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Sur le calcul de la topologie de courbes algébriques en
dimension 3

Résumé : Dans ce rapport, nous décrivons une nouvelle méthode pour calculer la topo-
logie de courbes définies comme intersection de deux surfaces implicites. Les ingrédients
principaux sont des techniques de projection, basées sur des calculs de résultants et des
outils de résolutions de systéemes d’équations polynomiales. Nous présentons une méthode
de relevement de points sur la projection de la courbe dans un plan, utilisable méme dans
le cas de préimages multiples sur la courbe 3D. Ramenant le probleme a la comparaison
des coordonnées de points dits critiques, nous proposons une approche qui combine certi-
fication et efficacité. Une attention particuliere est donnée dans ce travail & la validation
expérimentale. Des exemples, traités avec les outils de la bibliotheque AXEL' (Algebraic
Software-Components for gEometric modeLing) montrent tout le potentiel de cette nouvelle
approche.

Mots-clés : courbe, surface implicite, topologie, équation polynomiale, résultant, projec-
tion, point critique, calcul certifié, lien symbolique-numérique, logiciel géométrique
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Topology of three-dimensional algebraic curves 3

1 Introduction

Numerical modeling plays an increasingly role in fields at the border between data processing
and mathematics. This is the case for example in CAD (Computer-aided design, where
the objects of a scene or a piece to be built are represented by parameterized curves or
surfaces such as NURBS), robotics (problem of the parallel robot, or vision), or molecular
biology (rebuilding of a molecule starting from the matrix of the distances between its atoms
obtained by NMR). A fundamental operation in this context is the intersection of geometric
models, which leads to algebraic questions.

In this paper, we focus on the problem of computing the topology of the intersection of
two algebraic surfaces. Such a question is critical in many solid geometry operations, involved
in the digital modeling or construction process of shapes. In the case of two parameterized
surfaces, in order to reduce to such a situation, we may compute the implicit equation of
one of the rational surfaces [4]. This reduces the problem of intersection to the case of an
implicit and a parameterized representation, which boils down, by substitution, to the case
of a curve defined by an implicit equation in the plane of parameters. Our main concern will
be the case of implicit curves, either in the plane or defined by two polynomial equations,
in a 3-dimensional space.

This intersection problem received a lot of attention in the past literature. See for
instance [9, 19, 16]. Different techniques (subdivision, lattice evaluation, marching methods)
have been experimented [18], [10], [1], [13], [12], [19], but they suffer from the problem of
certifying the topology of the result.

In this paper, we present a new method to compute the topology of an algebraic curve
in 3D, based on an extension of the 2D approach [13], [11]. Our objective is to devise a
certified and output-sensitive method, in order to combine control and efficiency. We show
that it reduces to the comparison of coordinates of points of intersections of two curves or
three surfaces. This task can be fulfilled by using exact methods, such as the one described
in [3], [8], which reduces to comparison of roots of univariate problems. Our approach is
combining symbolic and numeric techniques, in order to filter the numerical computation.
We present preliminary experiments in the library AXEL! (Algebraic Software-Components
for gEometric modeLing), devoted to algebraic tools for geometric modeling. We are in-
terested in the efficiency and also in the numerical behavior and stability of the method.
The experiments are made using the package SYNAPS? [6] (SYmbolic and Numeric APpli-
cationS), for the polynomial solvers it provides. We apply in particular solvers, based on
algebraic manipulations [20], or resultant constructions. This leads to eigenvalue computa-
tions, which are performed by LAPACK subroutines [2]. For more details on the polynomial
solving algorithms, we refer to [8].

The main objective being the description of the curve of intersection of two implicit
surfaces, the method that we present yields “only” the topology of such a curve, that is
a graph of 3D points, connected by segments, with the same topology as the algebraic

lhttp://www-sop.inria.fr/galaad/logiciels/axel/
?http://www-sop.inria.fr/galaad/logiciels/synaps/
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4 G. Gatellier € A. Labrouzy & B. Mourrain & J.P. Técourt

curve. Producing a good geometric approximation of the curve, which is the next step of a
complete method, will not be considered here. It consists in applying marching techniques
on the regular branches of the curve.

In the next section, we will describe quickly the algebraic ingredients that we need. The
algorithm will be detailed in section 3 and some implementation topics and experimentations
are presented in the last section.

2 Algebraic tools

In this section, we introduce different algebraic tools that will be used later.

2.1 Resultant and projection

For any polynomials py, ..., px € R[z], we denoted by (p1,...,pr) the vector space spanned
by these polynomials. Let R[z]; be the space of polynomials of degree less or equal to d,
with basis {1,...,2%}.

Let us consider two univariate polynomials P and @ of R[z].

P q
P=Zakzk, Qszkzk.
k=0 k=0

We need first the following definition:

Definition 2.1 The Sylvester matriz of P and Q is the matriz of the application
IR‘[z]qfl ® ]R[z]pq — R[]

p+q—1
(u,v) Pu+Qu
of the form
ap bg
ap—l ap bq—l bq
Syl(P,Q) = : ap 1 by 1
ag : bo :
ag b()

Definition 2.2 Determinantal polynomial. Let M be a matriz k x | with | < k. We define
the determinantal polynomial of M:

detpol(M) = det(M},) 2F~H + - -+ + det(M;)

where M; denotes the submatriz of M consisting of the I — 1 first rows of M followed by
the jth.

INRIA



Topology of three-dimensional algebraic curves 5

Definition 2.3 The polynomial subresultant of order i associated to P and @ is:
_ ' 1
S; = detpol(z9~ "' P,...,P,2P7"71Q,...,Q) = Z Si,kzk
k=0

See [21]. These polynomials can be computed efficiently by Sturm-Habicht sequences [3].
Notice that Sy is the determinant of the Sylvester matrix (i.e the resultant) of P and Q.
We will use the following result:

Proposition 2.4 The last polynomial Sy, associated to P and Q with Sk # 0 is the greatest
common divisor of P and Q.

Another important property is:

Proposition 2.5 The corank of the Sylvester matriz associated to P and Q) is the degree of
gcd(P, Q).

Proof. Let D = ged(P, Q) and § = deg(D). Then we have
corank(SyL(P,Q)) = p+ ¢ — dim(P, 2 P, .., 5" P,..., Q. 2@,..., 77 1Q).

As dim(P,zP,...,297 ' P,...,Q,2Q,...,227'Q) = dim(D,zD,..., 2Pt 1= D) we de-
duce that corank(Syl(P,Q)) = 6. O

2.2 Solving 0-dimensional systems

In this section, we are interested in solving polynomial systems of dimension 0 i.e that admit
a finite number of (complex) solutions. Different approaches exist to solve such systems
[8]. We focus on the algebraic approach that transforms the resolution problem into linear
algebra problems.

Here are some notations: R = R[z,y,z2], f1 =0,..., fm = 0 with f; € R, the equations we
want to solve, I = (f1,..., fm) is the ideal generated by these polynomials, A = R/I the
quotient algebra. We denote by

V(fla"'7fm) = {(m,y,z) € (DS:fi(xayvz) = 07 P = 17"'7m}7

the variety of C*® defined by the equations fi(x,y,2) = 0.
We deduce from the structure of the quotient algebra A, the solutions V(I), from the
following theorem:

Theorem 2.6 Assume that V(I) = {&1,...,&}. We have:
o Leta € A. The eigenvalues of the operator My (and M?) are a(£1), ..., a(€q)-

e The common eigenvectors of (ME)aca are (up to a scalar) le,, ..., 1¢, where ¢, is the
linear form le, : p — p(&).

RR n° 5194



6 G. Gatellier €& A. Labrouzy & B. Mourrain & J.P. Técourt

This theorem reduces the resolution to a linear algebra problem [8] if we are able to work in
A. In order to turn this theorem into an effective method, we have to construct the matrices
of multiplication in 4. For this purpose, we compute so called normal forms. One way is
to use Grobner bases but for numerical stability, we prefer to use general normal forms [17],
[20].

We summarize the main stages of the resolution process, in the following algorithm:

Algorithm 2.7 — Solving 0-dimensional system. Input: I = (f1,..., fm).
e Compute a basis of A and polynomials which yield a normal form reduction modulo I.
e Deduce the matrices of multiplication by x,y, z in the basis of A.
e Compute simultaneous eigenvectors of ML, M;, M and the corresponding eigenvalues[8].

Output: V(I) = {&; (with multiplicity),i =1, ...,dim A}.

3 Topology of algebraic curves

By definition, a three dimensional algebraic curve Cc = V(f1, ..., fm) (fi € R[z,y,2]) is an
algebraic variety of dimension 1 in €3. We denote by I(Cc) C Rz, y, 2], the ideal of the
curve Cg (that is the set of polynomials which vanish on Cg) and by g¢1,...,9s € Rz, y, 2]
a set of generators: I(Cg) = (91,--.,9s). By Hilbert’s Nullstellensatz [5, 15], we have
IV(f1,...,fe)=VIC Rz, ¥, 2]. It can be proved [7], [15], that 3 polynomials g1, g2, g3
€ R[z,y, 2] are enough to generate I(Cg).

For simplicity reasons, we will consider here that the curve is described as the intersection
of two surfaces Pi(z,y,2) = 0, Pa(z,y,2) = 0, with P, P, € R[z,y,2]. We assume that
the ged of Py and P in Rz, y, #] is 1, so that V(Py, Py) = C¢ is of dimension 1, and all its
irreducible components are of dimension 1. We are interested in describing the topology of
the real part

Cr = {(x,y7z) € IRS’ Pl(.’E,y,Z) =0, PQ(xayVZ) = 0}7

that we will denote hereafter by C.

In this paper, we assume that I(C) = (Py, P») or equivalently that (Pi, P2) is a reduced
ideal: (Pl,PQ) = 4/ (Pl,Pg).

We will not consider examples such as P, = 22 + 42 — 1, P, = 22 + 42 + 22 — 1, where
(P, Py) = (22 4+9y?—1,2%) and I(C) = (22 +y% —1, 2), so that the curve C is defined “twice”
by the equations P, = 0,P, = 0 (the two surfaces intersect tangently along C). Such a
property can be tested by projecting into a generic direction and testing if the equation
computed from the resultant of Py, P», is squarefree, or by more general methods such as
computing the radical of (P, P») [14].

The general idea behind the algorithm that we are going to describe is as follows: we
use a sweeping plane in a given direction (say parallel to the (y,z) plane) to detect the
critical positions where something happens. We also compute the positions where something

INRIA



Topology of three-dimensional algebraic curves 7

happens in projection on the (z,y) and (z,2) plane. Then, we connect the points of the
curve of C on these critical planes. This yields a graph of points, connected by segments,
with the same topology as the curve C.

3.1 Ciritical points and generic position

In this section, we precise what we mean by the points where something happens. These
points will be called hereafter critical points.

Definition 3.1 Let I(C) = (91,92, ---,9s) and let M be the s x 3 Jacobian matriz with rows
azgia aygia 8291'-

e A point p € C is regular (or smooth) if the rank of M evaluated at p is 2.
o A point p € C which is not reqular is called singular.

e A pointp = (a,f,7) € C is x-critical (or critical for the projection on the x-axis) if the
curve C is tangent at this point to a plane parallel to the (y, z)-plane i.e the multiplicity
of intersection of the plane with I(C) at p is greater or equal to 2. The corresponding
a is called o x-critical value.

A similar definition applies for the orthogonal projection onto the ¥ and z axis or onto any
line of the space. Notice that a singular point is critical for any direction of projection.
If I(C) = (P, P2), then the z-critical points are the solutions of the system

Pi(z,y,2z) =0, Py(z,y,2) =0, (0y,P10. Py — 0,20, P1)(x,y,2) = 0. (1)

In the case of a planar curve defined by P(z,y) = z = 0, with P(z,y) squarefree so that
I(C) = (P(z,y), ), this yields the following definitions: a point («, 3)

e is singular if P(a, 8) = 0,P(a, B) = 0,P(a, 3) = 0.
e is z-critical if P(o, B) = 0, P(a, ) = 0.

This allows us to describe the genericity condition that we require for the curve C, in
order to be able to apply the algorithm:

Definition 3.2 Let
N.(a) = #{(B,7) € R? st. (o, B,7) is a x — critical point of C}.
We say that C is in a generic position for the x-direction, if
e VaeR, Ny(a) <1, and
e there is no asymptotic direction of C parallel to the (y, z)-plane.

We will show that by a random change of variables, the curve can be put in a generic
position. In practice, instead of changing the variables, we may choose a random direction
for the sweeping plane.

RR n° 5194



8 G. Gatellier €& A. Labrouzy & B. Mourrain & J.P. Técourt

3.2 The projected curves

The algorithm that we are going to describe, uses the singular points of the projection of C
onto the (z,y) and (z, z)-planes. We denote by C' (resp. C"') the projection of the curve C
onto the (z,y) (resp. (z,z))-plane. The equation of the curve C’ is obtained as follows. We
decompose the polynomials P;, P, in terms of the variable z:

P1($7yvz) = adl(x7y>zdl + ... +a0(x7y>
Py(,y,2) = bay(2,9)2% + ... + bo(2,9)

with a4, (x,y) # 0 and by, (z,y) # 0. Then, the resultant polynomial
G(z,y) = Res.(P1, P»)

vanishes on the projection of the curve C on the plane (z,y). Conversely, by the resultant
theorem [8], G(z,y) = 0 defines exactly the projection C’ of the curve C if a4, (z,y) and
b, (z,y) do not vanish simultaneously on a component of dimension 1 of C’, that is, if the
ged ¢(z,y) of aq, (z,y) and by, (z,y) in R[z,y] is a 1. If it’s not the case, G is a non-trivial
multiple of the implicit equation of C’. Such a situation can be avoided, by a linear change of
variables. Nevertheless, since the critical points of the curve defined by G(z,y) = 0 contains
the critical points of C’, we will see hereafter that this change of variables is not necessary.

Notice, that G(z,y) is not necessarily a squarefree polynomial. Consider for instance the
case PL = 2% + 9% — 1, P, = 22 + y% + 2% — 2, where g(x,y) = (2® + 9? — 1)%. In this case,
there are generically two (complex) points of C above a point of C’.

We can easily compute the ged of G(z,y) and 9,G(z,y) (using proposition 2.4), in order
to get the squarefree part g(z,y) = G(z,y)/gcd(G(z,y),0yG(z,y)) of G(z,y).

Similarly, for the projection C” of C on the (z, 2)-plane, we compute

H(z,z) = Resy(P1, P»)

and its square-free part h(z,z) from the gcd of H(z,z) and 0,H(z,z). The equation
h(z,z) = 0 defines a curve which is exactly C”, if the gcd of the leading components of
Py, Py in y is 1. Tts set of singular points contains those of C"”.

In order to analyze locally the projection of the curve C, we recall the following definition:

Definition 3.3 [22] Let X be an algebraic subset of R™ and let p be a point of X. The
tangent cone at p to X is the set of points u in R™ such that there exists a sequence of points
xr of X converging to p and a sequence of real numbers ti, such that limg_, 4 tr(xr —p) = u.

Notice, that at a smooth point of C, the tangent cone is a line.

Proposition 3.4 Let p' = (a,3) be a x-critical point of C', which is not singular. Then «
is the x-coordinate of a x-critical point of C.

INRIA



Topology of three-dimensional algebraic curves 9

Proof. Let V be the set of points p € C, which project onto p’. From the previous
definition, we directly deduce that the projection of the tangent cone at p € C is contained
in the tangent cone of the projection of p. Thus the tangent cone of C’ at p’ = («, 3) contains
the projection of the tangent cones of the points p € V. Since p’ is regular, its tangent cone
is a line parallel to the y direction. Therefore, the tangent cones of the points p € V" are in
the plane x — a = 0, parallel to the plane (y, z). This implies that the intersection of C with
the plane x — a = 0 contains a point of multiplicity > 2, that is a z-critical point. In other
words, « is the z-coordinate of a z-critical point of C. a

3.3 Lifting a point of C’

The problem we want to tackle here is the following: Assume we are given two surfaces
defined by two implicit equations P; = 0 and P, = 0. Let us consider the projection of the
curve of intersection of the two surfaces on the (z,y)-plane. Starting from a point (z¢, yo)
of the projected curve, how can we find the z-coordinate of the point(s) above (zg,yo) ?

We note P(z) = Pi(zo,¥0,2), Q(2) = Pa(z0,¥0,2) and p = deg(P), ¢ = deg(Q). Con-
sider the Sylvester submatrix Syl, (zg, yo) of the application

]R[z]q—2 & ]R‘[z]p—Q - R[z]p+q—2
(u,v) — Pu+Qu

If £ is a common root of P and Q then (1,¢,...,6P192) is in the kernel of the trans-
pose of Syl (zo,yo). If we assume that Syl;(zo,vo) is of maximal rank, and if A; de-
notes the minor of Syl; (xg,yo) obtained by removing the row 4, then the (non-zero) vector
[A1,—Ag,...,(=1)PT77 1A, . 1] is in the kernel of the transpose of Syl,(zo,yo). Thus
(1,¢,...,6P 9 2) and [Aq, —Aq, ..., (=1)P*97 1A, 5] are linearly dependent. We deduce

_ _Ap+q—1 _ _ Si0(zo0.¥0)
that £ = Ap+q—2 = Sia(zo,y0)"
This method allows us to lift a point on C, if there is only one point above (zo, yo), but

it can be generalized when there are several points above. This generalization is closely
related to the subresultant construction of univariate polynomials [21]. Here we want to
exploit linear algebra tools from a numerical perspective. The aim is to make the matrix
of multiplication by z in the quotient algebra R][z]/(Pi(z¢, Yo, 2), Ps(z0, Yo, 2)) appear, in
order to compute its eigenvalues which yields z-coordinate of the points above (zg,yo) [8]-
We proceed as follows: Given a point (xg,¥g) of the projected curve C’, we construct the
Sylvester matrix associated to P(z), @(z). By construction, the columns of this matrix are
P,zP,...,27'P,Q,2Q,...,2P~1 Q, written in the basis 1, z,...,2PT97!, Assume that the
kernel of the transposed Sylvester matrix Syl(zo,yo) has dimension d and is generated by
Ar, .. Ag.
By transposition, we can interpret the A; (i = 1...d) as linear forms over K,,_1[2] van-
ishingon P,z P,...,297 ' P,Q,2Q,...,2P~1 Q. We can extend the A; over R[z], considering
that these forms vanish over all the ideal generated by P and ). So they can be considered as
elements of the dual of A = R[z]/(P(z), Q(2)). As the linear forms A; are independent, they
also form a basis of this dual space. The coefficients of A; in the dual basis (1%, ..., (z471)*)

RR n° 5194



10 G. Gatellier €& A. Labrouzy & B. Mourrain & J.P. Técourt

of the monomial basis {1, z, ..., 2971} of A are [A;(1), Ai(2), ..., Ai(2¢71)]. By definition of
the transposed operator, for any a € A, M*(A;)(a) = Ai(M,(a)) = A;(za). Thus we have
the relation:

A(z) oo Ag(z) Ar(1) Lo Ag(D)

: : = M! : :

A (2% .o Ag(2?) Ap(z27Y) Lo Ag(z4h)
where M, is the operator of multiplication by z in R[z]/(P(2), Q(2)). As d = dim ker(Syl(zo,¥0)) =
dim A, and as (1, z, ..., 2¢71) form a basis of the quotient space, the matrix

A1) . Ag(D)

A1) Ag(zd)

is invertible. We deduce that computing the generalized eigenvalues of the previous matrices
yields the eigenvalues of the operator M, of multiplication by z in A, that is the z-coordinate
of the points above (zg, yo).

We summarize the algorithm here:

Algorithm 3.5 — Lifting the projection.
e Compute the Sylvester matriz S = Syl(xo,vo)-
e Compute a basis Ay,..., Ay of the kernel of S*.

e Extract the submatriz Ag of the coordinates of A1, ..., Aq corresponding to the evalu-
ations in 1,..., 2% 1,

e FExtract the submatriz Ay of the coordinates of A1, ..., Aq corresponding to the evalu-
ations in z, ..., 2%

e Compute the generalized eigenvalues of A1 and Ay and output the corresponding z-
coordinates of the point above (xo,¥o).

The last step can be replaced by the computation of det(A; — z Ag) and an univariate
root finding step.

3.4 Computing points of C at critical values

In this section, we are going to describe how we check the genericity condition and how we
compute a finite set of points, which will allow us to deduce the topology of C.

First, we check that there is no asymptotic direction parallel to the (y,z) -plane, by
testing if the curve C has a point at infinity in the plane x = 0. This is done by checking if
the system

i Py

L(0,,2) = 2-(0,,2) =0

INRIA



Topology of three-dimensional algebraic curves 11

has a non-trivial solution, where PT is the homogeneous component of highest degree of a
polynomial P and A = ged(P;", P, ). It reduces to computing the projective resultant of
these two homogeneous polynomials. Since the number of asymptotic directions of C is finite,
by a generic linear change of variables, we can avoid the cases where C has an asymptotic
direction parallel to the (y, z) plane.

Next, we compute the z-critical points of C by solving the system (1), using algorithm
2.7. This computation allows us to check that the system is zero-dimensional and that the
z-coordinates of the real solutions are distinct. If this is not the case, we perform a generic
change of coordinates.

The cases for which we have to do a change of coordinates are those where a component
of C is in a plane parallel to (y, z) or where a plane parallel to (y, z) is tangent to C in two
distinct points. Such cases are avoided by a generic change of coordinates.

We denote by £y = {09,...,0) } the z-coordinates of the z-critical points: ¢f < --- <
0
Ohy -
Next, we compute the singular points of C' as (a subset of) the real solutions of the

system
9(z,y) = 0,0:9(z,y) = 0,0,9(z,y) =0, (2)
and of C", as (a subset of) the real solutions of
h(z,z) =0,0.h(x,2) =0,0.h(x,z) =0. (3)
We denote by 3y = {o1,...,0, } the z-coordinates of these singular points: g < --- <
1
o -
1Let us denote by ¥ = 3y U Xy = {o1,...,01} (with o1 < --- < 07) the sequence of all
the z-coordinates computed so far.

An important property of the projected curves C' and C”, that will be used in the
algorithm, is the following:

Proposition 3.6 The arcs of the curve C' (resp. C") above |o;, 0,41 do not intersect.

Proof. By definition, the arcs of C' above o, 0,41 [ can only intersect at the z-critical points
of C'. Let ¢ be the z-coordinate of such a point. According to proposition 3.4, ¢ is either

e the z-coordinate of a z-critical point of C (€ X),
e or the z-coordinate of a singular point of C’' (€ y).
Thus, ¢ € ¥ and o €]o;,0i41[, which implies that the arcs of C' above |o;,0;41[ do not

intersect. The same proof applies for C”. O

3.5 Connecting the branches

The approach that we are going to describe now for the branch connection, can be seen as
an extension of the approach of [13], [11] to the three-dimensional case.

RR n° 5194



12 G. Gatellier €& A. Labrouzy & B. Mourrain & J.P. Técourt

The previous step yields a sequence of strictly increasing values
Y ={o1,...,01},

such that above ]o;,0;41], the branches of C are smooth and the arcs of C’, C” do not
intersect. We will use this property to connect the points of C above the values o;. Notice
that proposition 3.6 is still true if we refine the sequence o1, ...,0;. In particular, it is valid
if we consider the z-coordinates of the singular points of a curve, defined by a multiple of
the equation of C' (resp. C"). It is also valid, if we insert new values in between these critical
values: 6p < 01 < p1 < -+- < g7 < 61, where pu; := % fori=0,...,1—1, and 9,61 are
any value such that ]éy, 6;[ contains . We denote by

oy < - < O

this new refined sequence of values and by L;, the set of points on C above a;, fori =0, ..., m.
These points are computed, either

e by substituting z = a; and solving the 2-dimensional system P; (o, vy, 2) = 0, Pa(a;,y,2) =
0.

e or by computing the points of C’ above a; and by lifting them to C (algorithm 3.5).

This construction implies the following lemma, which is used in the next theorem, in order
to describe how the computed points have to be connected:

Lemma 3.7 Two distinct points of a regular section of C with the same y-coordinate (resp.
z-coordinate) are connected to two points of the mext section, with the same y-coordinate
(resp. z-coordinate) or to a critical point.

Proof. We denote by L the regular section at z = « of C and by L' the next section, at
z=4dad. Let p = (o,83,7) € L,q = (a,3,6) € L with v # §. They are connected by C
respectively to p' = (o, 3',7'),¢ = (o/,€',6') € L'. Assume that 3’ # €¢’. Then there are
two arcs of the projection C’, connecting («a, 3) to (o/,5’) and to (¢, €'), above [, @']. This
implies that there exists a point r € C’ with z(r) € [, '] belonging to 3 branches. Such
a point cannot be regular, in contradiction with the fact that C’ is smooth above [a, /.
Exchanging the role of y and z, we get the same property for the z-coordinates. O

Theorem 3.8 Under the genericity condition of definition 3.2, the curve C can connect the
points L; to the points L,y1, only in one way.

Proof. By construction, for any pair (a;,ait1), at least one of the two values is not in X.
Let us assume that a; ¢ ¥ and «,;41 € T (the treatment of the other possibilities being
symmetric). To simplify the notations, let L =L, C C and L' = L;141 CC.

By the genericity assumption, L’ contains at most one z-critical point ¢ of C. Since
a; ¢ ¥, each point in L is regular. Moreover, by construction, the arcs of C above Ja;, a1
have no z-critical point. Since there is no asymptotic direction of C in the (y, z)-direction,
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Topology of three-dimensional algebraic curves 13

by the implicit function theorem, a (regular) point p € L is connected by an arc of C, to a
point of I'. Conversely, each regular point of L’ is connected by an arc of C to a single point
of L, which implies that |L| > |L'|.

We are going to prove by induction on |L’| that there is a unique way to connect the
points of L to the points of L', if the arcs of the (z,y) and (z, z) projections of C do not
intersect above Ja,, aq1].

If |IL'| =1, the curve connects any point of L to the unique element of L'.

Let us assume that the induction hypothesis is true for the cases where |L'| < |Lit1].
Let ¢’ be the greatest point of L', for the lexicographic order with z > y > z and let V' be
the set of points of L’ which y-coordinate is y(¢'). Let s be the cardinal of V.

Assume first that ¢ € V’. This implies that the points of V' are regular. We denote by
V the set of s greatest points of L for the lexicographic order with x > y > z.

We denote by p the point of V' with the greatest y-coordinate among those with greatest
z-coordinate. We are going to proof that C has to connect p € L and ¢’ € L'.

Assume the converse, so that we have p € L connected to p' € L' and ¢ € L connected
to ¢’ € L', with p # q, p' # ¢'. We consider the following possible cases:

1. ¢ € V,p' € V'. Then we have z(p') < 2(¢') (since ¢’ is the greatest point of V' for the
lexicographic ordering). From lemma 3.7, we deduce that z(p) # z(¢) and as p has the
greatest z-coordinate of V', we have z(q) < z(p). This implies that the projection on
the (z, z)-plane of the arcs of C connecting p to p’ and ¢ to ¢’ intersect. It contradicts
the hypothesis that C" is smooth above Ja;, aiq1].

2. ¢ ¢ V,p' € V'. Since every (regular) point of V' is connected to a single point in L and
|V | = |V, there exists a point r of V' connected to a point ' € V'. By definition of V/,
we have y(r') < y(¢'), thus by lemma 3.7, we have y(r) # y(¢) and as the y-coordinate
of the points not in V are smaller that those in V', we have y(r) > y(q). This implies
that the projection on the (x,y)-plane of the arcs of C connecting r to r’ and ¢ to ¢’
intersect. This contradicts the hypothesis that C’ is smooth above Ja,, a;y1].

3. q € V,p' € V'. Then there exists a point r’ of V' connected to a point r ¢ V. By
definition of V', we have y(r') > y(p'), thus by lemma 3.7 we deduce y(r) # y(p). As
r &€ V and as the y-coordinate of the points not in V' are smaller that those in V', we
have y(r) < y(p). It leads to another contradiction, since C' is smooth above Ja;, atit1][.

4. q¢V,p' ¢ V'. Asp' ¢ V', we have y(p') < y(¢'), thus by lemma 3.7, y(p) # y(¢). As
q ¢ V and as the y-coordinate of the points not in V' are smaller that those in V', we
have y(q) < y(p).It leads to another contradiction, since C’ is smooth above Ja;, a;11].

In all these cases, we obtain a contradiction. Thus p and ¢’ have to be connected by an
arc of C, above [a;, @;41]. Removing these points respectively from L and L', we apply the
induction hypothesis to proof the result.

Suppose now that ¢ is in V' but not in the set W’ of points with the same y-coordinate
as the lowest point of L'. We apply the same proof, replacing greatest by smallest in the
previous constructions.
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The last case, which remains to be treated, is the case where L' = V' = W' is the set of
points with the same y-coordinate as the z-critical point ¢. We define p and ¢/, similarly, as
the points of L and L', with greatest z-coordinate.

If ¢’ # ¢, then p has to be connected to ¢'. Otherwise p € L is connected to p' € L' and
q € L connected to ¢’ € L', with p # ¢, p' # ¢’. Then we have 2(p’) < 2(¢’'). By lemma 3.7
we deduce z(p) # z(¢) and as p has the greatest z-coordinate: z(p) > z(q), which contradicts
the fact that C” is smooth above ]y, a;1[. Thus the curve C connects p to ¢'. Removing
these points respectively from L and L', we apply the induction hypothesis to conclude.

If ¢ = c and the point with the smallest z-coordinate in L’ is not ¢, we apply the same
construction, replacing greatest by smallest.

The remaining case is when |L’| = 1, which has already been treated. O

To summarize, the connection of the branches from one plane section of C to the next
one, is performed as follows:

Algorithm 3.9 — Connecting the branches.
If there is no x-critical point in L; and possibly a x-critical point ¢ of C in L;y1, do the
following:

1. Decompose L;y1 into the subsets V{,..., V) of the points with the same y-coordinate,
listed by increasing y. Let s; = |V]|.

2. Compute the index jo such that ¢ € VJ’0 Decompose L; into the subsets Vi,..., Vi in
the following way:

e For j > jo, V; is the set of s; greatest points for the lexicographic order with
x>y >z, among L; — Ujs,; V.

e For j < jo, V; is the set of s; smallest points for the lexicographic order, among
L; — UiV,

e V;, is the remaining set of points L; — U4, V1.

3. For j # jo connect the points of V; to the points of Vj’, according to there z-coordinates,
by segments.

4. For j = jo, let A’ (resp. B} ) be the set of regular points of V} , with z-coordinate
< z(c) (resp. > z(c)).
e Connect the |A | points of smallest z-coordinates in Vj, to the points in A’ ,
according to their z-coordinate, by segments.

e Connect the |Bj | points of greatest z-coordinates in Vi, to the points in B,
according to their z-coordinate, by segments.

e Connect the remaining points in Vj, to c, by segments.

If there is a x-critical point of C in L;, exchange the role of L; and L;y; in the previous
steps.
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Proposition 3.10 Assume that we are in a generic position. Then the topology of the curve
above the segment [, a;q1] s the same as the set of segments produced by the algorithm
3.9.

Proof. Since we are in a generic position, by theorem 3.8, the algorithm 3.9 produces the
only way the arcs of the curve C above [ay, a;41] connect the points of L; to the points of
L;y1. Since the algorithm only involves the coordinates of the end points, the projection
of these segments on the (z,y) and (z, z) planes either coincide or do not intersect above
Jai, aiy1[- Consequently, the curve C above [a;, ;1] is homeomorph to the set of segments
joining the corresponding end points. O

3.6 The algorithm

We summarize the complete algorithm below:

Algorithm 3.11 — Representation of the curve C defined by Py (z,y,2) = Pa(x,y,2) =
0.
Input: polynomials Py(x,y, 2), Pa(z,y, 2).

e Compute the z-critical points of C and their z-coordinates ¥ = {o?,...,0%} with
0 0
o < < o).

e Check the gemeric position; If the curve is not in a generic position, apply a random
change of variables and restart from the first step.

e Compute the square-free part g(x,y) of Res,(Py, P2).
e Compute the square-free part h(z, z) of Resy(P1, Ps).

e Compute the singular points of the curves g(x,y) = 0 and h(z,2z) = 0 and insert their
x-coordinate in 3.

o Compute the u;, 00,01 and the ordered sequence a; < --- < «ay. Above each «; for
1=1,...,1, compute the set of points L; on the curve C.

e For each i =0,...,1 —1, connect the points L; to those of Li11 by algorithm 3.9.

Output: the graph of 3D points connected by segments, with the same topology as the curve
C.

Remark 3.12 This algorithm can be easily adapted to the computation of the topology of C
in a box (resp. bounded domain), by considering the points on the border of the box (resp.
domain) as x-critical points.
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Remark 3.13 By a generic change of variables, the set of x-coordinates of the x-critical
points of C' will contain those of C and the resolution of the system (1) can be replaced by
the computation of the x-critical points of C' and by a lifting operation on C. This allows
us to treat unreduced curves, such that I(C) # (Py, Py), by using only the squarefree part of
G(z,y) and H(x,z). However the verification, a posteriori, of the correctness of the result
is more delicate.

4 Implementation and experiments

The previous algorithm has been implemented in the C++ library called AXEL® (Algebraic
Software-Components for gEometric modeLing), where classes for implicit curves and sur-
faces are available:

namespace implicit
{
template<class C, class R> curve2d<C,R=MPol<C> >;
template<class C, class R>
curve3d<C,R=shared_object<std::vector<MPol<C> > > >;
template<class C, class R> surface<C,R=MPol<C> >;

}

where C is the type of coeflicient and R is the internal representation used to store the object.
In the case of a planar curve curve2d, the default value is a bivariate polynomial MPo1<C>
from the synaps? library. For a 3D curve, the default value is a vector of multivariate
polynomials. For a 3D surface, the default value is a multivariate polynomial MPo1<C> from
the SYNAPS library.

Since the algorithm depends heavily on the algebraic solver used to recover the critical
points of C, we parameterize the implementation as

template <class M>
class Projection

{

template <class G, class Surface>
void topology(G & graph, const Surface & s0O, const Surface & sl);

template <class G, class Curve3d>
void topology(G & graph, const Curve3d & cO);

Shttp://www-sop.inria.fr/galaad/logiciels/axel/
4http ://wwu-sop.inria.fr/galaad/logiciels/synaps/
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where the parameter M is the type of method used to solve the 0-dimensional systems. The
class Projection represents the type of method that we used, to compute the topology of
the curve.

Our tests are based on solvers provided by the SYNAPS library, such as Newmac (see [20]).
Here is an illustration of the way it can be used:

typedef double coef;

MPol<coef> P=..., Q= ...;

vector<MPol<coef> > v; v.push_back(P); v.push_back(Q);
implicit::curve3d c(v);

affine: :point_graph<coef> g;

Projection<Newmac<coef> > Method;
Method. topology(g,c);

Other examples which are currently under test are:

Projection<Newmac<QQ> >().topology(g,c);
Projection<Sylvester<double> >().topology(g,c);
Projection<Subdivision<double> >() .topology(g,c);

Notice that the solutions given from equations (1) are computed numerically, and we have
to sort the lists of critical values to check the generic position of the curve and the points in
the lists L;. For this purpose, we introduce two thresholds €, and €, which are the precision
on the z-coordinate and the y-coordinate. We have €, > €, because the computation of the
y-coordinate has already noisy input (the z-coordinate with a precision €, ). Concretely, this
means that given a curve C we are able to compute correctly the topology, if two critical
points are separated at least by 2¢, on the z-coordinate, and two points on C with the same
z-coordinate are separated by €, at least.

In the cases where we are not able to distinguish within the precision €, €,, two strate-
gies can be applied. Either we use an exact method for representing the solution of the
corresponding polynomial system, assuming exact input. Or we consider input polynomial
with approximate coefficients and we identify the z-points which are within the prescribed
precision. This is what has been experimented.

We run a non-optimized implementation of the algorithm, on cases case where the resul-
tant does not define twice or more the projected curves. The solver that we use is the one of
Ph. Trébuchet [20], giving the biggest precision for the smallest €, €,, €, (about 1075), com-
pared with the resultant solvers. Further experiments are required to analyze the behavior
of such solvers and to compare them correctly, in the context of the topology computation
problem. The experimentations have been performed on a Pentium 2Ghz workstation.
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4.1 Examples of plane curves

The algorithm that we describe, can be easily specialized to the planar curves. Here are
some illustrations of it. The topology of the curve is represented by a graph of 2D points.
The time needed to compute this graph of points is given in seconds.

(a) (b) (c)

a) P=—y® 42" — 728 + 212%y% — 352%y> + 3523yt — 21224° 4+ T2y® — y7 + 84% — 725 + 352ty — 702342 +
70z2y® — 35zt + Ty® — 209* + 142® — 4222y + 422y% — 14y° + 169y — Tz + Ty — 2
time: 0.77s

b) P = 35.92542589.40%y% +46728z2y* +1296y° +21725 +15588z3y2 4+2.7994e+05xy* —2303.92* — 727742242 +
3.7066¢ + 05y* — 155832° — 5.5969¢ + 05zy> + 2604422 — 7.4529¢ + 05y + 2.7976e + 05z + 3.7333¢ + 05
time: 0.16s

c) P=—8y" —72%+42z%y — 105z y? + 1402°y> — 10522 y* + 42¢y5 — 7y® +48y° + 352* — 14023y + 2102%y% —

140zy> + 35y* — 80y> — 4222 4 84zy — 42y° + 32y + 7
time: 0.28s

4.2 Examples of 3D curves

Here are some experimentations on 3D curves defined by two polynomials, showing the set
of segments describing the topology of the curve and the time needed to compute them (in
seconds).
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~N

(c)

a) P =0.85934c” + 0.259387zy + 0.880419y> + 0.524937zz — 0.484008yz + 0.5102422> — 1

Q = 0.95309z2 + 0.303149zy + 0.510242y2% — 0.200075xz + 0.64647yz + 0.786669z2 — 1
time: 0.17s

b) P = —0.125z2 —0.0583493zy + 0.493569y2 + 0.966682zz — 1.5073yz — 0.36856922 — 0.865971z — 0.433067y —
0.2500952z
Q:z2+y2+2272
time: 0.15s

c) P:2z2+y2+z2—4
Q:z2+2zy+y2 —2yz—222+22z
time: 0.13s

d) P:w4+y4+2w2y2+2w2+2y27z7yfz

Q =2z +22%" +y* + 327y — 1 + 27
time: 1.21s
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