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Détection d’objets de codimension deux dans
une image a ’aide des modéles de
Ginzburg-Landau

Résumé : Dans cet article, nous proposons a nouveau modéle mathématique
pour détecter dans une image les singularités de codimension supérieure ou
égale a deux. Cela signifie que nous voulons détecter des points dans des
images 2-D, ou des points et des courbes dans des images 3-D. Nous nous
inspirons des modéles de Ginzburg-Landau (GL). Ces derniers se sont révélés
efficace pour modéliser de nombreux phénomeénes physiques. Nous introduisons
le modéle, nous énoncons ses propriétés mathématiques, et nous donnons des
résultats expérimentaux illustrant les performances du modéle.

Mots-clés :  Modéle de Ginzburg-Landau, détection de points, segmenta-
tion, EDP, images biologiques, images RSO.
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1. Introduction

The goal of this paper is to propose a new mathematical model for detecting in
an image singularities of codimension greater than or equal to two. This means
we want to detect points in a 2-D image or points and curves in a 3-D image. To
the best of our knowledge there exist in the literature few works tackling this
problem. Most of existing models are devoted to the detection of singularities
of codimension-one, e.g. curves in R? or surfaces in R®. Recently Lorigo et al
[16] have developed a codimension-two geodesic active contour scheme for the
segmentation of thin structures. Their algorithm is based on work in differen-
tial geometry [3| concerning the evolution of arbitrary dimensional manifolds
in arbitrary dimensional space. See also [19] for a diffusion-generated motion
scheme for codimension-curves. Lorigo et al have applied their algorithm for
automatically segmenting blood vessels in volumetric resonance angiography
images.

Here our approach is quite different. We drew one’s inspiration from Ginzburg-
Landau (G-L) models which have proved their efficiency for modeling many
phenomena in physics and in particular in the theory of superconductors.
Though our final objective is to treat 3D-images we focus in this paper on
2D-images. We introduce the model, state its mathematical properties and
give some experimental results demonstrating its capability. Actually there
exists a general theory of G-L models involving functions u from R*** into R*
for the study of singularities of codimension-k in an ambient space of dimension
n+k (see [2]).

Here we will mainly examine the case £k = 2 and n = 0. However we
will also show some experiments in the case £k = 1 and n = 1. In the latter
situation we will see that our algorithm is able to detect curves which are not
necessarily closed and that we can also capture certain quadruple junctions.
Moreover our approach is quite general since we could treat noisy images. The
plan of the paper is organized as follows.

In section 2 we introduce the G-L model and give its main physical and
mathematical properties. Then in section 3 we show how such a model can
be adapted to the detection of points in 2-D images. In section 4 we display
some numerical results demonstrating that our algorithm also applies for the
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4 G Aubert & J-F Aujol & L Blanc-Féraud

detection of curves in 2-D images and in particular its capability to process
the detection of non-closed curves.

2. The Ginzburg-Landau model

In this section we introduce the Ginzburg-Landau model. We first present the
origin of the model, then we give its main mathematical properties and finally
we show how this model can be used for detecting in an image singularities of
codimension-two. For the introduction of the model we follow [20].

The Ginzburg-Landau was designed in the fifties by Ginzburg and Lan-
dau [13] to modelize phenomenological patterns in superconductor material
near their critical temperature. Semiconductors have the particularity that
when they are cooled down below a critical temperature they become “ su-
perconducting ” which means that there can be permanent currents without
dissipation. A common simplification is to restrict to the two-dimensional case
by considering a section 2 C R? of an infinite cylindrical domain of R®*. The
behaviour of the material submitted to an external field A., is modeled through
the minimization of an energy which is, after renormalization:

J(u, A) = %/(wu—mu\? (2.1)

Q

tosU=uf) o+ [ b= bl ds
R2

where A is the vector potential, and A = curl A the induced magnetic field.
The parameter ¢, called the coherence length, is a small dimensionless constant,
depending only of the material and of the temperature. u is a complex-valued
function which indicates the local state of the material: if |u(z)| ~ 1 the
material is in a superconducting phase while if |u(z)| ~ 0 it is in its normal
phase (with no superconducting property). A rigorous mathematical study of
the behavior of the minimizers of the G-L functional shows that there exists
a phase-transition between these two previous states. This transition depends
on two critical values by = O( [loge|) and hy = O( %). If hey < by the material
is superconducting: |u(x)| =~ 1. If h., = hy there is a phase transition where
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coexist normal and superconducting phases. The normal phase is localized in
small regions of characteristic size € called “ vortices ” surrounded by super-
conducting regions. At the center of the vortex |u| ~ 0. When h., = hy the
superconductivity disappears |u| ~ 0 and h = he,.

At this stage the reader could think we are far from image analysis prob-
lems. In fact G-L functionals have been used in many areas of physic or
chemistry. Moreover G-L models have already been used for image inpainting
tasks |15, 14]. Let us note incidentally that there exist other works in image
processing using complex-values functions (see for example [12]|). May be what
it is important to keep in mind is that G-L. models are able to capture singu-
larities, e.g. vortices or singularities of codimension 2 in R? or R®. To better
understand such a phenomenon it would be timely to state some mathematical
results. There exists an important literature concerning G-L models. It is not
the place here to review all these results. We will only give those which are
the most linked to our purpose. Most of them rely on the simplified energy:

Bw) =5 [ (Vul + 5500~ ) da 22)

or on the associated flow governed by the evolution equation:

3u_ 1 9
== Aut u(1-uf) (2.3)

In order to avoid trivial solution and to get singularities we need to add
some (singular) data. With the functional (2.2) Dirichlet data u(z) = uo(z)
on the boundary 02 are often associated, but Neumann conditions can also
be used. Instead of Dirichlet conditions we can incorporate in (2.2), as we will
do later, a data term of the type [ [u — uo|* dz. For (2.3) we need to define an

Q

initial condition at t =0 : u(x,0) = ue(z) as well as boundary conditions.

We now state some typical mathematical results for (2.2). We give a result
due to Bethuel-Brezis-Helein [8]. It concerns functional (2.2) with a Dirichlet
condition. Though Dirichlet condition is not very realistic in physical situa-
tions, this case reflects well the general behavior of minimizers of the G-L func-
tional. We denote by d = deg(ug, 02) the Brouwer degree) (see Appendix A
for the definition of the Brouwer degree) of uy around OS2 .
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6 G Aubert & J-F Aujol & L Blanc-Féraud

We will identify the Sobolev space H'(2;C) to H'(Q;R?) = {u : Q —
R?* w € L*(Q)* and Vu € L*(Q2)*} where Vu stands for the distributional
Jacobian of u [1]. We will denote by H, (€2;R?)) the set of functions v in
H'(Q;C) such that u = uy on 9.

We first state the result and then we will try to give an intuitive explanation
of it.

Theorem 2.1. [8/
Assume that Q C R? is conver, |ug| = 1 and d = deg(ug, 0Q) > 0, then

1. Functional (2.2) has a minimizer u. in H, (Q;R?)). Moreover u. has
exactly d zeroes in ) and each one is of degree 1.

2. There is a subsequence €, — 0 and ezactly d points a1, as, ...,aq tn Q and
a smooth function u, from Q\{a1,as,...,aqs} with |u,| =1, —Au, =
Uy | Vu*\Q, and u = ug on 02 such that

e, — u, i Cp (Q\ {a1, a9, ..., aa}), VEk

In fact in [8] there are many other results concerning for example bounds
for the energy or the localization of singularities.

Let us now comment the above result. Roughly speaking the theorem tells
us that we are able to construct a sequence u., such that for ¢, small enough
luc| & 1 almost everywhere and u., has d zeroes which could be understood
as singularities. These singularities are the consequence of the assumption
d = deg(ug, ) > 0. Brouwer or topological degree is a mathematical tool
which is used to prove the existence of solutions for equations in R* or in
Banach spaces. By using the notion of degree we can prove the following
result which is closely related to our purpose : let us consider a bounded and
simply connected domain € in R? and a smooth mapping g : 0Q — S!
where S' = {z € R?; |z| = 1}. If deg (g, 92,0) # 0, then there does not exist
u € H'(Q; C) such that ujpq = g which implies that H (€; C) = (. When
Q= {z; |z| <1} and g(x) = = this result means that there is no retraction of
the disc onto its boundary. Geometrically this also means there is a topological
obstruction and this may be the cause in Theorem 2.1 of the creation of singular
points.

INRIA



Detecting codimension-two objects 7

Of course in image analysis we generally do not use Dirichlet conditions and
the previous theorem does not apply directly but it tells us that singularities
in data can be detected by such a model.

3. Detection of singularities of codimension-2 in
2-D images

Let us now go back to the problem of detecting singularities of codimension-
two in a 2-D image. First, we have from an initial 2-D image f(z) to construct
a complex-value image uq (we only consider gray-level image). There are many
ways for doing it. We choose the one’s proposed by [15]. We first rescale the
intensity image f(x) to the interval [—1,1], then f(z) is identified with the
real part of a complex valued function ug: @ — C by defining I'm(ug) =

1 — f(x)?, so that |ug| = 1. For detecting singularities of codimension-two
(points) we propose to search for minimizers u. € H'(Q); C) of the following
G-L functional :

F) = u [ a@)Tup+ 5 [ (1)
J%/Q‘“_“O‘Q (3.1)

where a(z) is a diffusion coefficient. If we denote by u (for the sake of
clarity, we omit the ¢ dependence) a minimizer of E.(u) then it satisfies the
Euler-Lagrange system :

—pdiv (a(x) Vu) — éu (1= |ul®) + A(u—1up) =0 in (3.2)

and 2% =0 on 0 (where N is the outward unit normal to 09).

In the original Ginzburg-Landau functional, there is no diffusion coefficient.
The main reason for which we introduce a(x) comes from the fact that we
do not impose Dirichlet condition on the boundary 02 of 2, and then the
natural boundary condition associated to the minimization of F| is a Neumann

du

boundary condition: £¥ = 0 on 92. In this case, as pointed out by [11], it may
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8 G Aubert & J-F Aujol & L Blanc-Féraud

happens that vortices of initial data can eventually disappear from the domain
(for example a vortex can merge with other vortices). Hence to stabilize each
vortex we need to create an energy barrier around the vortex by choosing an
appropriate diffusion coefficient a(x). Here as vortices are essentially created
by discontinuity points, we choose a(x) as follows:

a(z) = W(Af) (3.3)

where f is the initial gray level image and W is a nonincreasing function with
W(0) =1 and W(+o0) = 0. Typically, we choose

1
L+ (t/a)?

where a is a parameter modelling the size of the discontinuity. Moreover,
since f may not be twice differentiable (in fact f is not continuous at points
we want to detect), we first smooth it by convolution with a Gaussian kernel
before computing W.

W(t) = (3.4)

3.1 Evolution equation

As it is often used, to solve (3.2), we embed it into a dynamical scheme :

O v (a() Vi) + u (1 ) ~Aw—w)  (35)

with Neumann boundary conditions and initial condition u(t = 0, z) = ug(z).
We write u = (uy, us2), so that we can rewrite (3.5) as

B = #dAi‘E( a(z )(Vf)tl)) Luy (1— (u2 +ud))
% = pdiv (1( )VU;) %uQ (1— (u% + u%)) (3.6)
=X (uz — (ug)2)

(ug)1 is the original image, after it has been rescaled between -1 and 1. We
take (ug)2 = /1 — (uo)? (so that (ug)? + (uo)3 = 1).
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3.2 Discretization of the model

The image is a two dimension vector of size N x N. We denote by X the
Euclidean space RV*Y and Y = X x X. The space X will be endowed with the
scalar product (f, g)x = > 1« j<n fijgi; and the norm || f[|x = \/(f, f)x. We
introduce a discrete version of the gradient operator. If f € X, the gradient
Vf is a vector in Y given by: (Vf)i; = (Vf)i,, (VF)i;) with (Vf)i, =

Jivrg— fiy Hi<N
0 ifi=N
2 _ ) fin—fi; Hj<N
and (Vf)i,j_{ 0 ifj=N
We also introduce a discrete version of the divergence operator. We define
it by analogy with the continuous setting by div = —V* where V* is the

adjoint of V: that is, for every p € Y and f € X, (=divp, f)x = (p, Vf)y. It
is easy to check that:

Dij —Pic1; H1<i<N
(div(p))i; = { Pij if =1 (3.7)
—Di 1, if i=N
pij — pg’jfl ifl<j<N
+ < i if j=1
—p?,jfl if j=N

Finally, we define a discrete version of the Laplacian operator by setting

Af =div(Vf)if f € X.

Time discretization:
ou

We use an explicit Euler scheme with respect to the

'u,’,—H.'lf n
2,]

u .
KTV

time variable ¢, that is we approximate $* by —+——= (where n stands for the

at
iteration time).

To solve (3.5), we use an explicit scheme:

n+1

Us,j

ug; + 0t (u(div (ai,]-u;'fj)

ot

(3.8)

1 n n n
Rl (1 - ‘“m|2> — A (uf - “Oi,j)>

RR n° 5254



10 G Aubert & J-F Aujol & L Blanc-Féraud

with U?,j = (uO)i,j V(l,j)
We thus get the following system (we omit subindices i, j refering to the
pixel location):

((uit = u? + 6t (p(div (aul)
L

| wtl= ur+ 5125 ( dfvl(a uf) (3.9)
+5uf (1 — ((u?H)Q + (ug”)Q))

\ —A (uz — (uo)2))

3.3 Numerical results
3.3.1 Parameters

We need to fix several parameters before running our algorithm. Fortunately,
they have an intuitive explanation which make them easy to fix. We first need
to fix the parameters A, x4 and € used in (3.6).

1. €is to be small. We use values ranging from 0.1 to 1.0 (we have mainly
used € = 0.1 and € = 0.5). It controls the critical size of the points our
algorithm detect, i.e. the resolution of the segmented image. The smaller
it is, the finer the resolution is. Nevertheless, one must not set it too
small, because the spatial discretization of the image is fixed. Moreover,
the smaller € is, the smaller the time discretisation step dt has to be fixed
(otherwise, the numerical algorithm does not converge).

2. A is the fidelity parameter to the initial data. Since we initialize u to uy,
we do not need to use a large value. In our numerical experiments, we
have almost always used A = 0.1.

3. p is the regularization parameter. We use values ranging from 0.1 to 50.0
(but we have mainly used g = 1). It mainly depends on how noisy the
initial image is. The larger the noise is, the larger p should be.

We also need to fix the parameter « in (3.4). It represents the critical size
of the step of the discontinuity that our algorithm detects. The larger it is,
the larger the detected steps are.

INRIA
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And as we had said, before computing Af in (3.3), we regularize f by
convolution with a Gaussian kernel of standard deviation o. We use values
ranging from 3 to 7. The larger the noise is, the larger we set o (in the case
when the original image has not been degraded by some noise, we sometimes
do not regularize f).

3.3.2 Commentaries

On Figure 1, we show an example on a synthetic image: our algorithm catch
the points very well. On Figure 2, we have added a Gaussian noise (respectively
with standard deviation o = 10, 30 and 50). And the algorithm still performs
well.

On Figure 3, we show what happens on a real image: we catch the dashes
of the leopard. Figure 4 is the same example, but with an additive Gaussian
noise with standard deviation ¢ = 20. On both examples, the shape of the
leopard is given by its dashes.

Figure 5 shows an example of a biologic image. Although we use the model
(3.1) which is designed to catch points, we nevertheless detect lines as sequence
of points.

Finally, Figure 6 shows an application to SAR interferometry [6]. In this
case too, the lines are formed by sequences of points. We will come back to
this application in the next section.

4. Detection of codimension-1 structures in 2D-
images

As we mentionned in the introduction, in this case, we do not work with
complex-values function but with scalar-values functions and we search for a
minimizer of (3.1) as a function u. € H'(Q; R).

In the existing literature, there are many approaches to detect lines in an
image. For instance, based on the gradient, there is the classical Canny-Deriche
approach [7]. There has also been a lot of approaches using snakes and active
contours |9, 7, 10, 4, 21, 18, 17].

RR n’ 5254
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Original image Points detection

Figure 1: Synthetic image

We propose here a powerfull algorithm to catch curves in a 2-D image.
Comparing with active contours methods, our new algorithm can catch non-
closed curves, and the initilization is completely automatic.

4.1 Evolution equation

As before, we embed PDE (3.2) into a dynamical scheme :

ou

5 = pdiv (a(x) u) + ei?u (1= [ul?) (4.1)

—A(u—up) in
with 2% = 0 on 9. Moreover, we impose u(t = 0,z) = uo(z). A and p are
positive weighting parameters. We then discretize (4.1) with finite differences.

In Section 3 we had chosen a(z) = W(Af) (see (3.3)). As the singularities
we seek are no longer points but lines, we now choose:

a(z) = W(V) (4.2)

where f is the initial gray level image and W is the same function as in Section 3
(see 3.4).
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Noisy image (o = 10)

Noisy image (o = 30)

Noisy image (¢ = 50)

Points detection

Points detection

Points detection

Figure 2: Noisy synthetic images
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Original image Points detection (1 = 0.5, ¢ = 0.1) Points detection (u = 0.1, e = 0.1)

Figure 3: Detecting points

Noisy image (o = 20) Points Detection

Figure 4: Detecting points in a noisy image (o = 20)
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i

Original image Points Detection

i r!. "

Figure 5: Biological points

We use the same numerical scheme as in Section 3 (see (3.8), but now the
unknown u is a scalar function.

n n n 1 n n |2
L up; + ot (,uAum- + 6_2ui’j (1 — ‘ui,j| )

%,J

= (uiy — i) (4.3)
The initialization ug is the original image which has been rescaled between -1
and 1.

4.2 Numerical results

We set the parameters in the same way as in the preceeding section. We have
decided to compare our model with the classical Canny-Deriche algorithm. We
have used the implemantation in Megawave2
(http://www.cmla.ens-cachan.fr/Cmla/Megawave/ ).

Figure 7 is an example of segmentation of an image without any noise. One
can see that it gives very good edges (comparing with the Canny-Deriche edge
detector). The only problem is that our algorithm does not detect the square.
We illustrate more precisely this problem on Figures 8 and 9. Figure 8 gives an
example of segmentation with a quadruple junction. In this case, the algorithm

RR n° 5254
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Original image

Furs fi

Figure 6: SAR image
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performs very well. But on can see on Figure 9 that our model cannot handle
any quadruple junction. In fact, in many situations, one needs more than two
phases. Here, for quadruple junctions we need four phases. In other words, the
attracting term in the G-L functional must have four potential wells. Notice
that for n-junctions, n > 4, we only need four potential wells thanks to the
four colors theorem. We are currently working on modifying our functional in
this direction.

Figure 10 is an example of segmentation of the image of Figure 7 with some
Gaussian noise (with standard deviation ¢ = 20). The result is still a very
good one (because the noise is quite strong).

On Figure 11, we have tested our algorithm on a non-closed curve. We can
see that we can detect it, even when there is a strong Gaussian noise (with
standard deviation o = 80).

Figure 12 is to be compared with Figure 5. One clearly sees that both
models do not perform the same way. The model of this section tries to find
lines in an image, whereas the model of the previous section aims at finding
points. Therefore, in this case, the points are represented by circles, and the
lines by their edges (since they have a too large width with respect to the
parameter € which has been used).

Figure 13 shows a segmentation result on a biological image. Contrary to
Figure 12, the line are represented by a single curve (as in Figure 11). This
comes from the width of the lines to be detected and the valure of € (¢ = 0.5
in this case). If we set € smaller, than the lines are considered as objects with
non-negligeable width (as in Figure 12 or 7).

We come back to SAR image application [6]. We use our algorithm on
the same interferometric image as in Figure 6 (where the original image is
displayed). On Figure 14, we see that we get too many lines (in fact, we get
twice as many line as we should want). One way to correct this problem is
to use the result we get with the point version of the algorithm (Figure 6).
Thanks to the previous result, we know which lines we should keep, and which
ones we should drop. This give us the result displayed on Figure 15.

RR n’ 5254
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Original image Segmentation

N

we’ N (1)

7 5

Canny-Deriche

Figure 7: A synthetic image

INRIA



Detecting codimension-two objects

19

Original image Segmentation

Figure 8: Quadruple junction (good case)

Original image Segmentation

Figure 9: Quadruple junction (wrong case)
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Noisy image (o = 20)

Segmentation

Figure 10: A noisy image
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Noisy image

(o0 =80) Segmentation

Canny-Deriche

Figure 11: A non-closed curve

Original image Segmentation Canny-Deriche

1
R P, e §
s bt ¥ e )
= - !"...r-.ll 1 .':_--'
4 1 o h =

Figure 12: Biological lines
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Original image Segmentation

Canny-Deriche

Figure 13: Biological image
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f-:T..w-§ i

Figure 14: Segmentation of the SAR image
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Figure 15: SAR image segmentation using both models
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5. Conclusion and future prospects

In this paper, we have displayed some experimental results using Ginzburg-
Landau functionals for the detection of objects of codimension 2 or 1 in a 2-D
image. We got a new model to carry out such tasks. We have also stated
some mathematical results about GL models. However these results are not
directly applicable to our functional since we do not impose Dirichlet boundary
conditions. Therefore it remains to make the complete theoretical study of our
model. This will be made in a future work. Our numerical results confirm the
ineterest in using such an approach. From a numerical point of view, we also
have to go further into the tuning of the parameter €. It is closely related to
the mesh-size h. We conjecture that a relation of the type h = O(e) must
hold for ensuring the convergence of the discrete functional to the continuous
one’s. That is why we choose € close to 1 in our experiments since classically in
image processing h = 1. This type of results have been pointed out for similar
problems in [5].

A . Brouwer degree

There are many ways for defining Brouwer degree (see for example [22]). An
intuitive one is the following : let us consider a continuous mapping F' on the
closed disk D(O, R) centered at the origin in R? :

F:D(O,R) » R

As z travels along 0D(O, R) once around the origin in a positive sense, the
image points F(z) travel along an oriented curve C. We suppose that O ¢ C.
If n, and n_ denote the number of windings around the origin in a positive
and negative sense then the degree is defined as

deg (F,D,0)=mny —n_

A consequence of this definition is that if deg (F, D, O) # 0 then there exists
zo € D(O, R) such that F(xy) = 0.
An equivalent analytical definition of the degree can be stated as follows :
Assume that Q is a bounded domain of R* | F € C(Q; R") and y ¢
F(0Q)UF(S) where S = {z € Q; F'(z) =0} (F' is the Jacobian matrix) then

RR n° 5254



26 G Aubert & J-F Aujol & L Blanc-Féraud

the Brouwer degree of the mapping F' relatively to (2 and y is defined as

deg (F,Q,y) = Z sign F'(x)

zeF~1(y)
If F:[a,b] > R with F(a) and F(b) # 0 then an easy computation leads to

0 if F(a)F(b) >0
deg (F, ]a,b],0)=< 1 if F(a) <0 and F(b) >0
—1 if F(a) >0 and F(b) <0

Thus deg (F,]a, b] ,O) # 0 always implies the existence of a solution of F(z) =
0 in | @,b|. This is nothing less than the classical intermediate-value theorem
and the degree is a useful tool for generalizing this property.
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