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Abstract: In truly asynchronous, distributed systems, neither global state nor global time
are available. Automata-based diagnosis therefore reaches its limitations there; a different
approach, based on Petri net unfoldings, was proposed in [9]. It is motivated by the problem
of event correlation in telecommunications network management, and uses only local states,
in combination with a partial order model of time. Diagnosis is performed by correlation of
the observed partial order alarm patterns and partial order executions of the system model.
As in the classical automata setting, the presence of invisible transitions raises the problems
of observability and diagnosability of a given system. In this paper, we give a definition of
weak and strong observability and diagnosability in terms of partially ordered executions,
and characterize diagnosable systems; the characterizing property can be effectively verified
using a finite complete prefix of the net unfolding.
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1 Introduction

The Diagnosis problem . Failure diagnosis for discrete event systems is a crucial task
in automatic control. The diagnosis problem has received much attention in the literature,
see [3, 31, 32]: it consists, in abstract terms, in determining possible behaviors in a par-
tially observable system that are compatible with the observed pattern of alarms, i.e. that
explainthe observable behavior. In the discrete event approach, system behavior is modeled
as a regular language, and the system itself as well as the diagnoser are modeled as finite
state machines (FSM); and they synchronize on observable events. Then, faulty behavior is
determined by reading the state of the diagnoser.

Diagnosability The key property that has to be verified by the setup (that is, the subset
of observable letters and the FSMs involved) for this to work, is diagnosability. It stipulates
existence of some constant maximal length n such that, whatever the circumstances, if a
fault occurs now, the longest sequence leading to a diagnoser state that indicates that fault,
takes at most n steps from now. For the more formal definition, following Sampath et
al. [30], let £ be a prefix-closed language (the behavior of the system to be diagnosed)
over the event alphabet 2A, denote O C 2 the set of observable and UO £ 2\ O that of
unobservable events. Denote P : 2* — O* the projection to observable words, that is, the
homomorphism that erases all unobservable events and leaves observable ones unchanged;
moreover, let ® C UO be the set of faults'. Then L is diagnosable iff there exists n € IN

Ifor simplicity, we drop the generalization made in [30], with & further partitioned into fault types; the
results given below extend to that case.
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4 Stefan Hoar

such that, for any word £ > w = w'f with f € &, any v € A* s. th. wv € £ and |v] > n
satisfies

z € P[P (wv)] = |z]e > 1. (1)

Here, |u| denotes total length, and |u|e the number of fault events of word u. Condition (1)
means that every behavior z that produces the same sequence of observable events as wv
does, contains at least one fault event: all extensions of w of at least length n will make the
fault apparent.

Asynchronous diagnosis The present paper is motivated by the diagnosis of truly
asynchronous systems, in which the above definition is not adequate as it stands since it is
based on a global state automaton model. To see the limitations of that model, consider
networked systems, such as shown on the left hand side in Figure 1. There, the sensor system
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Figure 1: Left : Supervision of networked systems; right: Alarms (squares) and faults (cir-
cles)

is distributed: several local sensors are attached to some nodes of the network (shown in
black). Each local sensor has only a partial view of the system, and its local time is not
synchronized with that of other sensors. Alarms are reported asynchronously to the global
supervisor, depicted in grey, which performs diagnosis; this is the typical architecture in
telecommunications network management systems today (see [24]).
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The need for a partial order semantics Even if the order of events may be correctly
observed locally by each individual sensor, communicating alarm events via the network
causes a loss of synchronization: as a result, the interleaving of events communicated to the
supervisor is nondeterministic. The right picture of what the supervisor collects is therefore
a partially ordered set, rather than a sequence, of alarms; see the pattern formed by the
squares on the right hand side of Figure 1. The system itself being distributed, we also have
partially ordered scenarios of faults (circles in Figure 1), as candidates for explaining the
alarm pattern observed by the sensors. That is, we need to compute, for diagnosis, partially
ordered sets of events that may have occurred and, had they occurred, would have produced
the observed pattern of alarms. We emphasize that each such partial order represents in its
turn an equivalence class of sequences, thus passing to partial orders allows, in general, a
substantial gain in efficiency. In a second step (not treated here), the likelihood of scenarios
has to be compared, to select, among the scenarios offered by the model, the most probable
explanation for the given observation; see [1] for a construction of such likelihoods.

The present article recalls the formal framework for diagnosis for partially ordered runs
given in [9], and establishes the adequate definition of diagnosability. The definition general-
izes the classical one given, for the automaton case, in [30], to partial order behavior, where
weak and strong diagnosability will have to be distinguished. We give a characterization of
diagnosable systems, and show how observability and diagnosability can be checked on a
finite construct (namely, a finite prefix of the system unfolding).

2 Petri Nets and Branching Processes

Petri nets are well-established formal models, whose adequacy for modelling distributed
systems is widely recognized. A Petri net is a bipartite graph composed of places representing
possible local states, and transitions that lead from an input set of places to an output set
of places ; tokens indicate that a local condition holds. Petri nets - for the formal definition
see below - can be seen as natural generalization of finite automata : indeed, every FA can
be represented as a Petri net whose transitions have exactly one input and one output place,
and with exactly one token on the initial state.

Accordingly, the semantics of PN allows a generalization over that of automata: Au-
tomaton behaviour can be expressed by words, which are linearly ordered and have a length
given by counting the letters. Petri net behaviours, on the other hand, can be represented
by configurations, that is, sets bearing a partial order that is not linear in general; instead
of length, we will be manipulating height of such processes, a notion of which there exists
a lower and an upper version since one can measure the progress of the least advanced local
process, or the most advanced one.

Before coming back to these notions, some more background of the work presented here.
This paper explores the asynchronous diagnosis approach from [9], using Petri nets (PNs)
as its main tool ; compare [3, 4, 27] on the Theory and application of PNs. For the use of
PNs in diagnosis, compare [19, 29, 16, 17]). Branching processes and unfoldings of PNs were
originally proposed by Nielsen, Plotkin and Winskel [26], and used for model checking, see Mc
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6 Stefan Hoar

Millan [25] and Esparza et al. [6, 7]; they have been used for supervisory control in [22, 23].
Branching processes represent the set of executions of a Petri net in a net structure, using

component 1

Figure 2: Running ezample: N (left), a branching process for N (right), and a configuration
of N being extended by a new event (center).

an asynchronous semantics with local states and partially ordered time. Common prefixes
of executions are shared, and executions differing only in some interleaving of independent
transitions are represented only once; this meets the needs of asynchronous diagnosis, where
some recorded alarm sequences differ only via the interleaving of concurrent alarms, hence
it is desirable not to distinguish them, and similarly for the interleaving of concurrent faults.

Nets and homomorphisms We will now give some basic definitions to lay the grounds.

Definition 1. [Nets and homomorphisms.] A net is a triple N = (P, T,—), where P and
T are disjoint sets of places and transitions, and — C (P x T)U(T xP) is the flow relation.
Denoting by o the relational product, and by R* the transitive closure of binary relation R,
set <E—* and <2— o <. For a node x € PUT, denote *z = {z' | ' — z} the preset
and 2* = {z' | x — '} the postset of z. A net homomorphism from N to N' is a map

¢:PUT — P'UT' such that:

1 §(P) C P, (T) CT', and

2. for every node z of N, @jey : *z — *¢(z) and @jze : 2° — ¢(z)* induce bijections.
Occurrence nets Two nodes z,z’ of a net N are in conflict, written z#2’', if there exist

transitions ¢, ¢’ € T such that (i) t # t/, (i) *tN°*t # 0, and (iii) ¢ < z and ¢’ < 2’. A node
z is said to be in self-conflict iff z#x.
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Definition 2. An occurrence net (ON) is a net ON = (B,E,—), with the elements of B
called conditions and those of £ events, satisfying the additional properties:

1. no self-conflict: Vx € BUE : —[z#x];

2. < is a partial order: Yz € BUE : [z < z];
3. VzeBUE: |{z' 12’ <z}| < oo;

4. no backward branching: Vb € B :|*b| < 1.

Occurrence nets are useful to represent executions of Petri nets, see below: essential
dynamical properties are visible via the topological structure of the bipartite graph—unlike
for Petri nets. We assume that the set ¢q = min(ON) of minimal nodes of ON is contained
in B. Nodes z and z’ are concurrent, written zcoz’, if neither z < z’, nor z’ < z, nor z#z’
hold. A co-set is a set A of pairwise concurrent conditions; a maximal co-set A w.r.t. set
inclusion is called a cut.

Petri nets The static structure of net is given a dynamics via markings : A marking of
net N is a multi-set M : P — {0,1,2,...} of places.

Definition 3. A Petri net (PN) is a pair N = (N, M), where N is a net with finite node
set, and My an initial marking. T € T is enabled at M, written M —t>, if M(p) > 0
for every p € *t. If M s, t can fire, leading to M' = (M — *t) + t*; write M s M.
The set R(My) of reachable markings of N is the smallest set R(My) containing My and

such that M € R(My) and M Lty M’ together imply M' € R(My). Petri net N is safe
if M(P) C {0,1} for every M € R(My). If N is safe, it has a finite number of reachable
states; denote this number as K(N).

We consider only safe Petri nets here, hence markings can be regarded as place sets.
Branching processes and unfoldings Occurrence nets can serve as a semantics for Petri

nets, i.e. a Petri net’s behaviour can be unfolded into an occurrence net whose structure
represents the possible executions:

Definition 4. A branching process of Petri net N is a pair 1 = (N, ), where N is an
occurrence net, and ¢ is a homomorphism from N to N, such that:

o the restriction of ¢ to min(N) is a bijection between min(N) and My (the set of initially
marked places), and

o foralle,e' €&, *e="¢ and ¢(e) = ¢(e') together imply e = ¢'.

For w,m' two branching processes, 7' is a prefix (see below) of m, written ©' C w, if there
exists an injective homomorphism v from N' into N, such that 1) induces a bijection between
the initial cuts co and cfj, and the composition ¢ o) coincides with ¢'.

RR n~ 5248



8 Stefan Hoar

By theorem 23 of [5], there exists a unique (up to an isomorphism) C-maximal branching
process, called the unfolding of N' and denoted Us.

Definition 5. A sub-net?> R of N is a (structural) prefix of N, written R C N, iff
1. ¢ C R,
2. R is causally closed: if ' < z and z € R, then z' € R, and
3. for all events e, e € k implies e®* C k.

The set of prefizes is denoted Pref. A prefix k of ON is a configuration if k is conflict-free
, i.e. no two nodes from k are in conflict; denote as Con the set of all configurations, and
as FCon the subset of Con containing the finite configurations.

Because of Condition 3, a finite configuration x terminates at a cut, which we denote
c(k) or c,. Denote the set of configurations as Con; a mazimal configuration (w.r.t. set
inclusion) is called a run and generically denoted w; we denote the set of runs as 2. For
an event e, denote as [e] the smallest configuration containing e, and as (| e|) the smallest
configuration containing *e. We note that (Pref,C) is a complete lattice (with union as
join and intersection as meet operation), and that (Con, C) is a complete lower semilattice
having (FCon,C) as a complete lower sub-semilattice. Two configurations k and k' are
compatible, written k || k', iff K Uk’ is a configuration. Obviously, k¥ C &’ implies & || &', but
not vice versa. Note further that || is not an equivalence relation: in Figure 2, take as kg the
initial cut, k1 £ [ou], where a; is the grey a-labeled event, and k2 = [3], with 3 the only
B-labeled event on the lower right hand side of Figure 2. Then kg || k1 and &o || K2, but
(k1 || k2). For an event e ¢ k such that *e C k and such that no event in & is in conflict
with e, kK can be concatenated with e, written k ® e; in this case, one deduces easily that *e
must be a coset of <-maximal conditions in &, and the concatenation k- e = kU {e} U e*
is the smallest configuration that contains {e} U k. The relation ® and the concatenation
operation extend to prefixes: write R © e iff () *e C R (i.e. *e is not necessarily maximal)
and (ii) e € £\R, and denote, in that case, as R-e = RU {e} U e* the concatenation of R
and e. The concatenation operation generalizes to pairs of configurations, in the following
way.

Shift of configurations Any finite configuration ks from the unfolding & = (B, &,~, ¢)
of N = (N, Mp) induces a shift from the original net N' = (N, Mp) to N, = (N, M,;) with
unfolding U, = (B, Exs~x, Ox ), Where

M. = ¢(c(n)

is the marking associated to the cut generated by k. Then, for any & € Con,, there is a
unique configuration x o % € Con that has & as prefix and such that (k o %)\k is isomorphic,

2we will not distinguish between x seen as a net and as a set of nodes, using set extensions etc. to operate

on the corresponding nets, obtained as the induced subnets of the ambient net.
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as a labelled graph, to . If, conversely, k; € Con satisfies k o k2 with kK € FCon, i.e. ks is
the suffix of k1 after k, we say that ko is the k-shift of k1, written

Ky = 0,€/<al. (2)
Further, if k1 o k% o k3 € Con for all n € IN, write

kiokioky = {kiokYoks|nelIN}.

Running example In Figure 2, a Petri net NV is shown on the left, a branching process
N = (ON,¢) of N on the right hand side. Conditions are labeled by places, events by
transitions. A configuration is shown in grey. The mechanism for constructing the unfolding
of Petri net N is illustrated in the middle. Informally, take the three conditions labeled by
the initial marking of A as the minimal branching process of /. Then, for each branching
process T = (N, ¢) already constructed, select a co-set A of N that (i) is labeled by the
preset *t of some transition ¢ of N, and (ii) has no t-labeled event in its postset within N.
Append to A a net isomorphic to *t — t — t* (recall *t = ¢(.A)), and label its additional
nodes by t and t°, respectively. One thus obtains recursively all possible finite branching
processes of N; their union is the unfolding Uy,.

Figure 3: On upper and lower heights of configurations : example 1, unfolding (right) of a
two-component Petri net (left)

RR n~ 5248
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Height To measure linearly ordered words, the length is simply given by the number of
letters. This can be applied to partial orders as well, yet for diagnosability issues, height is a
much more adequate measure: For a prefix R € Pref, the height H(R) of R is the maximal
length of strings of causally ordered events in R. It is defined inductively as follows:

Definition 6. Let [: £ = R0 = [0,+00) a length function, e € £, R € Pref(N). Set
Hi([el) = We)+Hi(lel) 3)
H((R) sup {Hi([e]) | e € ENRY, (4)
where sup()) = 0, hence Hi(co) = 0.

> 1l

Prime prefixes Fix a length function [ . For n € Ny, let Prefﬁl be the set of prefixes
whose height does not exceed n, i.e. set

Pref, 2 {R €Pref|H(R)<n};
each Pref! has a (unique) C-maximum

Pref, 5R, = |J R
'REPl'efiL

Call R!, the nth prime prefiz for N and [; any configuration &, such that there exists w € Q
with K, = wNR!, is called an (nth) prime configuration for I. We will assume henceforth
that [(e) € {0,1} for all e : “invisible” events will be assigned 0, all others “counted”, i.e.
assigned 1. When no confusion can arise, we will drop the explicit mention of .

Upper / lower height and progress in configurations Any finite configuration & is
itself a prefix, and thus Definition 6 can be applied to obtain H (k). Besides this height
function, which we will henceforth call upper height, we introduce the lower height H(x) of
K as follows:

Definition 7. Fiz a length function [. With the above notations, set
H(k) 2 sup{ne€IN|Iwe Quw~g, K}, (5)
where sup(0) = +oo.

Example 1. On the right hand side of Figure 8, assuming | = 1, we have H(x1) = H(k1) =
2 and H(k2) = 3, whereas H(k1) = 2 < H(ka). It is tempting to believe that evaluating the
lower height of a configuration reduces to taking the minimal height of a mazimal event : for
Ko, the first occurrence of v is mazimal, and its height yields H(k2). This would of course
simplify the above definition, but it would be wrong; lower height is not quite as local a
property as it seems. Consider the occurrence net in Figure 4. Configuration k' is a proper
prefiz of k; the prime prefizes are Ro = {a,b}, R1 = k1, and Ry = R1 U {v,c}. One finds
directly that H(k) = H(k) = H(k') = 1; more surprisingly, one also has H(k') = 1. In fact,
W'~y K ; and 1 is the mazimal value with this property since W' g, K.

INRIA
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Figure 4: Configurations k and k' have the same lower heights

Of course, H (k) < H(k). Note that equality holds iff
Vw, e : [(kEw A KEW) = (w~ryw K)] (6)

denote the configurations that satisfy (6) as progressive. Note that k € Con is progressive
iff for all k" € Con such that k || &' and H(k) = H((k'), it holds that " C k. In
Figure 2, k shaded in grey is progressive: with [ = 1, one has H (k) = 2, and any other
configuration of that height is either a prefix of k or incompatible. The notion of progressive
configuration serves to discern behaviours according to “balance”™ in progressive behaviours,
all sub-processes advance at an (approximately) equal pace, no local process is left behind.
In Figure 2, not all configurations are progressive: take for example the sub-configuration
of the grey k with the v-labeled event chopped off. More drastically, the net has an infinite
run with only B-and ~-labeled events; on this run, there is an infinity of non-progressive
configurations. Only the occurrence of iv will lead to progressive configurations; in fact, this
is the only progress possible in component 2 as long as i never fires.

Remark: our notion of progressive configuration captures the progress assumption often
used in the literature on distributed algorithms, see [28] for an overview.

In Figure 3, the situation is more symmetric with respect to both components: all
configurations are compatible with the unique run. However, there are non-progressive
configurations that can be decomposed into an infinite execution of one component and a
finite execution of the other. We also note:

H(k) =400 = Ke. (7

The converse is not true since maximal runs may be finite.

RR n~ 5248
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3 Asynchronous Diagnosis

Computation of Diagnosis We recall briefly the diagnosis approach of [9]: the asyn-
chronous diagnosis problem is solved using diagnosis nets, introduced to express the solution
of asynchronous diagnosis: Compute branching processes of the product net A x A obtained
from N and an alarm pattern A, where A is given as a configuration (unbranched occur-
rence net) itself. The product glues together transitions of A with corresponding alarms
in A (this is the synchronized product for Petri nets); the unfolding Unx 4 thus obtained
consists of all the explanations that A can give for A. In fact, the configurations x of N/
that explain A are those for which U x4y contains a corresponding configuration & whose
projection (i) to the alarm set yields A, and (ii) to A/-nodes yields . In Figure 5, diagnosis
is shown for the running example. In the alarm pattern on the left hand side, consider only
the initial segment with a dark background; the center par on the right hand side, call it 4.
The center part shows the unfolding of the product A/ x A. Note that the product actual-
ly multiplies some events by joining different alarm histories. Further, note the structural
conflict indicated by “#” between the two p-labeled events at the bottom; it is inherited
from the branching condition labeled “ii” above, with“#” indicating the immediate conflict
at “ii”. This conflict reflects the restriction imposed by the alarmpattern: since .4 contains
only one p-labeled event, no explanation can contain more than one such event. The right
hand part of Figure 5 now shows the projection of Uy x4 to elements of N, i.e. a prefix of
Upr; the projection enriches this prefix with the inherited conflict between the two p’s which
is the contribution from the observation. The diagnosis set thus consists of it is justified
by the branching three configurations : the one with all events white in the figure, and
the two configurations formed by the shaded events with labels a and 8 plus one of the
two shaded p’s. The interested reader may continue unfolding with the full alarm pattern,
and will notice that the “white” configuration will be ruled out since it does not allow for a
continuation with a second a-event as required by the alarm pattern.

Now, for the formal definitions. An alarm pattern is an 2(-labeled partially ordered
set; we can formally represent an alarm pattern as a conflict-free 2(-labeled occurrence net
A= (Ba,Ea,~4,A4), Obtained as follows:

1. dgq: €4 = A\e.

2. To obtain the conditions of B4, we add two auxiliary elements T, L such that for all
e€&p,0nehas L < a < T, then compute the predecessor relation <o:

e<oe &L e<eAVe i e<e <e e e,
and set
Bsa = {(e,e) | e=<oe}U{(Le)| L=<oelU{(e,T)|e=<0oT}
Denote the initial cut of A as c4; clearly,

cay = {(e,T)|e<oT}h

INRIA
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Figure 5: Illustration of Diagnosis for the running example. Left: Alarm pattern A (only
the part shaded in grey is used); center: unfolding Upnx4 of N x A; right: projection of
Un x4 to nodes from N, with extra conflict inherited under the projection
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3. Set = 4={(e,b),(b,e') | e <0 e ANb=(e,e)}.

For given alarm pattern A and model N, let A : T — A and A : £4 — A\{e} be the
respective labelling functions, and consider the synchronized product of A" and A w.r.t. 2,
that is: the Petri net N X A = (Pxxa, T xA> N xAs AW xA> Marx ), where Parx 4 is the
disjoint union of P and B,

Tarxan = {teT[AMt)=ctU{(t,e) € T xEa| A(#) = Aale)}

—NxA) = {(p,t) EPXT|At)=¢ A p—>t}U{(t,p) €T XxP|A(t)=¢ A t— p}
U{(p,(t,€) € P x (T x E4) | A(t) = Aa(e) A p — t}
U{((t,e),p) € (T x E4) x P | A(£) = Aa(

( Aa(e) At — p}
U{(b,(t,e)) € Bax (T xEA) | Mt) =Aa(e) N b—4 €}
U{((t,e)),b) € (T xEa) x Ba| A(t) = Aa(e) A e =4 b}

Mywa = MyUcy,

and Ax.4 is given by A< 4((t, e)) = A(t) = Aa(e) for synchronization transitions, and by
A and A4 otherwise. Denote as proj,, and proj 4 the projections from N x A to N and A,
respectively.

Diagnosis set Consider now the unfolding U(xrx 4y, and denote the set of its (finite) con-
figurations as Con(xry 4), and the subset of finite configurations as FConyry 4)- For every
k(v x.A) € Congary 4y, denote - by abuse of notation - as proj (k(arx.4)) and proj 4 (K(arx.4))
the “pure” subnets of U and A, respectively, that are induced by the projections proj,
and proj 4.

For diagnosis, we are interested in those configurations of the net model that explain A;
according to Theorem 1 of [9], these configurations are the elements of

diag(A) £ {k€Con|3I K€ Conyxa: projy (k) = A and projy (k) = k}. (8)

We note that for all k € Con, there is exactly one alarm pattern A4 according to A such that
k € diag(A), which we denote as patt(x).
Let Cong be the set of all effective alarm patterns of NV, that is

Conp = {A|3k€ Con: A€ patt(x)}.

4 Diagnosability

The question is now what the system and the diagnosis setup have to satisfy for this method
to detect effectively all faults: that is, we want to formally characterize diagnosability.
Intuitively, the properties that can prevent a system from being diagnosable, as in the
classical automaton setting, arise from the possibility of invisible cycles allowing executions
of arbitrary length without a decision about failure. However, the partial order setting
requires extra care in re-defining “cycles”, as it did for “length”.

INRIA
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4.1 Preparations and Main Definition

Definition 8. Let N' = (P, T, —, My) be a Petri net with unfolding U = (B,€,~,¢), and
A an alarm alphabet containing the empty word €; further, let x : T — A, for A some
non-empty alphabet, be a labelling function associating alarms to system transitions.

e Call invisible or unobservable transitions the elements of UO = x~(¢), and let
e O 2 T\UO be the set of observable transitions, and

o & C UO the set of faults to be diagnosed.

Here, N = (P, T, —, Mp) is the underlying “true” system, with the places in P represent-
ing the unobservable local state variables. This framework allows for erasing (i.e. labeling by
) and ambiguity (the same label for distinct events). Without loss of generality, N O = §:
a fault that is indicated by an alarm needs not be diagnosed; the diagnosis problem con-
cerns silent faults, whose associated “alarm” is . Further, set £ = ¢71(®), o0 = ¢71(0),
and Eyo = E\Eo. Denote as £ = FCon(N) the set of A’s finite configurations, and as
Lprog the set of progressive configurations; observe that £ and Lprog are prefix closed, and
partially ordered by C. For k € £ let M (k) be the marking obtained after k, and as ko the
labeled partial order induced by k on kK N Ep , and write

k~o k' iff ko and kY are isomorphic partial orders ;
~o is an equivalence. Further, let ~3; and ~g be the equivalences on L given by
K~y K iff M(k)= M(&)
k~e K iff [kNEe =0 < ' NEs =10].

Some further preparations are in order before defining diagnosability.

Height revisited In the definition of height given above, we mentioned that the length
function [ can take values [(¢) = 0 or [(e) = 1, depending on whether e is visible or not. In
fact, consider the length functions [,l' : £ — {0,1} given by: [ = 1, and ' is the indicator
function of O, i.e. I'(e) =1if e € O and I'(e) = 0 otherwise.

Definition 9. Let H = H; and Ho £ Hy , and denote as H and Ho, respectively, the
associated lower heights according to Definition 7.

Then H (H) is simply “counting height” (“lower counting height”) for configurations, and
Ho (Ho) measures the “observable height” (“lower observable height”) of a configuration.

Liveness In [30], the authors assumed liveness, i.e. that all finite executions can be
extended. Let us say that a configuration « is dead iff kK C &’ implies ' € FCon. We
will take those configurations into account in the definition of diagnosability given below;
we consider the presence of dead configurations as no obstacle to diagnosability : on a finite
run, absence or presence of faults can eventually be verified, it is infinite runs that may pose
problems for fault diagnosis. Hence we define:
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Definition 10. Petri net N satisfies
o (OBS) iff for all k, k' € L:
(KCE)AN(ZE)A(k~u K) = (5#0K) 9)
o (WOBS) iff (9) holds for all k, k' € Lprog.

Defining Diagnosability These considerations motivate the following definition, which
is central for the present article.

Definition 11. [Diagnosability] A safe Petri Net N' = (P,T,—, My) is called
1. (strongly) diagnosable w.r.t. O and ® iff

(o) N satisfies (OBS), and
(b) there exists n € IN such that for all ke € L having a mazimal event e € Eg, it
holds that every k € L such that
1. ke C K,
7. K is not dead, and
iwi. H(k) > H(ks) +n

satisfies:
VK'€eL: K ~ok = EsNkK #0; (10)

2. weakly diagnosable w.r.t. O and ® iff

(a) N satisfies (WOBS), and
(b) there exists n € IN such that (10) holds for all k € Lprog such that
1. ke C K,
7. Kk is not dead, and
. H(k) > H(ks) +n.

We will say that N satisfies D iff it is strongly, and W iff it is weakly diagnosable.

Strong diagnosability trivially implies weak diagnosability. Figure 3 illustrates that the
converse is not true: Suppose 3 is a fault event to be detected, O = {a}, and for m € N,
let &y, be the smallest configuration such that (i) 8 never occurs on k,, and (%) § occurs
exactly n times on kp,. Then the height of k,, is H(km) = 2m + 1, yet Ky ~o K1, SO we
conclude that the system is not strongly diagnosable. On the other hand, the k,, are not
progressive. For weak diagnosability, note that since all progressive configurations of height
at least 2k + 1 contain at least k£ instances of a € O, from which it follows directly that the
system is weakly diagnosable.
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4.2 Observable Diagnosability

Note that the conditions for D and W given in Definition 10 use the counting height, which
is of no great use in practice since it depends on unobservable events. Hence the following
definition is of interest, and gives the analogue of that in [30] (compare (1)):

Definition 12. Define properties Do and Wo by replacing H by Ho in the conditions for
D and W, respectively, in Definition 10.

Since Ho < H, we immediately obtain
Lemma 1. D implies Dp and W implies Wo.
However, more is true:

Lemma 2. If OBS holds for N, then Do implies D, and under WOBS, W implies W.

Proof: It suffices to show, in £ and Lprog, that the existence of some no € IN such that
k not dead, k¢ C k , and

Ho(k) > Ho(ke)+no,

implies (10), implies existence of n such that (10) holds for all x not dead, k¢ C & , and
H(k) > H(ke)+n, (for any faulty configuration k¢) First, note that n can be replaced by
any n' > n without falsifying the hypothesis. Now, since there are only K = K(N) € N
reachable states,

H(k) > H(ke)+ K

implies that k o ke: in fact, k\ke must contain observable eventsn since silent cycles
are ruled out by OBS,. Reasoning in this way shows that, if |P| denotes the (finite)
number of places in N, then for every m € IN,

H(k) > H(ks)+K-|P|-m
implies
Ho(k) = Hol(ke)+m;
thus the desired implication holds. O

In fact, if there exist invisible cycles, Do does not imply D and W does not imply W :
in the worst case, a faulty configuration kg may be lead to a silent cycle after the fault,
in such a way that all runs w such that ke C w are infinite, and satisfy w ~op k. Then,
the conditions in Do and Wo on the extensions k of kg hold vacuously : one always has
Ho(k) = Ho(ks), but, clearly, D and W are violated.

We conclude that OBS/WOBS makes the observational and non-observational defini-
tions of diagnosability equivalent, and should be required of distributed systems for diag-
nosability. Below, we will see that OBS can be effectively verified on a finite “complete”
prefix of the unfolding.
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5 Characterization of Diagnosability

Diagnosability is wviolated iff the system is able to perform two indiscernible, non-fault-
equivalent cycles. That is, iff there are O-equivalent configurations x; and ko having O-
equivalent extensions k] and k) such that k] leads to the same marking M;, and such that x}
and k!, are not ®-equivalent; then the system may repeat that cyclic behavior indefinitely,
without a decision about occurrence of faults. This is confirmed by our main result :

Theorem 1. Let N = (P, T,—, M) a Petri net, with labelling A : T — 2, and ®, O, UO,
L and Lprog as above. N is strongly diagnosable w.r.t. O and ® iff it satisfies OBS and
K1 ~0 Ky N K| ~oKhY N K1 #EK]

_ s b g kb | (11
A VZE{LQ}:(A " g“;,) @ e (1)
i = K

! !
Y K1, Ka, Ky, Kk € L :

N is weakly diagnosable w.r.t. O and ® iff it satisfies WOBS, and (11) holds restricted
to Lprog-

Note that (11) allows k2 = &4 in the assumption.

Proof: We show the strong diagnosability case; the characterization of weak diagnos-
ability is obtained replacing £ by Lprog-

“only if” let k; C &}, i € {1,2}, constitute a violation of (11), i.e.

1. without loss of generality, kb N € # 0 and kK] NEe = K1 NEp = B;
2. K; = K; o p; , such that u; = 9, k] according to (2) contains at least one event,

! !
3. k; ~o ki and K; ~ K;.

From 2.), it follows that a copy of y; can be appended to &/ as well, and so forth; let x¥
be the configuration obtained after appending k copies of y; to x;. Observe that

H(kF) > max(k,H (k1)). (12)

Thus H(k¥) — oo as k — oo. Now, by assumption we have k% ~¢o kg; further, by
construction, ps N Es and therefore k& N g = O Tt follows that (10) is violated.

“if” suppose (10) does not hold, i.e. for every n € IN, there exists a configuration

k(n) € L such that

1. some e € £ is <-maximal in £ N k(n), and
2. there exist k1(n), k2(n) € L such that

k(n) E  ri(n) (13)
H(ki(n)) >  H(kn))+n (14)
ka(n) ~o k1(n) and kKo NEg = 0. (15)
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Suppose first that one can choose k] with k1 C k] C k1(n) such that k1 ~p K}, K1 ~0 K1,
and k1 # k|; then we are done, taking k, = k2. Hence we can assume that

k1 C k] C k1(n)
VK] K1 ~o K} => K1 = K| . (16)
K1~y K]

For any k1 C k1(n), let U(k1,n) be the set of configurations k2 T ka(n) such that
Ko ~0o k1. For any reachable marking M of N, let S1(M,n) be the set of configurations
k1 such that (i) k1 C k1(n) and (i) M (k1) = M. Let K = K(N) € IN be the number
of reachable states of N'. Then for all n > K, there is at least one marking M such that
|S1(M,n)| > 2; repeating the argument, one finds using (16) that for all n > K? there
exists a marking M such that |S1(M,n)| > K. With

>

Us(M,n) 2 {KQEE, ‘Emesl(M,n): }7

K2 C Ka(n) K1 ~0 K2

we thus have |Uz(M,n)| > K. This in turn implies that there exist ka, ks € Ua(M,n)
such that ko # kb and kg ~p k5. By definition of U2(M,n), k1 ~o k2 and k] ~o Kj.
Since, by construction,

k1 C k) Ck1(n) and M (k1) = M(k}) =M (17)

property (11) is violated, g.e.d. O

6 Checking Diagnosability

We give two criteria for effective verification of diagnosability. The first is a linear algebra
technique from the theory of Petri net invariants, which yields a quick but only necessary cri-
terion; the second follows precisely the unfolding approach, yielding necessary and sufficient
conditions for diagnosability based on a finite prefix whose size has off-line bounds.

6.1 A Necessary Condition
We follow the terminology and notation of [4].

Definition 13. For a net N = (P, T,—), the incidence matrix N: (P x7T) —» {-1,0,1}
s given by

0 : (pot->p)Va(p—>tVvi—p)

N(p,t) = 1 (p = t) A=(t — p)
-1 : (t—=p)A-(p = t)

For a sequence o € T* of transitions, the Parikh vector & : 7 — IN is given by 5 (t) = |o|s,
i.e. the number of occurrences of transition t in o.
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The action of transitions of N can be described by N:

Lemma 3. (Marking Equation Lemma, Lemma 2.12 in [4]) Foro € T* and markings
M, M’ of N such that M s M’, one has the following Marking Equation:

M = M+N (18)

Note that N is independent of the marking, i.e. describes a net (P, 7T, —) rather than a
particular Petri net.

Definition 14. Let N = (P,T,—) be a net. A T-Invariant of N is rational-valued solu-
tion of the equation N -z = 0. FEquivalently ([4], Proposition 2.36), a mapping J : T — @
is a T -Invariant of N iff for all p € P,

Saw o= Y. (19)
te®p tep®
The importance of T-invariants lies in the following property:

Theorem 2. ([4], Proposition 2.37) Suppose M is a marking of N and o € T* such
that M —=5. Then @ is a T -invariant of N iff it reproduces M, i.e. M - M.

See also [14] for an example of the use of T-invariants in analysis of systems. From
Theorem 2, we thus know that k ~ s ' holds iff the “Parikh vector” (k’, k) given by

(,6)(t) = [{eer\r|g(e) =1},

satisfies Equation (19). In fact, any linearization o of the events in k’\x has same parikh
vector, and so the above results apply simultaneously to any such o. Therefore, Equation
(19) can be used to check whether a given marking can possibly be reproduced in an unob-
servable way: in that case, Equation (19) must have a semi-positive solution (i.e. with all
entries non-negative and at least one positive entry). As a consequence, we have:

Lemma 4. If for all semi-positive solutions v € IN” of (19) , there exists t € O such that
v(t) > 0, then OBS and D hold.

However, this yields only a necessary condition since @ € IN7 may satisfy Equation
(19) without corresponding to any firing sequence enabled in M; the solutions of (19) are
candidates for cycles.

Examples In the net from Figure 3, the T-invariants are (with coordinates ordered by
alphabetic order on {a, 8,7,4}) (1,1,0,0), (0,0,1,1) and their linear combinations. For the
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net in Figure 2, again with alphabetic ordering, the incidence matrix is

-1 -1 1 0 0 0
1 1 -1 0 0 0
1 0 0 -1 0 0

N = 0 0 0 -1 -1 1 |;
0o 0 0 1 0 -1
0O 0 0 0 1 0
-1 0 0 1 0 0

the T-invariants are (0,1,1,0,0,0), (1,0,1,1,0,1), and their linear combinations. In both
examples, all T-invariants are firable; as we indicated above, this need not be true for
any marking, and indeed, taking away one or more tokens in either example will disable
invariants, as is easily checked.

6.2 Complete Prefix

If the use of invariants gives a quick, linear-algebra-founded criterion for diagnosability,
effective verification needs a richer data structure. A 1-safe net has only finitely many
reachable markings ; in fact, its reachability graph can be seen as a finite automaton. ONe
can thus return to an automaton model and follow the literature in this framework; however,
there is a more adequate representation of the behaviours of Petri net, used successfully in
Model Checking, see below. Observe that all infinite runs of the unfolding will repeatedly
pass through states that have already been visited before; conversely, there exist finite
prefixes of the unfolding that contain already all information about the possible behaviours
of the net. This is what allows using branching processes in Model Checking [6, 7, 25]; the
different ways of obtaining and optimizing the complete prefiz have received considerable
attention in the literature, see [21] for a comprehensive treatment.

To the best of our knowledge, the problem of diagnosis is not treated in the literature
on complete prefixes; the results obtained there do not carry over immediately. However,
it is natural to expect such complete finite prefixes for deciding diagnosability to exist; the
following existence theorem confirms that intuition.

Theorem 3. For a given net N = (P,T,—), there exists a finite number Z = Z(N)
such that for any I1-safe marking My C P of N, the Z-th prefixt Rz of the unfolding of
N = (N, My) is sufficient to verify diagnosability: if there exist any k1, K}, ke, k5 such that
(11) is violated, one can choose them with this property such that max(H(x}),H(k})) < Z.

Proof: We begin with some preparations. Call an alarm pattern A reducible iff for all
k € diag(A), there exist k1, k2, k3 such that

1. K = K1 0K 0 K3,
2. H(I‘Lz) > 0,

3. mlongonggﬁ,
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component 1

component 2

Figure 6: A prefiz (right) for the neton the left, compare Fig.2

and irreducible otherwise. In the above definition, k1, k9 and k3 belong to different Petri
nets, given by the net N with markings My, M (k1) and M (ks), respectively. Now, since
m < 2P|, we are done once the following claim is proved: The number J of irreducible
alarm patterns of N is bounded above by m!, where m denotes the number of reachable
markings of N'. To prove this, note that the height #(«) of any configuration x € £ that
does not repeat a marking, i.e. such that k; C k9 C k and k1 ~p ko imply k1 = Ko, i
bounded above by m. Hence, all alarm patterns .A whose height exceeds m are reducible,
since k € diag(A) implies H(x) > H(A); the number of patterns of height m or less is
obviously bounded above by m/!.

O

Examples Consider Figure 6. Let ® £ {3,1}; hence O C {a,7,d,(}. We ask under
which choices of O the net N satisfies OBS, and if so, whether A is then diagnosable for
that O. First, we claim that OBS (and even WOBS) is equivalent with v € O. In fact,
every infinite configuration of A/ contains ~y-labeled events, so the implications

(v € 0) = OBS = WOBS

are immediate. On the other hand, suppose v € Oj; then the run w formed by one occurrence
of n and infinitely many alternating occurrences of 3 and -y contains no observable event,
and w constitutes a violation of both OBS and WOBS. Now, let us check whether O = {v}
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makes N diagnosable. Suppose configuration x contains an n-event. Inspection of Figure 6
shows that any extension s’ of k such that either H (k') > H(k) + 1 or H(k') > H(k) + 2
contains some instance of . For the other fault label, 8, one has that the conjunction of (i)
¢~ 1 (B)Nk # 0 and (ii) H(x') > H(k)+1 or H(k') > H(k)+1, implies p—1(y) Nk # @. Thus
we conclude that v € O is necessary and sufficient for OBS, WOBS, D, and W. Moreover,
the prefix shown on the right hand side of Figure 6 is sufficient to decide observability and
diagnosability; this illustrates that the worst-case bounds on sufficient prefixes given in the
proof of Theorem 3 can be far off, due to effects of concurrency. For the net in Figure 3,
we have different results depending on whether weak or strong responsability is sought: the
net is

e weakly diagnosable iff |O| > 1, and
e strongly diagnosable iff (O N {a, B} # 0) A (O N {y,8} #0).

Efficiency Fig. 6 shows that the upper bounds on the size of the complete prefix are
far from sharp; in fact, the size of sufficient prefixes will be moderate as long as there is a
high degree of parallelism in A and no excessive branching (unfoldings can do nothing to
reduce branching but reduce the state space by exploiting concurrency). In many situations,
exhibiting a very high degree of parallelism combined with a moderate degree of branching
behavior, T can be considerably smaller than the reachability graph of A, that is, the
automaton representation of A; in particular, the more parallelism there is in the application,
the more is gained from the partial order representation. The computational complexity
of the unfolding approach will thus compare favorably to the polynomial complexity of
diagnosability verification shown in [36].

Weak vs strong The necessity of discerning weak and strong diagnosability arises from
the distributed nature of large networks, and more generally in physically large systems with
global time and state not observable. While strong diagnosability is the natural translation
of classical diagnosability from the automata to the partial order framework, weak diagnos-
ability is often more easily guaranteed. It should be noted that systems that weakly but
not strongly diagnosable arise often as composition of simpler systems, whose components
are , or can be made, strongly diagnosable; in the example of Figure 4, the two cyclic parts
form such components. This motivates the study of truly distributed diagnosis, where each
supervisor is given a limited domain of supervision, and communication among diagnosers
is necessary to establish (local views of) global diagnosis; a work in progress, see [10].
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