3

V = {$1,$2,$3}
a = {1,3}
po= {2}

t = {a,p}.

Figure 3: Intuition behind the generated variables v, and wy .

Example 9. Let V = {x1, 292,23}, a = {1,3}, and S = {2}, as graphically represented in
Figure 3. Then v, represents (z1 Nx3) \ z2, whereas vg represents o \ (z1 U x3).
Next, if £ = {«@, 3} then w; represents f(vy Uvg). o

In the second step of the reduction algorithm, we add to I' appropriate 2LS-formulae
whose purpose is to model the variables v, and wy ¢ according to their intuitive meaning. In
particular, the variables wy , are modeled by noticing that for each ¢,m C P*({1,...,n}),

if Uaeé Vo = Uﬁem vg then f (Uaeé va) =f (UBEm vﬁ).

Finally, in the third step of the reduction algorithm, we remove from I' all 2LSmf-
literals involving free function symbols. This is done by replacing all 2LSmf-literals of the
form z; = f(x;), inc(f), dec(f), add(f), mul(f), and f < g with 2LS-literals involving only
the variables x; and the new variables wy ;.

We claim that our reduction algorithm is correct. More specifically, we claim that if T**
is the result of applying to I' our reduction algorithm then:

e the reduction is sound, namely, if I is satisfiable, so is T'*;
e the reduction is complete, namely, if T'* is satisfiable, so is I'.

The next section proves that our reduction algorithm is sound and complete, and there-
fore it yields a decision procedure for 2LSmf.

Example 10. Let us use our reduction algorithm to prove that the conjunction of 2LSmf-
literals

inc(f),

A= xlgIQa

f(z1) € f(x2)

is not satisfiable.

RR n° 5267

12 Calogero G. Zarba , Domenico Cantone , Jacob T. Schwartz

To do so, we first convert A into the following equisatisfiable conjunction of 2LSmf-
literals:

inc(f),

r1 € 22,

r3 = f(r1),
I'= £L'4:f(1'2),

x5:{u},

e = 23 \ T4,

x5 C g

Then, let I be the result of applying our reduction algorithm to I". Clearly, we do not
have neither the space nor the patience to write here all formulae in I'*. However, we can
explain succinctly why T'* is not satisfiable.

For j =1,...,6, denote with /; the set

li={aePt({1,...,6}) | jea},
and note that I'* entails the formulae

xj:Uva, forj=1,...,6.

act;
Next, let
lo={aePT({1,...,6}) | {1,2} Ca},
and note that I'* entails the formula

xr1 MNaxe = U Vo -
a€clyiz

Since I'* contains the formula x7 C zo, I'* entails z; = x1 N x2. It follows that I'* also

entails
U Vo = U Vo

aclq a€lis

as well as
Wy = Wty -

Since inc(f) isin I" and £15 C €3, I'* contains the literal wys¢,, € wy,. Thus, I'* entails
Wrey S WL,

Since I'* contains the literals 3 = wy ¢, and x4 = wy 4, , it follows that I'* entails 3 C 4.
But since I'* contains the literals x5 = {u}, 26 = x3 \ 24, and x5 C zg, it follows that I'*
also entails x3 € z4. Thus, I'* is not satisfiable. O

INRIA

A Decision Procedure for a Fragment of Set Theory Involving Monotone Functions 13

4 Correctness

4.1 Soundness

Let I" be a satisfiable conjunction of normalized 2LSmf-literals, and let I'* be the result of
applying to I the reduction algorithm in Figure 2. The key idea of the soundness proof is
that, given a model A of I', a model B of I'* can be constructed in the most natural way if
we remember the intuitive meaning of the variables v, and wy .

Lemma 11 (Soundness). Let I' be a conjunction of normalized 2LSmf-literals, and let
I'* be the result of applying to T' the reduction algorithm in Figure 2. Then if I is satisfiable,
sois I'*. O

PROOF. Let A be a model of T, and denote with V' = {z1,...,2,} and F the collections
of set-variables and free function symbols occurring in T', respectively. We claim that the
interpretation B defined by letting

Belem = Aelem)
Bset = Aset = P(Aelem))

and
uB =, for each elem-variable u ,
B =z, for each i € {1,...,n},
0B = x;“\Uxf, for each a € PT({1,...,n}),
€ j¢a
w?E:fA<UvS> , for each f € F and £ C PT({1,...,n})
ael

is a model of I'*.
To see this, note that formulae in I'* can be partitioned into the following categories:

(I) literals of the form = Cy, x = {u}, z =y Uz, and = y \ z originally present in T';

(II) literals of the form va = U;c, i \ jgq %55

(III) formulae of the form {J,c,va = Ugem U8 = Wre = W m;

(IV) literals of the form x; = wy ¢, which replace literals of the form z; = f(z;) in I';

(V) conjunctions replacing literals of the form inc(f), dec(f), add(f), mul(f), and f <g

inT.

RR n° 5267

14 Calogero G. Zarba , Domenico Cantone , Jacob T. Schwartz

Literals of the form (I) are true in 5 because they contain only variables already occurring
in ', and by construction B agrees with A on all such variables.
Concerning literals of the form (IT), we have v5 = M;co 77 \ Ujga 77 = Mica @7 \
B
U jga Ty
Concerning literals of the form (III), let |J,.,v8 = Usem ’Ug. Then fA (UuervB) =
A (Uﬁem vg), for every f € F. Thus, w?e = A (Uper v8) = 4 (Uﬁem vg) = w?m, for

every f € F.
Concerning literals of the form (IV), let #; = f(x;) be in I". Then we have z

fA (=) = A (Uaezj vf) =wf, , where {; = {a e P*({1,...,n}) | j€al.

Concerning literals of the form (V), consider a literal of the form inc(f) in I’ and
suppose that ¢ C m, with £,m C P+({1,...,n}). We want to show that the literal
wyre € wy .y, occurring in I'* is true in B. To do so, observe that, since { C m, we have

Uaer 8 € Upepn v5- Since f# is increasing, we also have f4 (U, v5) € f4 (Uﬁem vg),

and therefore w’fg 0 C w?m. The cases regarding conjunctions introduced in I'* to replace

Js

literals of the form dec(f), add(f), mul(f) and add(f) can be treated similarly. n

B _ A _
i L=

4.2 Completeness

Let I" be a conjunction of normalized 2LSmf-literals. As before, let us denote with V' =
{z1,...,2,} and F the collections of set-variables and free function symbols occurring in
I', respectively. Also, let I'* be the result of applying to I" the reduction algorithm in
Figure 2. To show the completeness of our reduction algorithm, we need to prove that if I'*
is satisfiable, so is T'.

To do so, let B be a model of I'*, and let us start to define an interpretation .4 by letting

Aelem = Belem)
Aset = Bset = P(Belem))

and

ut =uB, for each elem-variable wu,
A %5

€Tr =

7 , foreachi=1,...,n.

In order to define A over the free function symbols in F', let us recall that the intuitive
meaning of a variable of the form wy , is to represent the expression f(|J,c,va). Thus,
our definition of f* should satisfy the property that f4(U,c,v5) = wf,, for every £ C
P*({1,...,n}). But how do we define f(a) in the more general case in which a is not the
union of sets of the form v2? The idea is to define opportunely a discretization function

A: Bset = P(PT({1,...,n})), and then let
fA(a) = w?/\(a) , for each f € I and each set a € Aget = Beet -

To achieve completeness, we need a good discretization function.

INRIA

A Decision Procedure for a Fragment of Set Theory Involving Monotone Functions 15

Definition 12. Let I' be a conjunction of normalized 2LSmf-literals and let I'* be the
result of applying to I' the reduction algorithm in Figure 2. A discretization function A :
Bset — P(P1T({1,...,n})) is GOOD with respect to a model B of I'* if the following conditions
hold:

(A) X is increasing;
(B) M is additive;

(C) X is multiplicative;
(D)

D) if a = U,c,vs then a = U,ecp(a) va, for each £ C PH({1,...,n}). 0

Lemma 13. Let I be a conjunction of normalized 2LSmf-literals, let T'* be the result of
applying to T the reduction algorithm in Figure 2, and let B be a model of T*. Assume
that there ezists a discretization function \ : Beer — P(P1({1,...,n})) which is good with
respect to B.

Then T is satisfiable. O

PrOOF. Let V = {x1,...,2,} (respectively, F') be the collection of variables (respectively,
free function symbols) occurring in I'. We now prove that the interpretation .4 defined by
letting

Aelem = Belem ;
Aset = Bset = P(Belem))

and
ut =ubB, for each elem-variable u,
x;“:xf, foreachi=1,...,n,
fA(a) = w?/\(a) , for each f € F and each set a € Ay,

is a model of I" by showing that A satisfies all literals occurring in I'.

Literals of the form = C y, x = {u}, x =yUz, z = y\ 2. These literals are true in A
since A agrees with B on all variables occurring in I'.

Literals of the form z; = f(z;). Let a = U,¢, vB, where ¢; = {a € PT({1,...,
n}) | j € a}. Then, by property (D) of Definition 12, we have a = U,y v3, and
therefore w?, = wf, . Since the literal z; = wy,, is in I'*, we have 27! = =

W8y = FA() = fA (Ua% vg) — fA(aB) = fA ().

RR n° 5267

16 Calogero G. Zarba , Domenico Cantone , Jacob T. Schwartz

Literals of the form inc(f), dec(f), add(f), mul(f) and f < g. Let the literal inc(f)
bein I', and let a C b. Since A is 1ncreasmg, Aa) € A(b), so that the literal wf Aa) C wy, A®)
must be in I'*. We have f4(a) = wf Aa) € fk(b) fA(b), implying that f is increasing.
Similarly, one can prove that also all literals of the form dec(f), add(f), mul(f) and f < g
in ' are satisfied by A. n

Remark 14. By a careful analysis of the above proof, it turns out that the monotonicity
of the discretization function A is needed only to show the satisfiability of literals of the
form inc(f) and dec(f). Likewise, the additivity of X is needed only for literals of the form
add(f), whereas the multiplicativity of A is needed only for literals of the form mul(f).
Finally, property (D) of A (cf. Definition 12) is only needed to prove the satisfiability of
literals of the form x; = f(z;).]

Lemma 13 shows that the existence of good discretization functions is enough to ensure
the completeness of our reduction algorithm. But how do we define good discretization
functions?

As a first attempt, given an arbitrary model B of I'*, let us define

Mi(a)={ae P ({1,....n}) | vBna#0}, for each set a € Beet -

It is easy to see that \j; satisfies properties (A), (B), and (D) of Definition 12. However, in
general)\g is not multiplicative. As a counter-example, assume that there exist two disjoint
sets a,b in Bse and some a € P ({1,...,n}) such that a N v8 # () and b N v5 # (). Then
a € Af(a) N AL (D) but A5 (anb) = 0.

By Remark 14, in the proof of Lemma 13 the hypothesis that Ag is multiplicative is used
only to show that the literals of the form mul(f) in I' are satisfied by .A. Therefore, if we
define 2LSmf ™ to be the language obtained from 2LSmf by removing the symbol mul, we
get the following partial result.

Lemma 15. Let I be a conjunction of normalized 2LSmf*-literals and let I'* be the result
of applying to T the reduction algorithm in Figure 2. Then if T'* is satisfiable, so is .

Combining Lemma 11 and Lemma 15 we obtain the decidability of 2LSmf™.
Theorem 16. The satisfiability problem for 2LSmf™ is decidable. O

As a second attempt to find a good discretization function, let us define
M(a) ={aePT({1,...,n} | 0#v8 Ca}, for each set a € Beet -

It is easy to see that \; satisfies properties (A), (C), and (D) of Definition 12. However, in
general \j is not additive. As a counter-example, assume that there exist two sets a, b and
some a C P*H({1,...,n}) such that v C aUb, v5 Z a, and vB ¢ b. Then o € \(a Ub)
but a ¢ Aj(a) U Az (D).

By Remark 14, in the proof of Lemma 13 the hypothesis that A; is additive is used only
to show that the literals of the form add(f) in I" are satisfied by .A. Therefore, if we define

INRIA

A Decision Procedure for a Fragment of Set Theory Involving Monotone Functions 17

2LSmf* to be the language obtained from 2LSmf by removing the symbol add, we get
the following partial result.

Lemma 17. Let ' be a conjunction of normalized 2LSmf ™ -literals and let T'* be the result
of applying to T’ the reduction algorithm in Figure 2. Then if I'* is satisfiable, sois .

Combining Lemma 11 and Lemma 17 we obtain the decidability of 2LSmf*.
Theorem 18. The satisfiability problem for 2LSmf* is decidable. O

So far, it appears as neither /\Zg nor \j; are good discretization functions. However,
assume that we have a model B of I'* such that:

w8 <1, for each a € P+({1,...,n}). (3)

Then it is easy to see that in this case /\Zg and \j coincide, and therefore they are both
additive and multiplicative. Thus, both Ag and A} are good discretization functions with
respect to any model B of T'* satisfying (3).

But do models of T'* satisfying (3) exist? The following lemma gives an affirmative
answer to this question.

Lemma 19. Let T' be a conjunction of normalized 2LSmf-literals, and let T'* be the result
of applying to T the reduction algorithm in Figure 2. Assume also that T is satisfiable.
Then there exists a model B of T* such that [vE| < 1, for each o € PH({1,...,n}). O

PROOF. Let U be the collection of elem-variables occurring in T, and let V = {x1,...,z,}
be the collection of set-variables occurring in T".

Note that U is also the collection of elem-variables occurring in I'*. Furthermore, I'* is
a conjunction of 2LS-literals that does not contain any literal of the form s #et t or s € t.
Therefore, by Lemma, 3, there exists a model B of I' such that Beem = UZ.

Let o € P*({1,...,n}), and assume that vZ # (). Then there exists an element a € v5
such that:

e a = uB, for some elem-variable u in U;
e a literal of the form z; = {u} is in I'*.
But then v8 C 28, which implies |[v5| = 1. n

Combining Lemma 19 with Lemma 13, we can finally obtain the completeness of our
reduction algorithm, using either /\Zg or \j as a good discretization function with respect to
a model B of I'* satisfying (3).

Lemma 20 (Completeness). Let " be a conjunction of normalized 2LSmf-literals and
let T* be the result of applying to T’ the reduction algorithm in Figure 2. Then if T* is
satisfiable, so is T. O

Combining Lemma 11 and Lemma 20, we obtain the decidability of 2LSmf.
Theorem 21 (Decidability). The satisfiability problem for 2LSmf is decidable. O

RR n° 5267

18 Calogero G. Zarba , Domenico Cantone , Jacob T. Schwartz

4.3 Complexity

Let I" be a conjunction of normalized 2LSmf-literals containing n variables and m free
function symbols, and let I'* be the result of applying to I' the reduction algorithm in
Figure 2.

Then T'* involves O(2") variables of type v, and O(m - 22") variables of type wy ..
Moreover, the collective size of all formulae generated in Step 2 is bounded by

))

whereas the collective size of all formulae generated in Step 3 is bounded by

2n+1

Omn-2" + O(m-2"-2

o@p-22""),
where p is the number of literals in I" of the form

r=f(y), inc(f), dec(f),
add(f), mul(f), f=2g.

Thus, if we denote with K the size of ', since m,n,p < K, we have the following upper
bound on the size of I'*:

O(K - 25 . 22",

Finally, to estimate the complexity of our decision procedure, we need to take into
account that the formula I'* must then be tested for satisfiability, and it is known that the
satisfiability problem for 2LS is NP-complete [Zar04]. Though the satisfiability test for 2LS
is quite efficient in practice, it becomes very expensive when it runs on such large formulae
as I'*.

5 Combination results

In program verification, one often needs to reason about logical formulae that involve sets
over elements of a given nature such as integers, reals, or lists. In order to reason about these
elements, the language 2LSmf is not expressive enough. In fact, the only 2LSmf-formulae
expressing pure facts over the elements are just boolean combinations of atoms of the form
U =elem V-

Thus, for instance, when one wants to reason about sets of integers, it is better to use
a many-sorted language L that properly extends 2LSmf with symbols that are specific to
the domain of integers. This language L can be seen as the union of two languages, that is,
L =2LSmf U L,, where L; is a language that models the sort elem as the set of integers.

Then, in order to decide the satisfiability problem of L. = 2LSmf U L;, one needs to
combine our decision procedure for the satisfiability problem of 2LSmf with a decision
procedure for the satisfiability problem of L.

INRIA

A Decision Procedure for a Fragment of Set Theory Involving Monotone Functions 19

At first sight, one might think that, in order to combine 2LSmf with L1, it suffices to em-
ploy the classic combination method due to Nelson and Oppen [NO79]. Unfortunately, this
is not the case since, technically speaking, the original Nelson-Oppen method is restricted
to first-order logic, and does not work for many-sorted logic.

Nevertheless, the Nelson-Oppen method has recently been extended to order-sorted
logic—a logic that subsumes many-sorted logic—by Tinelli and Zarba [TZ04]. In partic-
ular, the following combination result holds for many-sorted logic.

Definition 22. A many-sorted language L is STABLY INFINITE with respect to a set of sorts
S if for every satisfiable quantifier-free formula ¢ in the language L, there exists a model A
of ¢ such that A is infinite, for each sort s in S. O

Theorem 23 ([TZ04]). Let Ly and Lo be two many-sorted languages, and let S be the set
of sorts shared by L1 and Lo. Assume that:

(i) for any quantifier-free formula ¢ in L;, it is possible to decide whether or not ¢ is
satisfiable in L;, for i =1,2;

(i) Ly and Ly do not share logical symbols besides equality and the sorts in S;
(i) L1 and Lo are stably infinite with respect to S.

Then it is possible to decide the satisfiability of any quantifier-free formula ¢ in L1 U Lo.
]

In view of Theorem 23, if we want to combine the language 2LSmf with another language

L1 modelling the sort elem of elements, it becomes essential that 2LSmf be stably infinite
with respect to the sort elem. The next lemma shows that this is indeed the case.

Lemma 24. Let ¢ be a satisfiable 2LSmf-formula. Then there exists a model A of ¢ such
that Acem is infinite. m|

PRrROOF. Let A be a model of ¢, and assume that Aejem is finite. Then we can construct a
model B of ¢ such that Beem is infinite as follows.
Fix an infinite set X of elements disjoint from Agem, and let

Belem = Aelem U Xa
Bset = P(Belem) s

and

28 =z, for each variable x,
fP(a) =

Note that, by construction, t3 = ¢4, for each term t. Furthermore, we claim that
A = B, for every atomic formula 1. This is trivial for atomic formulae of the form
U =elem U, S =set t, U €, s C t.

fA(a \ X)), for each free function symbol f and a € B -

RR n° 5267

20 Calogero G. Zarba , Domenico Cantone , Jacob T. Schwartz

Concerning an atomic formula of the form inc(f), we need to show that f# is increasing
if and only if fB is increasing. Assume first that fA is increasing, and let a,b € Bgt such
that a C b. Then a\ X C b\ X. Thus, fB(a) = fA(a\ X) C fA(D\ X) = fB(b). Vice versa,
assume that f5 is increasing, and let a,b € Ay such that a C b. Then f4(a) = fB(a) C
FB(b) = FA(b).

Similarly, one can show that A and B also agree on all atomic formulae of the form
dec(f), add(f), mul(f), and f < g.

Finally, by structural induction, one can show that ¥* = 92, for each formula . It
follows that A = 5. -

Combining Lemma 24 with Theorem 23, we obtain the following combination result.

Theorem 25 (Combination). Let L be any many-sorted language satisfying the following
properties:

(i) for each quantifier-free formula @ in L, it is possible to decide whether or not ¢ is
satisfiable in L;

(i) L does not contain the sort set;
(i1i) L is stably-infinite with respect to the sort elem.
Then the satisfiability problem for 2LSmf U L is decidable. O

6 Conclusion

We presented a decision procedure for the many-sorted fragment of set theory 2LSmf ex-
tending 2LS with constructs for expressing monotonicity, additivity, and multiplicativity
properties of set-to-set functions. Our decision procedure consists of a reduction algorithm
which maps each sentence of 2LSmf into an equisatisfiable sentence of 2LS. Then the
decidability of 2LSmf follows from the decidability of 2LS.

Furthermore, we showed that by using a many-sorted version of the Nelson-Oppen com-
bination method, it is possible to combine 2LSmf with other languages modeling the sort
of elements.

Our work can have applications in an interactive proof environment in which the user
helps the system by telling which expressions are monotonic, while our decision procedure
performs the tedious combinatoric steps. As an example, consider the formula

{fw) [wear\z} C {f(u) [we(zUy)\ =2}, (4)

where u is an elem-variable, x,y, z are set-variables, and f is a function symbol of sort
elem — elem. When proving the validity of (4), the user can instruct the system with the
insight that the function

Fw) ={f(u) [vew)\z}

INRIA

A Decision Procedure for a Fragment of Set Theory Involving Monotone Functions 21

is increasing in the set-variable w. Then, the system would conclude that to prove that (4)
is valid, it suffices to prove that

inc(F) — F(z) CF(zxUy) (5)

is valid. Since (5) is a 2LSmf-formula, its validity can be automatically proven by our
decision procedure.

Future directions of research may involve extensions of our decision procedure to handle
other constructs related to set-to-set functions, such as injectivity and surjectivity of func-
tions, as well as a fixed-point operator on monotone functions. Also, further work is needed
to make our reduction algorithm more efficient.

Acknowledgements

This work was in part supported by the project GECCOO in the context of the French national
research program ACI Sécurité Informatique, and by MURST grant prot. 2001017741 under
the Ttalian project “Ragionamento su aggregati e numeri a supporto della programmagzione
e relative verifiche”.

References

[Abr96] Jean-Raymond Abrial. The B-Book: Assigning Programs to Meanings. Cam-
bridge University Press, 1996.

[BH98] Bernhard Beckert and Ulrike Hartmer. A tableau calculus for quantifier-free
set theoretic formulae. In Harrie C. M. de Swart, editor, Automated Reasoning
with Analytic Tableaux and Related Methods, volume 1397 of Lecture Notes in
Computer Science, pages 93-107. Springer, 1998.

[CFO89] Domenico Cantone, Alfredo Ferro, and Eugenio G. Omodeo. Computable Set
Theory, volume 6 of International Series of Monographs on Computer Science.
Clarendon Press, 1989.

[COP01] Domenico Cantone, Eugenio G. Omodeo, and Alberto Policriti. Set Theory for
Computing. From Decision Procedures to Logic Programming with Sets. Mono-
graphs in Computer Science. Springer, 2001.

[CSZ03] Domenico Cantone, Jacob T. Schwartz, and Calogero G. Zarba. A decision pro-
cedure for a sublanguage of set theory involving monotone, additive, and mul-
tiplicative functions. In Ingo Dahn and Laurent Vigneron, editors, First-Order
Theorem Proving, volume 86.1 of Electronic Notes in Theoretical Computer Sci-
ence. Elsevier, 2003.

RR n° 5267

22

Calogero G. Zarba , Domenico Cantone , Jacob T. Schwartz

[CZ00]

[FO78]

[FOS80a]

[FOS80b]

[NO79]

[SDDSS6]

[Spi8s]

[TZ04]

[Zar02a)]

[Zar02b]

[Zar04]

Domenico Cantone and Calogero G. Zarba. A tableau calculus for integrating
first-order reasoning with elementary set theory reasoning. In Roy Dyckhoff,
editor, Automated Reasoning with Analytic Tableaux and Related Methods, volume
1847 of Lecture Notes in Computer Science, pages 143—159. Springer, 2000.

Alfredo Ferro and Eugenio G. Omodeo. An efficient validity test for formulae in
extensional two-level syllogistic. Le Matematiche, 33:130-137, 1978.

Alfredo Ferro, Eugenio G. Omodeo, and Jacob T. Schwartz. Decision procedures
for elementary sublanguages of set theory. I. Multi-level syllogistic and some ex-
tensions. Communications on Pure and Applied Mathematics, 33(5):599-608,
1980.

Alfredo Ferro, Eugenio G. Omodeo, and Jacob T. Schwartz. Decision procedures
for some fragments of set theory. In Wolfgang Bibel and Robert A. Kowalski,
editors, 5th Conference on Automated Deduction, volume 87 of Lecture Notes in
Computer Science, pages 88—96. Springer, 1980.

Greg Nelson and Derek C. Oppen. Simplification by cooperating decision proce-
dures. ACM Transactions on Programming Languages and Systems, 1(2):245-257,
1979.

Jacob T. Schwartz, Robert B. K. Dewar, Ed Dubinsky, and Edmond Schonberg.
Programming with Sets: An Introduction to SETL. Springer, 1986.

J. Michael Spivey. Understanding Z: A Specification Language and its Formal
Semantics, volume 3 of Cambridge Tracts in Theoretical Computer Science. Cam-
bridge University Press, 1988.

Cesare Tinelli and Calogero G. Zarba. Combining decision procedures for theories
in sorted logics. Technical Report 04-01, The University of Iowa, 2004.

Calogero G. Zarba. Combining multisets with integers. In Andrei Voronkov, edi-
tor, Automated Deduction — CADE-18, volume 2392 of Lecture Notes in Computer
Science, pages 363-376. Springer, 2002.

Calogero G. Zarba. Combining sets with integers. In Alessandro Armando, edi-
tor, Frontiers of Combining Systems, volume 2309 of Lecture Notes in Computer
Science, pages 103—116. Springer, 2002.

Calogero G. Zarba. Combining sets with elements. In Nachum Dershowitz, editor,
Verification: Theory and Practice, volume 2772 of Lecture Notes in Computer
Science, pages 762-782. Springer, 2004.

INRIA

/<

Unité de recherche INRIA Lorraine
LORIA, Technopdle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-les-Nancy Cedex (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhone-Alpes : 655, avenue de I’Europe - 38334 Montbonnot Saint-Ismier (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)
Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)
http:/ /www.inria.fr

ISSN 0249-6399

