
HAL Id: inria-00071216
https://inria.hal.science/inria-00071216

Submitted on 23 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Managing Data Persistence in Network Enabled Servers
Eddy Caron, Bruno Delfabbro, Frédéric Desprez, Emmanuel Jeannot,

Jean-Marc Nicod

To cite this version:
Eddy Caron, Bruno Delfabbro, Frédéric Desprez, Emmanuel Jeannot, Jean-Marc Nicod. Managing
Data Persistence in Network Enabled Servers. [Research Report] RR-5725, INRIA. 2005. �inria-
00071216�

https://inria.hal.science/inria-00071216
https://hal.archives-ouvertes.fr

IS
S

N
 0

24
9-

63
99

 IS
R

N
 IN

R
IA

/R
R

--
57

25
--

F
R

+
E

N
G

appor t

de r ech er ch e

Thème NUM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Managing Data Persistence in Network Enabled
Servers

Eddy Caron — Bruno DelFabbro — Frédéric Desprez — Emmanuel Jeannot — Jean-Marc

Nicod

N° 5725

Octobre 2005

Unité de recherche INRIA Rhône-Alpes
655, avenue de l’Europe, 38334 Montbonnot Saint Ismier (France)

Téléphone : +33 4 76 61 52 00 — T élécopie +33 4 76 61 52 52

Managing Data Persistence in Network Enabled

Servers ∗

Eddy Caron , Bruno DelFabbro , Frédéric Desprez , Emmanuel Jeannot ,

Jean-Marc Nicod

Thème NUM — Systèmes numériques
Projet ALGORILLE and GRAAL

Rapport de recherche n 5725 — Octobre 2005 — 35 pages

Abstract: The GridRPC model [17] is an emerging standard promoted by the
Global Grid Forum (GGF)† that defines how to perform remote client-server com-
putations on a distributed architecture. In this model data are sent back to the
client at the end of every computation. This implies unnecessary communications
when computed data are needed by an other server in further computations. Since,
communication time is sometimes the dominant cost of remote computations, this
cost has to be lowered. Several tools instantiate the GridRPC model such as Net-
Solve developed at the University of Tennessee, Knoxville, USA, Ninf developped at
the University of Tokyo, Japan and DIET developed at LIP laboratory, ENS Lyon,
France. They are usually called Network Enabled Servers (NES). In this paper, we
present a discussion of the data management solutions chosen for two NES (NetSolve
and DIET) as well as experimental results.

Key-words: Data peristence, Distributed computing, Network Enabled Servers.

This text is also available as a research report of the Laboratoire de l’Informatique du Par-
allélisme http://www.ens-lyon.fr/LIP.

∗ This work was supported in part by the ACI GRID (ASP) and the RNTL (GASP) from the
French ministry of research.

† http://www.ggf.org

http://www.ggf.org

Gestion des données persistantes pour les serveurs de

calculs distants

Résumé : Le modèle GridRPC [17] est un standard émergeant supporté par le
Global Grid Forum (GGF)‡ et définissant la façon de réaliser des calculs de type
client-serveurs sur une architecture distribuée. Dans ce modèle les données sont
renvoyées au client à la fin de chaque calcul. Cela entrâıne des communications
inutiles lorsque les données calculées sont requises par un autre serveur pour les
calculs suivants. De plus, le temps de communication est parfois le coût principal
d’un calcul distant, ce coût doit donc être diminué. Plusieurs outils ont implémenté
le modèle GridRPC tels que NetSolve à l’Université du Tennessee (Knoxville, USA),
Ninf à l’Université de Tokyo (Japon) et DIET développé au laboratoire du LIP
(ENS Lyon, France). Ils sont généralement appelés NES (pour Network Enabled
Servers). Dans ce papier, nous discuterons des solutions choisies par deux de ces
NES (NetSolve et DIET) pour la gestion des données. Cette discussion sera illustrée
de résultats expérimentaux.

Mots-clés : Persistance de données, Calcul distribué, Serveurs de calcul

‡ http://www.ggf.org

http://www.ggf.org

Managing Data Persistence in Network Enabled Servers 3

1 Introduction

Due to the progress in networking, computing intensive problems from several areas
can now be solved using network scientific computing. In the same way that the
World Wide Web has changed the way that we think about information, we can
easily imagine the kind of applications we might construct if we had instantaneous
access to a supercomputer from our desktop. The GridRPC approach [20] is a
good candidate to build Problem Solving Environments on computational Grid. It
defines an API and a model to perform remote computation on servers. In such
a paradigm, a client can submit a request for solving a problem to an agent that
chooses the best server amongst a set of candidates. The choice is made from static
and dynamic information about software and hardware resources. Request can be
then processed by sequential or parallel servers. This paradigm is close to the RPC
(Remote Procedure Call) model. The GridRPC API is the Grid form of the classical
Unix RPC approach. They are commonly called Network Enabled Server (NES)
environments [16].

Several tools exist that provide this functionality like NetSolve [7], Ninf [13],
DIET [4], NEOS [18], or RCS [1]. However, none of them do implement a general
approach for data persistence and data redistribution between servers. This means
that once a server has finished its computation, output data are immediately sent
back to the client and input data are destroyed. Hence, if one of these data is needed
for another computation, the client has to bring it back again on the server. This
problem as been partially tackled in NetSolve with the request sequencing feature [2].
However, the current request sequencing implementation does not handle multiple
servers.

In this paper, we present how data persistence can be handled in NES envi-
ronments. We take two existing environments (NetSolve and DIET) and describe
how we implemented data management in their kernels. For NetSolve, it requires to
change the internal protocol, the client API and the request scheduling algorithm.
For DIET we introduce a new service, called the Data Tree Manager (DTM), that
identify and manage data within this middleware. We evaluate the gain that can be
obtained from these features on a grid. Since we show that data management can
greatly improve application performance we discuss a standardization proposal.

The remaining of this paper is organized as follows. In Section 2, we give an
overview of Network Enabled Server (NES) architecture. We focus on NetSolve and
DIET. We show why this is important to enable data persistence and redistribution
to NES. We describe how we implemented data management in NetSolve and DIET
respectively in Section 3 and in Section 4. Experimental results are presented in

RR n 5725

4 E. Caron , B. DelFabbro , F. Desprez , E. Jeannot , J-M. Nicod

Section 5. In Section 6 we discuss the standardization of data management in NES.
Finally, Section 7 concludes the paper.

2 Background

2.1 Network Enabled Server Architectures

2.1.1 General Architecture

The NES model defines an architecture for executing computation on remote servers.
This architecture is composed of three components:

the agent is the manager of the architecture. It knows the state of the system.
Its main role is to find servers that will be able to solve as efficiently as possible
client requests,

servers are computational resources. Each server registers to an agent and then
waits for client requests. Computational capabilities of a server are known as
problems (matrix multiplication, sort, linear systems solving, etc.). A server
can be sequential (executing sequential routines) or parallel (executing opera-
tions in parallel on several nodes),

a client is a program that requests for computational resources. It asks the
agent to find a set of servers that will be able to solve its problem. Data
transmitted between a client and a server is called object. Thus, an input
object is a parameter of a problem and an output object is a result of a
problem.

The NES architecture works as follows. First, an agent is launched. Then, servers
register to the agent by sending information of problems they are able to solve as
well as information of the machine on which they are running and the network’s
speed (latency and bandwidth) between the server and the agent. A client asks the
agent to solve a problem. The agent scheduler selects a set of servers that are able
to solve this problem and sends back the list to the client. The client sends the input
objects to one of the servers. The server performs the computation and returns the
output objects to the client. Finally local server objects are destroyed.

This client API for such an approach has been standardized within the Global
Grid Forum. The GridRPC working group [12] proposed an API that is instantiated
by several middleware such as DIET, Ninf, NetSolve, and XtremWeb.

INRIA

Managing Data Persistence in Network Enabled Servers 5

2.1.2 NetSolve

NS
Server

NS
Server

NS
Server

Applications UsersClient Library
NS

NS Agent
Resource Discovery Load Balancing

Resource Allocation Fault Tolerance

Figure 1: NetSolve Architecture.

Client
Client

Client
Client

LASeD

MA

LA

SeD SeD

SeD

SeD

SeD

A

LASeDSeD

Figure 2: DIET Architecture.

NetSolve [7] (Figure 1) is a tool built at the University of Tennessee and in-
stantiate the GridRPC model described above. It is out of the scope of this paper
to completely describe NetSolve in detail. In this section we focus only on data
management.

Request Sequencing. In order to tackle the problem of sending to much data
on the Network, the request sequencing feature has been proposed since NetSolve
1.3 [2]. Request sequencing consists in scheduling a sequence of NetSolve calls on
one server. This is a high level functionality since only two new sequence delimiters
netsl sequence begin and netsl sequence start are added in the client API.
The calls between those delimiters are evaluated at the same time and the data
movements due to dependencies are optimized.

However request sequencing has the following deficiencies. First, it does not
handle multiple servers because no redistribution is possible between servers. An
overhead is added to schedule NetSolve requests. Indeed, the whole Directed Acyclic
Graph of all the NetSolve calls within the sequence is built before being sent to the
chosen computational server. Second, for loops are forbidden within sequences, and
finally the execution graph must be static and cannot depend on results computed
within the sequence.

Data redistribution is not implemented in the NetSolve’s request sequencing
feature. This can lead to sub-optimal utilization of the computational resources
when, within a sequence, two or more problems can be solved in parallel on two
different servers. This is the case, for instance, if the request is composed of the

RR n 5725

6 E. Caron , B. DelFabbro , F. Desprez , E. Jeannot , J-M. Nicod

problems foo1, foo2 and foo3 given Figure 4. The performance can be increased if
foo1 and foo2 can be executed in parallel on two different servers.

Distributed storage Infrastructure. To make a data persistent and to take
advantage of its placement in the infrastructure, NetSolve proposes the Distributed
Storage Infrastructure. The DSI helps the user for controlling the placement of data
that will be accessed by a server (see Figure 3). Instead of multiple transmissions of
the same data, DSI allows the transfer of the data once from the client to a storage
server. Considering these storage servers closer from computational servers than
from the client, the cost of transferring data will be cheaper. NetSolve is able to
manage several DSI. Currently, NetSolve proposes this storage service using IBP
(Internet Backplane Protocol)1. Files or items managed by a DSI are called DSI
objects. To generate a DSI data, the client has to know the server in which it wants
to store its data. Note that the data location is not a criteria for the choice of a
computational server. NetSolve maintains its own File Allocation Table to manage
DSI objects. Typically, when a request is submitted to a NetSolve Server, the server
looks for input data and verify its existence in its FAT. If the data is referenced (the
client had passed a DSI object), data is get from the storage server, the server gets
it from the client elsewhere.

DSI improves the data transfer but does not prevent from data going back and
forth from computational servers to storage servers. Indeed, this feature does not
fully implement data persistence and therefore may lead to over-utilization of the
network.

Client

IBP

data and results

send data

(4)results

send problem(2)

Netsolve

(1)

storage space

NetSolve client

(3)

computational
space

Figure 3: Distributed Storage Infrastructure.

1http://loci.cs.utk.edu/

INRIA

http://loci.cs.utk.edu/

Managing Data Persistence in Network Enabled Servers 7

2.1.3 DIET Architecture

NetSolve and Ninf projects are built on the same approach. Unfortunately, in these
environments, it is possible to launch only one agent responsible of the scheduling for
a given group of computational servers2. The drawback of the mono-agent approach
is that the agent can become bottleneck if a large number of requests have to be
processed at the same time. Hence, NetSolve or Ninf cannot be deployed for large
groups of servers or clients.

In order to solve this problem, DIET proposes to distributed the load of the agent
work. It is replaced by several agents which organization follows two approaches:
a peer-to-peer multi-agents approach that helps system robustness [6] and a hier-
archical approach that helps scheduling efficiency [9]. This repartition offers two
main advantages: first, we assume a better load balancing between the agents and
a higher system stability (if one of the agents dies, a reorganization of the others is
possible to replace it). Then, it is easier to manage each group of servers and agents
by delegation which is useful for scalability. DIET is built upon several components:

a client is an application that uses DIET to solve problems. Several client
types must be able to connect to DIET. A problem can be submitted from a
Web page, a problem solving environment such as Scilab [3] or Matlab or from
a compiled program.

a Master Agent (MA) is directly linked to the clients. It is the entry point of
our environment and thus receives computation requests from clients attached
to it. These requests refer to some DIET problems that can be solved by
registered servers. Then the MA collects computation abilities from the servers
and chooses the best one. A MA has the same information than a LA, but it
has a global and high level view of all the problems that can be solved and of
all the data that are distributed in all its subtrees.

a Leader Agent (LA) forms a hierarchical level in DIET. It may be the link
between a Master Agent and a SeD or between two Leader Agents or between
a Leader Agent and a SeD. It aims at transmitting requests and information
between Agents and several servers. It maintains a list of current requests and
the number of servers that can solve a given problem and information about
the data distributed in its subtrees.

2In Ninf, a multi-agents platform exists (Metaserver) but each agent has the global knowledge
of the entire platform.

RR n 5725

8 E. Caron , B. DelFabbro , F. Desprez , E. Jeannot , J-M. Nicod

a Server Daemon (SeD) is the entry point of a computational resource. The
information stored on an SeD is a list of the data available on its server (with
their distribution and the way to access them), the list of problems that can
be solved on it, and all information concerning its load (memory available,
number of resources available, . . .). A SeD declares the problems it can solve
to its parent. For instance, a SeD can be located on the entry point of a
parallel computer.

A new DIET client contacts a Master Agent (the closest for instance) and posts
its request. The Master Agent transmits the request to its subtrees3 to find data
already present in the platform and servers that are able to solve the problem.
The LAs which receive the request forward it down to every one of their sub-trees
which contains a server that might be involved in the computation and wait for the
responses. The requests traverse the entire hierarchy down to the SeDs. When a
SeD receives a request, it sends a response structure to its father. It fills the fields
for the variables it owns, leaving a null value for the others. If it can solve the
problem, it also puts an entry with its evaluated computation time acquired from
our performance forecasting tool FAST [19]. Each LA gathers responses coming
from its children and aggregates them into a structure.

The scheduling operations are realized at each level of the tree when the response
is sent back to the Master Agent. Note that a time-out is set and when an agent
has not got a response over a given time, this response is ignored. However, this
time-out is not an information enough to say that an agent has failed. When the
responses come back to the MA, it is able to take a scheduling decision. The eval-
uated computation and communication times are used to find the server with the
lowest response time to perform the computation. Then the MA is able to send the
chosen server reference to the client (it is also possible to send a bounded list of best
servers to the client). Then, the Master Agent orders the data transfer. Here we can
distinguish two cases: data resides in the client and are transferred from the client
to the chosen server or data are already inside the platform and are transferred from
the servers that holds them to the chosen server. Note that these two operations can
be processed in a parallel way. Once data are received by the server, computation
can be done. The results may be sent to the client. For performance issues, data
are let in the last computational server if possible.

3an extension is possible for the multi-agent approach: broadcast the request to the others MA
considering them as Leader Agents

INRIA

Managing Data Persistence in Network Enabled Servers 9

2.2 On the Importance of Data Management in NES

A GridRPC environment such as NetSolve and DIET is based on the client-server
programming paradigm. This paradigm is different than other ones such as paral-
lel/distributed programming. In a parallel program (written in PVM or MPI for
instance) data persistence is performed implicitly: once a node has received some
data, this data is supposed to be available on this node as long as the application
is running (unless explicitly deleted). Therefore, in a parallel program, data can be
used for several steps of the parallel algorithm.

However, in a GridRPC architecture no data management is performed. Like
in the standard RPC model, request parameters are sent back and forth between
the client and the server. A data is not supposed to be available on a server that
used it for another step of the algorithm (an new RPC) once a step is finished (a
previous RPC has returned). This drawback can lead to very high execution time
as the execution and the communications can be performed over the Internet.

2.2.1 Motivating Example

Now we give an example where the use of data persistence and redistribution im-
proves the execution of a GridRPC session. Assume that a client asks to execute
the three functions/problems shown in the sample code given in Figure 4(a).

Let us consider that the underlying network between the client and the server
has a bandwidth of 100 Mbit/s (12.5 Mbytes per seconds). Figure 4(b) gives the
execution time for each function and for each server. Finally let us suppose that
each object has a size of 25 Mbytes. The GridRPC architecture will execute foo1
and foo3 on server S1 and foo2 on S2 and sends the objects in the following order:
b, c, e, f (Figure 4). Due to the bandwidth limitation, foo1 will start 4 seconds after
the request and foo2 after 8 seconds. Without data persistence and redistribution a
will be available on S1 16 seconds after the beginning of the session and d, 18 seconds
after the beginning (S2 has to wait that the client has completely received a before
starting to send d). Therefore, after the execution of foo3, g will be available on
the client 26 seconds after the beginning. With data persistence and redistribution,
S2 sends d to S1 which is available 13 seconds after the beginning of the request.
Hence, g will be available on the client 21 seconds after the beginning of the request
which leads to a 19% improvement.

RR n 5725

10 E. Caron , B. DelFabbro , F. Desprez , E. Jeannot , J-M. Nicod

a = foo1(b,c)
d = foo2(e,f)
g = foo3(a,d)

(a) Sample C code.

Function Server 1 Server 2

foo1 6s 9s
foo2 2s 3s
foo3 6s 11s

(b) Execution time.

Send
g

S 1

S2

S 1

S2

Receive foo3 Send
g

Receive Receive

Receive Receive

foo1

foo2
d

Send

f
Send

e
SendSendSend

a
Send

a

Receive

Receive Receive Send

foo3Receive

Send

d

Receive Receive

Receive Receive

foo1

foo2

f
Send

e
SendSendSend

Receive

execution time: 26s

b c

With data persistence and redistribution

Without data persistence and redistribution

b cClient

Client

Send
d

Receive

execution time: 21s

(c) Execution without (top) and with (bottom) persistence.

Figure 4: Sample example where data persistence and redistribution is better than
retrieving data to the client.

2.2.2 Goal of the Work

In this paper, we show how to add data management into NES environments. We
added data persistence and data redistribution to NetSolve and DIET and therefore
modified the client API.

Data persistence consists in allowing servers to keep objects in place to be able
to use these objects again for a new call without sending them back and forth from
and to the client. Data redistribution enables inter-server communications to avoid
object moving though the client.

INRIA

Managing Data Persistence in Network Enabled Servers 11

Our modifications to NetSolve are backward compatible. Data persistence and
data redistribution require the client API to be modified but standard client pro-
grams continue to execute normally. Moreover, our modifications are stand-alone.
This means that we do not use an other software to implement our optimizations.
Hence, NetSolve users do not have to download and compile new tools. Finally,
our implementation is very flexible without the restrictions imposed by NetSolve’s
request sequencing feature.

We also proposed a model of distributed data management in DIET. The DIET
data management model is based on two key elements: the data identifiers and the
Data Tree Manager (DTM) [11, 10]. To avoid multiple transmissions of the same
data from a client to a server, the DTM allows to leave data inside the platform after
computation while data identifiers will be used further by the client to reference its
data.

3 New Data Management in NetSolve

In this section we describe how we have implemented data redistribution and per-
sistence within NetSolve. This required to change the three components of the
software: server, client, and agent.

3.1 Server Modifications

NetSolve communications are implemented using sockets. In this section, we give
details about the low level protocols that enable data persistence and data redistri-
bution between servers.

3.1.1 Data Persistence

When a server has finished its computation, it keeps all the objects locally, listen to
a socket and waits for new orders from the client. So far, the server can receive five
different orders.

1. Exit. When this order is received, the server terminates the transaction with
the client, exits, and therefore data are lost. Saying that the server exits is not
completely correct. Indeed, when a problem is solved by a server, a process
is forked, and the computation are performed by the forked process. Data
persistence is also done by the forked process. In the following, when we say

RR n 5725

12 E. Caron , B. DelFabbro , F. Desprez , E. Jeannot , J-M. Nicod

that the server is terminated, it means that the forked process exits. The
NetSolve server is still running and it can solve new problems.

2. Send one input object. The server must send an input object to the client or to
an other server. Once this order is executed, data are not lost and the server
is waiting for new orders.

3. Send one output object. This order works the same way than the previous one
but a result is sent.

4. Send all input objects. It is the same as “send one input object” but all the
input objects are sent.

5. Send all output objects. It is the same as “send one output object” but all the
results are sent.

3.1.2 Data Redistribution

When a server has to solve a new problem, it has first to receive a set of input
objects. These objects can be received from the client or from an other server.
Before an input object is received, the client tells the server if this object will come
from a server or from the client. If the object comes from the client, the server has
just to receive the object. However, if the object comes from an other server, a new
protocol is needed. Let call S1 the server that has to send the data, S2 the server
that is waiting for the data, C and the client.

1. S2 opens a socket s on an available port p.

2. S2 sends this port to C.

3. S2 waits for the object on socket s.

4. C orders S1 to send one object (input or output). It sends the object number,
forward the number of the port p to S1 and sends the hostname of S2.

5. S1 connects to the socket s on port p of S2.

6. S1 sends the object directly to S2 on this socket: data do not go through the
client.

INRIA

Managing Data Persistence in Network Enabled Servers 13

3.2 Client Modifications

3.2.1 New Structure for the Client API

When a client needs a data to stay on a server, three informations are needed to
identify this data. (1) Is this an input or an output object? (2) On which server can
it be currently found? (3) What is the number of this object on the server? We have
implemented the ObjectLocation structure to describe these informations needed.
ObjectLocation has 3 fields:

1. request id which is the request number of the non-blocking call that involves
the data requested. The request id is returned by the netslnb standard Net-
Solve function, that performs a non blocking remote execution of a problem.
If request id equals -1, this means that the data is available on the client.

2. type can have two values: INPUT OBJECT or OUTPUT OBJECT. It describes if the
requested object is an input object or a result.

3. object number is the number of the object as described in the problem de-
scriptor.

3.2.2 Modification of the NetSolve Code

When a client asks for a problem to be solved, an array of ObjectLocation data
structures is tested. If this array is not NULL, this means that some data redistribu-
tion have to be issued. Each element of the array corresponds to an input object.
For each input object of the problem, we check the request id field. If it is smaller
than 0, no redistribution is issued, everything works like in the standard version of
NetSolve. If the request id field is greater than or equal to zero then data redistri-
bution is issued between the server corresponding to this request (it must have the
data), and the server that has to solve the new problem.

3.2.3 Set of New Functions

In this section, we present the modifications of the client API that uses the low-level
server protocol modifications described above. These new features are backward
compatible with the old version. This means that an old NetSolve client will have
the same behavior with this enhanced version: all the old functions have the same
semantic, except that when starting a non-blocking call, data stay on the server
until a command that terminates the server is issued. These functions have been

RR n 5725

14 E. Caron , B. DelFabbro , F. Desprez , E. Jeannot , J-M. Nicod

implemented for both C and Fortran clients. They are very general and can handle
various situations. Hence, unlike request sequencing, no restriction is imposed to
the input program. In Section 3.4, a code example is given that uses a subset of
these functions.

Wait Functions. We have modified or implemented three functions: netslwt,
netslwtcnt and netslwtnr. These functions block until the current computations
are finished. With netslwt, the data are retrieved and the server exits. With
netslwtcnt and netslwtnr, the server does not terminate and other data redis-
tribution orders can be issued. The difference between these two functions is that
unlike netslwtcnt, netslwtnr does not retrieve the data.

Terminating a Server. The netslterm orders the server to exit. The server
must have finished its computation. Local object are then lost.

Probing Servers. As in the standard NetSolve, netslpr probes the server. If the
server has finished its computation, results are not retrieved and data redistribution
orders can be issued.

Retrieving Data. A data can be retrieved with the netslretrieve function.
Parameters of this functions are the type of the object (input or output), the request,
the object number and a pointer where to store the data.

Redistribution Function. netslnbdist, is the function that performs the data
redistribution. It works like the standard non-blocking call netslnb with one more
parameter: an ObjectLocation array, that describes which objects are redistributed
and where they can be found.

3.3 Agent Scheduler Modifications

The scheduling algorithm used by NetSolve is Minimum Completion Time
(MCT) [15] which is described in Figure 5. Each time a client sends a request
MCT chooses the server that minimizes the execution time of the request assuming
no major change in the system state.

We have modified the agent’s scheduler to take into account the new data per-
sistence features. The standard scheduler assumes that all data are located on the

INRIA

Managing Data Persistence in Network Enabled Servers 15

1 For all server S that can resolve the problem
2 D1(S) = estimated amount of time to transfer

input and output data.
3 D2(S) = estimated amount of time to solve the

problem.
4 Choose the server that minimizes D1(S) + D2(S).

Figure 5: MCT algorithm.

client. Hence, communication costs do not depend on the fact that a data can
already be distributed. We have modified the agent’s scheduler and the protocol
between the agent and the client in the following way. When a client asks the agent
for a server, it also sends the location of the data. Hence, when the agent computes
the communication cost of a request for a given server, this cost can be reduced by
the fraction of data already hold by the server.

3.4 Code Example

In Figure 6 we show a code that illustrates the features described in this paper.
It executes 3 matrix multiplications: c=a*b, d=e*f, and g=d*a using the DGEMM

function of the level 3 BLAS provided by NetSolve, where a is redistributed from
the first server and d is redistributed from the second one. We will suppose that
matrices are correctly initialized and allocated. In order to simplify this example we
will also suppose that each matrix has n rows and columns and tests of requests are
not shown.

In the two netslnb calls different parameters of dgemm (c = β×c + α×a×b, for
the first call) are passed such as the matrix dimension (always n here), the need to
transpose input matrices (not used here), the value of α and β (respectively 1 and
0) and pointers to input and output objects. All these objects are persistent and
therefore stay on the server: they do not move back to the client.

RR n 5725

16 E. Caron , B. DelFabbro , F. Desprez , E. Jeannot , J-M. Nicod

ObjectLocation *redist;

netslmajor("Row");

trans="N";

alpha=1;

beta=0;

/* c=a*b */

request_c=netslnb("DGEMM()",&trans,&trans,n,n,n,&alpha,a,n,b,n,&beta,c,n);

/* after this call c is only on the server */

/* d=e*f */

request_d=netslnb("DGEMM()",&trans,&trans,n,n,n,&alpha,e,n,f,n,&beta,d,n);

/* after this call d is only on the server */

/* COMPUTING REDISTRIBUTION */

/* 7 input objects for DGEMM */

nb_objects=7;

redist=(ObjectLocation*)malloc(nb_objects*sizeof(ObjectLocation));

/* All objects are first supposed to be hosted on the client */

for(i=0;i<nb_object;i++)

redist[i].request_id=-1;

/* We want to compute g=d*a */

/* a is the input object No 4 of DGEMM and the input object No 3 of request_c */

redist[4].request_id=request_c;

redist[4].type=INPUT_OBJECT;

redist[4].object_number=3;

/* d is the input object No 3 of DGEMM and the output object No 0 of request_d */

redist[3].request_id=request_d;

redist[3].type=OUTPUT_OBJECT;

redist[3].object_number=0;

/* g=d*a */

request_g=netslnbdist("DGEMM()",redist,&trans,&trans,n,n,n,&alpha,NULL,n,NULL,n,

&beta,g,n);

/* Wait for g to be computed and retrieve it */

netslwt(request_g);

/* retrieve c */

netslretrieve(request_c,OUTPUT_OBJECT,0,c);

/* Terminate the server that computed d */

netslterm(request_d);

Figure 6: NetSolve persistence code example.

INRIA

Managing Data Persistence in Network Enabled Servers 17

Then the redistribution is computed. An array of ObjectLocation is build
and filled for the two objects that need to be redistributed (a and d). The call
to netslnbdist is similar to previous netslnb call except that the redistribution
parameter is passed. At the end of the computation, a wait call is performed for
the computation of g, the matrix c is retrieved and the server that computed d is
terminated.

In Section 5.2, we present our experimental results on executing a set of DGEMM
requests both on a LAN and on a WAN.

4 Data Management in DIET

Server A

Execute

Service
Execute

CLIENT

Service

call(pb, A, ...)

call(pb1,A, ...)

= A

Figure 7: Sending A twice

Server A

Service

Execute
Service

CLIENT

Execute

call(pb, A, ...)

call(pb1,&A, ...)

= A

Figure 8: Sending A only once

Figure 9: Two successive calls

We have developed a data management service in the DIET platform. Our
motivation was based on the need to decrease the global computation time. A
way to achieve such a goal is to decrease data transfers between clients and the
platform when possible. For example, a client that submits two successive calls with
the same input data needs to transfer them twice (see Figure 7). Our goal is to
provide a service that allows only one data transfer as shown in Figure 8. An other
objective is to allows the use of the data already stored inside the platform in later
computations and more generally in later sessions or by others clients. This is why
data stored needed to be handled by an unique identifier. Our service has also to
fit with DIET platform characteristics, and this is why our components are build in
a hierarchical way. After a short description of the principles we retain in order to
build a data management service in DIET, we review the various components of our
implementation called Data Tree Manager [10].

RR n 5725

18 E. Caron , B. DelFabbro , F. Desprez , E. Jeannot , J-M. Nicod

4.1 Principles

In this section, we present the basic functionalities that we choose for a data man-
agement service in such an ASP environment.

Data Storage A data can be stored onto a disk or in memory. In NES environ-
ments, a challenge is to store data as near as possible to a computational server
where they will be needed. In addition, physical limitations of storage resources will
imply the definition of a data management policy. Simple algorithms as LRU will
be implemented in order to remove the most older data. This will avoid to overload
the system.

Data Location When a data item has been sent once from a client to the plat-
form, the data management service has to be able to find where data is stored to use
it in other computations on other servers. Furthermore, in order to obtain a scalable
infrastructure, we need to separate the logical view of the data from its physical lo-
cation. Even if the solution of metadata [8] is elegant, a data management service
in NES environments has not exactly the same characteristics than other data man-
agement systems implemented in Grid Computing Environments. In fact, in these
environments, clients need to access huge data for analysis. Hence, these systems
are built in order to provide a reliable access to data that are geographically dis-
tributed. In ASP environments, numerical applications to which NES platforms give
access have generally data that are produced and directly accessed by the client that
sends the request. ASP environments have to give a reliable access to computational
servers even if the problematic of data access by clients is also a constraint. This is
why it is not necessary to define data along their characteristics. Nevertheless, it is
mandatory to fully identify data that are stored inside the platform.

Data Movement As seen above, a data management service in ASP environments
is able to store and locate data. But when data is required for more than one
computation on more than one server, it is also mandatory to be able to move data
between computational servers. In fact, if we consider that time to transfer data
between servers is smaller than time to transfer data between clients and servers, we
need to define a data movement mechanism. Obviously, when data is moved from
one server to an other computational server, information on its location have to be
updated.

INRIA

Managing Data Persistence in Network Enabled Servers 19

Persistence Mode A data can be stored inside the platform and moved between
storage resources. But, have all data sent by clients or produced by servers to be
stored inside the platform? For obvious performance motivations, it is better to
limit data persistence to those that are really useful. We think that only clients
know which data have to stay inside the system. Hence, this is why we define a
persistence mode in the help of which clients can tell if their data should be stored
or not.

Security Once data are stored inside the platform, we need to define a policy to
make secured operations on data. In fact, data stored inside the platform can be
shared between clients. However, all the clients of the platform are not able to realize
all operations on all data. As data stored are identified inside the platform, only the
client that has produced the data has to be informed of the identifier that has been
bound to its data in order to use it for later computation requests. Moreover, in
collaborative projects for example, a client may want to share its stored data with
other researchers but he does not want them to delete its data. We propose to add
an access key in addition to the identifier. Thus, if a client wants to get read/write
rights on a specified data, he has to join this key to the data identifier. Indeed, if
the client that has produced the data does not want the others to have write access
on it, he just have to provide the identifier. This leaves the responsibility of the
management of its own data to the client. Simple mechanisms such as md5, sha1
algorithms or routines like urandom will be chosen to generate such a key.

Fault Tolerance The fault tolerance policy is directly linked to the consistency
policy. In fact, our approach does not define fault recovery mechanisms but only
a consistency mechanism of the infrastructure when faults occur. Thus, only a
context/contents model is defined. We ensure that all operations (add, remove)
made on data by clients are made such that all the infrastructure is consistent. If a
component that manages the physical data fails (named DataManager), updates on
the architecture are made. We distinguish two possible cases of fault. A component
that manages the logical view of data fails (named LocManager) or DataManager
fails. If a LocManager fails, all its subtrees are considered as lost. We only ensure
that the parent of the LocManager removes all references of data referenced on this
branch. If a DataManager fails, we ensure that all references of data owns by it are
removed in the hierarchy. No data recovery is made. We also consider that all data
transfers are realized in a correct way but we make sure that updates are realized
only when transfers are complete. A solution will be to replicate data.

RR n 5725

20 E. Caron , B. DelFabbro , F. Desprez , E. Jeannot , J-M. Nicod

Data Sources Heterogeneity Generally, a data is sent from the local machine
of a client. However, it is also possible that a client does not owns the data it wants
to send to the platform but only knows its location. Hence, we propose to give
the possibility for a client to inform the server to pull data from a remote storage
depot that is extern to the platform. This model has to deal with the support
heterogeneity. We have first developed a model that allow the use of ftp and http
protocols. These models have to be completed to interact with other protocols such
as gridFTP. This approach is quite similar to the Stork approach for multi-protocols
data transfers presented in [14].

Replication One mandatory aspect of a data management service is to provide a
data replication policy. In fact, the need of data replication is particularly required
for parallel tasks that share data. Thus, a data management service needs to provide
an API in order to move or replicate data between computational servers. This API
will be used by a task scheduler for example.

4.2 The DIET Data Tree Manager

The data management service we implemented is based on the principles defined
above. In this section, we present our implementation.

4.2.1 The Persistence Mode

A client can choose whether a data will be persistent inside the platform or not. We
call this property the persistence mode of a data. We have defined several modes
of data persistence as shown in Table 1.

mode Description

DIET VOLATILE not stored
DIET PERSISTENT RETURN stored on server, movable and copy back to client
DIET PERSISTENT stored on server and movable
DIET STICKY stored and non movable
DIET STICKY RETURN stored, non movable and copy back to client

Table 1: Persistence Modes.

INRIA

Managing Data Persistence in Network Enabled Servers 21

4.2.2 The Data Identifier

When a data is stored inside the platform, an identifier is assigned to it. This
identifier (also known as data handler) allows us to point out a data in an unique way
within the architecture. It is clear that a client has to know this identifier in order
to use the corresponding data. Currently, a client knows only the identifiers of the
persistent data it has generated. It is responsible for propagating this information
to other clients. Note that identifying data in NES environments is a relatively new
issue. This is strongly linked to the way we are considering data persistence. In
NetSolve, the idea is that data is persistent for a session time and deleted after. In
DIET, we think that a data can survive to a session and could be used by other
clients than the producer or in later sessions. Nevertheless, a client can also decide
that its data are only available in a single session. Currently, as explained before,
data identifiers are stored in a file in a client directory.

Data Manager
Logical

F
 A

 S
 T

Data Manager
Physical

Agent

SeD Data Mover

Figure 10: DTM: Data Tree Manager.

LocMgr1

MA

SeD3

DataMgr3

SeD2

DataMgr2

LA2

LocMgr3

LA1

LocMgr2

SeD1

DataMgr1

Figure 11: DataManager and LocManager

objects.

4.2.3 Logical Data Manager and Physical Data Manager

In order to avoid interleaving between data messages and computation messages, the
proposed architecture separates data management from computation management.
The Data Tree Manager is build around two main entities.

Logical Data Manager The Logical Data Manager is composed of a set of Loc-
Manager objects. A LocManager is set onto the agent with which it communicates
locally. It manages a list of couples (data identifier, owner) which represents data
that are present in its branch. Hence, the hierarchy of LocManager objects provides
the global knowledge of the localization of each data.

RR n 5725

22 E. Caron , B. DelFabbro , F. Desprez , E. Jeannot , J-M. Nicod

Physical Data Manager The Physical Data Manager is composed of a set of
DataManager objects. The DataManager is located onto each SeD with which it
communicates locally. It owns a list of persistent data. It stores data and has
in charge to provide data to the server when needed. It provides features for data
movement and it informs its LocManager parent of updating operations performed
on its data (add, move, delete). Moreover, if a data is duplicated from a server to
another one, the copy is set as non persistent and destroyed after it uses with no
hierarchy update.

This structure is built in a hierarchical way as shown in Figure 11. It is mapped
on the DIET architecture. There are several advantages to define such a hierarchy.
First, communications between agents (MA or LA) and data location objects (Loc-
Manager) are local like those between computational servers (SeD) and data storage
objects (DataManager). This ensures that this is not costly, in terms of time and
network bandwidth, for agents to get information on data location and for servers
to retrieve data. Secondly, considering the physical repartition of the architecture
nodes (a LA front-end of a local area network for example), when data transfers
between servers localized in the same subtree occur, the consequently updates of
the infrastructure are limited to this subtree. Hence, the rest of the platform is not
involved in the updates.

4.2.4 Data Mover

The Data Mover provides mechanisms for data transfers between Data Managers
objects as well as between computational servers. The Data Mover has also to
initiate updates of DataManager and LocManager when a data transfer has finished.

4.2.5 Client API

A client can specify the persistence mode of its data. This is done when the problem
profile is build. Moreover, after the problem has been evaluated by the platform and
persistent data are sent or produced, a unique identifier is affected to each data. A
client can execute several operations using the identifier:

Data Handle Storage The store id() method allows the data identifier to be
stored in a local client file. This will be helpful to use data in other session for the
same client or for other clients.

store_id(char *handle, char *msg);

INRIA

Managing Data Persistence in Network Enabled Servers 23

Utilization of the data handle The diet use data() method allows the use of
a data stored in the platform identified by its handle. The description of the data
(its characteristics) is also stored.

diet_use_data(char *handle);

Data Remove The diet free persistent data() method allows to free the per-
sistent data identified by handle from the platform.

diet_free_persistent_data(char *handle);

Read an already stored data The diet read data(char * handle) method
allows to read a data identified by handle already stored inside the platform.

diet_data_t diet_read_data(char *handle);

5 Experimental Results

5.1 Standard NetSolve Data Management

In this section we test the standard version of NetSolve. We first make experi-
ments on NetSolve without data management and then with the two NetSolve data
management approaches described in Section 2.1.2: the Distributed Storage Infras-
tructure, used to provide data transfer and storage and the Request Sequencing used
to decrease network traffic amongst client and servers.

Experiments Servers are distributed on a site far from approximatively 100 kilo-
meters to the client. Wide area network is a 16 Mbits/s network while the local area
network is an Ethernet 100 Mbits/s network. The platform built for NetSolve tests
is composed of three servers, an agent, and an IBP depot.

The experiments consist in a sequence of calls in a session: C = A ∗ B then
D = C + E then A =t A. We made three series of test for NetSolve. First, a test
using three consecutive blocking calls. Then, a request sequencing test and finally a
test with DSI. The last test is divided into two parts: first, a single server computes
all the sequence, then each call is computed by a different server.

Results of the series of tests are exposed in Figure 12. We note that Request
Sequencing is the best solution for such a sequence of calls. When using DSI, we note
also that the best solution is when three servers are involved in the computation.

RR n 5725

24 E. Caron , B. DelFabbro , F. Desprez , E. Jeannot , J-M. Nicod

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 5 10 15 20 25 30 35

co
m

pu
ta

tio
n

tim
e

matrix size in MByte

without data management
Request Sequencing

DSI one server
DSI : three servers

Figure 12: Standard NetSolve tests.

This is a bit surprising but it is confirmed by different others tests we made building
several different topologies (a server that is also an IBP depot, an IBP depot closest
from one server than for the others). In fact, in order to confirm this fact, we
try to choose the best server (in terms of processing power and memory capacity)
that compute the three calls: but the best solution is always when three servers
were involved. We can explain this fact by the memory limitations of the servers
involved. A server that have to process three computations does not free its memory
implying an overload of this server for further computation.

5.2 NetSolve with Data Persistence and Redistribution

In this section we show several experiments that demonstrate the advantage of using
data persistence and redistribution within NetSolve as described in Section 3. Fig-
ures 14 and 16 show our experimental results using NetSolve as a NES environment
for solving matrix multiplication problems in a grid environment.

5.2.1 LAN experiments

In Figure 14, we ran a NetSolve client that performs 3 matrix multiplications using
2 servers. The client, agent, and servers are in the same LAN and are connected
through Ethernet. Computation and task graphs are shown in Figure 13. The
first two matrix multiplications are independent and can be done in parallel on two

INRIA

Managing Data Persistence in Network Enabled Servers 25

dba e

fc

g

c=a*b

f=d*e

g=c*f

Figure 13: Matrix multiplication program
task graph.

200 400 600 800 1000 1200 1400 1600 1800 2000

0

200

400

600

800

1000

1200

1400

1600

1800

2000

+ + +
+

+

+

+

+

+

+

× × ×
×

×

×

×

×

×

×

◊ ◊ ◊
◊

◊

◊

◊

◊

◊

◊

3 DGEMM with NetSolve+
3 DGEMM with NetSolve and 2 in parallel×
3 DGEMM with Scilab◊

T
im

e
in

 s
ec

on
d

3 Matrix Multiplications

Matrix size

Figure 14: Matrix multiplications using
NetSolve with data persistence on a LAN.

different servers. We use Scilab4 as the baseline for computation time. We see that
the time taken by Scilab is about the same than the time taken using NetSolve when
sequentializing the three matrix multiplications. When doing the first two ones in
parallel on two servers using the redistribution feature, we see that we gain exactly
one third of the time, which is the best possible gain. These results show that
NetSolve is very efficient in distributing matrices in a LAN and that non-blocking
calls to servers are helpful for exploiting coarse grain parallelism.

5.2.2 WAN Experiments

We have performed a blocked matrix multiplication (Figure 15). The client and
agent were located in one University (Bordeaux) but servers were running on the
nodes of a cluster located in Grenoble5. The computation decomposition done by
the client is shown in Figure 16. Each matrix is decomposed in 4 blocks, each block
of matrix A is multiplied by a block of matrix B and contributes to a block of
matrix C. The first two matrix multiplications were performed in parallel. Then,
input data were redistributed to perform matrix multiplications 3 and 4. The last
4 matrix multiplications and additions can be executed using one call to the level 3

4www.scilab.org
5Grenoble and Bordeaux are two French cities separated by about 800 km.

RR n 5725

www.scilab.org

26 E. Caron , B. DelFabbro , F. Desprez , E. Jeannot , J-M. Nicod

C11 = A11B11 ; C22 = A21B12

C12 = A11B12 ; C21 = A21B11

C11 = C11 +A12B21 ; C22 = C22 +A22B22

C12 = C12 +A12B22 ; C21 = C21 +A22B21

Figure 15: Matrix multiplication using
block decomposition.

0 400 800 1200 1600 2000 2400

0

200

400

600

800

1000

1200

+ + + + +
+

+
+

+
+

+

+
+

+

+ +

× ×
×

×

×
×

×

×

×

×

×

×

×

×

×

×

Matrix multiplication with data persistence+
Matrix multiplication without data persistence×

T
im

e
in

 s
ec

on
d

Matrix Multiplication

Matrix size

Figure 16: NetSolve with data persistence:
WAN experiments

BLAS routine DGEMM and requires input and output objects to be redistributed.
Hence, this experiment uses all the features we have developed. We see that with
data persistence (input data and output data are redistributed between the servers
and do not go back to the client), the time taken to perform the computation is
more than twice faster than the time taken to perform the computation without
data persistence (in that case, the blocks of A, B, and C are sent back and forth
to the client). This experiment demonstrates how useful the data persistence and
redistribution features that we have implemented within NetSolve are.

5.3 DIET Data Management

The first experiments consist in a sequence of calls in a session: C = A∗B, D = C+E

and A =t A. The DIET platform is composed of one MA, two LAs and three
servers. Servers are distributed on a site far from approximatively 100 kilometers
from the client. The wide area network is a 16 Mbits/s network while the local area
network is an Ethernet 100 Mbits/s network. Computers (0.5 Ghz up to 1.8 Ghz)
are heterogeneous and run the Linux operating system. We conducted three series of
tests: first, a test using three synchronous calls without using DTM. Then, the same
sequence using DTM (i.e. using persistence): in this way, A, B, and E matrices are
defined as persistent, C matrix must be persistent because it is an input data for the

INRIA

Managing Data Persistence in Network Enabled Servers 27

second problem. D matrix can be non persistent because it is not used anywhere
else after. Hence, for this case, A, B, E are sent once, and C is not sent. For the last
test, only identifiers are sent since all data are already present in the infrastructure.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 5 10 15 20 25 30 35

co
m

pu
ta

tio
n

tim
e

(s
ec

)

matrix size (MByte)

without persistency
local data

data inside the platform

Figure 17: DIET Tests with and without persistence.

Results of the series of tests are exposed in Figure 17. If we can avoid multiple
transmissions of the same data, the overall computational time is equal to the trans-
fer time of data into the infrastructure plus the tasks computation time plus the
results transfer time to the client. Unsurprisingly again, the last scenario appears
to be the best one and confirms the feasibility and the low cost of our approach in
the case of a sequence of calls. Using the CORBA space, we can avoid the copy of
data by using CORBA memory management methods. These methods allow to get
a value without making a memory copy. Moreover, notice that the update of the
hierarchy is performed in an asynchronous way, so its cost is very small and does
not influence the overall computational time. However, for large data, this approach
has the limitations of the memory management.

To complete experiments already lead in [5] and the above results, we have
conducted series of tests in order to show the overall advantages of using persistence
in DIET. This target architecture is composed of one MA, two LA and two SeD
located in a local network. A client is located in a remote site far from 100 kilometers
to DIET. The wide area network is a 16 Mbits/s network while the local area network

RR n 5725

28 E. Caron , B. DelFabbro , F. Desprez , E. Jeannot , J-M. Nicod

is an Ethernet 100 Mbits/s network. The deployed application is a linear algebra
application in which computation time is relatively independent from data size.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 50 100 150 200 250 300 350 400

co
m

pu
ta

tio
n

tim
e

(s
ec

.)

matrices size (MBytes)

without DTM
adding INOUT data into DTM

data present on the server
data present inside the platform

Figure 18: Sending IN data.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 50 100 150 200 250 300 350 400

co
m

pu
ta

tio
n

tim
e

(s
ec

.)

matrices size (MBytes)

without DTM
adding INOUT data into DTM

data present on the server
data present inside the platform

Figure 19: Sending INOUT data.

In the first experiment, data are in input mode. As seen in Figure 18, the time
of execution varies enormously according to the case. When data is persistent and
locally stored onto the computational server, the global execution time is equal to
the application computation time. This difference corresponds to the data transfer
time profit: approximately 87% for a 400 MBytes matrix. When data is moved
between computational servers the gain is of an order of 77% for a 400 MBytes
matrix. The difference in gain corresponds to the data transfer time.

In the second experiment, the mode of data is inout. Profits are less important
than for the first experiment, as shown Figure 19: approximatively 45% for a 400
MBytes matrix if the data is local to the computational server and 40% if the data
is moved.

These results confirm the feasibility of our approach and the gains in term of
execution time.

5.4 DIET and NetSolve Comparison

We summarize here the differences between standard NetSolve, NetSolve with data
persistence and redistribution (called NetSolve-PR here), and DIET with data man-
agement.

INRIA

Managing Data Persistence in Network Enabled Servers 29

In standard NetSolve request sequencing approach, the sequence of compu-
tations has to be processed by an unique server. In this case, a client needs
to have the knowledge of the services provided by a server in order to use
this approach. Now, when using DSI, it is useful to have a DSI depot near
computational servers in order to decrease transfer time. Hence, the way that
DSI architecture is implemented is very important. In NetSolve-PR and in
DIET DTM, a client does not need to know which server is able to solve a
given problem (considering that a submitted request can be processed by the
platform), and we assume that the data management architecture allows data
to be close to the computational server.

The DIET Data Mover is directly managed by the DTM that allows data to be
moved near computational servers. In standard NetSolve with DSI, considering
for example two far away computational servers that will need the same data,
data must be sent on a DSI depot that is close to each computational server.
Hence, data could be sent twice by a client. In NetSolve-PR data always stay
on a server and do not use a depot. Data can be sent directly from a client to
a server.

Using NetSolve approach, a client does not need to specify the way its data
will be managed. Using request sequencing or DSI, data are considered to
be persistent. In DIET DTM, users need to precise the persistence mode of
all their data, even for the non persistent ones. NetSolve-PR is backward
compatible. This means that when persistence is not needed nothing as to be
specified. However, when using persistence the client has to specify it in the
request.

In DIET, we think that persistent data must “survive” to a client session and
so must be fully identified. Data are kept as long as a client needs it (for later
use in other sessions and for other clients in case of collaborative projects for
example). In NetSolve (with or without data persistence and redistribution),
data are persistent in a session, for a set of computations: data are lost when
the client terminate.

In NetSolve, the system cannot be overloaded by data since data are removed
from its depot after computation or removed after a set of computation (re-
quest sequencing). In DIET and NetSolve-PR, the way data is managed may
lead to a memory overload since data is cached on servers when they are not
explicitly send as files.

RR n 5725

30 E. Caron , B. DelFabbro , F. Desprez , E. Jeannot , J-M. Nicod

6 Standardizing Data Management

As we seen, data management in ASP environments leads to several approaches.
However, the need of a common API for ASP environments is essential. Indeed,
NetSolve, Ninf and DIET are members of the GridRPC working Group in the GGF
which work is to standardize and to implement a remote procedure call mechanism
for Grid Computing. This work has already lead to a programming model [20].

Within this GridRPC working group an on-going work supervised by Craig Lee
aims at standardizing data management for this model. So far, the proposal is based
on two points: a data must be fully identified and a programmer can choose whether
a data will be persistent inside the platform or not. This proposal must take into
account the different approaches in ASP environments in order to obtain a common
layer on which each policy can be integrated.

In order that each data will be fully identified, we define the data handle
(DH) which is the reference of a data that may reside anywhere. This enables the
virtualization of data since it can be read or written without knowing or caring
where it is coming from or going to. The creation of a data handle is realized by
the create(data handle t *dh); function.

Once the data reference created, it is also possible to bind it with a data. If data
is bound, it must be on the client or on a storage server. Otherwise, data is already
stored inside the platform. The bind operation is also used to specify if the data
must be keep or not. This operation is realized by the bind(data handle t dh,

data loc t loc, data site t site); function.

data loc t loc (data location): client side or storage server.

data site t site: location of the machine where data will be stored If (site ==
NULL) data will be stored on the last computational server (client transparent)
If (site == loc) data forwarded to site (client or storage server) If (site <>

loc) data moved from loc to site.

From these to functions, we can define operations on data handles.

data t read(data handle t dh): read (copy) the data referenced by the DH
from whatever machine is maintaining the data. Reading on an unbound DH
is an error.

write(data t data, data handle t dh): write data to the machine, refer-
enced by the DH, that is maintaining storage for it. Writing on an unbound
DH could have the default semantics of binding to the local host. This storage

INRIA

Managing Data Persistence in Network Enabled Servers 31

does not necessarily have to be pre-allocated nor does the length have to be
known in advance.

data arg t inspect(data handle t dh): Allow the user to determine if the
DH is bound, what machine is referenced, the length of the data, and possibly
its structure. Could be returned as XML.

bool free data(data handle t dh): free the data (storage) referenced by
the DH.

bool free handle(data handle t dh): frees the DH.

Figure 20 shows an example of data management within this proposed frame-
work. In this figure, a client submits a problem to a server that is able to compute it
and a second problem on an other server. The second server has best performance.
For this second computation, the client have not to send data an other time, this
data is already in the network.

call(output_DH, output2_DH)

read output_DH

data sent

data sent

write data on output2_DH

(output data still available on this server)

read input_DH

Note : output_DH is unbound

CLIENT SERVICE A SERVICE B

call(input_DH, output_DH)

return bound output_DH

EXECUTE SERVICE

bind input_DH to input databind input_DH to input data

create input data
create input_DH

create output_DH

EXECUTE SERVICE

bind out. data to output_DH

create output2_DH
bind output2_DH to client

create output data

Figure 20: Using the GridRPC API for data management.

RR n 5725

32 E. Caron , B. DelFabbro , F. Desprez , E. Jeannot , J-M. Nicod

7 Conclusion and Future Work

The litterature proposes several approaches for executing applications on compu-
tational grids. The GridRPC standard implemented in several NES middleware
(DIET, NetSolve, Ninf, etc.) is one of most popular paradigm. However, this stan-
dard does not define how data can be managed by the system: each time a request is
performed on a server, input data are sent from the client to the server and output
data are sent back to the client and thus data are not persistent. This implies a large
overhead that needs to be avoided. Moreover, no redistribution of persistent data
between servers is available. When a data is computed by one server and needed by
an other server for the next step of computation it always goes through the client,
increasing the transfer time.

In this paper, we have proposed and implemented data management features in
two NES (DIET and NetSolve). In NetSolve we changed the internal protocol in
order to allow data to stay on server and to move data from one server to an other.
We modified the API in order clients to allow data persistence and redistribution
and we enhanced the request scheduling algorithm in order to take into account data
location. Concerning DIET, we developed a data management service called Data
Tree Manager (DTM). This service is based on three key points: a data must be
fully identified inside the platform, it must be located and moved between compu-
tational servers. The way to think this service was relatively a new concept in NES
community. Indeed, our service is able to keep information on data stored as long
as the client does not want to remove them.

In our experimental results, we tested our implementations and the standard
NetSolve one (which features request sequencing). We shown that data management
improves the performance of applications (for both systems) when requests have
dependences because it reduces the amount of data that circulates on the Network.

Since we show that the implementation of data management is feasible and it
provides an increase of performance, we discuss, in the last section of this article, the
standardization proposal (joint work with C. Lee within the GGF) of such a feature.
It is based on two points: data is fully and globally identified, and the programmer
can choose whether a data is persistent or not in an explicit way.

In our future work, we want to study and propose new scheduling algorithms
that efficiently takes into account data management. For instance we believe that a
better scheduling algorithm than the proposed enhancement of MCT can be designed
in this context.

In the context of DIET, the overview of NetSolve DSI policy leads us thinking
about the possibility to keep data on storage servers. The definition of an efficient

INRIA

Managing Data Persistence in Network Enabled Servers 33

storage policy will allow to avoid servers overload. Our idea is to keep data onto
a server as long as it does not decrease server performance. The data will then be
stored in available storage service systems (like IBP).

References

[1] P. Arbenz, W. Gander, and J. Moré. The remote computational system. Parallel
Computing, 23(10):1421–1428, 1997.

[2] D.-C. Arnold, D. Bachmann, and J. Dongarra. Request Sequencing: Optimiz-
ing Communication for the Grid. In Euro-Par 2000 Parallel Processing, 6th
International Euro-Par Conference, volume volume 1900 of Lecture Notes in
Computer Science, pages 1213–1222, Munich Germany, August 2000. Springer
Verlag.

[3] E. Caron, S. Chaumette, S. Contassot-Vivier, F. Desprez, E. Fleury, C. Gomez,
M. Goursat, E. Jeannot, D. Lazure, F. Lombard, J.M. Nicod, L. Philippe,
M. Quinson, P. Ramet, J. Roman, F. Rubi, S. Steer, F. Suter, and G. Utard.
Scilab to Scilab//, the OURAGAN Project. Parallel Computing, 27(11), 2001.

[4] E. Caron and F. Desprez. DIET: A Scalable Toolbox to Build Network Enabled
Servers on the Grid. International Journal of High Performance Computing
Applications, 2005. To appear. Also available as INRIA Research Report RR-
5601.

[5] E. Caron, F. Desprez, B. Del-Fabbro, and A. Vernois. Gestion de données dans
les nes. In DistRibUtIon de Données à grande Echelle. DRUIDE 2004, Domaine
du Port-aux-Rocs, Le Croisic. France, may 2004. IRISA.

[6] Eddy Caron, Frédéric Desprez, Franck Petit, and Cédric Tedeschi. Resource
Localization Using Peer-To-Peer Technology for Network Enabled Servers. Re-
search report 2004-55, Laboratoire de l’Informatique du Parallélisme (LIP),
December 2004.

[7] H. Casanova and J. Dongarra. NetSolve: A Network-Enabled Server for Solv-
ing Computational Science Problems. International Journal of Supercomputer
Applications and High Performance Computing, 11(3):212 – 213, Fall 1997.

RR n 5725

34 E. Caron , B. DelFabbro , F. Desprez , E. Jeannot , J-M. Nicod

[8] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke. The data
grid: Towards an architecture for the distributed management and analysis of
large scientific datasets, 1999. http://www.globus.org/, 1999. 132.

[9] S. Dahan, J.M. Nicod, and L. Philippe. Scalability in a GRID server discovery
mechanism. In 10th IEEE Int. Workshop on Future Trends of Distributed Com-
puting Systems, FTDCS 2004, pages 46–51, Suzhou, China, May 2004. IEEE
Press.

[10] B. Del-Fabbro, D. Laiymani, J. Nicod, and L. Philippe. Data management
in grid applications providers. In Procs of the 1st IEEE Int. Conf. on Dis-
tributed Frameworks for Multimedia Applications, DFMA’2005, pages 315–322,
Besançon, France, February 2005.

[11] Bruno Del-Fabbro, David Laiymani, Jean-Marc Nicod, and Laurent Philippe.
A data persistency approach for the diet metacomputing environment. In
Hamid R. Arabnia, Olaf Droegehorn, and S. Chatterjee, editors, International
Conference on Internet Computing, pages 701–707, Las Vegas, USA, June 2004.
CSREA Press.

[12] GridRPC Working Group. https://forge.gridforum.org/projects/gridrpc-wg/.

[13] S. Sekiguchi H. Nakada, M. Sato. Design and Implementations of Ninf: Towards
a Global Computing Infrastructure. Future Generation Computing Systems,
Metacomputing Issue, 15:649–658, 1999.

[14] T. Kosar and M. Livny. Stork: Making data placement a first class citizen
in the grid, 2004. In Proceedings of the 24th Int. Conference on Distributed
Computing Systems, Tokyo, Japan, March 2004.

[15] M. Maheswaran, S. Ali, H.J. Siegel, D. Hengsen, and R.F. Freund. Dynamic
Matching and Scheduling of a class of Independent Tasks onto Heterogeneous
Computing System. In Proceedings of the 8th Heterogeneous Computing Work-
shop (HCW ’99), april 1999.

[16] S. Matsuoka, H. Nakada, M. Sato, , and S. Sekiguchi. De-
sign Issues of Network Enabled Server Systems for the Grid.
http://www.eece.unm.edu/∼dbader/grid/WhitePapers/satoshi.pdf , 2000. Grid
Forum, Advanced Programming Models Working Group whitepaper.

INRIA

http://www.eece.unm.edu/~dbader/grid/WhitePapers/satoshi.pdf

Managing Data Persistence in Network Enabled Servers 35

[17] H. Nakada, S. Matsuoka, K. Seymour, J. Dongarra, C. Lee, and
H. Casanova. A GridRPC Model and API for End-User Applications, Decem-
ber 2003. https://forge.gridforum.org/projects/gridrpc-wg/document/GridRPC
EndUser 16dec03/en/1.

[18] NEOS. http://www-neos.mcs.anl.gov/.

[19] Martin Quinson. Dynamic performance forecasting for network-enabled servers
in a metacomputing environment. In International Workshop on Performance
Modeling, Evaluation, and Optimization of Parallel and Distributed Systems
(PMEO-PDS’02), in conjunction with IPDPS’02, April 15-19 2002.

[20] K. Seymour, C. Lee, F. Desprez, H. Nakada, and Y. Tanaka. The End-User and
Middleware APIs for GridRPC. In Workshop on Grid Application Programming
Interfaces, In conjunction with GGF12, Brussels, Belgium, September 2004.

RR n 5725

https://forge.gridforum.org/projects/gridrpc-wg/document/GridRPC_EndUser_16dec03/en/1

Unité de recherche INRIA Rhône-Alpes
655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

	1 Introduction
	2 Background
	2.1 Network Enabled Server Architectures
	2.1.1 General Architecture
	2.1.2 NetSolve
	2.1.3 DIET Architecture

	2.2 On the Importance of Data Management in NES
	2.2.1 Motivating Example
	2.2.2 Goal of the Work

	3 New Data Management in NetSolve
	3.1 Server Modifications
	3.1.1 Data Persistence
	3.1.2 Data Redistribution

	3.2 Client Modifications
	3.2.1 New Structure for the Client API
	3.2.2 Modification of the NetSolve Code
	3.2.3 Set of New Functions

	3.3 Agent Scheduler Modifications
	3.4 Code Example

	4 Data Management in DIET
	4.1 Principles
	4.2 The DIET Data Tree Manager
	4.2.1 The Persistence Mode
	4.2.2 The Data Identifier
	4.2.3 Logical Data Manager and Physical Data Manager
	4.2.4 Data Mover
	4.2.5 Client API

	5 Experimental Results
	5.1 Standard NetSolve Data Management
	5.2 NetSolve with Data Persistence and Redistribution
	5.2.1 LAN experiments
	5.2.2 WAN Experiments

	5.3 DIET Data Management
	5.4 DIET and NetSolve Comparison

	6 Standardizing Data Management
	7 Conclusion and Future Work

