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Abstract: We introduce a new variant of the multilayer Saint-Venant system. The classical
Saint-Venant system is a well-known approximation of the incompressible Navier-Stokes
equations for shallow water flows with free moving boundary. Its efficiency, robustness and
low computational cost make it very commonly used. Nevertheless its range of application
is limited and it does not allow to access to the vertical profile of the horizontal velocity.
Hence and thanks to a precise analysis of the shallow water assumption we propose here a
new approximation of the Navier-Stokes equations which consists in a set of coupled Saint-
Venant systems, extends the range of validity and gives a precise description of the vertical
profile of the horizontal velocity while preserving the computational efficiency of the classical
Saint-Venant system. We validate the model through some numerical examples.
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Un modéle Saint-Venant multicouche

Résumé : Nous introduisons une nouvelle variante d’un systéme de Saint-Venant multi-
couche. Le systéme de Saint-Venant classique est, de par son efficacité et sa robustesse,
souvent utilisé pour modéliser les écoulements incompressibles & surface libre en eaux peu
profondes. Néanmoins son domaine d’application reste limité et il ne donne accés qu’a une
vitesse moyenne de ’écoulement. Gréce & une analyse détailée de '’hypothése eaux peu
profondes, nous proposons une nouvelle approximation des équations de Navier-Stokes, qui
consiste en une série de systémes de Saint-Venant couplés. Cette approche multicouche per-
met d’étendre le domaine de validité du modéle et fournit une description précise du profil
vertical de vitesse horizontale, tout en préservant la simplicité et Vefficacité de ’approche
Saint-Venant classique. Une validation du modéle au travers de ’étude d’une rupture de
barrage est proposée.

Mots-clés : Equations de Navier-Stokes a surface libre, eaux peu profondes, approximation
hydrostatique, systéme de Saint-Venant, modéle multicouche, viscosité
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1 Introduction

In this paper we are interested in modeling the so-called shallow water flows. It covers a very
large range of applications in the domain of the geophysical flows - rivers, lakes, costal areas,
oceans, atmosphere, avalanches... In order to provide a new modelization step between the
complexity of the full Navier-Stokes equations for incompressible flows with free surface and
the loss of generality of the classical Saint-Venant system, we introduce in this paper a new
multilayer Saint-Venant type model which consists in a set of coupled Saint-Venant systems

Ohy  OhaUs
E T Pl -y
M
BhaUa 0 9 haZﬁzl hﬁ
ot +(9_.’l7 (haUa+972

M 2
9 (Zﬁzl hﬁ) 8 ha o, Vot =Us o Us = Uas
- 2 X hy ! hati the e that

(1.2)

where (hqa, hoUy)(t,x) is the vector of the conservative variables - water height and dis-
charge, thus U,(t, z) is the velocity - and where the subscript « is related to the considered
layer - thus a £ 1 are related to the neighbouring layers, above and below. M is the total
number of layers. u denotes the viscosity coefficient.

The main interest of such a formulation is to access to the vertical profile of the horizontal
velocity while preserving the computational efficiency of the Saint-Venant model. Further-
more the model verifies some stability properties - existence of an energy, positivity of the
water heights - and some physical properties - agreement with the classical Saint-Venant
solution for compatible initial conditions, preservation of stationary states. One of the goals
of the present paper is also to extend these properties to numerical simulation.

The classical Saint-Venant system [28] is a well known approximation of the free surface
Navier-Stokes equations for shallow water flows, which has been widely validated for various
geophysical flows, such as rivers or coastal areas [20], or even ocean and atmosphere dynamic
or avalanches flows [5] when completed with appropriate terms.

The derivation of the Saint-Venant system from the Navier-Stokes equations for shallow
incompressible flows with a free moving boundary is now classical when the viscosity is
neglected [30]. But this does not allow to justify that the right jumps - that appear in
dam breaks or hydraulic jumps - are those obtained when using the momentum - and not
the velocity - as the conservative variable. In [15], Gerbeau and Perthame propose a full
derivation based on an asymptotic analysis of the dimensionless Navier-Stokes equations. In
particular they study the influence of the viscous term and its relation with the friction term.
Then the classical Saint-Venant system with a friction term turns out to be a zeroth order
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4 Audusse

approximation of the Navier-Stokes equations for incompressible flows with a free moving
boundary under the shallow water assumption. They also derive a viscous Saint-Venant
system through a first order investigation. In a recent work [13], Saleri and Ferrari extended
this approach to the 2D case including a slowly varying topography and an atmospheric
pressure term.

Direct free surface Navier-Stokes computations are possible [21] but are still expensive and
require sophisticated algorithms. It is necessary to adapt a 3D mesh to the movement of
the free surface and to the variation of the bottom topography in sedimentation cases. It
requires also to deal with the incompressibility condition. The Saint-Venant computations
are much more efficient since they deal with unvarying 2D meshes. But the background of
this computational simplification is also the main limitation of the Saint-Venant approach:
it uses only integrated quantities. The classical Saint-Venant system is related to a “motion
by slice” approximation, i.e. the horizontal velocity does not depend upon the vertical coor-
dinate. Therefore some information is lost and the practical range of validity of the system
is sometimes very limited: it fails to reproduce the correct vertical profile of the horizontal
velocity - and even the correct averaged horizontal velocity - when the friction on the bottom
is not small enough, also it is not able to reproduce such phenomena as the recirculation
due to the surface wind in a closed lake.

For these reasons, intermediate models have been further used. Most of them are simplified
Navier-Stokes models. In [9, 14, 25], Quarteroni, Saleri et al. consider this set of approxima-
tions of the 3D Navier-Stokes equations and they derive different approximate models. In
particular, in [14, 25], they work on the so-called hydrostatic approximation in a way that
is a first step toward the Saint-Venant model since they consider the integrated continuity
equation to rise the water height as an explicit variable. Nevertheless the background of
the modelization is still the classical Navier-Stokes formalism, at least for the horizontal
momentum equation: unknowns are velocities and the continuous problem is considered on
a 3D domain. The explicitation of the 2D+1D form of the problem is performed in a second
step through the choice of the vertical discretization: the domain is divided into several
layers on which the same 2D finite element approximation is used to describe the horizontal
velocity. The layers can be fixed horizontal strata as in [14, 25] or based on the so-called
sigma transformation as in [21].

Our approach can be seen as a augmented Saint-Venant model, i.e. a discretization of
the 3D Navier-Stokes equations where the vertical grid (hy) is evolved “a la Saint-Venant”
and some viscous effects are kept. In this it goes one step further in the analysis of [15]
and as for the classical Saint-Venant system we exhibit an energy and we characterize some
equilibrium states. As one can see, the set of Saint-Venant sytems (1.1)-(1.2), being 2D, is
able to preserve computational efficiency. The conservative form of the equations on water
heights (h) leads to extend finite volume schemes to (1.1)-(1.2). This motivates our choice
of writing (1.2) as an usual conservative left hand side plus non conservative corrections -
on the right hand side. Indeed the challenge here would be to perform an algorithm able to
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A Multilayer Saint-Venant Model 5

keep (i) stability - h, > 0 and entropy inequality (ii) conservation of heights and total mo-
mentum Y hqu, when v = 0 (iii) the particular states ho, = h/M, uq = u gives a consistent
approximation of the classical monolayer Saint-Venant system - when v = 0 (iv) the steady
states of a lake at rest are preserved. Our work provides a first step in this direction and can
be related to a work of Saleri and Lazzaroni [22] motivated by the same applications. But
the approaches are quite different since [22] presents non conservative Saint-Venant systems
discretized through a finite element framework. In [6, 7] Pares et al. present a bi-fluid
shallow water problem and the system they consider presents also common parts with the
two layers version of (1.1)-(1.2). As in [22] they consider a non conservative version and
they exhibit that the system is no more hyperbolic when the densities of the fluids are too
close. We prove in the paper that the left hand side of the system (1.1)-(1.2) is hyperbolic
which is another motivation for our formulation.

The outline of the paper is as follows. In Section 2 we apply the shallow water scaling
to the free surface Navier-Stokes equations and we present and analyse two hydrostatic
models - as indicated in Figure 1.1. Then in Section 3 we derive the multilayer Saint-
Venant model (1.1)-(1.2) and we discuss its essential properties. In Section 4 we establish
the discrete version of the model using the finite volume framework. In Section 5 we present
some numerical results and comparisons between the monolayer Saint-Venant and Navier-
Stokes systems which validate the model. Finally in Section 6 we conclude and present some
perspectives.

Navier Stokes equations for incompressible free surface flows

|
Shallow water scaling

¥ AN
Hydrostatic model Viscous hydrostatic model
¥ N v
Classica Multilayer Viscous
Saint-Venant system  Saint-Venant system Saint-Venant system

Figure 1.1: From Navier-Stokes equations to Saint-Venant type models

2 Navier-Stokes equations and hydrostatic approxima-

tions
Following [15] we present here the first steps of the derivation of the Saint-Venant type
models from the Navier-Stokes equations, i.e. the derivation of the simplified Navier-Stokes

models - see Figure 1.1. We introduce a new focus on the question of the dissipation of the
energy, whcich is an essential property of the Navier-Stokes equations. In particular it allows
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6 Audusse

us to discriminate an energy compatible form of the viscous hydrostatic model introduced
in Subsection 2.1. Moreover we clearly distinguish the basic effects of the shallow water
assumption - Subsection 2.1 - from the ones of further assumptions about viscosity and
friction - Subsection 2.2.

We consider the classical free surface Navier-Stokes equations

ou Ow

%4‘& = 0, (2.1)
Ou Ou? Ouw Op 0%u 8%u 82w
gu ow oww 9P _ 9, 0% 0%, Y 2.2
5t " or T 0z s Po2 TH o2 T Hor o (22)
6_w+6u_w+6_w2+@ = —g+ 62_w+ 62—u+2 62_’11) (23)
at 9z | 8z "8z ITH a2 THara THa '

with
t>0, zeR 0<z<h(t),

where u(t,z,2) is the horizontal velocity, w(t,z,z) is the vertical velocity, p(t,z,z) the
pressure and where h(t, ) denotes the water height, g the gravity and p the viscosity. Notice
that for simplicity we consider the flat bottom case. In [13] Saleri and Ferrari extended the
analysis of Gerbeau and Perthame [15] concerning the classical Saint-Venant model to a
slowly varying bottom. The present work does not introduce new contribution on this
particular topic and the same extension can be done for the multilayer model that we
introduce in Section 3. Notice also that we assume that the free surface is a function of
(z,1).

On the bottom we consider a no penetration condition and we estimate the friction through
a coefficient xk and a Navier condition

w(t,z,0) =0, u %(t,x,@) = ku(t, z,0). (2.4)

On the free surface we consider a no stress condition

Ou oh Ou Oh ow
ke, tPg —2u%%+u% = 0 on z=h(tx), (2.5)
ow Ou Oh Ow Oh
P — 2u a + /lz& % + /L% % = 0 on 2z —h(t,x), (26)
and the kinematic boundary condition
Oh Oh
i u(t,z,z = h(t,x))% —w(t,z,z = h(t,z)) =0. (2.7

We recall that (2.1), (2.4) and (2.7) lead to the following mass equation

oh o ["
E+%/0 udz = 0.
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A Multilayer Saint-Venant Model 7

We recall also that a fundamental stability property is related to the fact that the Navier-
Stokes equations admit an energy

2+w2

U
ens(t, x,2) = ec(t, 2, 2) +ep(t,z, 2) = (t,z,2) + gz.

and that the following equation holds

2/he dz—l—g/h u(ens +p) — 2u6—u+w @—i—a—w dz
ot Jo ox J, ns TP) TR Ox 0z Oz
h 2 2 2
Ou 1/6u  Ow ow
- _ 2 _ z= (= - i
= — ku’(t,z,0) 2/1/0 [(33@) +2<8z+ 3:1:) +<6z> ] dz.
For further analysis of the full Navier-Stokes equations we refer to [24].

We are now interested in the shallow water flows. As usual we introduce two character-
istic dimensions H and L in the vertical and horizontal directions respectively. The shallow
water flows are then characterized by the fact that H is very small compared with L. Thus
we can make the so-called shallow water assumption, i.e. we introduce a “small parameter”
e = & Then after rescaling we can write (2.1)-(2.3) as a dimensionless Navier-Stokes system

ou Ow
247" = 2.
oz T 9z 0 @8
Ou Ou? Ouw Op %u v 0%u 8%w
o T o Tar T e taar Varas (2.9)
ow Ouw Ow? Op 0%w 0%u 0%w
2 - - - = — — 2 - R -
€ (6t+ P +82>+az g+6”6x2+”6xaz+2"6z2' (2.10)

Notice that v = p/(UL) is the dimensionless form of the viscosity coefficient and that here
and in all the dimensionless equations g does not denote the gravity but the Froude number

g9/UL).
The associated boundary conditions on the bottom (2.4) are rescaled as

v Ou
’LU(t,.fL’,O) - 05 ; a(tamao) - ’yu(t,:c,O), (211)

where v = k/U is the dimensionless form of the friction coefficient. The boundary conditions
on the free surface (2.5)-(2.6) are rescaled as

v Ou Oh ou Oh ow

Z 3 +p 9 21/6—$ 9 + Vow = 0 on z=h(t,z), (2.12)
ow Ou Oh 5 Ow Oh _
p— 2v 5 + Yo% Do + € Vor 95 0 on z=h(t,z). (2.13)

The kinematic boundary condition (2.7) is unchanged.

RR n° 5249



8 Audusse

2.1 A viscous hydrostatic model

We simplify the system (2.1)-(2.3) by retaining the zero and first order terms. We obtain a
viscous hydrostatic model

ou Ow
— + — = 2.14
Ox + 0z 0, (2.14)
Ou Ou? Ouw Op %u v 0%u 82w
e el I 7] 7 i By — 2.1
ot " or T 0z T os Yozt @ 02 T Var oz (2.15)
op 0%u Pw ., Ow
9% = —g+ V—am P + 21/—6z2 + v 52 (2.16)

where
t>0, zeR, 0<z<h(t ).

The associated boundary conditions are the same as the ones corresponding to the full
dimensionless Navier-Stokes equations.

Remark 2.1 Our motivation for keeping the second order term in the right hand side of the
Navier-Stokes equations and in the free surface boundary conditions is that it is necessary for
the energy dissipation as it is exhibited below. As it is an essential property of the Navier-
Stokes equations we privilege this stability requirement to a strict first order approrimation.

Remark 2.2 In (2.15)-(2.16) we have kept the symmetric form of the tensor - even though
it can be simplified in Laplace terms - because of its natural relation to the boundary condi-
tions (2.12)-(2.13).

Now we check that the viscous hydrostatic approximation shares with the full Navier-Stokes
equation on energy structure. We introduce the hydrostatic energy

2
en(t,z,2) = ec(t,x,2) + ep(t, z,2) = %(t,x,z) + gz. (2.17)

Lemma 2.1 The following energy equation holds for (2.14)-(2.16)
a [t o [" du ou  , Ow
a/o ehdz+6_x/0 (u(eh—i—p)—l/ (Qu%+w$+ew%)>dz
Plrou\> 1 (1 du ow\’ ow\’
= 2 / Quy Ll ouw, dw), (owN,,
yu®(t,z,0) — 2v | [(6&7) +2(€ 82+€ (%) +<8z> dz

Proof. The proof uses classical computations. Following the purpose of Remark 2.1, let us
notice the importance of the epsilon square term : it allows to include the term containing
0,u0;w in a square term and then to exhibit the decreasing of the energy. L
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The computational complexity and cost of this viscous hydrostatic model remain similar
to the ones of the full Navier-Stokes equations. In particular we do not recover the classical
hydrostatic approximation. One way to go further in the simplification is to introduce a
scaling in the viscosity and friction coefficients. It seems to be in accordance with the phys-
ical background: indeed the viscosity coefficient can be related to the turbulent viscosity of
the flow which is in particular related to the geometric datas and thus to the shallow water
assumption. Nevertheless there is many ways to define this scaling: it is possible to consider
anisotropic viscosity coefficients and also to introduce different powers of € - see [4]. Here
we shall suppose that we are in the following regime

v = ey, and v = €. (2.18)

2.2 A classical hydrostatic model

We consider the system (2.8)-(2.10) with the particular form of the viscosity and friction
coefficients (2.18) and one retains only the zero order terms. We obtain the very classical
hydrostatic model

ou Ow
wtas, = O (2.19)
Ou Ou?> Ouw Op vy 0%u
ittt o tar - < o (2.20)
Op
—_— = - 2.21
P 9, (2.21)

where
t>0, zeR, 0<z<h(t ).

After simplifying the terms of corresponding order, the boundary conditions (2.11)-(2.13)
become

w(t,z,0) = 0, (2.22)
120 ou _ 6_u o
— a(taxao) - ’You(t;l";o): 9z (t,m,h(t,az)) - 07 (223)
p(t,z,h(t,z)) = 0. (2.24)

The system is still associated with the kinematic boundary condition (2.7). Taking into
account the pressure boundary condition on the free surface (2.24), (2.21) is equivalent to

p(t,z,2) = g(h(t,z) — 2). (2.25)

It is now possible to check that the hydrostatic approximation shares with the full Navier-
Stokes equation on energy structure. Namely considering the hydrostatic energy (2.17),
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Lemma 2.2 The following equality holds for (2.19)-(2.24)

a (" o (" ) v (M [0u)?
a/o en dz+3_a:/0 u(ep + p)dz = —you(t,z,0) — ?/0 ($> dz.

Proof. The proof uses on classical computations. L

This hydrostatic model - or some variants with horizontal viscosity or other specific terms -
is very used in geophysical flows studies. For further references see for example [4, 10, 19].

3 The Multilayer Saint-Venant System

We can now derive the Saint-Venant type models - see Figure 1.1. To do this we perform
an asymptotic analysis of the hydrostatic models obtained in the previous section.

In [15] the authors present how to properly derive monolayer Saint-Venant models. Intro-
ducing an averaged velocity

h
Ult,z) = /0 u(t, z,z)dz.

h(t, )

and departing respectively from the hydrostatic model (2.19)-(2.21) and from the viscous
hydrostatic model (2.14)-(2.16) - under the hypothesis (2.18), they deduce the classical
Saint-Venant system with friction

oh  OhU

47 = 1
ot * oz 0 (3-1)
onU 0 5  gh? _
5t + e (hU + 2 = kU. (3.2)
and a viscous Saint-Venant system with friction
Oh  OhU
5 + e 0, (3.3)
onU 0 , gh? K o (, 0U
— + = =] = - dp— (h— ). 4
ot oz (hU T3 Tyl P Mo (34)

as formal asymptotic approximations in O(e) - respectively O(€?) - of the Navier-Stokes
equations. More details about these derivations can be found in [13, 15].
These two Saint-Venant models are associated with a dissipation of energy. Indeed intro-

ducing - 2
hE = hE, + hE, = “— + T2,

INRIA
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we establish for the classical Saint-Venant model (3.1)-(3.2)

OhE 0 gh2 _ 9
W—i—%(U(hE_{—T)) = —xU~,

and for the viscous ones (3.3)-(3.4)

OhE 0 gh? o oU Ko U\’
o 2 E+2 ) —apu> (hUZZ)) = - —4uh () .
5t ' oz <U<h + 2) o (hUax» 1+%U "h<am)

Remark 3.1 Notice that the classical Saint-Venant system (8.1)-(3.2) provides an ezact
solution to the hydrostatic system (2.19)-(2.21) when there is no friction on the bottom -
i.e. Yo = 0. Indeed we can choose

u(t,2,2) =Ulha), wltye,2) = 290, plt,a,2) = g(h(t,2) - 2),

where (h,U)(t,z) is a solution of the classical Saint-Venant system (3.1)-(3.2). It is in
general no more the case for the viscous models. Indeed a solution (h,,U,)(t,z) of the
viscous Saint- Venant system (3.3)-(3.4) - with no friction - provides a solution of the viscous
hydrostatic system (2.14)-(2.16) if and only if it verifies also the following equality

0 ou, o0*U,
Yoz (’Lv%) =3t 5

We now derive a more precise approximation. Especially we wish to keep some information
on the vertical structure of the horizontal velocity as motivated in the introduction.

3.1 The Multilayer Saint-Venant model

We consider the hydrostatic model (2.19)-(2.21). We first introduce a discretization in the
variable z - see Figure 3.1. Then for some M € N we define M intermediate water heights
H,(t,z) such that

0= Ho(t,.%') < Hl(t,.’ll') < Hz(t,l’) <..< HMfl(t,.’IT) < HM(t,IL') = h(t,.’lf).
We characterize M layers through the definition of the indicator functions ¢, (t, z, )

[ 1 if He1(t,z) <z< Hy(t,z)
Va € {1, M} dalt,z,2) = { 0 otherwise,
that are advected by the flow

09 +5¢au 0pqw
ot ox oz

=0. (3.5)
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Free surface
ha(t, x) us(t,x)
b ha(t, )
Hs(t,x
holt, 7) L us(t,z)
\
ha(t, 7) us(t,

M
) ey

Figure 3.1: A multilayer approach

Then for each layer we define its water height hy(t, z) by
Va € {1,M} ho(t,z) = Hy(t,x) — Hy 1 (t, 1),

and an averaged velocitiy U, (t, z)

H,
Vae{l,M} Ui(tz)= m/jf ult,z, 2)dz.
Q" a—1

We claim that

Theorem 3.1 The multilayer Saint-Venant system with friction defined by

Ohy  OmU;
e (3.6)
8h1U1 6 2 6 M U2 - Ul
2 - =9 — .
5 " B (h1U1)+gh16$ﬁz::lhg Wy~ U (3.7)
Ohy  OhaUs _
o T o 3
Oholln O ) 0 & Uni1 — U Us = Ua_y
— (ha «ae =opu- 0 % g 0Tl (3.
ot T g (hela) +h axﬁghﬁ e P hoghe s 89

for a=2.M-1
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Ohyr  OhpUny _
ot + oz 0, (3.10)
OhyUm 0 UM —Um-1

— e 11

results from a formal asymptotic approximation in O(e) coupled with a vertical discretization
of the hydrostatic model and therefore of the Navier-Stokes equations.

Proof. We obtain by integration of (3.5) in the vertical direction M mass balance equations

Ohy 0 [He
< = 12
5t + 632/1{&_1 udz =0, (3.12)

and M kinematic boundary conditions at the interfaces

OHa | \(t,2,2 = Ha(t,2)) 2

—w(t,z,z = Hy(t,z)) = 0. (3.13)

ot Oz
Using the averaged velocities U, we write the mass balance equations (3.12) in the Saint-
Venant formalism o 5
-2+ ~hU,=0. 3.14
ot " ox (3.14)

We now integrate on each layer the equation (2.20). The form of the hydrostatic pressure

(2.25) leads to
H, Hay
A T
", , 0% Ha s Oz Jg, _, O0x

and thus we obtain - taking into account the kinematic boundary conditions (3.13) - M
momentum equations

JE— _ 2 [ —
o ) Udz+6m - dz + gha prl 6z(H (t,z)) - —(Hq-1(t,2)). (3.15)

a [He 0 / Ha oh _ % ou Vg Ou
Now equations (2.20) and (2.23) implie

0%u ou ou
ﬁ - 0(6)7 £|z:0 — 0(6); %lz:h — 0:

and therefore
u(t,z,z) = U(t,z) + O(e) Vz 0<z<h(tz), (3.16)
what implies

1 Hao 2
m/[{a_l u (t,.’E,Z)dZ = Ua(t,ﬂl’) + 0(6)
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14 Audusse

Hence we can write the momentum equations (3.15) in the Saint-Venant formalism

0 0 9 Oh vy Ou
ahQUOL+a hoUs + gha 5 = % Bs

140 ou

(Ha(t,l')) - _

0 S (Haa(t,2)) + 00 (317)

We drop the O(e) and multiply (3.14) and (3.17) by HU?/L in order to recover the vari-
ables with dimension. Finally we apply a finite difference method in the vertical direction
to the right hand side of the momentum equations when it is concerned with an interface. |

3.2 Properties of the Multilayer Saint-Venant System
The multilayer Saint-Venant systems presents two fundamental stability properties.

Proposition 3.1 The multilayer Saint- Venant system (3.23)-(3.28) preserves the positivity
of the water height in each layer. It is also associated with an energy inequality. Namely
denoting h = 224:1 hg and introducing the energy

haU2 | gha
E:ZEa:Z(W+gT>,

we establish the following equality

0 _ )2
ahE+—<hZUE +1Y_ U2 >=—/<;U1 QHZ he +ha :

Proof. The development of the proof is very classical since it mimicks what is done for the
classical Saint-Venant system. The new dissipative term in the energy equation is due to
the presence of the same viscous friction term at the interface & — 1/2 in the momentum
equations for the layers a and a — 1. |

The multilayer Saint-Venant systems ensures also some relations with the classical Saint-
Venant system

Proposition 3.2 The multilayer Saint- Venant system (3.23)-(3.28) preserves the so-called
lake at rest equilibrium

D ha(0,2) =H, Us(0,2)=0 Va=1.M (3.18)

Also when there is no friction on the bottom the classical Saint-Venant system (3.1)-(3.2)
provides a solution for the multilayer case. Indeed if we choose the initial conditions Uy (t =
0,z2) = Up(z) and ho(t = 0,z) = coHo(z) (such that Y co = 1), a multilayer solution is
given by

ha(ta SL') = cah(ta ZL"),

Ua(t,z) = U(t, z),

where (h,U)(t,z) is a solution of the classical Saint- Venant system with initial values (Hy, Ug)(t, ).

Va=1...M {
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Proof. Proofs are obvious. Notice that the preservation of some steady states is a funda-
mental specific property of the Saint-Venant type models [3, 18]. The second point is is in
agreement with Remark 3.1 since the multilayer system is an intermediate model between
the hydrostatic system and the classical Saint-Venant system. L

3.3 Non conservativity and non hyperbolicity of the Multilayer
Saint-Venant System

The multilayer Saint-Venant system (3.6)-(3.11) has two main drawbacks. First as opposed
to the monolayer Saint-Venant models the pressure terms are not in a conservative form and
thus their definition is not obvious when shocks occur. Nevertheless many works have been
devoted to this question and some recent works propose numerical ways to choose a “right”
solution - see [11] or [8] in the context of the Saint-Venant computations.

The second point is much more problematic. For the simplicity of the purpose let us consider
the two layers version of the system (3.6)-(3.11). Following [6] we write the two layers system
under the compact form

0X 0X
— + AX)— =85(X 1
o A S = S(), (3.19)
where
0
hl U2_U1
2 — kU
x=| MU sen = | TRERCT
2 0
h2U2 UI_U2
2 - “
M s + I
0 1 0 0
~UZ+ghy 2U h 0
AR = B0 1
gh2 0 —U22+gh2 2U2

As the vertical profile of the velocity is given by the relation (3.16) we have

Uun(t,z) = U(t,x) + O(e) Vo =1,2. (3.20)

Proposition 3.3 Under the assumption (3.20) the non conservative two layers Saint- Venant
system (3.19) is not hyperbolic. Moreover when Uy(t,x) # Us(t,z) the eigenvalues of the
matriz A(X) have a non vanishing imaginary part.

Proof. The eigenvalues of the matrix A(X) are solutions of

(A2 = 2U1A + U — gh1) (A\* = 2UxA + U3 — ghs) = g*hihs.
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Therefore under the assumption (3.20) first order approximations in U; — Us of the eigen-
values are

Aot = Unm £ /g(h1 + ha), (3.21)

Uy, — U- by —ho\?
n .Ur 2 1 2
t =U,+i———=4/1— , .22
Nipg = Ue i (hl m hz) (3.22)
where
U. — h1U1 + haUs U. — h1Us + haUy
m h1 + ho ’ c hy + ha ’

Notice that in the case U3 = Uy = U the eigenvalues become real but the system is still not
hyperbolic since U is a double eigenvalue associated with a one dimensional eigenspace. |

The eigenvalues A, characterize the baroclinic part of the flow and are related to the
celerity of a signal at the interface between the two layers [6, 16]. Their imaginary parts
are related to the existence of instabilities at the interface which lead to a mixing between
the two layers. Hence it is natural that the baroclinic eigenvalues of the multilayer system
have a non vanishing imaginary part since the hypothesis (3.5) about the immiscibility of
the layers is not linked to the physical background. But it follows also that the precise value
of /\fnt is not relevant since we are not interested in the evolution of these “virtual” internal
interfaces.

The two other eigenvalues A\Z,, characterize the barotropic part of the flow and are related
to the celerity of a signal at the free surface. Therefore the multilayer Saint-Venant model is
in agreement with the classical results about the monolayer Saint-Venant models for which
the eigenvalues - and thus the celerities of a signal at the free surface - are U £ /gh. Since
these celerities are well-known to be in good accordance with the experiences, the agreement
between the two models and thus the value of /\eimt is an essential property of the multilayer
system.

3.4 Conservative Form of the Multilayer Saint-Venant Model

To overcome the difficulties due to these non conservative structure and non hyperbolic
nature of the multilayer Saint-Venant system (3.6)-(3.11) and therefore to avoid apparition
of instabilities in the numerical simulations [6] we propose to consider a slightly different
system

Ohy  OhUp
5t = 529
M
Oh1Uq +£ MU2 + hy (Zﬂ=1 hﬁ)
ot gz (V1T 2
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2
M
= g—<zﬁ:1 hﬂ) (M3, 020 1 (3.24)
2 ox 216\4:1 hﬂ hz + hl ’
Ohy  Oh U,
i) = 2
ot + 97 0, (3.25)
M
Ohala , 0 [, 1o ha (25:1 hﬁ)
ot ' og \reTd 2
2
M
B g(Zﬁ=1hﬁ) ﬁ ha P (Ua+1—Ua _ Ua—Ua_1) (3 26)
- 2 0 \S s ) T \havt T ha  hatho ‘
for a=2.M-1,
Ohy  OhpUps
B T ol 2
ot or 0, (3.27)
M
Uy 0 [ s ha (25:1 hﬂ)
at oz \ MM T 2
2
M
9 (E,le ha) O (_hw ) _, Un—Un (3.28)
2 ox Egil hﬂ hM+hM,]_' )

Proposition 3.4 Under the assumption (3.16) this new set-up of the same system has the

following properties
(P1) The system obtained by replacing the right-hand side by zero is hyperbolic.

(P2) The barotropic eigenvalues )\fmt (3.21) are still first order approzimations in Uy — Uy

of two of its eigenvalues.

(P3) For suitable initial water height data, the non conservative terms in the right hand side

are “small” - they vanish in the Saint-Venant approzimation hy, = h/M, Uy, =U.

(P4) The sum on all the layers of the equations that describe the evolution of the water height
and of the discharge in each layer is a first order approximation of the classical Saint- Venant

system - left and right hand side considered separately.

Proof. As for the non conservative model we consider for simplicity the two layers case.

Hence the eigenvalues of the matrix on the left hand side are solutions of

<A2 — 22U\ + UZ — ghy — %) (A2 — 2Us\ + U2 — ghy — ﬂ)

2 4
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Therefore under the assumption (3.20) first order approximations of the eigenvalues are

M, =Un £Vg(hy + h),

g(h1 + h2)
)‘?:zt =U.+ D) ’
where
U - hiU; + hyUs U. = h1Us + hoU;
m h1 + ho ’ ¢ h1 + ho )

Properties (P1) and (P2) follow immediately. Properties (P3) and (P4) are consequences of
obvious computations - notice that “suitable initial water height data” means that the initial
non conservative pressure source term is small. The second part of (P3) means that in the
zero friction case, and for suitable initial data, the non conservative pressure source term P
and the viscous source term V' vanish for each time.

2

M
g h (Ua+1 - Ua) (Ua - Ua—l)
P=9{Yhs| 0=, V=24 [ _
2 Bzﬂ ’ (Eg[:1 hﬁ) (ha+1 + ha) (ha + ha—l)

A consequence of (P4) is that the free surface and the total discharge of the multilayer
system are first order approximation of the classical Saint-Venant results, plus corrections
due to the more sophisticated vertical profile of the flow velocity. r

Remark 3.2 Qutside from the dry areas the conservative part of the two layers system
is strictly hyperbolic. Nevertheless it is no more the case when we consider a multilayer
system with three or more layers since the multiplicity of the eigenvalues )\ﬁt is equal to
the number of interfaces - at least for the case U, = U. The system is still hyperbolic since
the dimensions of the associated eigenspaces are also equal to the number of interfaces - see
Serre [29], Dafermos [12] for precise definitions.

Remark 3.3 The most intuitive form for a conservative multilayer model is the one which
mimicks exactly the flur of the classical Saint-Venant system (3.1)-(3.2) by introducing
0ygh> as conservative pressure term. The non conservative part is then ghaazzﬁ;éa hg
and can be interpreted as a topographic source term. The conservative part is hyperbolic
since the eigenvalues are - for each layer - deduced from those of the classical Saint-Venant
system. Also the strict analogy with the classical Saint-Venant system seems to be conve-
nient for computational use. Nevertheless this method is in fact defective since it does not
respect any of the three properties (P2)-(P4) and especially the eigenvalues of the hyperbolic
system of the left hand side are far from the barotropic eigenvalues /\it (8.21).

Remark 3.4 Both set-ups of the multilayer model preserve the lake at rest steady state. But
if we have in mind the numerical treatment of this equilibrium state it is important to notice
that, if for the non-conservative model and ot the lake at rest equilibrium state both fluzes
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and source terms vanish, on the contratry, for the conservative model and always at the lake
at rest equilibrium state fluxes and source terms are equal but different from zero. It follows
that the situation for the conservative case is very similar to the preservation of the classical
(monolayer) Saint-Venant lake at rest equilibrium in the presence of a non zero topographic
term. And it is well known that the preservation of this equilibrium ot the discrete level is
far from being obvious [3, 18].

4 The discrete multilayer scheme

We now present the discrete version of the conservative multilayer Saint-Venant system
(3.23)-(3.28). The conservative multilayer Saint-Venant system (3.23)-(3.28) presents some
new terms when compared with the classical Saint-Venant system (3.1)-(3.2) - in the source
terms and even in the conservative part. Several strategies are possible and for instance
Pares et al. [6] prefer to consider the full system and built a specific solver for the two layers
case. Since here we wish to treat as many layers as possible we follow another strategy
that can be seen as a modified layer-by-layer approach - with respect to the terminology
introduced in [6]. Indeed we consider the multilayer system as M coupled modified Saint-
Venant systems and we choose to adapt an existing Saint-Venant finite volume solver to the
multilayer case - for a general introduction to the finite volume methods refer to [17, 23].
Especially the discretization technics have to preserve the properties of the continuous mul-
tilayer model stated in the Propositions 3.1 and 3.2.

To approximate the solution (hq(t,z),U,(t,2)),a = 1..M of the multi-layer Saint-Venant
system by discrete values ( ajs Ugj), a=1..M,j € Z,n € N we introduce as usual a space-
time discretization based on a grid of points ;o with space steps Az; = x4/ —T;_1/2
and on a grid of points t" defined by t" = 3", At¥ where the time steps AtF will be
precised later through a CFL condition. Then we use the finite volume framework.

We choose to include explicitely the pressure source term in the finite volume solver. This
follows usual ideas for bottom topographies - refer to [1]. The viscosity source term can be
interpreted as a friction term between the layer we are considering and the two neighbouring
layers. As usual we treat this friction term implicitly. This leads to solve a linear system.
For the simplicity of the purpose we now divide the computation in two steps : explicit com-
putation of the fluxes taking into account the pressure source term and implicit computation
of the friction source terms.

4.1 The finite volume solver

To perform the explicit step we use a finite volume kinetic scheme. The general form of a
finite volume method is

n+i
X0yt = X+ oplF s = Fo i a] = A" SH; =0,

aj
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where X7, = (h;,q%; = h;UZ;) is the vector of the unknowns, o' = At"/Ax; is the ratio

aj = oj J
between space and time steps, and where the discrete flux F” is an approximation of

oj+3
the exact flux estimated at point z; i

The kinetic scheme is a particular way to construct the numerical flux. For the case of the
Saint-Venant system it presents a very good compromise between stability and accuracy.
Thanks to a microscopic interpretation of the equations it allows to construct macroscopic
schemes that preserve some essential properties of the continuous model: positivity of the
water height, entropy inequality, ability to treat vacuum areas... We refer to [26] for a
general survey of the kinetic theory and to [2, 27| for further details about kinetic schemes
for the Saint-Venant system.

The multilayer conservative pressure term does not fit exactly in the usual frame work of
the Saint-Venant type models. Thus it is not obvious that all the finite volume schemes
that have been developped to solve the classical Saint-Venant system can be extend to the
multilayer case. We claim that the extension of the kinetic scheme to the multilayer case
is very natural. It is another argument for its choice. In fact the only difference with the
classical case arises in the definition of the Gibbs equilibrium that appears in the microscopic
interpretation of the Saint-Venant system. Indeed the modified Gibbs equilibrium involves
at the same time the water height of the layer and the total water height of the flow. More
precisely and with respect to the notations in [2] the Gibbs equilibrium for the layer « is

now ha(t,z) €= Un(t,2)
c(t, x) c(t,x)

| M
ot,z) = gZﬁ:12h/3 (t,z) ‘

The new non conservative pressure source term is discretized through a minmod limiter to
ensure the robustness of the scheme

Mo (t,2,8) = X( )

where

0
Sti= | o(Zh.np)? . hZ hZ; hZ hZ
7 B=1"Bj d a,j+1 _ aj aj _ a,j—1
2 Rl SV DI 5 SIS 5 TR S T
(4.1)
4.2 The implicit computation
This implicit step does not affect the discrete water heights. Therefore
+1 _ pnt3
hi =hg; % (4.2)
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The computation of the new velocities Ug;rl leads to the computation of a tridiagonal M x M
linear system

_ - - - r n+i o]

aij by 0 - 0 Uit a; °

02]' :

... bM*l,j . . X
L 0 -+ 0 cumj amM; L U}\TJ_I ] | an";_E |
where
2uAt™

ai; = K+ —————— + kALY,

1j 15 h?fl +h§‘f1
a-—h”+1+2uAt"< 1 + ! ) a=2.M-1

a] — Yaj n+1 n+1 n+1 n+1 e )

hoi™ +hoii,;  ha +heii;
2uAL™
am; = hit 4 P 4.4
J Mj h%l +h7]\?__11,j ( )
2uAt™
baj = T nrl n+1 a=1.M-1, (45)
hai ™ +hoia,
2uAt™
Caj = —hn_’_l'uﬁ o = 2M (46)
aj Thas1;

We notice that this matrix is a M-matrix i.e. the diagonal terms are strictly positive, the
other ones are strictly negative and the diagonal terms are strictly dominant. Therefore the
matrix is invertible.

4.3 Properties of the discrete multilayer kinetic scheme

We exhibit in this section that the discrete multilayer kinetic scheme ensures three essential
properties of the continuous multilayer model, i.e. the positivity of the water height, the
preservation of the lake at rest equilibrium and the agreement between the solutions of the
monolayer and multilayer Saint-Venant models when there is no friction on the bottom. The
proofs are very similar to the classical monolayer case and for the details, we refer the reader
to [2].

Theorem 4.1 Under the CFL condition
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where w,, is related to the size of the support of x, the discrete kinetic multilayer scheme
preserves the non negativity of the water height for each layer.

Proof. As the viscous source term takes place in the momentum equation the implicit step
does not concern the water heights. Hence it is enough to prove that the finite volume solver
preserves the positivity of the water height.

The idea of the proof is then to exhibit that the discrete microscopic density of particle at
time "2 is, for all &, a convex combination of the Gibbs equilibriums at time t" and for
the neighbouring points. We refer to [2] for the details. The adaptation to the multilayer
case is easy. Let us notice that the CFL condition (4.7) is a little more restrictive that the
classical monolayer CFL condition - see [2] - since it contains the velocity of the quickest
layer. L

Theorem 4.2 The discrete kinetic multilayer system preserves the stationary states asso-

ciated to the lake at rest
haj = ha;

Usj = 0.

Also in the zero friction case with nitial data UQ; = U and h; = coHY (such that
> cq = 1), the solution of the discrete kinetic multilayer scheme is

Va=1..M { (4.8)

Va=1..M { Z.";f zc[j.‘fj ’

aj 7]
where (UT, HY) is the solution of the classical Saint-Venant kinetic scheme - refer to [2] -
with initial data (U7, HJ).

Proof. The proof for the preservation of the lake at rest equilibrium is obvious. Nevertheless
notice that the discrete lake at rest (4.8) is only a particular case of the continuous lake at
rest steady state (3.18). Indeed the continuous lake at rest equilibrium is the result of a
balance between two terms while the discrete multilayer scheme preserves this equilibrium
only if these two terms vanish separately.

The proof of the second result follows from two facts (i) the source term vanish at each time
step for both schemes, (ii) the fluxes of the multilayer scheme are obtained by multiplying
the flux of the classical Saint-Venant kinetic scheme by the constants cg. |

5 Numerical assessment: a dam break problem

We consider the case of a dam break on a flat bottom. This example is used in [15] to com-
pare the classical Saint-Venant system (3.1)-(3.2), the viscous Saint-Venant system (3.3)-
(3.4) and the Navier-Stokes equations (2.1)-(2.3). We include in this comparison our new
multilayer Saint-Venant model (3.23)-(3.28). We also mention the solution of the homoge-
neous Saint-Venant system - i.e. the classical Saint-Venant system (3.1)-(3.2) with a zero
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friction coefficient - since it is very classical in the Saint-Venant litterature.

The main parameters of the computation are the following: viscosity p = 0.01, gravity
g = 2.0. The dam is located at the middle of the computational domain. The water is
initially at rest and the left and right water heights are respectively equal to two and one
meter. We discretize the horizontal domain with two hundred points and we perform the
computation with three, six or ten layers in the multilayer Saint-Venant case, ten layers in
the Navier-Stokes case. The simulation time is equal to 14 seconds.

5.1 The zero friction case

Firstly we check that in the zero friction case and for convenient initial data the multilayer
model coincides with the monolayer Saint-Venant models (classical or viscous) as we an-
nounced in the previous Section. The result is obtained with an error of the order of the
computer accuracy. On an other hand we can observe in Figure 5.1 that even in the case of
a zero friction coefficient and with a constant initial velocity, the horizontal Navier-Stokes
velocity is no more constant along the vertical at the end of the computation. This is due to
non-hydrostatic effects which we have to keep in mind when we will compare results later.
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Figure 5.1: VELOCITY (Vertical profiles) - Navier-Stokes and different Saint-Venant models
- No Friction - Ten layers
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5.2 Comparison with monolayer Saint-Venant models

Second we consider a case with a non zero friction coefficient and we compare the total
waterheight - in Figure 5.2 - and the mean velocity - in Figure 5.3 - of the multilayer
flow with the waterheight and the velocity of the other Saint-Venant models (homogeneous,
classical and viscous).

We first verify that the friction on the bottom has for consequence the decrease of the
mean velocity of the flow - since the greatest value corresponds to the homogeneous case.
Second it appears that the free surface and velocitiy longitudinal profiles are very different
for the classical and for the viscous Saint-Venant systems. Since the viscous system is a
more precise approximation of the Navier-Stokes equations it follows that in this case the
classical Saint-Venant system fails to correctly characterize the flow. On the other hand the
results from the viscous and multilayer Saint-Venant sytems are in very good agreement. It
follows that in practice the mean quantities resulting from the multilayer computation are
first order approximations of the Navier-Stokes results.

T T T T

MONOLAYER SAINT-VENANT ———
VISCOUS MONOLAYER SAINT-VENANT -------
HOMOGENEOUS MONOLAYER SAINT-VENANT --------

18 | MULTILAYER SAINT-VENANT  +

16 [

14 -

12 |

1 1 1 1 1
-60 -40 -20 0 20 40 60

Figure 5.2: FREE SURFACE (Longitudinal profiles) - Different Saint-Venant models - Ten
layers - Friction coefficient = .1

5.3 Multilayer aspect of the model

We now investigate the multilayer model by studying the evolution of each layer. We first
present the velocity of each layer in Figure 5.4. The results are in accordance with what we
could expect: the friction on the bottom makes the lowest layers slower compared to the
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Figure 5.3: VELOCITY (Longitudinal profiles) - Different Saint-Venant models - Ten layers

- Friction coefficient = .1
velocity of the viscous Saint-Venant model - and the uppermost layers faster since the mean

velocity of the multilayer flow is equal to the velocity of the viscous Saint-Venant model .

Notice that the scheme appears to be able to compute large gaps between bottom and free
surface velocities. In the case we have considered, the computed velocity for the uppermost
layer is four times larger than the velocity computed for the lowest layer. Considering in
addition the water heights - Figure 5.5 - it appears also that - except for the lowest layers
- the longitudinal profiles of the velocities and the water heights are smooth - even in the

neighbourhood of the shock.
5.4 Comparisons with Navier-Stokes velocity profiles
We now compare the two 2D models, i.e. the Navier-Stokes equations and the multilayer
Saint-Venant system - we recall that we consider in this work only one horizontal direction.
First we compare the two computed free surfaces of the flow. In Figure 5.6 we see that the
two profiles are very close. In particular the speed of the shock wave and the slope of the

free surface between the rarefaction and the shock waves are well computed.
We can now compare the two vertical profiles for the horizontal velocity. The Navier-Stokes

profile (along the vertical) is continuous and piecewise linear. The multilayer Saint-Venant
profile is constant on each layer and thus discontinuous. We choose to present - for each layer
- the velocity at the middle of the layer - considering the vertical component. The multilayer

and Navier-Stokes computations are managed with ten layers in the vertical direction. We
choose an arbitrary vertical section included in the central zone - £ = 8m, but what we
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Figure 5.4: LAYER VELOCITIES (Longitudinal profiles) - Mulitlayer Saint-Venant model
(each type of cross corresponds to a different layer) - Ten layers - Friction coefficient = .1
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Figure 5.5: LAYER HEIGHTS (Longitudinal profiles) - Multilayer Saint-Venant model (each
type of cross corresponds to a different layer) - Ten layers - Friction coefficient = .1

INRIA



A Multilayer Saint-Venant Model 27

observe is also valid for any section included in this region.

The results are presented in Figure 5.7. The two vertical profiles of the horizontal velocity
are in good agreement. In particular notice that both values of the velocity at the bottom
and at the free surface are well captured - even though the gap between these two values
is large. Between these two extrema the curvature of the multilayer profile seems to be a
bit larger than those of the Navier-Stokes profile but the amplitude of this difference is very
limited.

2 it T T T T

3
ke NAVIER-STOKES
% MULTILAYER SAINT-VENANT ~ +
18 + E
16+ E
14+ E
12+ E
1 1 1 1 1 +
-60 -40 -20 0 20 40 60

Figure 5.6: FREE SURFACE (Longitudinal profiles) - Navier-Stokes and Multilayer Saint-
Venant models - Ten layers - Friction coefficient = .1

5.5 Computational cost

Mono- and multilayer Saint-Venant systems are computed using the same finite volume al-
gorithm. Thus the ratio between their respective computational costs is obviously linked to
the number of layers. But the multilayer algorithm implies some supplementary computa-
tions - viscous effects. Moreover the multilayer CFL condition (4.7) is linked to the velocity
of the fastest layer and thus it is a little more restrictive in the multi- than in the monolayer
case. For example, in the considered case, with ten layers, the multilayer computation is
about fifteen times more time consuming than the monolayer Saint-Venant one.

The Navier-Stokes algorithm that we used is based on an implicit ALE method with moving
meshes. Thus the algebraic computations are much time consuming. Furthermore we con-
sider an instationnary test case. It follows that, for this test case and for the same number
of layers, the Navier-Stokes computation is about twenty times more time consuming than
the multilayer Saint-Venant one.
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Figure 5.7: VELOCITY (Vertical profiles) - Navier-Stokes and Multilayer Saint-Venant
models - Ten layers - Friction coefficient = .1

5.6 Influence of the number of layers

Now we test the influence of the number of layers on the computed multilayer solution. We
consider the same test case as before and we compute it with three and six layers. We present
in Figure 5.8 the vertical velocity profiles obtained with the Navier-Stokes computation and
with the multilayer one for three, six and ten layers. It appears that the multilayer results
are in very good accordance with the Navier-Stokes ones as soon as we manage a really
multilayer computation, even with a low number of layers. Indeed the computed vertical
velocity profile for the three layers case is very close to the Navier-Stokes one. When we
increase the number of layers the computed vertical profile seems to tend to a limit profile
that is almost but not exactly the Navier-Stokes one - maybe due to the non hydrostatic
effects.

5.7 Some other friction coefficients

To end this numerical validation we come back to the ten layers test case but changing the
friction coefficient. We present the computed vertical velocity profiles with both Navier-
Stokes and multilayer Saint-Venant approaches. In Figure 5.9 we present a small friction
coefficient case. The difference between the two profiles is not neglectable and in particular
the velocity at the bottom is not very well computed. This phenomenon can be related
to the small non hydrostatic deviation that exists for the Navier-Stokes profile in the no
friction case - Figure 5.1. Nevertheless let us observe that the difference between the top
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Figure 5.8: VELOCITY (Vertical profiles) - Navier-Stokes and Multilayer Saint-Venant
(with different number of layers) models - Friction coefficient = .1

and the bottom velocities does not exceed five per cent and then conclude that this cases are
less interesting since for the small coefficients the classical Saint-Venant system is already a
good approximation of the Navier-Stokes equations.

In Figure 5.10 we present the no-slip condition case. Notice that for this second example
there is no notion of friction coefficient in the Navier-Stokes formalism since we impose that
the velocity is equal to zero at the bottom. We extend this boundary condition to the
multilayer computation. It follows that the velocity of the lowest layer is equal to zero.
Like for the first test case the results are in quite good accordance. This result exhibits
the robustness of the model since we are not at all in the asymptotic case from which we
deduce the multilayer system since the friction coefficient is infinitely large. It follows that
the multilayer Saint-Venant model has a quite large range of validity.

5.8 Robustness of the scheme

We now discuss the robustness of our modified layer-by-layer approach (3.23)-(3.28) when
the initial hypothesis of Property (P3) in Proposition 3.4 is violated. The worst case we
consider here is when the initial ratio between the water height of one layer and the total
water height exhibits a spatial discontinuity.

In [6] such a case occurs. The authors introduce a @-scheme to study a bi-fluid 1D shallow
water system. In particular they compare global upwinding and uncoupled upwinding ap-
proachs. If we assume that the densities of the two fluids are equal, the “global upwinding”
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Figure 5.9: VELOCITY (Vertical profiles) - Navier-Stokes and Multilayer Saint-Venant
models - Ten layers - Friction coefficient = .001
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Figure 5.10: VELOCITY (Vertical profiles) - Navier-Stokes and Multilayer Saint-Venant
models - Ten layers - No slip
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consists in dealing with the 4 x4 non conservative system (3.6)-(3.11) whereas the “uncoupled
upwinding” corresponds to a basic layer-by-layer approach - see Remark 3.3. A numerical
example, that involves a discontinuity in the initial interface, exhibits that the “uncoupled
upwinding” strategy leads to large oscillations in the solution - for both interface and free
surface.

Here we are interested in studying our numerical method for such a test case. Thus we
consider the same initial data (except that in our simulations the two densities are equal)
and we do not consider any viscous stabilizing effects (i.e. that viscosity and friction coef-
ficients are equal to zero). Then we compare in Figure 5.11 the results obtained with the
basic layer-by-layer approach and with our modified layer-by-layer approach - see Section 4.
It appears that our approach allows to avoid such oscillations. In spite of a large number
of test cases we have performed, none of them exhibited any numerical instabilities despite
the non-hyperbolicity of the system (3.6)-(3.11).

053 : 053 :

INTERFACE —— INTERFACE ——

L L L L L L L L
0 20 40 60 80 100 0 20 40 60 80 100

Figure 5.11: Interface profiles for a bilayer test case - The basic (left) and the modified
(right) layer-by-layer approachs

6 Conclusion and perspectives

Thanks to a formal asymptotic analysis of the full Navier-Stokes equations for incompress-
ible flows with a free moving boundary under the shallow water assumption, we derive a
multilayer Saint-Venant model which allows a non constant vertical profile while preserving
the computational efficiency of the classical Saint-Venant model. The model has the same
range of validity as the Navier-Stokes hydrostatic model.

This multilayer model verifies some essential stability properties - positivity of the water
height, existence of a non increasing energy, hyperbolicity of the conservative part. It en-
sures also the preservation of some physical requirements as the preservation of steady states
or the accordance with the Saint-Venant equation and/or with the Navier-Stokes hydrostatic
model for some particular flows.
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Numerical comparisons with classical Saint-Venant and full Navier-Stokes computations on
a dam break problem validate the model. In particular it appears that the vertical velocity
profiles issued from the multilayer Saint-Venant and full Navier-Stokes computations are
very close.

Some questions remain open: accordance with the vertical profile of the velocity issued from
the Navier-Stokes hydrostatic model - to discriminate the influences of the hydrostatic ap-
proximation and of the discretization “a la Saint-Venant”, preservation of steady states with
topographic terms - this specific problem is well-known to be an essential property of the
classical Saint-Venant solvers [1, 3, 18].
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