Drawing $K_n$ in Three Dimensions with One Bend per Edge

Olivier Devillers 1 Hazel Everett 2 Sylvain Lazard 2 Maria Pentcheva 2 Stephen Wismath 3
1 GEOMETRICA - Geometric computing
CRISAM - Inria Sophia Antipolis - Méditerranée
2 VEGAS - Effective Geometric Algorithms for Surfaces and Visibility
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : We give a drawing of $K_n$ in three dimensions in which vertices are placed at integer grid points and edges are drawn crossing-free with at most one bend per edge in a volume bounded by $O(n^2.5)$.
Complete list of metadatas

Cited literature [14 references]  Display  Hide  Download

https://hal.inria.fr/inria-00071219
Contributor : Rapport de Recherche Inria <>
Submitted on : Tuesday, May 23, 2006 - 2:40:55 PM
Last modification on : Wednesday, February 13, 2019 - 2:58:21 PM
Long-term archiving on : Sunday, April 4, 2010 - 10:01:46 PM

Identifiers

  • HAL Id : inria-00071219, version 1

Collections

Citation

Olivier Devillers, Hazel Everett, Sylvain Lazard, Maria Pentcheva, Stephen Wismath. Drawing $K_n$ in Three Dimensions with One Bend per Edge. [Research Report] RR-5708, INRIA. 2005. ⟨inria-00071219⟩

Share

Metrics

Record views

411

Files downloads

286