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Abstract: We propose three original approaches for the segmentation of three-dimensional
fields of probability density functions. This presents a wide range of applications in medical
image processing, in particular for diffusion magnetic resonance imaging where each voxel
is assigned with a function describing the average motion of water molecules. Being able to
automatically extract relevant anatomical structures of the white matter, such as the corpus
callosum, would dramatically improve our current knowledge of the cerebral connectivity as
well as allow for their statistical analysis. Our first approach involves the use of a multivari-
ate Gaussian law to approximate the distribution of the components of diffusion tensors for
each sub-region of a DTT volume. The second technique relies on the use of the symmetrized
Kullback-Leibler distance and on the modelization of its distribution over the subsets of in-
terest in the volume. The third technique considers the 6-dimensional statistical manifold
defined by the parameters of the diffusion tensors and proposes a segmentation algorithm by
rigorously defining the geodesic distance and the intrinsic mean on this Riemannian mani-
fold. The variational formulations of the problems yield three differents level-set evolutions
converging towards the respective optimal segmentation. We validate these approaches on
synthetical data and show promising results on the extraction of the corpus callosum and of
the lateral brain ventricles from a real dataset.

Key-words: Segmentation, Diffusion Tensor Imaging, Kullback-Leibler Divergence, In-
formation Geometry, Riemannian Geometry, Level-Set.

* Christophe.Lenglet@sophia.inria.fr
T Mikaél.Rousson@sophia.inria.fr
 Rachid.Deriche@sophia.inria.fr

§ Olivier.Faugeras@sophia.inria.fr

Unité de recherche INRIA Sophia Antipolis

2004, route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex (France)
Téléphone : +33 4 92 38 77 77 — Télécopie : +33 4 92 38 77 65



Segmentation d’un champ de densités de probabilités 3D
par évolution de surface: application & 'IRM de diffusion

Résumé : Nous proposons trois approches originales pour la segmentation d’'un champ de
densités de probabilités 3D. Ce travail a de nombreuses applications en imagerie médicale, en
particulier pour les images de diffusion a résonance magnétique ot une fonction représentant
le mouvement moyen des molécules d’eau est assignée a chaque voxel. L’extraction auto-
matique de structures importantes dans la matiére blanche, telles que le corpus callosum,
pourrait permettre d’améliorer grandement notre connaissance des connectivités cérébrales.
Dans la premiére approche, nous utilisons une loi Gaussienne multivariée afin d’approximer
la distribution des composantes du tenseur de diffusion & l'intérieur de chaque sous région
du volume DTI. La seconde technique est basée sur la version symétrisée de la distance de
Kullback-Leibler et de la modélisation de sa distribution dans chaque région d’intéret. Dans
la troisiéme approche, nous considérons la variété statistique de dimension 6 définie par les
paramétres du tenseur de diffusion et nous proposons un nouvel algorithme en définissant
distance géodésique et moyenne intrinséque dans cette variété Riemannienne. Les formula-
tions variationelles du probléme conduisent & trois évolutions différentes sur des ensembles
de niveaux qui convergent vers la segmentation optimale correspondante. Nous validons ces
approches sur des données synthétiques et nous montrons des résultats prometteurs pour
P’extraction du corpus callsoum et des ventricules latéraux.

Mots-clés : Segmentation, images de tenseurs de diffusion, divergence de Kullback-Leibler,
géométrie de I'information, géométrie Riemannienne, ensembles de niveaux.
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1 Introduction

Diffusion magnetic resonance imaging is a relatively new modality [5], [25] able to quantify
the anisotropic diffusion of water molecules in highly structured biological tissues. In 1994,
P. Basser [2| proposed to model voxelwise the probability density function of the molecular
motion r € R3 by a Gaussian law whose covariance matrix is given by the diffusion tensor
D. Diffusion Tensor Imaging (DTI) then produces a volumic image containing, at each
voxel, a 3 X 3 symmetric positive-definite tensor. The estimation of these tensors requires
the acquisition of diffusion weighted images in different sampling directions together with
a T2 image. Numerous algorithms have been proposed to perform a robust estimation and
regularization of these tensors fields [45], [51]. Recently, Q-ball Imaging has been introduced
by D. Tuch et al. [47] in order to reconstruct the Orientation Distribution Function (ODF)
by the Funk-Radon transform of high b-factor diffusion weighted images acquired under
the narrow pulse approximation. This ODF is the symmetric probability density function
52 — R giving the probability for a spin to diffuse in a given direction. This method provides
a better angular constrast and is able to recover intra-voxel fiber crossings.

Diffusion MRI is particularly relevant to a wide range of clinical pathologies investigations
such as acute brain ischemia detection [43|, stroke, Alzheimer disease, schizophrenia [1]
...etc. It is also extremely useful in order to identify the neural connectivity of the human
brain [21], [48], [9]. As of today, diffusion MRI is the only non-invasive method that allows
us to distinguish the various anatomical structures of the cerebral white matter such as
the corpus callosum, the arcuate fasciculus or the corona radiata. These are examples
of commisural, associative and projective neural pathways, the three major types of fiber
bundles, respectively connecting the two hemispheres, regions of a given hemisphere or the
cerebral cortex with subcortical areas. In the past, many techniques have been proposed to
classify gray matter, white matter and cephlo-spinal fluid from T1-weighted MR, |54] images
but the literature addressing the issue of white matter internal structures segmentation is
just beginning [56], [17], [50], [49] and [53].

In the following, we first address the segmentation of cerebral structures on the basis of
statistics over the field of diffusion tensors components, thus exploiting the entire information
encapsulated by this Gaussian descriptor. We then introduce another original technique for
the segmentation of any probability density function (pdf) field by examining the statistics
of the distribution of the Kullback-Leibler distances between theses pdfs. We finally propose
a novel method based on the representation of the family of Gaussian probability density
functions by a 6-dimensional statistical differential manifold M. Our goal is to perform the
direct segmentation of internal structures of the white matter. Zhukov et al. [56] defined an
invariant anisotropy measure in order to drive the evolution of a level-set and isolate strongly
anisotropic regions of the brain. The reduction of the full tensor to a single scalar gives a
relatively low discrimination power to the method potentially resulting in segmentation of
mixed structures. On the other side, Wiegell et al. [563], Jonassan et al. [17] and Wang
et al. [49], [60] proposed different measures of dissimilarity between full diffusion tensors:
The first and last methods use the Frobenius norm of the difference of tensors, together
with a spatial coherence or regularity term respectively in a k-means algorithm or active
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contour model to perform the segmentation of the thalamus nuclei. In [53|, the nature of
the elements to be segmented (compact, homogeneous) verify the restrictive hypothesis of
the technique, which is rarely the case. In [49], the segmentation is restricted to the 2D
case. The second method introduces a geometric measure of dissimilarity by computing the
normalized tensor scalar product of two tensors, which is nothing but a measure of overlap.
Finally, the third method relies on the natural distance between two Gaussian pdfs, given by
the symmetrized Kullback-Leibler distance, elegantly derives an affine invariant dissimilarity
measure between diffusion tensors and applies it to the segmentation of 2D fields of pdfs.
We will first aim to take advantage of the statistical information like the covariance of the
diffusion tensor components to refine the segmentation process and hence recover irregular
anatomical structures such as the minor and major forceps of the corpus callosum. This
first approach was published in [40]. We then generalize the method proposed in [49] to the
3D case [22] and propose to fit the distribution of the symmetrized Kullback-Leibler (KL)
distances by a Gaussian law. KL distances are taken between any pdf and our method is
thus applicable not only to DTI but also to Q-ball data which should enable the proposed
algorithm to catch even finer details. At last, taking into account the Riemannian geometry
of the space of Gaussian pdfs will allow us to precise the notion of intrinsic Gaussian law
between Gaussian pdfs in order to improve our segmentation algorithm. Section |2 will recall
basic notions related to diffusion MRI and white matter connectivity mapping. Section [3
will detail our technique for tensor fields segmentation based on the statistics of tensorial
components. Section[4 will expose our method for a general algorithm of probability density
fields segmentation together with its application to the Gaussian case. Section 5 will recall
basic notions on the Fisher information matrix and the geodesic distance and the intrinsic
mean on the underlying manifold are considered to define a new segmentation algorithm.
Section |6 will present and discuss experimental results both on synthetic and real DTI
datasets.

2  From Diffusion Weighted MRI to Fiber Tracking

In the following, we describe the method used for the acquisition of our data and the robust
estimation of the diffusion tensor. We briefly review classical tractography algorithms since
we will use their result to illustrate in Fig.7] the accuracy of our segmentation algorithm.

2.1 Data Acquisition, DTI

Our dataset consists of 30 diffusion weighted images S : @ — R, k. =1,...,30 as well as 1
image Sy corresponding to the signal intensity in the absence of a diffusion-sensitizing field
gradient (ie. b = 0 in equation T). They were obtained on a GE 1.5 T' Signa Echospeed with
standard 22 mT/m gradient field. The echoplanar images were acquired on 56 evenly spaced
axial planes with a 128 x 128 pixels in each slice. Voxel size is 1.875 mm x 1.875 mm x 2.8 mm.
6 gradient directions g, , each with 5 different b-factors and 4 repetitions were used. Imaging
parameters were: b values between 0 and 1000 s.mm 2, TR = 2.5 s, TE = 84.4 ms and a
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6 C. Lenglet, M. Rousson, R. Deriche, O. Faugeras

Figure 1: [left] Fractional Anisotropy map and [right] Corresponding tensors in the genu of
the corpus callosum

square field of view of 24 ¢m [37]. We recall that the estimation of a field of 3 x 3 symmetric
positive definite tensors T is done by using the Stejskal-Tanner equation for anisotropic
diffusion |1 at each voxel z.

Sp(z) = SO(I)efbg;fT(w)gk Ve € Q )

where gy, are the normalized non-collinear sensitizing gradient and b the diffusion weighting
factor. Various methods have been proposed for the estimation of the 6 elements of T(x) by
using equation 1] (see figure I). A survey of these approaches and a variational framework
for the estimation and the regularization of of DTI data can be found in [45]. This last
method provides a convenient mean to impose important constraints on the sought solution
such as tensor positivity, orthonormality of the eigenvectors or some degree of smoothness of
the result. This is performed by minimizing the following energy on the manifold of positive
definite tensors P(3):

Argmin [ 3" w(n(S0/51) - bl Teul) + ap(| TT])a0 (2)
TeP(3) JQ b—1

2.2 Fiber Tracking

The main idea on which relies classical tractography [29], |28], [37], [55] is that, despite the
potentially multi-directional environment within a voxel, water diffusion in many regions
of the white matter is highly anisotropic and consequently the orientation of the largest
tensor eigenvector aligns with predominant axonal orientation [30]. It should be safe to
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say that, accepting this restrictive assumption will enable us to identify macroscopical 3D
architectures of the white matter. This gives rise to the line propagation technique that
we have implemented and tested with various possible approaches. However, these local
methods incorporate strong limitations and refinements have been proposed [3], [19], |20],
[24], |46], [52], |9], [48]. More global algorithms |21], [31], [33], [35], |12], stochastic modeling
[6], [34], [16] or new acquisition methods were also introduced to try to overcome that
restriction. The section dedicated to the experimental results will make use of the method
proposed by the authors in [21] in order to assess the accuracy of the segmentation process
with regard to the structure of the axonal fibers in the corpus callosum.

3 Diffusion Tensor Images Segmentation

As shown in the previous section, the diffusion tensor is directly related to tissue proper-
ties. Then, classical segmentation techniques can be applied on this type of images for the
extraction of white matter structures of particular interest. The level set representation is a
well-suited framework for curve/surface evolution. Let I" be the optimal boundary between
the 3D object to extract 2; and the 3D background (25, we introduce the level set function
¢ : Q — R3, defined as follow:

¢(x) =0, ifzel
o(z) =D(z,T), ifxe (3)
¢(z) = —D(z,T), ifxeQy

where D(z,T") stands for the Euclidean distance between z and I'" and ©Q = Q; U Q. Fur-
thermore, let H.(z) and d.(z) be regularized versions of the Heaviside and Dirac functions
as defined in [10].

Let p; and ps be the probability density functions of the diffusion tensor inside and outside
I'. Then, according to the Geodesic Active Regions model [32], the object can be recovered
by minimizing:

B =- [ (HE<¢>> log 1 (T(2)) + (1 — He(8)) 1ogp2<T<x>>)dx )

The direct definition of a probability density function in the space of symmetric positive
definite matrix is a difficult problem and thus, we will rather consider vector representations
of the tensors in R®. By analogy to the information geometry approach, we consider a sta-
tistical distribution on linear spaces which overcome the hypothesis of isotropic distribution.
Hence, as done in [41] for texture images with the structure tensor, we consider a parametric
approximation with a 6D Gaussian. Let u be the vector representation of a tensor 7', the
likelihood of u in the region X is given by:

=3 (u—px)T S5 (u—px) (5)

1
{1l 50 = e
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8 C. Lenglet, M. Rousson, R. Deriche, O. Faugeras

By construction, the diagonal and non-diagonal components of a diffusion tensor are highly
correlated and so, a full covariance must be considered in the density of its vector represen-
tation u. Then, the vector means and the covariances of these densities are also supposed
unknown. However, these parameters can be introduced as unknown in (4). If we also add
a regularity constraint on the interface, we obtain the final objective function:

B {ix, Sx}) = v / VH.(6)]dx
/ H(6) log p (u(x) 11, 1) dac (6)

/Q (1 = H.(9)) log ps(u(x) |z, So)de

This type of energy was studied in [39], the Euler Lagrange equation for ¢ yields the following
evolution equation for the Level Set function:

o1(2) = 5.(6(c) (udiv;;f + Lig %
_ %(u(x) —)TE T () — ) 7)
+ %(u(m) — 1) T8 (u(z) — uz)) Ve € R3

while the statistical parameters are updated with:

_ Jou(@) He(¢)dx
p(p) = QfQH—
N2(¢) _ fQ - (gb))da:

fQ ))dz ®)
5, (¢) = Jol = u( ))(m — u(x))"H(¢)dx
' Jo Ho()da
() = Jolba e ) 0 Helg
Jo(1 ))dx

Adequate implementation schemes for this type of optimization can be found in [10]. Two
important details must be noted: (i) the explicit scheme is not stable for any time step
because of regularization term, (i) the level set function is reinitialized to the distance
function at each iteration. If we restrict the covariance matrix to the identity matrix, these
equations simplify and the log-likelihoods in Eq.(4) become simply the Euclidean distance
between the vectors v and px, which is equivalent to the Frobenius norm of the difference
between the corresponding tensors, as nicely studied in [49].

INRIA
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4 Probability Density Fields Segmentation

4.1 General case

Let p(z,r) be the probability density function of our random vector  of R? describing the
water molecules average motion at a given voxel z of a diffusion MR image 2 C R? and for a
given diffusion time 7 imposed by the parameters of the PGSE (Pulsed Gradient Spin Echo)
sequence. We are interested in characterizing the global coherence of that pdf field and use
the classical symmetrized Kullback-Leibler distance to that end. With p(x), ¢(y) Va,y € Q
two pdfs from R? onto RT, their KL distance is given by

d(p,q) = KL(p,q) = %/]1&33 (p(r) log% + q(r) log Iq%) dr (9)

Assuming a partition of the data between the structure we try to segment €2; and the rest of
the volume (25, we again seek the optimal separating surface I' between those two subsets.
We denote by p; and D, the most representative pdfs over {2, and €2y verifying equation
[13. It is then possible to model the distribution of the KL distances to p; and P, in their
respective domains by suitable densities pg,1,pq4,2- In the following, we make the assumption
that pg 1, pa,2 are Gaussian of zero mean and variances 0%, 03. It is indeed natural to impose
the mean distance to the pdfs p, and P, to be as small as possible, while retaining an
important degree of freedom by considering the variances of those distributions.

We then define the following energy in order to maximize the likelihood of these densities
on their associated domain:

2
B(9:,0%,5,) = Y /Q ~log pas(d(p(z), B))de (10)
1=1 i
where )
C— 1 ox _d (pvl_jq,)
pd,z 271'O'i2 P 20_12

Of course, other models can easily be used for the p;;. Note that in the case where the
o; are equal to 1, this energy will equal to the one proposed in [50]. In the experimental
part, the importance of adding o; will be illustrated. We can now rewrite equation 10 and
introduce a regularity constraint on I' as follows:

/Q —logpa1(d(p(z),p1))H(¢) —logpa2(d(p(x), P2))(1 — H(¢)) +v[VH(¢)|dx  (11)
The derivation of the Euler-Lagrange equations for this class of energy was studied in [39]

and yields the following evolution for ¢:

Vo
Vol

du(2) = 6.((2)) (Vdiv + %log @) Vz € Q (12)

Pd,1
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10 C. Lenglet, M. Rousson, R. Deriche, O. Faugeras

Moreover, the derivation of the energy with respect to o2 and p; provide the update formulae
for these statistical parameters. It can be shown that the variance must be updated with
its empirical estimation (see equation/8) whereas some more work is needed for the p;,. We
indeed have to estimate:

pi = argmin/ KL2(p;, p(x))da (13)
Q;

For a general pdf p(z), for instance if we consider the ODF derived from Q-ball data, the
variance is easily computed as in [39] but the estimation of the p; might require the use of
numerical approximation techniques if no closed-form is available.

4.2 Application to Gaussian Distributions

We now explicitely express the energy (10| for Gaussian pdfs and use a zero-mean Gaussian
law to model the distribution of their distances. The energy becomes

E(Q02.7,) = /

[ 5 (o 200%) + (ot 1o ) 1(6)
+(10g (27m03) + dz(p(l"),ﬁg)UQ_Q)(l _ H(¢)))
+v|VH(¢)|dz

If we write, as in |50], the Kullback-Leibler distance between two Gaussian pdfs parametrized
by their covariance matrices (.ie the Diffusion Tensor D) as:

& (p(z), ;) = % (trace {D_l(x)ﬁi +D; 1D(m)] - 3) (14)

then the Euler-Lagrange equations for our energy become:

V¢ 1 o ]_ _ J— ——1 _
v+ 310257 + g (wace D7D + ;"o o5 -

oi(x) = be(o(x)) (I/div

trace [Dl(x)ﬁl + Ele(x)] 01—2) n
o)) vee
(15)

Notice that we obtain additional terms (the o; coefficients) in|15/if compared to the Euler-
Lagrange equations proposed in [50]. For a given state of ¢, closed-forms for the optimal
covariance matrices of each region are available. In their recent paper, Wang et al. [50]
nicely showed that these covariance matrices are given by

D, = /B (VﬁAJB_) VB!

INRIA



Toward Segmentation of 3D PDF by Surface Evolution: Application to Diffusion MRI 11

where
Ai:/ D(z)dr and BZ«:/ D! (z)dz
Q; Q;

thus giving the update formula of the p;.

5 Segmentation on the Statistical Manifold

We now consider the statistical manifold M representing the family of three-dimensional
Gaussian probability density functions through the 6 parameters of their covariance matrix.
The pdfs are, again, assumed to be of 0-mean since this simply translates the fact that the
average displacement of spins in a voxel is zero. Following the work by Rao [38], where a
Riemannian metric was introduced in term of the elements of the information matrix, we
wish to define geodesic distances and intrinsic means on this 6-dimensional manifold whose
coordinate system is given by a real vector parameter © = (61, ...,05) € RS such that for
all random vector r € R®, M = {p(r|©}. In the following, we first show the main technical
limitation of the Kullback-Leibler divergence together with its impact on the segmentation
process. Then, we present the closed-form of the geodesic distance as well as the intrinsic
mean which can be estimated for multivariate Gaussian densities with common mean.

5.1 The Fisher Information Matrix

The information manifold (M, g) equipped with the Fisher information matrix ¢;; = G has
the structure of a Riemannian manifold [38] when G is non-degenerate. We recall that G is
defined as follows:

dlogp(r,0) dlog p(r, O) _/ dlogp(r,0) dlog p(r, O)
a0; 89] B R3 a0; 89]

gij =E p(r,©)dr  (16)
Chentsov [11] proved in 1972 that G was the only metric satisfying certain invariant affine
connections in the manifold of probability distributions. By plugging the definition of a
Gaussian distribution into equation[16, the 6 X 6 metric tensor, as presented in [23], can be
expressed in terms of the parameters 6,, i = 1, ...,6 used to describe the pdfs.

Examples: 1. If the diffusion process is locally isotropic (ie. if its covariance matrix D
is the identity), the Fisher information matrix reduces to:

1200 0 0 0
0 10 0 0 0
0 01 0 0 0
0 00 1/2 0 0 (17)
0 00 0 1 0
0 00 0 0 1/2

RR n° 5243



12 C. Lenglet, M. Rousson, R. Deriche, O. Faugeras

2. In the more general case of an anisotropic diffusion of variances o7, 0%, 73 whose principal
axis coincide with the coordinate frame of the image, the metric writes:

[ 57 O 0o 0 0 0

0 == 0 0 0 0

172
0 0 == 0 0 0 .
173
0 0 0 5 0 0 (18)
2
0 0 0 0 === 0
273

0 0 0 0 0 4

L 3 4

These simple examples make it obvious that the second, third and fifth diagonal terms of
the metric G receive contributions from cross-terms between the diagonal elements of the
covariance matrices described by the 0;, i = 1,4,6. Hence the factor % in front of the first,
fourth and sixth elements.

It becomes also clear now that, the approach developed in this section is an extension of
the techniques described in section[3. Instead of considering the parametrized pdfs as living
in the linear space RS, and thus taking G = Id, we do take into account the Riemannian
structure of the underlying manifold through G.

The Kullback-Leibler divergence K'LD (not its symmetrized form) turns out not only to
yield a closed-form to evaluate the distance between two Gaussian densities but also to be a
Taylor approximation of the geodesic distance between two nearby distributions p(r, ©) and
p(r,© + dO). Indeed, we have:

p(r|©)
KLD do) = log——————d
(©.6+d0) = [ 110 1og Dy
and by Taylor expansion with d© — 0
1 92 log p(r|© + dO)
KLD(©,0 +dO) ~ 2%:1@{— 96,00, }d@idé)j

Noticing that

—-E

9*logp(rl® +dO)] E Adlogp(r,© + dO) dlogp(r,© + dO)
00,00, N 00, 09,

makes it abvious that the square of the geodesic distance equals twice the KL divergence.
We have to notice here that the geodesic distance is always defined with respect to a given
element p(r,©) of M which yields its non-symmetric behavior. Moreover, we assume that
we always compute distances between nearby elements of M, which may not always hold.
For general distributions, we may have no other choice but to consider this approximation.

INRIA
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However, in the more particular case of multivariate Gaussian densities with common means,
a closed-form of the geodesic distance is available, avoiding any constraining limitation on
comparable distributions. The next part introduced this geodesic distance and an algorithm
for the estimation of the corresponding mean density is presented.

5.2 Geodesic Distance and Intrinsic Mean

We now concentrate on the space ST (m,R), endowed with the information metric ds?.
St (m,R) denotes the set of m X m real symmetric positive-definite matrices. A detailed
study on defining statistical models on this non-linear space was presented in [23]. Here
we remind some important results, usefull for the segmentation task. Following [23] and
[42, 7,(13, 8,[14, 26, 27], ST can be characterized as an affine symmetric space for which
closed-form expressions are available for the solution of the geodesic equation as well as for
the information geodesic distance (also known as Rao’s distance). The information geodesic
distance D between any two element ¥; and X5 of ST is given by the theorem:

Theorem 5.1 (S.T. Jensen, 1976)

Consider the family of multivariate normal distributions with common mean vector & but
differing variance-covariance matrices Y. The geodesic distance between two members of the
family with variance-covariance matrices Y1 and %5 is given by

1 12 w-1/2 1 &
D(%1,52) = tr(log”(5; Py,srt?) = 5 Z;logQ(Ai)
where the \; denote the m eigenvalues of the determinantal equation |[A\Xo — 31| = 0.

Properties of the Geodesic Distance:
The distance D on S™ defined above exhibits some nice properties that we hereafter
summarize:

1. Positivity: D(X1,%s) > 0, D(21, %) =0 & $; = ¥,

2. Symmetry: D(X1, %) = D(Xq, %)

3. Triangle inequality: D(X1,X3) < D(X1, X2) + D(22, 33)
4

. Invariance under congruence transformations: D(¥1,Ys) = D(PX PT, PY, PT)
VP € GL(m,R)

5. Invariance under inversion: D(X;,%,) = D(X71, 25 1)

The interested reader can find more details about this in the technical report by Férstner
and Moonen [14].

This natural distance can be used in the segmentation algorithm presented in the previous
part, replacing the symetrized KL divergence by the new expression. For this purpose, we
will need to estimate the empirical mean as proposed by Fréchet [15|, Karcher [18] and
Pennec [36]:
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Definition 5.2 The Normal distribution parametrized by e S*(m,R) and defined as the
empirical mean of N distributions X, k =1, ..., N, achieves a local minimum of the function
p:ST(m,R) — R" knwon as the empirical variance and defined as

N
H(S1, o B) = 1 DA, ) = E[DY(S, 5]
k=1

Karcher proved in [18] that such a mean, known as the Riemannian barycenter, exists and
is unique for manifold of non-positive sectional curvature. This was shown to be the case
for ST (m,R) in [23]. A closed-form of the mean cannot be obtained [27| but a gradient
descent algorithm was proposed in [23]. A flow is derived from an initial guess 53(0) toward
the mean of a set of ST(m,R). The following evolution is obtained:

5(s) 5
0:3(s) = — = > Log(x; '%(s)) (19)
k=1
The corresponding numerical implementation is detailed in [23].

Implementation: We can use the same variational framework as the one described in
section [4 in order to maximize the likelihood of the approximate Normal densities on the
Riemannian manifold. The energy is of the form [14 and the statistical parameters are
updated by first, estimating the intrinsic mean in each region through the gradient descent
119, then computing the variances of the distance to these mean distributions.

6 Experimental Results and Comparisons

We will respectively refer to the methods presented in sections (3, [4 and 5| as Method 1,
2 and 3. We begin with a validation of Method 1 on synthetical data with "limit" cases
where other approaches fail. Then, experiments are conducted on the extraction of the
corpus callosum from real DTT data through Methods 1, 2 and 3. Moreover, we show how
we can improve the robustness of our Method 2 by introducing an anisotropy measure. We
exhibit promising results of Method 3. We finally present results on real data with fusion of
segmentation and estimation of fibers in the splenium of the corpus callosum.

6.1 Synthetical data

Diffusion tensor images measure the displacement of water molecules. This displacement
which characterize different tissues, can be splitted into two different information: its in-
tensity and its direction. When considering diffusion tensor images, these information are
given respectively by the largest eigenvalue and the corresponding eigenvector. From this
decomposition, we built one easy case to illustrate the general segmentation process (all
methods will succeed in this example). It is made of a spherical inclusion [figure 2] where
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Figure 2: Segmentation (Method 1) of a noisy tensor field composed by two regions with
same orientation but different scale (TopP LEFT: 2D-cut of the tensor field, ToP RIGHT:
same with final segmentation, BOTTOM: surface evolution).

the difference between the inside and the outside is only based on the eigenvalues. We also
generate a limit case where the two regions differ only by the major orientation of the ten-
sors. Moreover, to make it harder, we also vary the main orientation of the tensors within
the inside region by creating a junction as shown in [figure|3]. In both cases, a Gaussian
noise was added directly on the eigen elements of each tensor. Initializing the surface with
a bounding box, Method 1 is able to give the expected segmentations [figure[2 and [3].
However, these examples do not show the necessity of including a statistical model for the
distance distribution of each region and the approach proposed in for 2D fields of pdf
gives a similar result. In order to show the advantages of our Method 2, which is more gen-
eral, we have generated a second test image. This image, shown in [figure [4], is composed
by one torus whose intern tensors are oriented according to the tangents of the principal
circle of the torus. A noise is also added to all the tensors of the image but with a different
variance whether the tensor is inside or outside the torus. In [figure 4], we compare the
results obtained using [50] and our approach, for different initializations. The first method
fails to segment the torus because of the orientations high variations within each region. If
we initialize with a bounding box, the surface shrinks until it disappears and if we start from
a small sphere inside the torus, only a small part of the torus can be captured. Using our
approach 2, which models the variance of the distance between tensors, the torus is correctly
extracted for the different initializations.
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Figure 3: Segmentation (Mehtod 1) of a noisy tensor field composed by two regions with
same scale but different orientations (ToP LEFT: 2D-cut of the tensor field, ToP RIGHT:
same with final segmentation, BOTTOM: surface evolution).

6.2 Real DTI data
6.2.1 Experiments for Method 1 and 2

As mentioned in the introduction, the extraction of objects from DTT data is of great interest.
This modality gives the opportunity to discriminate structures like the corpus callosum much
harder to characterize using other modalities. Before any processing, we need to crop the
image around the object of interest so as to respect the assumption of bi-partitioning imposed
by our model. Figure 5/show the result obtained for the extraction of the corpus callosum
with Method 1. The next experiment aims at extracting the lateral ventricles with Method
2. Two small spheres are manually placed inside the ventricles to initialize the surface. The
evolution and the final segmentation are shown in [figure 6]]. This result looks really close to
what we could have expected from anatomical structure extraction knowledge even though
the validation for this type of data will have to be carefully addressed.

6.2.2 Improvements using the anisotropy:

When we consider the Methods 2 and 3, the initialization is really important and in many
cases, several seeding points have to be set manually to avoid the surface to get stuck in
a local minima. This can be overcome by introducing a global anisotropy measure. One
of the most popular is based on the normalized variance of the eigenvalues: the fractional
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Figure 4: Segmentation of a noisy tensor field composed by two regions with different
orientations (TOP LEFT: 2D-cut of the tensor field, Top CENTER: segmentation obtained
from [50], ToP RIGHT: segmentation obtained with Method 2, BoTTOM: surface evolution
for both of them).

anisotropy (A) ([4]). The advantage of this measure is that it can be computed without
having to extract the tensor eigenvalues. It actually only depends on the Frobenius norm
and trace of the diffusion tensor.

V3|D(z) — trace(D(x))1/3|p
V2D (z)|r
An additional term is then defined to impose a given distribution of the anisotropy inside

each region. Let p,; and p, 2 be the pdf of the anisotropy in €2, and ), approximated by
Gaussian densities. Then, according to [39] the partitioning is obtained by minimizing:

A(D(z))

- / (H(6) 108 pa 1 A(D(@))dz + (1 — H,($)) 10g pa 2 A(D(x)))da (20)

This term is added to the objective function (II) defined in Section 4. Then, we obtain
a new evolution equation force for the level set function ¢ composed by two terms whose
influence can be controlled by adjusting the weight « between zero and one:

Vo
Vol

In practice, a small weight on the anisotropy term is sufficient to avoid the surface to get
stuck in a local minima. For example, the extraction of the corpus callosum in [figure 6] was
possible thanks to this additional term by setting o to 0.3. This weight should not be set
too high otherwise risking to propagate to all the white matter.

di(x) = de(o(x)) <1/div +(1- 04)1 log Pa2 | Oz1 log Iﬂ> Vo € Q (21)

2 " pda 2 T Paj
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Figure 5: Segmentation of the corpus callosum obtained with Method 1
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Figure 6: Segmentation of the lateral brain ventricles (TOP LEFT) and the corpus callosum
(Top LEFT) in a real diffusion tensor image superimposed on the DTI field using method
2, BoTTOM: surface evolution for both of them).

RR n° 5243



20

C. Lenglet, M. Rousson, R. Deriche, O. Faugeras

Figure 7: Segmentation by Method 2 together with callosal fibers
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The comparison of figures[6 and[5 is a quite difficult task since no accurate ground-truth data
is available to compare the results of Methods 1, 2 and 3. It seems that Method 1 captures
more details in the genu whereas Method 2 and 3 may perform better in the splenium.
The discrimination power of the methods relies on different criteria. The first method is
able to capture more complex distributions by considering a full covariance matrix. The
integration of such statisitical model is not straightforward for the other approaches but we
are currently working on this extension and a preliminar theoretical study is presentes in
[23]. To determine which one gives the desirable results will be investigated and validated
with neuroanatomists.

In order to show the coherence of our results, we present on figure[7 the fusion of callosal
fibers estimation by the method proposed in [21] and corpus callosum segmentation by
Method 2 in the region of the splenium.

6.3 Experiments for Method 3

In order to test our Method 3, we show results on a much harder synthetic dataset on figure
[8. It is composed of an helix of tensors whose orientations follow the tangent to the helix at
each position. All the tensors have the same eigenvalues. While method 1 and 2 have some
difficulties in capturing the whole helix, considering the natural distance helps and gives the
expected results. Results on real images are presented in figure 9/ for the extraction of the
lateral brain ventricles and the corpus callosum. On these results, we still make use of the
anisotropy term to improve the robustness. The obtained results are slightly better than
when considering the Kullback-Leibler divergence but a higher statistical model for each
region should be definitly considered to improve the algorithm.

7 Conclusion

We have presented three novel techniques for the segmentation of probability density fields
with a major contribution to the extraction of anatomical structures in anisotropic biological
tissues such as the brain white matter. We have shown that these method performs very well
on synthetic data and are able to catch fine details on real DTT datasets thus exhibiting an
adequate behavior of their respective segmentation criterion. We are currently working on
multivariate Normal distribution over the 6-dimensional statistical manifold to model region
statistics |23]. We are also in the process to compare the accuracy of the three algorithms
on various sets of synthetic data.
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Figure 8: ToP Segmentation (Method 3) of a noisy tensor field composed by two regions
with very different orientations, BOTTOM: surface evolution).

References

[1] B.A. Ardekani, J. Nierenberg, M.J. Hoptman, D.C. Javitt, and K.O. Lim. MRI study
of white matter diffusion anisotropy in schizophrenia. NeuroReport, 14(16):2025-2029,
November 2003.

[2] P.j. Basser, J. Mattiello, and D. LeBihan. MR diffusion tensor spectroscopy and imag-
ing. Biophysica, (66):259-267, 1994.

[3] P.J. Basser, S. Pajevic, C. Pierpaoli, J. Duda, and A. Aldroubi. In vivo fiber tractog-
raphy using DT-MRI data. Magn. Res. Med., 44:625-632, 2000.

[4] P.J. Basser and C. Pierpaoli. Microstructural and physiological features of tissues elu-
cidated by quantitative diffusion tensor MRI. Journal of Magnetic Resonance, 11:209—
219, 1996.

[5] D. Le Bihan, E. Breton, D. Lallemand, P. Grenier, E. Cabanis, and M. Laval-Jeantet.
Mr imaging of intravoxel incoherent motions: Application to diffusion and perfusion in
neurologic disorders. Radiology, pages 401-407, 1986.

[6] M. Bjornemo, A. Brun, R. Kikinis, and C.F. Westin. Regularized stochastic white
matter tractography using diffusion tensor MRI. In MICCAI, pages 435-442, 2002.

INRIA



Toward Segmentation of 3D PDF by Surface FEvolution: Application to Diffusion MRI 23

Figure 9: Segmentation of the lateral brain ventricles (ToP LEFT) and the corpus callosum
(ToP LEFT) in a real diffusion tensor image superlmposed on the DTI field using method
3, BorToM: surface evolution for both of them).

RR n° 5243



24

C. Lenglet, M. Rousson, R. Deriche, O. Faugeras

7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

J. Burbea. Informative geometry of probability spaces. FEzpositiones Mathematica,
4:347-378, 1986.

M. Calvo and J.M. Oller. An explicit solution of information geodesic equations for the
multivariate normal model. Statistics and Decisions, 9, 1991.

J.S.W. Campbell, K. Siddiqi, B.C. Vemuri, and G.B Pike. A geometric flow for white
matter fibre tract reconstruction. In IEEE International Symposium on Biomedical
Imaging Conference Proceedings, pages 505-508, July 2002.

T. Chan and L. Vese. An active contour model without edges. In Scale-Space Theories
in Computer Vision, volume 1682 of Lecture Notes in Computer Science, pages 141-151.
Springer—Verlag, 1999.

N.N. Chentsov. Statistical decision rules and optimal inferences. In Translations of
Mathematical Monographs. American Mathematical Society, Providence, 1982.

O. Cicarelli, A.T. Toosy, G.J.M. Parker, C.A.M Wheeler-Kingshott, G.J. Barker, D.H.
Miller, and A.J. Thompson. Diffusion tractography based group mapping of major
white matter pathways in the human brain. NeuroImage, 19:1545-1555, 2003.

P.S. Eriksen. Geodesics connected with the fisher metric on the multivariate manifold.
Technical Report 86-13, Institute of Electronic Systems, Aalborg University, 1986.

W. Forstner and B. Moonen. A metric for covariance matrices. Technical report,
Stuttgart University, Dept. of Geodesy and Geoinformatics, 1999.

M. Fréchet. Les éléments aléatoires de nature quelconque dans un espace distancié.
Ann. Inst. H. Poincaré, X(IV):215-310, 1948.

P. Hagmann, J.P. Thiran, L. Jonasson, P. Vandergheynst, S. Clarke, P. Maeder, and
R. Meuli. Dti mapping of human brain connectivity: Statistical fiber tracking and
virtual dissection. NeuroImage, 19:545-554, 2003.

L. Jonasson, P. Hagmann, X. Bresson, R. Meuli, O. Cuisenaire, and J.P Thiran. White
matter mapping in DT-MRI using geometric flows. In EUROCAST, pages 585-596,
2003.

H. Karcher. Riemannian centre of mass and mollifier smoothing. Comm. Pure Appl.
Math, 30:509-541, 1977.

M. Lazar, D. Weinstein, K. Hasan, and A.L. Alexander. Axon tractography with
tensorlines. In Proceedings of International Society of Magnetic Resonance in Medicine,
volume 482, 2000.

INRIA



Toward Segmentation of 3D PDF by Surface Fvolution: Application to Diffusion MRI 25

[20]

21]

22]

23]

24]

[25]

[26]

27]

(28]

[29]

[30]

31]

M. Lazar, D.M. Weinstein, J.S. Tsuruda, K.M. Hasan, K. Arfanakis, M.E. Meyerand,
B. Badie, H.A. Rowley, V.Haughton, A. Field, and A.L. Alexander. White matter
tractography using diffusion tensor deflection. In Human Brain Mapping, volume 18,
pages 306-321, 2003.

C. Lenglet, R. Deriche, and O. Faugeras. Inferring white matter geometry from diffusion
tensor MRI: Application to connectivity mapping. In Pajdla and Matas, Prague, Czech
Republic, 2004. Springer—Verlag.

C. Lenglet, M. Rousson, and R. Deriche. Segmentation of 3D probability density fields
by surface evolution: Application to diffusion MRI. In Proc. 7th Intl. Conf. on Medical
Image Computing and Computer Assisted Intervention, Saint-Malo, France, September
2004.

C. Lenglet, M. Rousson, R. Deriche, and O. Faugeras. Statistics on multivariate nor-
mal distributions: A geometric approach and its application to diffusion tensor MRI.
Research Report 5242, INRIA, June 2004.

T.E. McGraw. Neuronal fiber tracking in DT-MRI. Master’s thesis, University of
Florida, 2002.

K.D. Merboldt, W. Hanicke, and J. Frahm. Self-diffusion nmr imaging using stimulated
echoes. J. Magn. Reson., 64:479-486, 1985.

M. Moakher. Means and averaging in the group of rotations. SIAM Journal on Matriz
Analysis and Applications, 24(1):1-16, 2002.

M. Moakher. A differential geometric approach to the geometric mean of symmet-
ric positive-definite matrices. SIAM Journal on Matriz Analysis and Applications (to
appear), 2004.

S. Mori, B.J. Crain, V.P. Chacko, and P.C.M. Van Zijl. Three-dimensional tracking of
axonal projections in the brain by magnetic resonance imaging. Annals of Neurology,
45(2):265-269, February 1999.

S. Mori, B.J. Crain, and P.C. van Zijl. 3d brain fiber reconstruction from diffusion MRI.
In Proceedings of the International Conference on Functional Mapping of the Human
Brain, 1998.

M.E. Moseley, Y. Cohen, J. Kucharczyk, J. Mintorovitch, H.S. Asgari, M.F. Wend-
land, J. Tsuruda, and D. Norman. Diffusion-weighted mr imaging of anisotropic water
diffusion in cat central nervous system. Radiology, 176:439-445, 1999.

L. O’Donnell, S. Haker, and C.F. Westin. New approaches to estimation of white matter
connectivity in diffusion tensor MRI: Elliptic pdes and geodesics in a tensor-warped
space. In MICCAI, 2002. 459-466.

RR n° 5243



26

C. Lenglet, M. Rousson, R. Deriche, O. Faugeras

32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

N. Paragios and R. Deriche. Geodesic active regions and level set methods for supervised
texture segmentation. The International Journal of Computer Vision, 46(3):223, 2002.

G.J.M. Parker. Tracing fibers tracts using fast marching. In Proceedings of the Inter-
national Society of Magnetic Resonance, volume 85, 2000.

G.J.M. Parker and D.C Alexander. Probabilistic monte carlo based mapping of cerebral
connections utilising whole-brain crossing fibre information. In IPMI, pages 684—695,
2003.

G.J.M. Parker, C.A.M. Wheeler-Kingshott, and G.J. Barker. Estimating distributed
anatomical connectivity using fast marching methods and diffusion tensor imaging.
Trans. Med. Imaging, 21(5):505-512, 2002.

X. Pennec. Probabilities and statistics on riemannian manifolds: A geometric approach.
Research Report 5093, INRIA, January 2004.

C. Poupon. Détection des faisceaux de fibres de la substance blanche pour ’étude de
la connectivité anatomique cérébrale. PhD thesis, Ecole Nationale Supérieure des Télé-
communications, December 1999.

C.R. Rao. Information and accuracy attainable in the estimation of statistical param-
eters. Bull. Calcutta Math. Soc., 37:81-91, 1945.

M. Rousson and R. Deriche. A variational framework for active and adaptative seg-
mentation of vector valued images. In Proc. IEEE Workshop on Motion and Video
Computing, pages 5662, Orlando, Florida, December 2002.

M. Rousson, C. Lenglet, and R. Deriche. Level set and region based surface propagation
for diffusion tensor MRI segmentation. In Computer Vision Approaches to Medical
Image Analysis (CVAMIA) and Mathematical Methods in Biomedical Image Analysis
(MMBIA) Workshop, Prague, May 2004.

M. Rousson, T. Brox, and R. Deriche. Active unsupervised texture segmentation on a
diffusion based space. In IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 699-704, Madison, Wisconsin (United States), June 2003.

L.T. Skovgaard. A riemannian geometry of the multivariate normal model. Scandina-
vian Journal of Statistics, 11:211-233, 1984.

C. Sotak. The role of diffusion tensor imaging (dti) in the evaluation of ischemic brain
injury. NMR Biomed., 15:561-569, 2002.

E.O. Stejskal and J.E. Tanner. Spin diffusion measurements: spin echoes in the presence
of a time-dependent field gradient. Journal of Chemical Physics, 42:288-292, 1965.

INRIA



Toward Segmentation of 8D PDF by Surface Evolution: Application to Diffusion MRI 27

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

D. Tschumperlé and R. Deriche. Variational frameworks for DT-MRI estimation, reg-
ularization and visualization. In Proceedings of the 9th International Conference on
Computer Vision, Nice, France, 2003. IEEE Computer Society, IEEE Computer Soci-
ety Press.

D.S. Tuch. Mapping cortical connectivity with diffusion MRI. In ISBI, pages 392-394,
2002.

D.S. Tuch, T.G. Reese, M.R. Wiegell, and V.J. Wedeen. Diffusion MRI of complex
neural architecture. Neuron, 40:885-895, December 2003.

B. Vemuri, Y. Chen, M. Rao, T. McGraw, T. Mareci, and Z. Wang. Fiber tract mapping
from diffusion tensor MRI. In 1st IEEE Workshop on Variational and Level Set Methods
in Computer Vision (VLSM’01), July 2001.

Z. Wang and B.C. Vemuri. An affine invariant tensor dissimilarity measure and its
application to tensor-valued image segmentation. In IEEE Conference on Computer
Vision and Pattern Recognition, Washington, DC., June 2004.

Z. Wang and B.C. Vemuri. Tensor field segmentation using region based active contour
model. In Pajdla and Matas, Prague, Czech Republic, 2004. Springer—Verlag.

Z. Wang, B.C. Vemuri, Y. Chen, and T. Mareci. Simultaneous smoothing and estima-
tion of the tensor field from diffusion tensor MRI. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 461-466, Madison, Wisconsin (United States),
June 2003.

D.M. Weinstein, G.L. Kindlmann, and E.C. Lundberg. Tensorlines: Advection-diffusion
based propagation through tensor fields. In IEEE Visualization, pages 249-253, 1999.

M.R. Wiegell, D.S. Tuch, H.W.B. Larson, and V.J. Wedeen. Automatic segmentation
of thalamic nuclei from diffusion tensor magnetic resonance imaging. Neurolmage,
19:391-402, 2003.

Y. Zhang, M. Brady, and S. Smith. Segmentation of brain MR images through a
hidden markov random field model and the expectation-maximization algorithm. IEEFE
Transactions on Medical Imaging, 20(1), January 2001.

L. Zhukov and A.H. Barr. Oriented tensor reconstruction: Tracing neural pathways
from diffusion tensor MRI. In Proceedings of the conference on Visualization 02, pages
387-394, 2002.

L. Zhukov, K. Museth, D. Breen, R. Whitaker, and A.H. Barr. Level set segmentation
and modeling of DT-MRI human brain data. Journal of Electronic Imaging, 2003.

RR n° 5243



/<

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)
Unité de recherche INRIA Lorraine : LORIA, Technopdle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lés-Nancy Cedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhone-Alpes : 655, avenue de I’Europe - 38334 Monthonnot Saint-Ismier (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)
http://www.inria.fr

ISSN 0249-6399



	Introduction
	From Diffusion Weighted MRI to Fiber Tracking
	Data Acquisition, DTI
	Fiber Tracking

	Diffusion Tensor Images Segmentation
	Probability Density Fields Segmentation
	General case
	Application to Gaussian Distributions

	Segmentation on the Statistical Manifold
	The Fisher Information Matrix
	Geodesic Distance and Intrinsic Mean

	Experimental Results and Comparisons
	Synthetical data
	Real DTI data
	Experiments for Method 1 and 2
	Improvements using the anisotropy:

	Experiments for Method 3

	Conclusion

