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Abstract: In this report we address a subtle but important limitation found in the literature
for Estimation of Distribution Algorithms (EDAs): symmetric initializations of the EDAs
around the optimal solution. We focus our study on the performance of certain EDAs
(EMNAgobat and PBILc) that are asymmetrically initialized far from the optimum. We
show and explain the failure of these EDAs under these conditions. These observations
lead us to develop a new EDA based on an eigenspace analysis, which we denote by EEDA
(Eigenspace EDA). We conclude by analyzing this new EDA and by showing its strengths
when compared with EMNAgioha1 and PBILc when the optimal solution is unknown.
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EEDA: un algorithme d’estimation de distribution
robuste.

Résumé : Une faiblesse importante passée inapercue de certains algorithmes d’estimation
de distributions (EDAs) est leur fragilité par rapport a Uinitialisation de la premiére distri-
bution, souvent choisie symétrique et centrée sur la solution cherchée. Nous montrons que
lorsque ’on initialise par exemple les algorithmes EMNAgigha1 €t PBILc loin de la solution
et de maniére asymétrique, les performances de ’algorithme chutent. Aprés une analyse
des raisons des ces échecs, nous proposons EEDA, une variante de EMNAgiopa1 basée sur
I’analyse des valeurs propres de la matrice de covariance. Enfin, nous montrons expérimen-
talement que cet algorithme est effectivement plus performant que EMNA4opa et PBILG
dans le cas d’initialisation asymétrique non centré, tout en restant équivalent dans le cas
symeétrique.

Mots-clés : Optimisation, Evolution Artificielle, Distributions
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1 Introduction

The class of algorithms referred to as Estimation of Distribution Algorithms (EDAs) was
developed from standard evolutionary algorithms, the difference being that a distribution on
the space of solutions is evolved as opposed to an actual population of solutions. The focus
of this report is strictly limited to EDAs, specifically a subtle limitation that is prevalent
in the literature concerning the initialization of these algorithms. We will specifically be
analyzing EDAs applied to optimizing functions of the type f : R" — R; these functions
will be referred to as fitness functions.

Though the study of EDAs is relatively new, there already exists a plethora of different
types of EDAs. We shall limit ourselves to mention only the types of EDAs specifically
utilized in this report. Binary and continuous versions of Population-Based Incremental
Learning (PBIL) EDAs have been designed and analyzed by Baluja [1] and Sebag and
Ducoulombier [3], respectively. However, the PBIL algorithms do not include any dependen-
cies between variables since the underlying distribution structure is the product of univariate
Gaussian distributions. The Estimation of Multivariate Normal Algorithm (EMNA) class of
EDAs, presented by Larrafiaga and Lozano [2], utilizes a multivariate Gaussian distribution
structure which specifically allows the exploitation of inter-dependencies between variables.
To present a concise study, we have chosen two representative EDAs from these two classes:
continuous PBIL (PBIL¢) and a standard EMNA EDA (EMNAgjobal)-

We have chosen the variant of PBIL¢ which performed the best, according to the results
in [3]. As previously mentioned, the underlying structure of PBIL¢ is a multivariate normal
distribution which is the product of n (the dimension of the problem) independent univariate
normal distributions. In other words, PBIL¢ evolves the distribution [T}, fi(x;), where
fi(x;) are gaussian densities (of varying parameters) and © = (x1,...,2,) is the vector
optimization variable. At each iteration k, the mean and standard deviation of each of the
univariate distributions are updated in the following ways, where p and o are the vectors of
means and standard deviations, respectively:

,uk+1 = (1 - O‘)N’k + O‘(/“ngest + ,ulgnd best — ,ufvorst)v
where uf o 15 4 best and uk o are the values of the best, second best and worst indi-
viduals (with respect to the fitness function) at iteration k. The update rule for each of the
standard deviations o;, i =1,...,n is

>0 (] — fu)?
K )

where i/, j =1,..., K are the K best individuals (with respect to the fitness function)
and /i is their mean. For the remainder of this report, K is chosen to be half of the population
size. For both update rules, the a parameter is referred to as the learning rate.

As for the EMNA class of EDAs, we have chosen the simplest, EMNA,oba1, Which also
has good practical performance, as presented in [2]. The pseudo-code of this EDA is as
follows:

ol =(1-a)f +a

RR n° 5190



4 Wagner, Auger, and Schoenauer

1. At generation 0, we are given a multivariate Gaussian distribution of mean p" and
covariance matrix ¥.°. Generate a population of N individuals.

2. For k>0,

(a) At generation k + 1, select the best M < N individuals (with respect to fitness
function) from generation k’s population.

(b) Form a new multivariate Gaussian distribution using the calculated mean p*+!
and covariance matrix Y¥! of the M selected individuals.

(¢) Generate a new population of N individuals.

The rest of this report is organized as follows: in Section 2 we discuss important limi-
tations found in the literature; in Section 3 we show that these limitations cause the previ-
ously mentioned EDAs to fail; in Section 4 we develop our new EDA, EEDA; in Section 5
we present a rigorous computational comparison of EMNAg|gha1, PBILg and EEDA, show-
ing the strengths of the latter; in Section 6 we present computational studies of EEDA’s
behavior as certain parameters are varied and we conclude in Section 7.

2 Subtle Limitations

We have found that the EDA literature contains computational studies that lack a complete
description. In particular, the references cited in this report do not detail the initial distri-
butions used in their computational studies. In our own studies, these EDAs succeeded only
when the initial distributions were initialized symmetrically around the optimal solution.
For example, if the optimal solution were at the zero vector, a possible symmetric initial
distribution would be a uniform distribution over the unit ball (of appropriate dimension),
centered at the zero vector. We have intentionally skewed our initial distribution to preclude
this simplification: for the example of the zero vector being optimal, we would initialize on
a unit ball centered at a point far from the origin. It will be seen that asymmetrical initial-
izations cause well known EDAs to fail.

Another (less serious) limitation we have noticed is that the majority of the test functions
in the EDA literature have the zero vector as the optimum. At times, it can be unclear
whether the EDA in question actually solved the optimization problem or only just converged
to the zero vector (leading to a false positive run). To eliminate this possibility, we have
modified common test functions such that the solution is now at a nonzero value. The
functions that we shall employ in our computational studies are:

INRIA
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100
filz) = 7 , where y; = (z; — 1+ 1) +y;—1 (Y1 = 21
(z) 0555 Tyl ( ) ( )

n

fQ(JJ) = Z(l’l — 1+ 1)2

i=1

f3(z) = 1+;($i—2+1)2_HCOS($Z_7\/%).

We maximize fi(r) and minimize fy(z) and f3(z). The optimum of all three of the
above functions occurs at z* = (0,1,...,n — 1). The optimal values of these functions are
fi(a*) =107, fo(a*) =0 and f3(z*) = 0.

We address these issues due to the fact that in practice, these assumptions and simpli-
fications would not hold in general. The main motivation of this report is that we wish to
get a realistic view of the performance of EDAs and avoid false hope.

3 The Failure of EMNAoha1 and PBILc

We have tested two EDAs, EMNAopa1 and PBIL¢ (detailed in Section 1), under the gen-
eralizations we have mentioned. While the nonzero optimal solution didn’t appear to affect
the convergence, the asymmetrical initialization resulted in a premature convergence to a
non-optimal value. Under a slight perturbation of the initialization, EMNAopa failed.
While more robust, PBIL¢ also failed under a more pronounced shift in the initial distribu-
tion. Please see the appendix for the validation of our implementations of EMNA 4,1, and
PBILc.

We first examine EMNAjopa1. We borrow from [2| the parameters that resulted in
success and modified the initial distribution. The parameters that were not changed are
the dimension n = 10, population size N = 2000, sample size M = 1000, and untranslated
versions of functions fi(z), f2(z), and f3(x) (where the optimum occurs at the zero vector),
which we denote by f1(z), fo(z), and f (z). We introduced an asymmetrical initialization
by choosing u® = (2,...,2) and X° = I, the identity matrix. The termination criteria was
set to 76,000 function evaluations. We present the median and standard deviation of the
final value of the fitness function in an ordered pair format (median, standard deviation),
which are calculated from 20 runs. Please see Table 1.

n =10 J1() fa(z) f3(x)
EMNA iova | (1412, 0.0236) | (15.966, 0.330) | (17.003, 0.662)

Table 1: Performance analysis for EMNAg|opa1 under an asymmetrical initialization, demon-
strating failure.

RR n° 5190



6 Wagner, Auger, and Schoenauer

We notice that the results for EMNAgjopha are not optimal. While some might argue
that longer runs (with respect to a larger number of evaluations allowed) might result in
a optimal solution, any prolongation of the studies resulted in numerical errors due to
the covariance matrix approaching the zero matrix. Furthermore, the relative magnitudes
of the termination value of the fitness function compared with the termination standard
deviation of these values provide evidence that the optimal solution will not be reached.
One reason for the premature convergence of EMNA,qq is that it was simply not close
enough to converge: if EMNAgjopha1 starts sufficiently far away from the solution, each step
toward the solution results in a distribution with less variance (since the distributions at
each iteration are formed from a finite sample); information is lost at each iteration. This
EDA simply exhausts its information (i.e., the covariance matrix prematurely converges to
the zero matrix) and further progress is impossible.

We next consider a similar perturbation to PBILc and show that it also fails. We
now borrow from [3] the parameters that resulted in success and again modify the initial
distribution. We retained the dimension n = 100, population size N = 50, sample size
K = 25, and learning rate = 0.01. We introduced a modified initial distribution with
mean p° = (25,...,25) and standard deviations ¢ = 1, Vi. To be absolutely sure of
the failure of PBILg and eliminate the possibility that we did not let the algorithm run
for a sufficiently long time, we have extended the termination criteria to 1,000,000 function
evaluations. Again, we present the median and standard deviation in an ordered pair format
(median, standard deviation), which are calculated from 5 runs. We also present comparable
results, retaining the majority of the above parameters and only changing the learning rate
to a = 0.1. For this case, we lower the termination criteria to 200,000 evaluations and
present the statistics for 5 runs. Please see Table 2.

n = 100 fi(z) fa(z) f3(z)
PBILc (= 0.01) | (0.0043, 0.0001) | (4464.17, 133.812) | (4456.09, 44.527)
PBIL¢ (e =0.1) (0.004, 0.0003) | (5920.41, 185.933) | (5812.23, 369.000)

Table 2: Performance analysis for PBIL¢ under an asymmetrical initialization, demonstrat-
ing failure.

We see that PBIL¢ also failed to converge to optimality under similar, but more extreme,
initial conditions to those that we used in initializing EMNAgioha. Given the very liberal
termination condition, there is no doubt that PBIL¢ has failed. The differences in magnitude
between the final fitness function value and the corresponding standard deviations are further
evidence that success is not possible under these initial conditions. We do note that PBILg
is more robust than EMNAgopa1 — given the initial conditions that caused EMNAopal to
fail, PBIL¢ easily converged to the optimal solution. A plausible reason for this greater
robustness is that the update rules for PBIL¢ contain memory; while the new sample might
have little variety, the overall variance is maintained from the previous generation. The small
value of the learning rate o = 0.01 further adds to the robustness. However, the learning
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rate only delayed the premature convergence to a non-optimal solution; while varying «, the
critical parameters of the initial distribution for failure remained the same; c.f. Table 2.

A simple statement useful for understanding these failures is the following: If the initial
distribution is centered more than a few standard deviations from the optimal solution (the
number of standard deviations varying by EDA), failure will occur. There is no mechanism
for boosting variance. We do note, that for both EMNAopa1 and PBILc, if we initialize with
a distribution that has a sufficiently large variance component, these EDAs will successfully
converge. We shall provide some computational results concerning unequal initializations in
our comparative study in Section 5. In practice the issue also arises concerning the question
of what is a sufficient quantity of variance with which to initialize the EDA. In the sequel,
we will see that our new EDA will not be encumbered by any such deliberations.

4 The Eigenspace EDA: EEDA

As was previously mentioned, EMNA o1 will converge prematurely if initialized with an
asymmetrical distribution with respect to the optimum. However, at a given iteration there
is information that can be exploited. The nature of this information is best explained with
an example and its corresponding illustration, Figure 1.

Suppose we want to minimize the standard sphere function fg(x) in two dimensions.
Consider a multivariate normal distribution centered far from the optimal solution; in Figure
1, the optimum is at (0,0) and we consider a normal distribution centered at (2,2) with the
identity matrix as its covariance matrix. We create a population from this distribution (the
white and black circles in the figure) and select the sample of the best individuals with
respect to the sphere fitness function (the black circles). We notice that the shape of this
sample is skewed; it is this information that we will exploit. Note the level set curve as well
as its linear approximation in the figure. Further note that the sample is elongated along
the linear approximation of the level set curve. As we do not want to trace the level set
and we would rather descend against it, the direction in the sample where there is the least
variance corresponds to the direction perpendicular to the level set — a descent direction of
cost decrease, which in this case is the negative of the gradient of the fitness function.

While the preceding example was a simplified two dimensional abstraction, the idea is
useful in arbitrary dimension. In dimension n, we again attain a sample which we expect to
be skewed in the sense that there is little variance in a direction of cost decrease. A simple
way to find a finite set of candidate directions with which to choose a descent direction is
to calculate an eigenvalue decomposition of the covariance matrix of the sample of the best
M individuals. Then, we simply choose the eigenvector with the smallest eigenvalue; among
the eigenvector directions, the eigenvector with the smallest eigenvalue will correspond to
the direction in the sample having the least variance. We choose this eigenvector as our
descent direction.

In the general setting, this direction might not correspond to the negative gradient as
our simple example did; the direction that we will use will in general be different than the
negative of the gradient. Simple computational studies have confirmed this statement. We

RR n° 5190
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Level st curve

Optimum = (0.0)

Figure 1: A 2-dimensional illustration of the central idea behind EEDA.

have examined EEDA in dimensions n = 2 and n = 10, starting from p° = (100, ...,100)
and X° = I. We present the median, mean and the standard deviation of the angle between
these two directions; these statistics are taken from 20 runs, each of which consisted of 10,000
function evaluations. We calculate the angle between these vectors using the definition of
the Euclidean inner product: z -y = ||z||||ly|| cosf, where 6 is the angle between vectors x
and y. Please see Table 3.

n=2 | n=10

median 8.375 | 81.308
mean 11.858 | 82.126
standard deviation | 12.048 | 26.345

Table 3: Statistics for the angle between the eigenspace extension direction and the true
gradient.

We note that the underlying principle of our development is that we only need to find a

direction of cost decrease; finding the exact gradient would usually be too costly or impos-
sible.

4.1 Modifying EMNA,joba1 to create EEDA

Once we have found the eigenvector with the minimum eigenvalue, we exploit this informa-
tion by modifying EMNAjoha in order to create the Eigenspace EDA (EEDA). We retain
the majority of the structure of EMNAjha but modify it in the following way: At each

INRIA
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iteration, we redefine the sample covariance matrix by eztending the original ma-
trix in the direction of the eigenvector corresponding to the smallest eigenvalue.
Specifically, in the eigenvalue decomposition, we reset the minimum eigenvalue
to the value of the maximum eigenvalue. The final description of EEDA is presented
in the following pseudo-code:

1. At generation 0, we are given a multivariate Gaussian distribution of mean p° and
covariance vector Y. Generate a population of N individuals.

2. For k£ > 0,

(a) At generation k + 1, select the best M < N individuals (with respect to fitness
function) from generation k’s population.

(b) Calculate the mean p**! and covariance matrix X¥! of the M selected individ-
uals.

(c) Calculate an eigenvalue decomposition of the covariance matrix: Y¢! =
VAVT,

(d) Perform an extension as defined above: ¥**! = VAVT+(\ 00— Amin ) UminvL ., -

(e) Generate a new population of N individuals.

We call the new steps an eigenspace extension and the algorithm the Eigenspace EDA
(EEDA). Also, by resetting the minimum eigenvalue to the value of the maximum eigenvalue,
we still have a framework for convergence.

5 A Comparative Study

We now present an computational comparative study of EEDA, PBILc, and EMNAg ha1.
We define our termination condition as 10,000 function evaluations. For each EDA and
set of parameters, we have the data for 20 independent runs. We present the median value
of the fitness function over the 20 runs at the termination of the computation as well as
the corresponding standard deviation in the form of an ordered pair: (median, standard
deviation). We choose the population size N = 40' and sample sizes K = M = 20. We set
the dimension n = 10. The initial covariance matrix £° for EEDA and EMNAjobar is the
identity matrix I and PBIL¢’s initial distributions have unit variance. PBIL¢’s learning
rate « is fixed at 0.1. We vary the fitness function as well as the initial mean ;°. Please see
Tables 4 and 5; the best results are in bold.

An F superscript denotes results contaminated by numerical problems; these prob-
lems occurred exclusively for EMNAgj,ha1. The reason for these numerical errors is that

1Some might argue that EMNAgiobal requires a larger population to function properly. However, this
objection is moot, as we have already shown the failure of EMNAj5pa1 with a large population under less
extreme initial conditions; c.f. the section entitled “The Failure of EMNA 45,1 and PBILc.”

RR n° 5190



10

Wagner, Auger, and Schoenauer

p” = (10,...,10) fi(z) fo(x) fs(x)
EEDA (86.396, 110.038) | (1.830e-26, 3.364e-23) (0, 0)
PBILc (244.984, 56.846) (0.0001, 7.546¢-05) (0.0002, 9.009¢-05)

EMNA 10bal (0.295, 0.006)7 (314.036, 128.201) (285.014, 159.722)

Table 4: Performance analysis for EEDA, PBILc and EMNAgjqp,a1 in dimension 10 under a
slight asymmetrical initialization.

10 = (100, ..., 100)

fi(z)

f2(2)

f3(x)

EEDA (6.653, 4.437) | (1.226e-19, 5.188e-17) | (0, 2.419e-17)
PBILG (0.024, 0.0003) (53357.7, 1292.2) (52358.6, 1096.5)
EMNA ;iobal (0.018, 3.275e-05) (89938.4, 44902.8) (0, 45041.778)F

Table 5: Performance analysis for EEDA, PBILc and EMNAighe1 in dimension 10 under a
pronounced asymmetrical initialization.

EMNAgobhat’s covariance matrix prematurely converged to zero, and the subsequent itera-
tions encountered errors. These errors are insignificant since they only resulted after the
EDA converged to a non-optimal solution.

We now explore the dependence on dimension, by repeating the above experiment with
a few minor changes: we enlarge the termination criteria to 50, 000 function evaluations and
enlarge the dimension to n = 30. We also enlarge the population size to N = 80 and sample
sizes to K = M = 40. All other parameters remain the same. Please see Tables 6 and 7;
again, the best results are in bold.

1’ = (10,...,10) fi(z) fa(z) f3(z)
EEDA (4.005, 1.186) (0.00055, 0.0016) (0.0012, 0.0020)
PBILG (31.503, 8.014) | (3.014e-05, 6.114e-06) | (3.521e-05, 6.745e-06)
EMNA giobal (0.075, 0.0003)" (2669.13, 26.016)" (2628.7, 19.05)7

Table 6: Performance analysis for EEDA, PBILc and EMNAgjqpa1 in dimension 30 under a
slight asymmetrical initialization.

5.1 Analysis of the computational results

We begin by analyzing the results for dimension 10. Even when the initial distribution is
centered at nearly the optimal solution (uo = (10,...,10)), EEDA performed well, being
outperformed only by PBIL¢ on f;(z). On the other two functions, EEDA greatly outper-
formed the other two EDAs. While the optimal solution was attained (within a numerical

INRIA
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1° = (100, .. .,100) fi(x) fa(z) f3(x)
EEDA (0.331, 0.152) (0.212, 0.804) (0.203, 0.370)
PBILc (0.004, 6.948¢-05) | (77039.7, 2919.8) | (77266.6, 2317.107)
EMNA 10ba1 (0.0023, 1.556e-06)7 | (219900, 263.043)7 | (219828, 269.352)"

Table 7: Performance analysis for EEDA, PBILc and EMNAgqp,,1 in dimension 30 under a
pronounced asymmetrical initialization.

error) by both EEDA and PBIL¢ on f2(z) and f5(z), these algorithms failed to attain the
optimal solution for f;(x). The reason for this is simply the cutoff of 10,000 evaluations;
given a larger cutoff criteria, under these current conditions, both algorithms eventually con-
verged to the optimal solution (PBILc more quickly than EEDA). We note that EMNAgiopal
failed under all three functions; this is also the case if we enlarge the cutoff criteria. With
even a slight disturbance from a symmetrical initialization, EMNAgioba1 fails.

Under the more extreme initialization of py = (100,...,100), we see that EEDA clearly
outperforms each of the other two EDAs for each function. Both EMNA,jopa1 and PBIL¢
failed under these conditions, even if more evaluations were allowed. We clearly see the
benefit of EEDA in these cases.

We now examine the results in dimension 30. When the initial distribution is relatively
close to the optimal solution (o = (10,...,10)), EEDA is only slightly outperformed by
PBIL for all three functions; this shows that EEDA does not need to be initialized far from
the optimum to be effective. Again, under this slight disturbance, EMNAgopa fails.

Once we consider a more skewed initialization, we again see that EEDA greatly outper-
forms the other two EDAs on all test functions. Once again, the other two EDAs converged
to a non optimal solution. We note that even EEDA is not undeniably at the optimal solu-
tions; this is only due to the number of evaluations cutoff, which if increased, allows EEDA
to get within more significant digits of the optimal solution.

We conclude this section with two plots of the rates of convergence of the medians of the
three EDAs, corresponding to function fa(z), in dimension n = 10, with u° = (10,...,10).
Figure 2 details the study we have just completed, where the initializations are identical for
each EDA. In Figure 3, we attempt to present a more equitable comparison, by differing the
initializations for EMNAgjoha1 and PBILc in their favor. For EMNA,opal, We enlarge the
population size to N = 2000, sample size to M = 1000 and initial covariance matrix to 3° =
1001. Under these conditions, EMNAgoha is in fact successful, converging to the optimal
solution. For PBILc, we only enlarge the initial standard deviations to o) = 10, Vi, to
correspond with the initialization of EMNA 4 ha1. We note that while PBILq was successful
in both cases, the change in the initial standard deviations didn’t affect the convergence
rate very much; in fact, the rate slightly decreased, supporting the claim that a larger initial
variance will delay convergence. The reasons we have modified the initializations as we have
are as follows: (1) EMNA,obar is tested in the literature for large population sizes and was
likely designed with these sizes in mind; for this reason, we have enlarged its population

RR n° 5190



12 Wagner, Auger, and Schoenauer

size; (2) initializations of both EMNAgiopa and PBIL¢ in the literature are vague and
sometimes only mention “uniform initializations;” thus a large initial variance component
will produce a population covering a larger portion of the search space (approximating the
“uniform initialization”) and, under the current conditions, would produce some individuals
near the optimal solution with high probability. We stress that EEDA remained initialized
with X0 = I. The point to note is that even by giving EMNAjoba1 and PBILc much more
initial variance (and larger populations in the case of EMNAgiopa1), EEDA still outperformed
them.

1010

10°

10°- TN

10°

fitness

10—10

10%

10-20

10-25

1000 3000 5000 7000 9000

function evaluations

Figure 2: Evolution of convergence rates of EEDA, PBILc and EMNAgoba1 under identical
initializations.

6 A Study of EEDA

We now solely study the behavior of EEDA with respect to the size of the underlying
populations as well as the degree of skewness of the initial distribution.

6.1 Population size

We begin this section with a study concentrating on the behavior of EEDA with respect to
the population size. We consider the following situation: dimension n = 10, termination
cutoff of 100,000 function evaluations on each of 20 runs, an initial mean p° = (100, .. .,100),
and an initial covariance matrix X° = I. We vary the population size, considering N €
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Figure 3: Evolution of convergence rates of EEDA, PBILc and EMNAigha1 under different
initializations, giving both PBILc and EMNAgighar larger initial variances and EMNAgiobal
a larger population.

{40,400, 4000}. The sample size M is fixed at one half of the population size, in accordance
with preceding tests. Please see Table 8 for medians and standard deviations.

(N = 40, M = 20) (36.230, 5949.895) (0, 5.242¢-34) (0, 0)
(N = 400, M = 200) (1.772, 1.053) (1.856¢-23, 1.808¢-22) (0, 0)
(N = 4000, M = 2000) | (0.0207, 5.326e-05) (76143.3, 343.002) (76080.8, 295.580)

Table 8: Performance analysis for EEDA in dimension 10 as a function of underlying popu-
lation size.

We now examine the results of the computational study on the behavior of EEDA as a
function of the underlying population size. We first note that EEDA requires a relatively
small population to function properly. Also, the smaller populations resulted in better
performance. In theory, we only need the sample of this population to provide us with a
reasonable estimate of the level set of the fitness function.

RR n° 5190



14 Wagner, Auger, and Schoenauer

6.2 Initial distribution

We now present a study of the performance of EEDA as the initial distribution is varied.
We concentrate on the skewness of the initial distribution; i.e., we vary the degree of the
asymmetry of the initial mean. We retain the initial identity covariance matrix X% = I and
vary the initial mean p° = (10™,...,10™), where m € {1,2,3,4,5,6}. We conduct this
study in dimension n = 10 with a termination condition of 20,000 function evaluations in
each of 20 runs. Please see Table 9 for medians and standard deviations.

EEDA fi(z) f2(z) fs(x)
u® = (101,...,10%) | (484.303, 2426.322) | (2.031e-198, 3.722e-33) | (0, 0)
u® = (10%...,10%) | (38.877, 80.535) (3.146e-143, 5.079¢-33) | (0, 0)
ud = (10%,...,10%) (3.407, 6.774) (8.832e-115, 1.750e-33) | (0, 0)
u® = (10%,...,10%) (0.313, 0.854) (3.80919e-72, 1.106e-32) | (0, 0)
u® = (10°,...,105) (0.036, 0.085) (8.8553e-31, 8.012e-29) | (0, 0)
u® = (10°,...,10°) (0.002, 0.002) (3.63196e-25, 3.138¢-19) | (0, 0)

Table 9: Performance analysis for EEDA in dimension 10 as a function of the degree of
asymmetry of the initial distribution.

We conclude by analyzing the behavior of EEDA as a function of the initial distribution.
On functions fo(z) and f3(z), EEDA performs excellently, even for an extremely skewed
initial distribution. We do note that EEDA does not maintain the same quality of solution
on fi(x). A plausible reason for this is the following: Populations far from the optimal
solution of fi(x) do not contain much useful information as f1(x)’s level sets are very flat
far from the optimal solution; EEDA has a difficult time approximating the level sets.

7 Conclusion

In this report we have addressed a serious limitation that we have found in the literature
concerning the initialization of EDAs. While some might consider this issue trivial, as it
is not even detailed in the papers we have referenced, it is in fact quite important. By
varying the initial distribution of EMNA,i4,a and PBILc, we demonstrate their failure as
they converged to non-optimal solutions.

Using observations from the failures of the previous EDAs, we have designed a new
EDA which we have denoted the Eigenspace EDA (EEDA). We have compared EEDA with
the previously mentioned EDAs and have shown that its performance, with respect to the
other EDAs, improves as the skewness of the initialization increases. We concluded our
computational studies by solely analyzing EEDA as a function of various parameters.

The main strength of this new method is twofold: (1) We exploit information at each
iteration in order to find a direction in which to proceed and (2) we have an inherent
mechanism for boosting the variance of the underlying distribution if there is still a distance
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to proceed to the optimal solution. These two properties make EEDA quite robust in its
performance. In particular, it succeeds in finding the optimal solution under conditions
where the other EDAs we examined failed. A possibility for further research would be to
investigate more sophisticated algorithms that aim to improve EEDA’s basic strengths.
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A Appendix: Validation of the EDA implementation

In this appendix, we validate our implementations of EMNA,ioba1 and PBILc.

The published computational results for EMNAoba1 do not detail completely the initial-
ization of the algorithm. Particularly, the initial distribution is not explicitly characterized.
While keeping everything else constant, we have initialized EMNAgjopa with p® = 0 and
.9 = 1001, which possibly matches the “random generation procedure based on a uniform
distribution” referred to in [2]. Under this initial distribution, we achieve results closely
matching published results. Lastly, we note that we have omitted the function f3(x) since
the published results utilized a variant that we did not use. The parameters that were pre-
sented in [2| were kept the same to validate our implementation of EMNAjopa1: dimension
n = 10, population size N = 2000, sample size M = 1000, approximately 192,000 func-
tion evaluations for f;(z) and approximately 95,000 for fo(x) in each of 10 runs. Here, we
compare means to accommodate the published results.

Next, we validate PBIL¢c. Since the authors of [3] do not investigate the performance
of fo(x), we can only validate this EDA on f(z) and fs(z). Once again, it is unclear

RR n° 5190



16 Wagner, Auger, and Schoenauer

which initial parameters are used. Using initial standard deviations of 3 (and zero mean),
we attained results which again closely match published results. We matched the details
presented in [3]: dimension n = 100, population size N = 50, sample size K = 25 and
200, 000 function evaluations for both f;(z) and f3(z) in each of 20 runs. Again, we compare
means to accommodate the published results.

We present our results as well as the published results for comparison, in the form “mean
=+ standard deviation”. Please see Table 10.

Published Current
EMNAglobal on f1(x) 9999910 + 10.3 9927294 4+ 13115.4
EMNA joha1 00 fo(x) | 7.335e-06+ 2.24e-06 | 2.111e-07 £ 3.651e-08
PBILc on fi(z) 4.65 £+ 0.49 4.632 £+ 0.483
PBIL¢ on f3(x) 11e-06+ 1e-06 0.021 £ 0.0013

Table 10: Validation of the current implementations of PBILc and EMNAgpai.

The discrepancy in the validation of PBILc on fg(x) is likely due to a difference in
initialization; f3(x) seems to be more sensitive to the initial distribution than f;(z), which
matches the published results closely.

INRIA



/<

Unité de recherche INRIA Futurs
Parc Club Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopdle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lés-Nancy Cedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhone-Alpes : 655, avenue de I’Europe - 38334 Montbonnot Saint-Ismier (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)
Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)
http:/ /www.inria.fr

ISSN 0249-6399



