N

N

Optimistic Replication for Massive Collaborative Editing
Gérald Oster, Pascal Urso, Pascal Molli, Hala Skaf-Molli, Abdessamad Imine

» To cite this version:

Gérald Oster, Pascal Urso, Pascal Molli, Hala Skaf-Molli, Abdessamad Imine. Optimistic Replication
for Massive Collaborative Editing. [Research Report] RR-5719, INRIA. 2005, pp.18. inria-00071218

HAL 1d: inria-00071218
https://inria.hal.science/inria-00071218
Submitted on 23 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00071218
https://hal.archives-ouvertes.fr

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Optimistic Replication for Massive Collaborative
Editing

Gérald Oster — Pascal Urso — Pascal Molli — Hala Molli — Abdessamad Imine

N° 5719
Octobre 2005

Thémes COG et SYM

apport
derecherche

% I N RIA

LORRAINE

Optimistic Replication for Massive Collaborative Editing

Geérald Oster * , Pascal Urso ', Pascal Molli ¥ , Hala Molli ¥ , Abdessamad
Imine ¥

Thémes COG et SYM — Systémes cognitifs et Systémes symboliques
Projets ECOO et CASSIS

Rapport de recherche n® 5719 — Octobre 2005 — 18 pages

Abstract: In recent times, Wikipedia has opened the way to massive collaborative
editing. More specially, it has demonstrated what can be achieved with a massive
collaborative effort. Massive collaborative editing implies scalability however, pes-
simistic replication scales poorly in the wide area. Optimistic replication offers better
performance but has severe drawbacks for maintaining consistency. In this paper,
we propose a new optimistic replication algorithm for massive collaborative editing
called WOOT. It is designed to scale, as well as to ensure eventual consistency and
intention preservation. It is important to point out that WOOT efficiency does not
depend on a number of sites and can be deployed on a very large pure peer-to-peer
network.

Key-words: Real time groupware, optimistic replication, operational transforma-
tion, replicated data consistency

* ECOO
T ECOO
t ECOO
§ ECOO
T CASSIS

Unité de recherche INRIA Lorraine
LORIA, Technopble de Nancy-Brabois, Campus scientifique,

615, rue du Jardin Botanique, BP 101, 54602 Villers-Lés-Nancy (France)
Téléphone : +33 3 83 59 30 00 — Télécopie : +33 3 83 27 83 19

Réplication optimiste pour I’édition collaborative massive

Résumé : La Wikipedia a ouvert la voie a 1’édition collaborative massive. Elle
a montrée qu’un effort collaboratif massif peut produire une encyclopédie qui est
aujourd’hui sans équivalent. Le passage & 1’échelle du systéme d’édition collaboratif
est primordial pour ’édition collaborative massive. Les systémes basés sur la répli-
cation pessimiste des données ne sont pas adaptés a notre contexte. Si La réplication
optimiste offre de meilleures performances, elle souffre d’un probléme récurrent de
maintient de la cohérence des données répliquées. Nous proposons un algorithme de
réplication optimiste pour 1’édition collaborative massive. Il est congu pour assurer
la convergence des données, la préservation des intentions et le passage & 1’échelle.
Cet algorithme ne dépend pas du nombre de sites et peut étre déployé sur un réseau
pair a pair & large échelle.

Mots-clés : Editeurs temps rééls, réplication optimiste, transformées opération-
nelles, cohérence des données réparties

Massive Collaborative Editing 3

1 Introduction

Collaborative editing allows users to edit the same text from multiple sites across
Internet. For example, recently collaborative editing allowed Wikipedia [14] to collect
more than 1,600,000 articles in more than 100 languages. Moreover, than 13 million
of page requests per day, more than 4,000 changes are made every day by more than
12,000 active writers [9]. Thus, Wikipedia is an example of massive collaborative
editing.

Scalability is one of the key issues for massive collaborative editing. For example,
Wikipedia uses a database pessimistic replication approach [1]. Thus all changes
are routed on a single master database that propagates changes to slaves within
distributed atomic transactions. Consequently, the master database is a congestion
point that limits scalability of this approach [15]. Wikipedia relies on "brutal force”
to handle this load.

On the one hand, the optimistic replication approach [7] greatly improves perfor-
mances. [t can be deployed on peer-to-peer network and scales with cheap resources.
On the other hand, it is more difficult to ensure consistency. Traditionally, the op-
timistic replication systems ensure eventual consistency i.e. replicas can diverge but
must converge when system is idle.

Optimistic replication is suited for collaborative editing. CVS [2], real-time group
editors [3, 11| are good examples of optimistic replication algorithms applied to
collaborative editing. However, these systems have not been designed for massive
collaborative editing. Consequently, they often require a central site, a total ordering,
a consensus or vector clocks. These well known mechanisms or algorithms are not
designed for a large number of sites.

The main issue for massive collaborative editing systems, based on optimistic
replication, is to ensure eventual consistency and scalability. So far, only Usenet and
DNS ensure both eventual consistency and scalability. However, they are not suited
for collaborative editing.

WOOT is an optimistic replication algorithm designed for massive collaborative
editing. It does not require the central site, total ordering, consensus or vector clocks.
It does not use the number of sites as its parameter. It is designed to be deployed on
a very large peer-to-peer network. In theory, WOOT can support Wikipedia editing
with an optimistic replication approach. Futhermore, WOOT could allow massive
collaborative application such as Wikipedia to be deployed on a cheap peer-to-peer
network with better performances.

RR n® 5719

4 Oster, Urso, PMolli, HMolli and Imine

site 1 site 2 site 1 site 2
"ABCDE"||"ABCDE" "ABCDE"| |"ABCDE"
olzinsé2,”12”) og:d?el(3) 01:in3é2,”12”) 01=in3é2,”12”)
[A12BCDE| [ABDE| [A12BCDE| [A12BCDE|
(a) Intention violation 02:a§el(3) @:c@el(s)
problem
|[ALBCDE| [A1BCDE]

(b) intention violation

Figure 1: Intention violation problem

This paper focuses on sequence of characters but it is clear that the WOOT
framework can support any linear structure. Thus a linear structure can be more
complex e.g. in a form of an ordered tree that can be mapped into a linear structure.

Section 2 gives an overview of the WOOT approach. Section 3 describes formally
the WOOT framework including the algorithms and the examples. Section 4 presents
a formal evaluation of correctness of WOOT algorithms. Section 5 presents the
related works. Section 6 summarises contributions of the paper and gives an overview
of our future work.

2 Woot Approach

The traditional optimistic replication approaches do ensure eventual consistency [7].
Thus, in collaborative editing, real time group editors define the notion of intention
preservation [10]. It means that when an operation is re-executed on remote sites,
its effects on the generation state are preserved. Typically, rules as “the last writer
wins” do not preserve intention. For example, in Wikipedia when two users edit
concurrently the same article, the final article will just contain changes from the last
writer. Consequently, this rule violates the intentions of the first writer. Manual
merging is done a posteriori using versionning management.
The intention-violation problem has been introduced in the REDUCE approach [10].

Suppose that two sites share a string containing "ABCDE" (cf. figure 1(a)). Site
1 inserts "12" at position 2 and obtains "A12BCDE". Thus, site 1 has executed

INRIA

Massive Collaborative Editing 5

operation 01 = ins(2,712”) with the intention to insert "12" between 'A’ and 'B’.
Suppose that site 2 deletes one character at position 3 and obtains "ABDE". Site 2
has executed operation o2 = del(3) with the intention to delete the character 'C’. If
we execute both operations and preserve intentions, we must obtain "A12BDE". But
if we use the serialization protocol, it may serialize 0; before 0y. The final result in
this case is "AIBCDE" (cf. figure 1(b)). Convergence is achieved but the intentions
i.e. operation effects, are not preserved.

In this example, intention preservation means that if "12" has been inserted
between 'A’ and 'B’, then this ordering ‘A’ < 712” <’ B’ must be preserved for any
further states.

In order to ensure intention preservation, WOOT translates primitive text edit-
ing operations into orderings. Therefore instead of executing and broadcasting
insert(2,7127), it executes insert(2,712”) and broadcasts insert('A’ <7127 <’ B’).
When these operations are integrated, WOOT inserts "12" between A’ and 'B’.
Hence, the first correctness criterion of the WOOT approach is intention preserva-
tion.

A problem may occur if we receive insert('A’ < 7127 <’ B’) and 'B’ has been
locally deleted. In the WOOT approach, 'B’ will exist because a character is not
deleted. Rather, it is marked as invisible.

Each insert operation generates two new order relationships, however, it does
not generate a total order, just a partial one. For example, consider three sites
where each site generates one operation as presented in figure 2(a). All relationships
between characters are represented in the Hasse diagram (as depicted by figure 2(b)).
From the diagram, we can notice that the states respecting intentions are the linear
extensions of the partial order i.e. "a312b", "a321b", "a231b". In order to achieve
convergence, all sites must have the same linear extension.

Each time an operation is received, a new linear extension is computed. This
computation must be monotonic i.e. the new linear extension must be compatible
with all previous ones. For example, if 'a’ was placed before 'b’, then a new linear
extension cannot place b’ before ’a’. Traditionally, a topological sort is used to find
a linear extension of a partial ordered set. However, classical topological sort is not
monotonic and consequently, not suitable in this context.

The challenge of the WOOT framework is to ensure convergence by using a
monotonic linear extension function. Thus, when WOOT receives new character
¢, it inserts it between x and y i.e. = < ¢ < y. However, there may be some
other characters between x and y, concurrently inserted or previously deleted. Thus,
c must be placed somewhere among these characters. To break the tie between

RR n® 5719

6 Oster, Urso, PMolli, HMolli and Imine

two unordered characters WOOT uses a total order based on the unique character
identifier. However, to achieve convergence, the method applied to place ¢ must be
independent from the order of reception of the characters.

3 WOOT Framework

In this section, we present the WOOT model and its algorithms. We formally de-
fine the data structure used by WOOT and the order relations used to linearize
characters. Finally, we describe the algorithms used by the WOOT framework.
A group editor is consistent if and only if, it satisfies the following two properties:
Convergence When the same set of operations has been executed at all sites, all
copies of the shared document are identical.
Intention Preservation For any operation O, the effects of executing O at all sites
are the same as the effects of executing O in its generation state.

3.1 Data model

WOOT manages W-characters by encapsulating the additional information about
characters i.e. identifier, visibility and order relation.

Definition 1 A W-character c is a five-tuple < id,v, o, idp, idcy, > where
e id is the identifier of the character.
e v € {True, False} indicates if the character is visible,

« 1s the alphabetical value of the effect character,

idey 18 the identifier of the previous W-character of c.

idey, 15 the identifier of the next W-character of c.

The previous and the next W-characters of ¢ are the W-characters between which
c has been inserted.

Definition 2 The previous W-character of c is denoted Cp(c). The next W-character
of ¢ is denoted Cn(c).

Each site s has unique identifier numSites, logical clock H,, sequence strings of
Wh-characters and pool of pending operations pools. The site identifier and the local
clock are used to identify characters in a unique way.

Definition 3 A character identifier is pair (ns,ng) where ns is the identifier of a
site and ng is a natural number. When a W-character is generated on site s, its
identifier is (numSiteg, Hy).

INRIA

Massive Collaborative Editing 7

Each time a W-character is generated on site s, the local clock Hj is incremented.
Since numJSite is unique, the pair forms a unique identifier for a character.

Definition 4 A W-string is an ordered sequence of W-characters Cycico...c,Ce
where Cy and C. are the special W-characters (i.e. with special identifiers) that
mark the beginning and the ending of the sequence.

We define the following functions for sequence S
e |S| denotes the length of sequence S.
e S[p| denotes the element at the position p in S. We state that the first element
of sequence S is at position 0 and the last element is at position |S| — 1.
e pos(S,c) returns the position of element ¢ in S as a natural number.
e insert(S,c,p) inserts element ¢ in S at position p.
e subseq(S,c,d) returns the part of sequence S between the elements ¢ and d
(excluding ¢ and d).
e contains(S,c) returns true if ¢ can be found in S
The following functions are used to link the W-string with the string that user
will eventualy see.
e value(S) is the representation of S (i.e. the sequence of visible alphabetical
values).
e ithVisible(S, i) is i*" visible character of S.
The following two operations update a W-string;:
ins(c) inserts W-character ¢ between its previous and next characters under the
condition that the previous and next characters exist.
del(c) deletes W-character ¢ providing that ¢ exists.

3.2 Orders

Definition 5 Suppose that a and b are two W-characters. a < b if and only if, there
ezists a set of characters co,ci,...c; such that a = co,b = ¢; and Cn(cj) = cj41 or
cj = Cp(Cjy1) for all 0 < j <.

where < is a binary relation over the set of W-characters. < is irreflexive, tran-
sitive and asymmetric. Thus, < is a strict partial order.

To obtain a string from this partial order, we have to find a linear extension (i.e.
a total order).

Definition 6 Let S be a sequence, the relation <g is defined as a <g b if and only
if pos(S, a) < pos(S,b)

RR n® 5719

8 Oster, Urso, PMolli, HMolli and Imine

When no precedence relation can be established between two characters, it is
necessary to order them. Furthermore, to ensure convergence, this order must be
independent from the state of the sites. For this purpose, we use the characters
identifier.

Definition 7 Let a and b be two W-characters with their respective identifiers (nsq, ngq)
and (nsp,ngp). a <iq b if and only if (1) ns, < nsy or (2) ns, = ns, and ng, < ngp.

3.3 Algorithms

When a site generates an operation, this operation is integrated locally, broadcasted
and then integrated by all other sites. The reason for the local integration is to take
into account the invisible characters that are previously deleted.

Generation. For an operation op, type(op) denotes its type: del or ins. Also,
char(op) denotes the character manipulated by the operation.

When an user interacts with the framework, s/he only sees value(S). So, when
an insert operation is generated the user-interface only shows the visible position
and the alphabetical value of the character to be inserted. For instance, ins(2,a) in
"xyz” is translated into ins(z < a < y).

Generatelns(pos, a)
H,:=H,+1
let ¢, := ithVisible(strings, pos),
¢ i= ithVisible(strings, pos + 1),
wchar :=< (numSites, Hy), True, o, cp.id, ¢, .id >
IntegrateIns(wchar, cp, cy)
broadcast ins(wchar)

Similarly, when a delete operation is generated, it is necessary to retrieve the
W-character from this position.

GenerateDel(pos)
let wchar := ithVisible(strings, pos)
IntegrateDel(wchar)
broadcast del(wchar)

INRIA

Massive Collaborative Editing 9

Reception Sites may receive operations with unverified preconditions. In that
case, the isExecutable function checks preconditions of an operation.

isExecutable(op)
let c:= char(op)
if type(op) = del then
return contains(strings, c)
else
return contains(strings, Cp(c)) and contains(strings, Cn(c))
endif

To deal with pending operations each site maintains a pool of operations.

Reception(op)
add op to pool,

For instance, a site executes del(c) only if ¢ is present. If ¢ is not present, the
integration of the operation is delayed until ¢ is present.

Main()
loop
find op in pools such that isExecutable(op)
let ¢ := char(op)
if type(op) = del then
IntegrateDel(c)
else
Integratelns(c,Cp(c),Cn(c))
endif
endloop

Integration To integrate an operation del(c), we set the visible flag of character
c to False, irrespectively of the previous value.

IntegrateDel(c)
cv = False

To integrate an operation ins(c) in strings, we need to place ¢ among all the
characters between c, and c,. These characters can be previously deleted characters
or the ones inserted by concurrent operations. When operation ins(c) is executed
on a site, procedure Integratelns(c, Cp, cpn) is executed.

RR n® 5719

10 Oster, Urso, PMolli, HMolli and Imine

site 1 site 2 site 3

n b” n b” ”ab” C c (
: p n(3)
op1 = (a <1=<b)ops = ms(a <2<b) /p(l\ Cn(1)
01291 \ /

op3 = ms(a <3<1
a3§1b| op2 (b) Cp and C,, relationships

01292

a312h ops

(a) Generating partial orders

Figure 2: Partial orderings

Integratelns(c, ¢, ¢,)
let S := strings
let S’ := subseq(S, cp,cn)
if S’ = & then
insert(S, ¢, pos(S, cp))
else
let L := cpdodl .dyc, where dy ...d, are the
W—char in S’ such that Cp(d;) <g ¢, and ¢,, <g Cn(d;)
let i:=1
while (i < |L| — 1) and (L[i] <;q ¢) do
1:=1+4+1
endwhile
Integratelns(c, L[i — 1], L[i])
endif

INRIA

Massive Collaborative Editing 11

The algorithm orders characters with <;; when no precedence relation < is avail-
able. S’ is the sequence of characters between ¢, and c¢,. if S’ empty, c is inserted
between ¢, and c,.

Otherwise, WOOT makes a copy of S’ in L and removes from L all characters
¢; with Cp(c;) or Cp(c;) between ¢, and ¢,. We explain this choice with figure 2(a).
When ops is integrated on site 3, ops see only the string "alb". Character 2’ is
compared to character '1’ and then inserted after ’1’. When ops is integrated on
site 1, ops see the string "a31b". To be sure to make the same choice than on site
2, ’2’ must compared first with character '1’ and maybe next with character ’3’.
WOOT detects that '3’ must not be compared to "2’ because C,(3) is between C,(2)
and C,,(2) (cf figure 2(b)). Thus, it can exist another site where character ’2’ is
integrated and character '3’ is not yet arrived as in figure 2(a) on site 3. By applying
this strategy, we are sure that all characters in L are sorted by the <;y; relation.
Next, WOOT has just to insert ¢ in this sorted list. If i is the insert position of
¢ in L, WOOT makes a recursive call to intergatedIns(c, L[i — 1],L[i]) where the
subsequence bounded by [L[i — 1],L[i]] is strictly shorter than the sequence bounded
by [Cp, Cy).

3.4 Example

Suppose that three sites are in the initial state "cpc.". We consider the scenario
shown by figure 3(a). It generates the orderings depicted by the Hasse diagram
(figure 3(b)). We also assume that <;4 relation is defined as follows : ’1” <;4 2" <4
3 <q 4.

Integration on Site 3. Site 3 receives 01 and then generates o3 and o4. Thus, site
3 gets in the state "cp314c.".

It integrates oo = ins(c, < 2 < ¢¢). '2’ must be arranged among characters
between ¢, and c¢.. Thus among "314" which are put in S’. Cy(3) and Cp(4)
are between ¢, and c. so only ’l’ remains in L. WOOT compares 2’ to 1’
according to relation <;q. "1’ <;q '2’; therefore '2’ must be inserted after ’1°.
Integration procedure is called recursively between '1’ and c.. Only 4’ remains
in L. ’2’ must be inserted before '4’ as 2’ <;4 '4’. Thus ’2’ must be inserted
between ’1’ and '4’.

Finally, state of Site 3 becomes "¢,3124c¢.".

Integration on Site 2. Site 2 generates oy to get state "cp2¢.".

RR n® 5719

12 Oster, Urso, PMolli, HMolli and Imine

site 1 site 2 site 3

nn nn nn

01 = z'ns(cé, <1=<c) o2 = ins(cé, <2 =<ce)

03 = ins(céb <3<1)

= zns(l <4 <ce)

(a) Example scenario

e
NAY

(b) Hasse diagram

It integrates o1 = ins(cy < 1 < ¢¢). 1’ and 2’ have the same previous and
next characters. 1’ must ordered with ’2’ according to relation <;q. As’1’ <4
'2’, 717 is inserted before 2’. Site 2 has the state "c¢p12¢.".

INRIA

Massive Collaborative Editing 13

It integrates o3 = ins(cy; < 3 < 1). As there is no character between its
branches, '3’ is simply inserted. Site 2 obtains state "¢;312¢.".

It integrates o4 = ins(1 < 4 < ¢.). "4’ must be compared with '2’ according
to <jq. As 2" <;q '4’, ’4’ must be inserted after ’2’. Thus, it must be inserted
between ’2’ and c..

Finally, site 2 gets in state "c,3124c¢.".

Integration on Site 1. Site 1 generates o; to obtain state "cplc.". Irrespectively
of the arrival order of 09, 03 and 04, WOOT computes ¢;,3124c.. In all cases, the
final string is "3124", thus convergence and intention preservation are ensured.

4 Correctness
Theorem 1 The algorithm of integration terminates.

Proof 1 Proof by contradiction.

The algorithm does not terminate, if and only if, the recursive call is not done on
a strict subsequence. This can happen only if we get, non-empty S’ and L = cpcy,. If
L = ¢pcp, , every character in this S” has its predecessor or successor in S'. At least,
the first integrated character between c, and c, has its previous and next characters
outside of S’. This is because the characters have been generated in a strict order.

Thus, there are at least 8 characters in L. So the recursive call is done on a
strictly smaller subsequence and the algorithm terminates.

Intention preservation Our linearization order must respect the precedence order
defined when operations are generated.

Theorem 2 Relation <; built by WOOT on each site, is a linear extension of the
relation <.

Proof 2 Generation of an operation does not modify relation <. This relation is
only modified through Integratelns. The integration of character c is always done
by its insertion between Cp(c) and Cn(c). Thus <s is a linear extension of <.

However, ensuring intention preservation is not sufficient. For instance, if two
sites insert concurrently ’x’ and ’y’ between the same characters ’a’ and 'b’, the
resulting strings can be "axyb" and "ayxb". These two linear extensions satisfy
intention preservation but do not converge.

RR n® 5719

14 Oster, Urso, PMolli, HMolli and Imine

Convergence We do not have a manual proof of convergence. To verify the cor-
rectness of our algorithm, we have used the TLC model-checker on a specification
modeled on the TLA+ specification language [16]. Note that Model-checking tech-
niques are particularly suited to verify concurrent systems. With the TLC model
checker we have verified a bounded model of WOQOT. In practice, it is impossible to
test a system with a large number of sites and characters due to the famous state
explosion problem. We verified convergence up to four sites and five char-
acters. It took about two weeks with a Pentium(R) 4 CPU 2.80GH 2. The TLA
specification has been described in more details in the technical report [6] .

Convergence requires that two characters on two sites are linearized in the same
order. The convergence criteria is ensured by the fact that every generated character
will be inserted in every site.

Conjecture 1 Let S1 and Sy be two W-strings maintained by two different sites.
For every pair of characters {c,d} that appear on both sites, we get

c<g,dsc<g,d

To reduce design complexity of the specification and to accelerate verification of
the proposed model, we have made two slight generalizations. Operation del and
its integration do not appear in the model since this operation does not affect the
linearization order. However, to simulate deletion of characters, we allow generation
of ins(c, < ¢ < ¢p) in S that requires only ¢, <g ¢, i.e. as if the characters between
¢p and ¢, were deleted.

The second generalization assumes that characters are represented simply by an
identifier. Thus according to this model generalization any site can generate any
character identifier.

The TLC model-checker has found an error in a previous naive version of the
integration algorithm. In this version, we did not filter S’ to obtain L. We thought
that since all the characters between ¢, and ¢, were concurrent to ¢ we simply have
to order them according to <;4. The model checker has found a counter example in
the scenario presented in figure 2(b). This counter-example was helped us to design
the current version of the integration algorithm.

5 Related works

Massive collaborative editing requires scalability, convergence and intention preser-
vation.

INRIA

Massive Collaborative Editing 15

In the operational transformation approach, only the SDT algorithm [5] ensures
convergence and intention preservation. However, it uses vector clocks. This is not
appropriate because in this context the actual number of sites is quite large and they
come and go dynamically. On the other hand, WOOT does not require vector clocks
because it is not use the number of sites as a parameter.

Another example, IceCube [4] also ensures convergence and intention preserva-
tion. But IceCube merges concurrent operations on one site. It means that all con-
current operations must be sent on one site for merging. Then, the merged log must
be dispatched to all sites. Consequently, all sites must be connected during reconcil-
iation and frozen until reconciliation is done. These constraints are not compatible
with peer-to-peer networks. Compared to IceCube, WOOT proposes a distributed
merge. It relies on a monotonic linearization function. If IceCube linearizes con-
current operations, its linearization function is not monotonic. Consequentley, its
merging operation must be computed on one site.

Furthermore, Bayou [12] relies on the primary site to enforce the global continuous
order on a prefix of history. This prefix is shared by all sites. Bayou maintains this
global continuous order using a primary site. However, this site represents also a
congestion point.

Usenet [8] ensures convergence, intentions and scalability. But although it is
a groupware tool, it cannot be considered as a collaborative editing tool. This is
because a Usenet message cannot be edited.

The Thomas’s write rule [13] is heavily used in epidemic algorithms to achieve
convergence. To ensure scalability Thomas’s write rule needs to implement the strat-
egy of “Last Writer Wins”. However, this strategy does not ensure intention preserva-
tion. Consequently, it is not possible to build a massive collaborative editing system
with Thomas write rule.

CVS [2] is a popular configuration management tool. It relies on an optimistic
replication algorithm to ensure convergence. It also uses a central server that enforces
a global continuous order. For example, if n sites produce a change, during round
1 only one site will be able to publish its changes. During round 2 all other sites
have to update their replica. During round 3, only one site will be able to commit
and so on. Thus, convergence will be achieved in 2n — 1 rounds. Compared to CVS,
WOOT converges in one round.

In summary, WOOT is the only optimistic replication algorithm that ensures
convergence, intention preservation and scalability. It requires no vector clocks as
SDT. Unlike IceCube, it relies on a distributed merge. Moreover, WOOT does not re-
quire a primary site as Bayou. Unlike systems based on Thomas’s write rule, WOOT

RR n°® 5719

16 Oster, Urso, PMolli, HMolli and Imine

ensures intentions preservation. Finally, compared to CVS, WOOT converges in 1
round.

All these characteristics make WOOT the only algorithm suitable for massive
collaborative editing.

6 Conclusion

WOOT is designed for massive collaborative editing. Based on a monotonic lin-
earization function, it ensures convergence and intention preservation. It does not
depend on a number of sites and can handle very large peer-to-peer networks. The
proposed WOOT framework has been formally verified with model checking tools.

As a proof of concept, we have implemented a simple WOOT editor in Java
deployed on a multicast network. It can be downloaded from http://www.loria.
fr/"molli/woot.

Our current work includes further verification of WOOT correctness, group undo
features, garbage collector as well as support for the XML tree.

7 Acknowledgments

Special thanks to Florent Jouille for his implementation of WOOT in few days.
Thanks to Olivera Marjanovic for reviewing.

References

[1] Wikipedia Architecture. Online hitp://meta.wikimedia.org/wiki/Wikimedia_ servers,
(2005).

[2] Brian Berliner. CVS II : Parallelizing Software Development. In Proceedings of
USENIX, Washigton D. C., 1990.

[3] Clarence A. Ellis and Simon J. Gibbs. Concurrency Control in Groupware
Systems. In SIGMOD Conference, volume 18, pages 399-407, 1989.

[4] Anne-Marie Kermarrec, Anthony Rowstron, Marc Shapiro, and Peter Druschel.
The IceCube approach to the reconciliation of divergent replicas. In Proceed-
ings of the Twentieth ACM Symposium on Principles of Distributed Computing
(PODC), Newport RI, USA, August 2001.

INRIA

Massive Collaborative Editing 17

[5] Du Li and Rui Li. Preserving operation effects relation in group editors. In
Proceedings of the 2004 ACM conference on Computer supported cooperative
work (CSCW’04), pages 457-466, New York, NY, USA, 2004. ACM Press.

[6] GA@©rald Oster, Pascal Urso, Pascal Molli, and Abdessamad Imine. Real
time group editors without operational transformation. Rapport de recherche,
LORIA-INRIA Lorraine, May 2005.

[7] Yasushi Saito and Marc Shapiro. Optimistic replication. ACM Computing Sur-
veys, 37(1):42-81, 2005.

[8] Rich Salz. InterNetNews: Usenet transport for Internet sites. In USENIX

conference proceedings, pages 93-98, San Antonio, Texas, USA, Summer 1992.
USENIX.

[9] Wikipedia Statistics. Online hitp://meta.wikimedia.org/wiki/Statistics, (2005).

[10] Chengzheng Sun and Clarence A. Ellis. Operational transformation in real-time
group editors: Issues, algorithms and achievements. In Proceedings of the 1998
ACM conference on Computer Supported Cooperative Work (CSCW’98), pages
59-68, New York, NY, USA, November 1998. ACM Press.

[11] Chengzheng Sun, Xiaohua Jia, Yanchun Zhang, Yun Yang, and David Chen.
Achieving convergence, causality-preservation and intention-preservation in real-

time cooperative editing systems. ACM Transactions on Computer-Human In-
teraction (TOCHI), 5(1):63-108, March 1998.

[12] Douglas B. Terry, Marvin M. Theimer, Karin Petersen, Alan J. Demers, Mike J.
Spreitzer, and Carl H. Hauser. Managing update conflicts in bayou, a weakly
connected replicated storage system. In Proceedings of the fifteenth ACM sym-
posium on Operating systems principles (SOSP’95), pages 172-182. ACM Press,
1995.

[13] Robert H. Thomas. A solution to the concurrency control problem for multiple
copy databases. In Proceedings of the sixteenth IEEE Computer Society Interna-
tional Conference (COMPCON’78), pages 56-62, New York, NY, USA, Spring
1978. IEEE Computer Society.

[14] Wikipedia. the free encyclopedia that anyone can edit. Online
http: / /www.wikipedia.org/, (2005).

RR n® 5719

18 Oster, Urso, PMolli, HMolli and Imine

[15] Haifeng Yu and Amin Vahdat. The costs and limits of availability for replicated
services. In SOSP, pages 29-42, 2001.

[16] Panagiotis Manolios Yuan Yu and Leslie Lamport. Model checking TLA+ spec-
ifications. In Proceedings of Correct Hardware Design and Verification Methods
(CHARME’99), pages 54-66, 1999.

INRIA

/<

Unité de recherche INRIA Lorraine
LORIA, Technopdle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-les-Nancy Cedex (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhone-Alpes : 655, avenue de I’Europe - 38334 Montbhonnot Saint-Ismier (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)
Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)
http:/ /www.inria.fr

ISSN 0249-6399

