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Paramétrisation quasi-optimale de l’intersection de quadriques :
III. Paramétrisation des courbes d’intersection singulières

Résumé : Dans la partie II [3] de cet article, nous avons montré, en se basant sur une classification
des faisceaux de quadriques de P3(R) sur les réels, comment déterminer rapidement et efficacement
le type réel de l’intersection de deux quadriques données.

Dans cette troisième partie, nous utilisons l’information collectée pendant la phase de détection
du type pour diriger le paramétrage de l’intersection. Dans chaque cas possible, nous donnons la
trame d’un algorithme quasi-optimal pour paramétrer la partie réelle de l’intersection et donnons des
exemples couvrant toutes les situations possibles en terme de nombre et de profondeur de radicaux
impliqués.

Mots-clés : Intersection de surfaces, quadriques, faisceaux de quadriques, paramétrisation, inter-
sections singulières.
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1 Introduction

Building on the classification of pencils of quadrics of P3(R) over the reals achieved in Part II [3] and
the type-detection algorithm that we deduced from this classification, we now are ready to present
near-optimal parameterization algorithms for all the possible types of real intersection.

Since the smooth quartic case has already been thoroughly studied in Part I [2], we focus here on
the singular cases. For each case, we prove the near-optimality of the parameterization and, when
there is possibly an extra square root, we describe the test needed to assert the full optimality which
always boils down to finding a rational point on a (possibly non-rational) conic.

In what follows, QS,QT refer to the initial quadrics and QR (assumed to be distinct from QS) to
the intermediate quadric used to parameterize the intersection C of QS and QT . As in Section I.7.1,
denote by Ω the equation in the parameters:

Ω : XT SX = 0,

where X is the parameterization of QR. Denote also by CΩ the curve zero-set of Ω. Recall that
the parameterization of QR defines an isomorphism between C and the plane curve CΩ. When C is
singular, its genus is 0 so it can be parameterized by rational functions (i.e.

√
∆ can be avoided).

Our general philosophy is to use for QR the rational quadric of the pencil of smallest rank. This
will lead us to use repeatedly the results of Section I.6 on the optimality of parameterizations of
projective quadrics and to parameterize cones without a rational point, cones with a rational point,
pairs of planes, etc. As will be seen, this philosophy has the double advantage of (i) avoiding

√
∆ in

all singular cases, and (ii) minimizing the number of radicals. As an additional benefit, it helps keep
the size of the numbers involved in intermediate computations and in the final parameterizations to
a minimum (see Part IV [4]).

For every type of real intersection, we give a set of worst-case examples where the maximum
number of square roots is reached, both in the optimal and near-optimal situations (the best-case
examples are those given by the canonical forms of Section II.3). Examples covering all possible
situations are gathered in Appendix C.

A summary of the results of this part is given in Table 1.
The rest of this third part is as follows. Section 2 gives near-optimal parameterization algorithms

for all types of real intersection when the pencil is regular. Section 3 does the same for singular
pencils (i.e., when the determinantal equation vanishes identically). Several examples are detailed
in Section 4 and it is shown how our implementation fares on these examples. Finally, we conclude
in Section 5 and give a few perspectives.

2 Parameterizing degenerate intersections: regular pencils

In this section, we outline parameterization algorithms for all cases of regular pencils, i.e. when the
determinantal equation does not identically vanish. Information gathered in the type-detection phase
(Part II) is used as input; see in particular Table II.4 but also the details of the classification of pencils
over the reals. In each case, we study optimality issues and give worst-case examples.
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4 L. Dupont & D. Lazard & S. Lazard & S. Petitjean

Segre string real type of intersection
worst case format

of parameterization
worst-case optimality
of parameterization

[1111] nonsingular quartic (see part I)
Q(

√
δ)[ξ,

√
∆],

∆ ∈ Q(
√

δ)[ξ]

rational point on
degree-8 surface

[112]
point Q optimal

nodal quartic Q(
√

δ)[ξ] rational point on conic
[13] cuspidal quartic Q[ξ] optimal
[22] cubic and non-tangent line Q[ξ] optimal
[4] cubic and tangent line Q[ξ] optimal

[11(11)]

two points Q(
√

δ) optimal

conic
Q(

√
δ,
√

µ)[ξ],
µ ∈ Q(

√
δ)

optimal if
√

δ 6∈ Q

rational point
on conic

if
√

δ ∈ Q

two non-tangent conics Q(
√

δ,
√

δ′)[ξ]
Q(

√
δ′)-rational point

on Q(
√

δ′)-conic

[1(21)]
point Q optimal

two tangent conics Q(
√

δ)[ξ] optimal
[1(111)] double conic Q(

√
δ)[ξ] rational point on conic

[2(11)]

point Q optimal
conic and point Q(

√
δ)[ξ] rational point on conic

conic and two lines
not crossing on the conic

Q(
√

δ)[ξ] rational point on conic

[(31)]
conic Q[ξ] optimal

conic and two lines
crossing on the conic

Q(
√

δ)[ξ] optimal

[(11)(11)]
two points K[ξ],degree(K) = 4 optimal

two skew lines K[ξ],degree(K) = 4 optimal
four skew lines K[ξ],degree(K) = 4 optimal

[(22)]
double line Q[ξ] optimal

two simple skew lines
cutting a double line

Q(
√

δ)[ξ] optimal

[(211)]
point Q optimal

two double concurrent lines Q(
√

δ)[ξ] optimal

[1{3}] conic and double line Q[ξ] optimal

[111]
point Q optimal

two concurrent lines K[ξ],degree(K) = 4 optimal
four concurrent lines K[ξ],degree(K) = 4 optimal

[12]
double line Q[ξ] optimal

two simple and a double
concurrent lines

Q(
√

δ)[ξ] optimal

[3]
concurrent simple

and triple lines
Q[ξ] optimal

[1(11)]
point Q optimal

two concurrent double lines Q(
√

δ)[ξ] optimal
[(21)] quadruple line Q[ξ] optimal

[11] quadruple line Q[ξ] optimal

Table 1: Ring of definition of the projective coordinates of the parameterization of each component
of the intersection and optimality, in all cases where the real part of the intersection is 0- or 1-
dimensional. δ,δ′ ∈ Q. INRIA
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In the following, we often need to compute the parameterization of the intermediate quadric
QR and this is achieved using the normal form of QR. Recall that a rational congruence sending
a quadric with rational coefficients into normal form can be computed using Gauss reduction of
quadratic forms into sums of squares (see Part I).

Recall also that the discriminant of a quadric is the determinant of the associated matrix. In the
following, we also call discriminant of a pair of planes QR the product ab where ax2−by2 = 0 is the
canonical equation of a pair of planes obtained from QR by a real rational congruence transformation;
the discriminant is defined up to a rational square factor.

2.1 Nodal quartic in P3(C), σ4 = [112]

If we parameterize C using the generic algorithm (see Part I), we will not be able to avoid the
appearance of

√
∆ because CΩ (as C) is irreducible. However, since the intersection curve is singular,

we we know that
√

∆ is avoidable by Proposition I.7.1. We thus proceed differently.

2.1.1 Algorithms

Let λ1 be the real and rational double root of the determinantal equation. Let QR be the rational cone
associated with λ1. As we have found in Section II.3, there are essentially two cases depending on
the real type of the intersection.

Point. QR is an imaginary cone. The intersection is reduced to a point, which is the apex of QR.
Since λ1 is rational, this apex is rational (otherwise its algebraic conjugate would also be a singular
point of the cone). Thus the intersection in this case is defined in Q.

Real nodal quartic (with or without isolated singularity). Let P be a real rational congru-
ence transformation sending the apex of QR to (0,0,0,1). The parameterization X(u,v,s) =
P(x1(u,v),x2(u,v),x3(u,v),s)T ,(u,v,s) ∈ P?2 of the cone (see Table I.3) introduces a square root√

δ. Equation Ω in the parameters is

as2 +b(u,v)s+ c(u,v) = 0,

with a and the coefficients of b,c defined in Q(
√

δ). The nodal quartic passes through the vertex of
QR and this point corresponds to the value u = v = 0 of the parameters. At this point s 6= 0 because
(u,v,s) ∈ P?2. Thus a = 0, Ω is linear in s and it can be solved rationally for s. This leads to the
parameterization of the quartic

X(u,v) = P(b(u,v)x1(u,v),b(u,v)x2(u,v),b(u,v)x3(u,v),−c(u,v))T .

The coefficients of X(u,v) clearly live in Q(
√

δ)[ξ], where ξ = (u,v).
When the node of the quartic is not isolated, the singularity is now reached by two different

values of (u,v) ∈ P1(R) which are precisely those values such that b(u,v) = 0. When the node of
the quartic is isolated, the singularity is not reached by (u,v) ∈ P1(R), i.e. b(u,v) = 0 has no real
solution. In that situation, the node has to be added to the output. Since this point is the vertex of the
cone QR, it is rational.

RR n° 5669



6 L. Dupont & D. Lazard & S. Lazard & S. Petitjean

2.1.2 Optimality

By Proposition I.6.3, if the cone QR contains a rational point other than its vertex, it can be pa-
rameterized with rational coefficients and thus the parameterization of the nodal quartic is defined
over Q[ξ]. Otherwise, if QR contains no rational point other than its vertex, then the nodal quar-
tic also contains no rational point other than its singular point. Hence the nodal quartic admits no
parameterization over Q[ξ]. Therefore, testing whether

√
δ can be avoided in the parameterization

of real nodal quartics is akin to deciding whether QR has a rational point outside its singular locus;
furthermore, finding a parameterization in Q[ξ] amounts to finding a rational point on QR outside its
singular locus.

There are cases where
√

δ cannot be avoided. Example of these are
{

x2 + y2 −3z2 = 0,
xw+ z2 = 0

when the singularity is not isolated and
{

x2 + y2 −3z2 = 0,
zw+ x2 = 0

when the singularity is isolated. In both cases, the projective cone corresponding to the double root
of the determinantal equation is the first equation. By Proposition I.6.3, this cone has no rational
point except its singular point and

√
δ cannot be avoided in the parameterization of the intersection.

2.2 Cuspidal quartic in P3(C), σ4 = [13]

The intersection in this case is always a real cuspidal quartic. As above, using the generic algorithm
is not good idea: it would introduce an unnecessary and unwanted

√
∆.

We consider instead the cone QR associated with the real and rational triple root of the deter-
minantal equation. The singular point of the quartic is the vertex p of QR. The intersection of QR

with the tangent plane of QS at p consists of the double line tangent to C at the cusp. Since it is
double, this line is necessarily rational. So we have a rational cone containing a rational line. By
Theorem I.6.1, this cone admits a rational parameterization.

So we are left with an equation Ω : as2 +b(u,v)s+ c(u,v) = 0 whose coefficients are defined on
Q. As above, the singularity is reached at (u,v) = (0,0) and at this point s 6= 0, so a = 0. Thus Ω
can be solved rationally for s and the intersection is in Q[ξ],ξ = (u,v). This is optimal.

2.3 Cubic and secant line in P3(C), σ4 = [22]

The real intersection consists of a cubic and a line. The cubic and the line are either secant or skew.
Note that the line of the intersection is necessarily rational, otherwise its algebraic conjugate would
also belong to the intersection.

When the double roots of the determinantal equation are real and rational, the pencil contains
two rational cones QR1 and QR2 . The line of C is the rational line joining the vertices of QR1 and QR2 .

INRIA
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Also, the vertex of QR2 is a rational point on QR1 , and vice versa, so the two cones can be rationally
parameterized (see Theorem I.6.1). Setting up Ω, we have again that it is linear in s, because the line
and the cubic intersect at the vertex of the cone, corresponding to (u,v) = (0,0). But here the content
of Ω in s is linear in (u,v) and it corresponds to the line of C. The cubic is found after dividing by
this content and rationally solving for s. The parameterization of the cubic is defined in Q[ξ].

When the double roots of the determinantal equation are either complex conjugate (the cubic and
the line are not secant) or real algebraic conjugate (the cubic and the line are secant), there exists
quadrics of inertia (2,2) in the pencil (by Theorems I.4.1 and I.4.3). We use the generic algorithm
of Part I: first find a quadric QR of inertia (2,2) of the pencil through a rational point. Since C
contains a rational line, the discriminant of this quadric is a square by Lemma I.7.4 and QR can be
rationally parameterized by Theorem I.6.1. Now compute the bidegree (2,2) equation Ω. The line of
C corresponds to a fixed value of one of the parameters and the contents provide factors of bidegree
(1,0) and (1,2) (or (0,1) and (2,1)), which are linear in one of the parameters and thus easy to solve
rationally for getting a parameterization of the intersection. The parameterization of C is defined in
Q[ξ].

2.4 Cubic and tangent line in P3(C), σ4 = [4]

The real intersection consists of a cubic and a tangent line. The line is necessarily rational, by the
same argument as above. The determinantal equation has a real and rational quadruple root. To
it corresponds a real rational projective cone. Since this cone contains a rational line, it can be
rationally parameterized (by Theorem I.6.1). The rest is as in the cubic and secant line case when
the two roots are rational. The parameterization of the cubic is defined in Q[ξ].

2.5 Two secant conics in P3(C), σ4 = [11(11)]

In this case, the determinantal equation has a double root corresponding to a rational pair of planes
QR. There are several cases depending on the real type of the intersection.

2.5.1 Two points

The pair of planes QR is imaginary. Its rational singular line intersects any other quadric of the pencil
in two points. So parameterize the line and intersect it with any quadric of the pencil having rational
coefficients. A square root is needed to parameterize the two points if and only if the equation in the
parameters of the line has irrational roots.

This situation can happen as the following example shows:
{

z2 +w2 = 0,
x2 −2y2 +w2 = 0.

Clearly, the two points are defined by z = w = 0 and x2 −2y2 = 0 so they live in Q[
√

2].

RR n° 5669
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2.5.2 One conic

In this case, the pair of planes is real, the pencil has no quadric of inertia (2,2) and only one of the
planes of QR intersects the other quadrics of the pencil.

The algorithm is as follows. First parameterize the pair of planes and separate the two individual
planes. Plugging the parameterization of each plane into the equation of QS gives two equations
of conics in parameter space, with coefficients in Q(

√
δ) where δ is the discriminant of the pair of

planes. The conics in parameter space correspond to the components of the intersection, thus one
of these conics is real and the other is imaginary. Determine the real conic, that is the one with
inertia (2,1), and parameterize it. Substituting this parameterization into the parameterization of the
corresponding plane gives a parameterization of the conic of intersection. The parameterization is
in Q(

√
δ,
√

µ), where δ is the discriminant of the pair of planes QR and
√

µ is the square root needed
to parameterize the conic in parameter space, µ ∈ Q(

√
δ).

If δ is not a square, the parameterization is optimal. Indeed, if the intersection had a real Q(
√

δ)-
rational point, the conjugate of that point would be on the conjugate conic which is not real. So such
a point does not exist and the parameterization is optimal. If δ is a square, the parameterization is
defined in Q(

√
µ)[ξ] with µ ∈ Q. By Proposition I.6.3, the parameterization is optimal if and only

if the (rational) conic contains no rational point; moreover, testing if the parameterization is non-
optimal and, if so, finding an optimal parameterization is equivalent to finding a rational point on
this rational conic.

The situation where δ is a square but the conic has no rational point (the field of the coefficients
is of degree two) can be attained for instance with the following pair of quadrics:

{

(x−w)(x−3w) = 0,
x2 + y2 + z2 −4w2 = 0.

The two planes of the first quadric are rational. The plane x−w = 0 cuts the second quadric in the
conic x−w = y2 + z2−3w2 = 0. By Proposition I.6.3, this conic has no rational point, so

√
δ cannot

be avoided and the parameterization of the conic is in Q(
√

3).
A field extension of degree 4 is obtained with the following quadrics:

{

x2 −4xw−3w2 = 0,
x2 + y2 + z2 −w2 = 0.

The pair of planes is defined on Q(
√

7), so, by the above argument, a field extension of degree 4 is
unavoidable.

2.5.3 Two (secant or non-secant) conics

By contrast to the one conic case, the pencil now contains quadrics of inertia (2,2). But going
through the generic algorithm and factoring CΩ directly in two curves of bidegree (1,1) can induce
nested radicals. So we proceed as follows. First, find a rational quadric QR of inertia (2,2) through
a rational point. This introduces one square root, say

√
δ. Independently, factor the pair of planes,

which introduces another square root
√

δ′. Now plug the parameterization of QR in each of the

INRIA
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planes. This gives linear equations in the parameters of QR which can be solved without introducing
nested radicals. The two conics have a parameterization defined in Q(

√
δ,
√

δ′).
Note that when the two simple roots of the determinantal equation are rational, an alternate

approach is to parameterize one of the two rational cones of the pencil instead of a quadric of inertia
(2,2), and then proceed as above.

In terms of optimality,
√

δ′ cannot be avoided if the planes are irrational. As for the other
square root, it can be avoided if and only if the conics contain a point that is rational in Q(

√
δ′)

(by Proposition I.6.3 in which the field Q can be replaced by Q(
√

δ′)); moreover, testing if this
square root can be avoided and, if so, finding a parameterization avoiding it is equivalent to finding
a Q(

√
δ′)-rational point on this conic whose coefficients are in Q(

√
δ′).

All cases can happen. We illustrate this in the non-secant case. An extension of Q of degree 4 is
needed to parameterize the intersection of the following pair:

{

x2 −33w2 = 0,
y2 + z2 −3w2 = 0.

Indeed,
√

δ′ =
√

33 cannot be avoided. In addition, by Proposition I.6.6, y2 +z2−3w2−11x2 = 0 has
no rational point on Q(

√
33), thus its intersection with the plane x = 0, the conic y2 + z2 −3w2 = 0,

also has no rational point on Q(
√

33); hence the cone y2 + z2 − 3w2 = 0 has no rational point on
Q(

√
33) except for its singular locus.

An extension field of degree 2 can be obtained by having conics without rational point, but living
in rational planes, as in this example:

{

x2 −w2 = 0,
y2 + z2 −3w2 = 0.

It can also be attained by having conics living in non-rational planes but having rational points in the
extension of Q defined by the planes:

{

x2 −3w2 = 0,
y2 + z2 −3w2 = 0.

As can be seen, the points of coordinates (
√

3,0,±
√

3,1) belong to the intersection. So the conic
has a parameterization in Q(

√
3)[ξ].

2.6 Two tangent conics in P3(C), σ4 = [1(21)]

Here, the determinantal equation has a real and rational triple root, corresponding to a pair of planes
QR. The other (real and rational) root corresponds to a real projective cone. There are two types of
intersection over the reals.

Point. The pair of planes is imaginary and its rational singular line intersects the cone in a double
point, which is the only component of the intersection. This point is necessarily rational, otherwise
its conjugate would also be in the intersection. One way to compute it is to parameterize the singular
line, plug the parameterization in the rational equation of the cone and solve the resulting equation
in the parameters.

RR n° 5669



10 L. Dupont & D. Lazard & S. Lazard & S. Petitjean

Two real tangent conics. The pair of planes is real and each of the planes intersects the cone.
The singular line of QR is tangent to the cone. As above, the point of tangency of the two conics
is rational. So, by Proposition I.6.3, the conics have a rational parameterization in the extension of
Q defined by the planes. In other words, the conics have a parameterization defined in Q(

√
δ)[ξ],

where δ is the discriminant of the pair of planes QR, if and only if δ is not a square.
One situation where

√
δ cannot be avoided is the following:

{

x2 −2w2 = 0,
xy+ z2 = 0.

2.7 Double conic in P3(C), σ4 = [1(111)]

The determinantal equation has a real rational triple root, corresponding to a double plane. The other
root gives a rational cone. Assume this cone is real (otherwise the intersection is empty).

To obtain the parameterization of the double conic, first parameterize the double plane. Then
plug this parameterization in the equation of the cone. This gives the rational equation of the conic (in
the parameters of the plane). If the conic has a rational point, then it can be rationally parameterized.
Otherwise, one square root is needed.

One worst-case situation where a square root is always needed is the following:
{

x2 = 0,
y2 + z2 −3w2 = 0.

By Proposition I.6.3, the second quadric (a cone) has no rational point outside its vertex. Thus the
conic cannot be parameterized rationally.

2.8 Conic and two lines not crossing on the conic in P3(C), σ4 = [2(11)]

The determinantal equation has two double roots, corresponding to a cone and a pair of planes which
is always real. The two roots are necessarily real and rational, otherwise the quadrics associated
with them in the pencil would have the same rank. So both the cone and the pair of planes are
rational. Also, the vertex of the cone falls on the pair of planes outside its singular line. Thus, by
Proposition I.6.2, the discriminant of the pair of planes is a square and each individual plane has a
rational parameterization.

Over the reals, there are three cases.

Point. The projective cone is imaginary. The intersection is limited to its real vertex. Since the
cone is rational, its vertex is rational.

Point and conic. The cone is now real. One of the planes cuts the cone in a conic living in a
rational plane, the other plane cuts the cone in its vertex. The point of the intersection is this vertex
and it is rational. To parameterize the conic of the intersection, plug the parameterization of the
plane that does not go through the vertex of the cone. This gives a rational conic in the parameters

INRIA
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of the plane. One square root is possibly needed to parameterize this conic. It can be avoided if and
only if the conic has a rational point.

One example where the square root cannot be avoided is the following:
{

xw = 0,
y2 + z2 −3w2 = 0.

By Proposition I.6.3, the projective cone has no rational point other than its vertex (1,0,0,0). So the
conic x = y2 + z2 −3w2 = 0 has no rational point.

Two lines and conic. Again, the cone is real and one plane cuts it in a rational nonsingular conic.
But now the second plane, going through the vertex of the cone, further cuts the cone in two lines.
The parameterization of the conic goes as above. To represent the lines, we plug the second plane in
the equation of the cone and parameterize.

Note that if the lines are rational, then the cone contains a rational line and can be rationally
parameterized. Since the conic is the intersection of this cone with a rational plane, it has a rational
parameterization. So in that case all three components have parameterizations in Q[ξ]. If the lines are
irrational, it can still happen that the conic has a rational point and thus a rational parameterization.

We give examples for the three situations we just outlined. First, the pair
{

xy = 0,
y2 + z2 −w2 = 0

gives birth to the rational lines y = z±w = 0 and the rational conic x = y2 + z2 −w2 = 0 which con-
tains the rational point (0,0,1,1) and can be rationally parameterized. Second, the pair of quadrics

{

xy = 0,
2y2 + z2 −3w2 = 0

has as intersection the two irrational lines y = z±
√

3w = 0 and the conic x = 2y2 + z2 − 3w2 = 0
which contains the rational point (0,1,1,1) so can be rationally parameterized. Finally, the lines and
the conic making the intersection of the quadrics

{

xy = 0,
y2 + z2 −3w2 = 0

cannot be rationally parameterized. Indeed, by Proposition I.6.3, the cone has no rational point
outside the vertex (1,0,0,0), so the conic x = y2 + z2 −3w2 = 0 has no rational point.

2.9 Conic and two lines crossing on the conic in P3(C), σ4 = [(31)]

The determinantal equation has a real pair of planes QR corresponding to a real and rational quadru-
ple root. The asymmetry in the sizes of the Jordan blocks associated with this root (the two blocks
have size 1 and 3) implies that the individual planes of this pair are rational. The conic of the
intersection is always real and the two lines (real or imaginary) cross on the conic.

There are two types of intersection over the reals.
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Conic. The point at which the two lines cross is the double point that is the intersection of the
singular line of QR with any other quadric of the pencil. This point is necessarily rational. So the
conic can be rationally parameterized by Proposition I.6.3.

Conic and two lines. To parameterize the intersection, first compute the parameterization of the
two planes of QR. Plugging these parameterizations in the equation of any other quadric of the
pencil yields a conic on one side and a pair of lines on the other side. As above, the conic can be
rationally parameterized. As for the two lines, they have a rational parameterization if and only if
the discriminant of the pair of lines is a square.

One situation where this discriminant is not a square is as follows:
{

yz = 0,
y2 + xz−2w2 = 0.

The conic is given by y = xz− 2w2 = 0 which contains the rational point (1,0,0,0) and can be
rationally parameterized. The lines are defined by z = y2−2w2 = 0. But the pair of planes y2−2w2 =
0 has no rational point outside its singular locus so the lines are defined in Q(

√
2).

2.10 Two skew lines and a double line in P3(C), σ4 = [(22)]

The determinantal equation has a real and rational quadruple root, which corresponds to a pair of
planes. The singular line of the pair of planes is contained in all the quadrics of the pencil. There are
two cases.

Double line. The pair of planes is imaginary. The intersection is reduced to the rational singular
line of the pair of planes. So C is defined in Q[ξ].

Two simple lines and a double line. The pair of planes is real. We can factor it into simple
planes, parameterize these planes and plug them in any other quadric of the pencil. The two resulting
equations in the parameters of the planes are pairs of lines, each pair containing the double line of the
intersection and one of the simple lines. The simple lines are rational if and only if the discriminant
of the pair of planes is a square.

A situation where the two simple lines are irrational is the following:
{

y2 −2w2 = 0,
xy− zw = 0.

2.11 Two double lines in P3(C), σ4 = [(211)]

The determinantal equation has a real rational quadruple root, which corresponds to a double plane.
The double plane cuts any other quadric of the pencil in two double lines in P3(C). There are two
cases.
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Point. Except for the double plane, the pencil consists of quadrics of inertia (3,1). The two lines
are imaginary. The intersection is reduced to their rational intersection point, i.e. the point at which
the double plane is tangent to the other quadrics of the pencil.

Two real double lines. Except for the double plane, the pencil consists of quadrics of inertia (2,2).
The two lines are real. To parameterize them, first compute a parameterization of the double plane
and then plug it in any quadric of inertia (2,2) of the pencil. The resulting pair of lines can easily be
parameterized. The intersection is thus parameterized with one square root if and only if the lines
are irrational.

One case where the square root cannot be avoided is as follows:
{

w2 = 0,
x2 −2y2 + zw = 0.

The lines w = x2 − 2y2 = 0 have no rational point except for their singular point (0,0,1,0) so their
parameterization is in Q(

√
2)[ξ].

2.12 Four skew lines in P3(C), σ4 = [(11)(11)]

We start by describing the algorithms we use in this case. We then prove the optimality of the
parameterizations and conclude the section by giving examples of pairs of rational quadrics for all
possible types of real intersections and extension fields.

2.12.1 Algorithms

In this case the determinantal equation has two double roots that correspond to (possibly imaginary)
pairs of planes. It can be written in the form

D(λ,µ) = γ
(

aλ2 +bλµ+ cµ2)2
= 0, (1)

with γ,a,b, and c in Q.
In order to minimize the number and depth of square roots in the coefficients of the parameteri-

zation of the intersection, we proceed differently depending on the type of the real intersection and
the values of γ and δ = b2 −4ac.

Note that the roots of the determinantal equation are defined in Q(
√

δ) and thus the coefficients
of the pairs of planes in the pencil also live in Q(

√
δ). Let d+,d− ∈ Q(

√
δ) be the discriminants

of the two pairs of planes, with d+ > d−. When d+ > 0 (resp. d− > 0), the corresponding pair of
planes is real and can be factored into two planes that are defined over Q(

√
d+) (resp. Q(

√
d−)).

The algorithms in the different cases are as follows.

Two points. In this case one pair of planes of the pencil is real (the one with discriminant d+)
and the other is imaginary. We factor the two real planes and substitute in each a parameterization
of the (real) singular line of the imaginary pair of planes. The singular line is defined in Q(

√
δ)
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and each of the real planes are defined in Q(
√

d+). We thus obtain the two points of intersection
with coordinates in Q(

√
δ,
√

d+). The two points are thus defined over Q(
√

d+), d+ ∈ Q(
√

δ), an
extension field of degree 4 (in the worst case) with one nested square root.

Two or four lines. Since the intersection is contained in every quadric of the pencil, there are no
quadric of inertia (3,1) in the pencil in this case (such quadrics contain no line) and thus γ > 0.
Furthermore all the non-singular quadrics of the pencil have inertia (2,2) (by Theorem I.4.3) and
their discriminant is equal to γ, up to a square factor (by Eq. (1)). Hence we can parameterize a
quadric QR of inertia (2,2) in the pencil using the parameterization of Table I.3 with coefficients in
Q(

√γ) (see Part I).
There are three subcases.

√
δ ∈ Q. The roots of the determinantal equation are real (since δ > 0), thus the intersection

consists of four real lines and the two pairs of planes of the pencil are real (see Table II.4). We factor
the two pairs of planes into four planes with coefficients in Q(

√
d±) and intersect them pairwise.

We thus obtain a parameterization of the four lines over Q(
√

d+,
√

d−) with d± ∈ Q (since δ is a
square), an extension field of degree 4 (in the worst case) with no nested square root.

√
δ 6∈ Q and

√

γδ ∈ Q. Here again δ > 0 thus the intersection consists of four real lines and
the two pairs of planes of the pencil are real. We factor one of these pairs of planes (say the one
with discriminant d+) in two planes with coefficients in Q(

√
d+); if the discriminant of one of the

pair of planes is a square, we choose this pair of planes for the factorization. We then substitute
the parameterization of the quadric QR into each plane. This leads to an equation of bidegree (1,1)
in the parameters with coefficients in Q(

√
d+,

√γ). This field is equal to Q(
√

d+) because d+ ∈
Q(

√
δ) and γδ is a square. We finally obtain each line by factoring the equation in the parameters

into to terms of bidegree (1,0) and (0,1) and by substituting the solutions of these factors into the
parameterization of QR. We thus obtain a parameterization of the four lines defined over Q(

√
d+),

d+ ∈ Q(
√

δ), an extension field of degree 4 (in the worst case) with one nested square root.

√
δ 6∈ Q and

√

γδ 6∈ Q. In this case we apply the generic algorithm of Part I: we substitute the
parameterization of QR into the equation of another quadric of the pencil (with rational coefficients).
The resulting equation in the parameters of bidegree (2,2) has coefficients in Q(

√γ). We factor it
into two terms of bidegree (2,0) and (0,2), whose coefficients also live in Q(

√γ). We solve each
term separately and each real solution leads to a real line. At least one of the two factors has two
real solutions, which are defined in an extension field of the form Q(

√

α1 +α2
√γ), αi ∈ Q. If the

other factor has real solutions, they are defined in Q(
√

α1 −α2
√γ). Thus in the case where the

intersection consists of two real lines, we obtain parameterization defined over an extension field
Q(

√

α1 +α2
√γ) of degree 4 (in the worst case), with one nested square root. In the case where the

intersection consists of four real lines, the parameterization of the four lines altogether is defined
over an extension field of degree 8 (in the worst case) but each of the lines is parameterized over
an extension Q(

√

α1 +α2
√γ) or Q(

√

α1 −α2
√γ) of degree 4 (in the worst case), with one nested

square root.
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2.12.2 Optimality

We prove that the algorithms described above output parameterizations that are always optimal in
the number and depth of square roots appearing in their coefficients. This proof needs some consid-
erations of Galois theory that can be found in Appendix A.

The two input quadrics intersect here in four lines in P3(C). The pencil contains two (possibly
complex) pair of planes and these lines are the intersections between two planes taken in two differ-
ent pairs of planes. Let p1, . . . ,p4 be their pairwise intersection points of the four lines. These points
are the singular points of the intersection. These points are also the intersections of the singular line
of a pair of planes with the other pair of planes, and vice versa. Let the points be numbered such
that p1 and p3 are on the singular line of one pair of planes of the pencil; p2 and p4 are then on the
singular line of the other pair of planes of the pencil. The four lines of intersection are thus p1p2,
p2p3, p3p4, and p4p1.

Let K be the field of smallest degree on which the four points pi are rational. The above algo-
rithms show that K has degree 1, 2, 4 or 8 (since two rational lines in K intersect in a rational point
in K). Let G be its Galois group, which acts by permutations on the points pi. It follows that G is
a subgroup of the dihedral group D4 of order 8 of the symmetries of the square. This group D4 acts
on the four points pi and on the lines joining them the way the 8 isometries of a square act on its
vertices and edges. We show that the optimal number of square roots needed for parameterizing the
four lines and the way this optimal number is reached only depend on G and on its action on the pi.

The eight elements of D4 are the identity, the transpositions τ13 and τ24 which exchange p1 and
p3 or p2 and p4 (symmetries with respect to the diagonal), the permutation τ12,34 (resp. τ14,23) of
order 2 which exchange p1 with p2 and p3 with p4 (resp. p1 with p4 and p2 with p3), the circular
permutations ρ and ρ−1 of order 4, and the permutation ρ2 = τ13τ24 = τ12,34τ14,23 of order 2.

If G is included in the group GL of order 4 generated by τ13 and τ24 (symmetries of the lozenge),
its action leaves fixed the pairs {p1,p3} and {p2,p4} and thus also the lines p1p3 and p2p4 and
the two singular quadrics of the pencil (the two pairs of planes). It follows that the roots of the
determinantal equation D are rational. Conversely, if these roots are rational, the singular quadrics
and their singular lines are invariant under the action of G, as well as the pairs {p1,p3} and {p2,p4},
which implies that G is included in GL . A similar argument shows that G is the identity (resp. is
generated by τ13 (or τ24), or contains τ13τ24), if and only if 0 (resp. 1 or 2) of the singular quadrics
consist of irrational planes. Moreover, in the case where G contains τ13τ24, the group is different
from GL if and only if any element which exchanges p1 and p3 also exchanges p2 and p4, i.e. if and
only if the conjugations exchanging the planes in each singular quadric is the same (implying that
the square roots needed for factoring them are one and the same). As the degree of K is the order of
G, this shows that the number of square roots needed in our algorithm is always optimal if the roots
of D are rational (i.e. δ is a square).

When the roots of D are not rational, we consider, in the algorithm, a rational quadric QR passing
through a rational point p. Let D be the line of QR passing through p and intersecting the lines p1p2

and p3p4 in two points q1 and q2. If the discriminant of QR is a square (and its parameterization
is rational), then D is rational and is fixed by any Galois automorphism. It follows that the lines
p1p2 and p3p4 are either fixed or exchanged, which implies that G is included in the group GR of
order 4 generated by τ12,34 and τ14,23 (symmetries of the rectangle). Conversely, if G ⊂ GR , the
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lines p1p2 and p3p4 are fixed or exchanged by any Galois automorphism; the image of D by such
an automorphism is D itself or the other line of QR passing through p; as this image contains the
images of q1 and q2 which are on p1p2 or p3p4, we may conclude that D is fixed by any Galois
automorphism, and is rational; this shows that the discriminant of QR is a square by Lemma I.7.4.
Pushing these arguments a little more, it is easy to see that G is generated by τ12,34 or τ14,23 (or is
the identity) if and only if the roots of either or both of the factors of bidegree (2,0) and (0,2) of the
equation Ω in the parameters are rational.

By similar arguments of invariance, we may also conclude that the group G is generated by the
circular permutation ρ if and only if any Galois automorphism which exchanges the lines p1p3 and
p2p4 exchanges also the lines of QR passing through p (and if there is such an automorphism). It
follows that this case occurs when the square root of the discriminant of QR and the roots of D
generate the same field.

Finally, G is of order 8 if none of the preceding cases occur.
Optimality in all cases is proved by checking that, for each possible group, the algorithm involves

exactly 0, 1 or 2 square roots for parameterizing the lines if the size of the orbit of a line is 1, 2 or 4
respectively.

2.12.3 Examples

We now give examples in all the possible cases outlined in Section 2.12.1. These examples are
obtained using the following proposition which gives a rational canonical form for pencils having
two double roots corresponding to quadrics of rank 2. Its proof is postponed to Appendix B and
needs again elements of Galois theory that can be found in Appendix A.

Proposition 2.1. Let R(λ,µ) be a rational pencil of quadrics whose determinantal equation has two
double roots corresponding to two quadrics of rank 2. Then there is a rational change of frame such
that the pencil is generated by quadrics (QS,QT ) of equation

{

x2 − γy2 −2wz = 0,
αx2 +2γxy+αγy2 − z2 − (α2 − γ)w2 = 0,

where α,γ ∈ Q,δ = α2 − γ 6= 0. Moreover, a field K of smallest degree on which the four lines of the
intersection are rationally parameterized is generated by the roots of t4 −2αt + γ = 0.

The different cases are as follows:

• δ > 0,γ > 0, and α < 0 : the real intersection is empty.

• δ > 0,γ > 0, and α > 0 : the real intersection consists of four lines.

• δ > 0 and γ < 0 : the real intersection consists of two points.

• δ < 0 : the real intersection consists of two lines.

Note that the determinantal equation for the reduced pair of quadrics QS and QT is

D(λ,µ) = γ
(

λ2 −δµ2)2
= 0.
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Its roots are (λ0,µ0) = (±
√

δ,1) and, when δ > 0, the associated quadrics of the pencil are the pairs
of planes of equations

λ0QS +µ0QT = (α±
√

δ)
(

x+(α∓
√

δ)y
)2

− (z±
√

δw)2 = 0

and of discriminants d± = α±
√

δ. Note also that, when γ > 0, the quadric QS has inertia (2,2) and
can be parameterized, using the parameterization of Table I.3, by:

X =

(

ut + vs,
ut − vs√γ

,vt,2us

)

, (u,v),(s, t) ∈ P1(R).

Plugging X into the equation of T gives the following biquadratic equation in the parameters:

Ω :
(

2(α+
√

γ)u2 − v2)(

2(α−√
γ)s2 − t2) = 0.

We can now give examples in all the possible cases outlined cases outlined in Section 2.12.1. We
start with the four real lines case:

• δ is a square:

– If (α,γ) = (5,9), then
√

δ = 4, the discriminants of the pairs of planes are d± = 5± 4,
so

√
d± ∈ Q, and the four lines are defined in Q.

– If (α,γ) = (3,5), then
√

δ = 2, the discriminants of the pairs of planes are d± = 3± 2,
so

√
d+ 6∈ Q and

√
d− ∈ Q, and the four lines are defined in Q(

√
5).

– If (α,γ) = (5,16), then
√

δ = 3, the discriminants of the pair of planes are d± = 5± 3,
so

√
d± 6∈ Q but

√
d− and

√
d+ generate the same field Q(

√
2), and the four lines are

defined in Q(
√

2).

– If (α,γ) = (6,20), then
√

δ = 4, the discriminants of the pairs of planes are d± = 6±4,
so

√
d± 6∈Q,

√
d+ and

√
d− do not generate the same field and the four lines are defined

in Q(
√

2,
√

10).

• δ is not a square but γδ is a square: let (α,γ) = (2,2), then δ = 2,
√

δ 6∈ Q but
√

γδ = 2 ∈ Q.
The discriminant of the pairs of planes are d± = 2 ±

√
2, so the four lines are defined in

Q(
√

2+
√

2).

• Neither δ nor γδ are squares:

– If (α,γ) = (3,1), then δ = γδ = 8 is not a square,
√γ ∈ Q so QR can be rationally

parameterized and the factors of bidegree (2,0) and (0,2) of Ω have rational coefficients.
Since 2(α−√γ) = 4 is a square, one of those factors splits in two rational linear factors.
Thus two lines have a rational parameterization. Since 2(α +

√γ) = 8, the other two
lines are defined in Q(

√
8) = Q(

√
2).
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– If (α,γ) = (2,1), then δ = γδ = 3 is not a square,
√γ ∈ Q so QR can be rationally param-

eterized. Since 2(α+
√γ) = 6 and 2(α−√γ) = 2, two lines have a rational parameteri-

zation in Q(
√

2) and the other two lines have a rational parameterization in Q(
√

6).

– If (α,γ) = (3,3), then δ = 6 and γδ = 18 are not squares,
√γ 6∈ Q so QR cannot be

rationally parameterized. Two lines are defined in Q(
√

6+2
√

3) and the other two lines

are rational in Q(
√

6−2
√

3).

Now we give examples for the two real lines case:

• If (α,γ) = (3,25), then δ = −16 < 0,
√γ = 5 and

√

2(α+
√γ) = 4 are rational, so the two

lines are rational.

• If (α,γ) = (1,4), then δ = −3 < 0,
√γ ∈ Q and

√

2(α+
√γ) =

√
6 6∈ Q, so the two lines are

defined in Q(
√

6).

• If (α,γ) = (1,3), then δ = −2 < 0,
√γ and

√

2(α+
√γ) are not rational, so the two lines are

defined in Q(
√√

3−1).

Finally, here are examples for the two points case:

• If (α,γ) = (0,−1), then
√

δ = 1 is rational and the discriminant α+
√

δ = 1 of the real pair of
planes is a square, so the two points are in Q.

• If (α,γ) = (1,−3), then
√

δ = 2 is rational but the discriminant α+
√

δ = 3 of the real pair is
not a square, so the two points are in Q(

√
3).

• If (α,γ) = (1,−2), then
√

δ is not rational and the two points are in Q(
√

1+
√

3).

3 Parameterizing degenerate intersections: singular pencils

We now turn to singular pencils. Except when the intersection consists of four concurrent lines, the
parameterization algorithms are straightforward and therefore only briefly sketched.

3.1 Conic and double line in P3(C), σ4 = [1{3}]
As we have seen in Section II.4.1, the pencil contains in this case one pair of planes. Furthermore
each of the planes is rational by Proposition I.6.2 because the pair of planes contains a rational point
outside its singular locus (by Proposition II.4.1). One plane is tangent to all the cones of the pencil,
giving a rational double line. The other plane intersects all the cones transversally, giving a conic.
The conic contains a rational point (its intersection with the singular line of the planes), so it can be
rationally parameterized.

To actually parameterize the line and the conic, we proceed as follows. If QS is a pair of planes,
replace QS by QS + QT . Now, QS is a real projective cone whose vertex is on QT . Use this rational
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vertex to obtain a rational parameterization of QT . Plug this parameterization into the equation of QS.
This equation in the parameters factors in a squared linear factor (corresponding to the double line)
and a bilinear factor, corresponding to the conic. It can rationally be solved. The parameterization
of C is defined in Q[ξ].

3.2 Four concurrent lines in P3(C), σ3 = [111]

In this case, and in the three following cases, the two quadrics QS and QT have a singular point
in common. So first compute this singular point p, which is rational, and compute the rational
transformation sending this point to (0,0,0,1). In this new frame, QS and QT are functions of x,y,z
only and we can look at the restricted determinantal equation of the 3× 3 upper left matrices to
determine the real type of the intersection.

When the restricted determinantal equation has three simple roots (in C), there are three types
of intersection over the reals: a point, two concurrent lines, or four concurrent lines (see Table I.5).
In the first case, the four lines are imaginary and the real part of the intersection consists of their
common rational point, i.e. the point p.

We now look at the two other cases.

3.2.1 Algorithm and optimality

The algorithm for computing the lines is as follows. Determine a plane x = 0,y = 0,z = 0, or
w = 0, that does not contain the singular point p. Substitute the equation of that plane (say x = 0)
into the equations of QS(x,y,z,w) and QT (x,y,z,w). This gives a system of two non-homogeneous
degree-two equations in three variables having four distinct complex projective solutions qi. The
real lines of C are then the two or four lines going through p and one of the qi with real coordinates,
i = 1, . . . ,4.

This algorithm outputs an optimal parameterization of C. Indeed, since the common singular
point p of QS and QT is rational and the plane (x = 0) used to cut QS and QT is rational, the lines are
rational if and only if their intersection with the planes (the points qi) are rational.

3.2.2 Degree of the extension

The following result shows that the roots of any polynomial of degree 4 without multiple root may
be needed to parameterize four real concurrent lines. It uses notions of Galois theory that can be
found in Appendix A.

Proposition 3.1. For any rational univariate polynomial of degree 4 without multiple root, there
are rational pencils of quadrics whose intersection is four (real or imaginary) concurrent lines, such
that each of them is rational on the field generated by one of the roots of the polynomial and is not
rational on any smaller field (for the inclusion and the degree).

Proof. Let us consider a polynomial of degree 4 with rational coefficients and without multiple
factors. Let us consider its four real or complex roots t1, . . . , t4 and the four points qi of coordinates
(1, ti, t2

i ,0). Let us consider also two rational points r j = (a j,b j,c j,0), j = 1,2. Exactly one conic
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exists in the plane w = 0, which passes through the four points qi and one of the r j. Each of these
conics has necessarily a rational equation, because, if it were not, the conjugate conics (under the
action of the Galois group of the field containing the coefficients) would pass through the same five
points. In other words, the equation of the conic is invariant under the Galois group and is thus
rational. Now the rational cones containing these conics and having the point (0,0,0,1) as vertex
intersect in four (real or imaginary) lines passing through this vertex and the points qi.

The equations of these conics are easy to compute explicitly. Consider a conic with generic coef-
ficients. Expressing that it passes through 5 points induces five linear equations in the coefficients of
the equation of the conic. Solving this linear system expresses these coefficients as symmetric func-
tions of the ti, and thus as rational functions of the coefficients of the polynomial of degree 4.

3.2.3 Examples

The proof of Proposition 3.1 gives a way of constructing examples of pencils of quadrics whose inter-
section is four concurrent lines for any quartic f without multiple root. Table 2 shows an exhaustive
list of examples covering the possible degrees of field extension on which the lines of intersection are
defined. We here focus on the cases where f has two or four real roots, corresponding, respectively,
to the two and four concurrent lines cases.

When f has four real roots, the degree of the extension of Q needed to parameterize the four
lines together is the order of the Galois group of f , in view of Proposition 3.1 and Appendix A. In
other words, this degree is either 1, 2, 3, 4, 6, 8, 12 or 24. However, each line is defined individually
on an extension of degree at most 4. For instance, when the Galois group is the dihedral group D4

of order 8, the four lines are collectively defined in an extension of degree 8 but each line is defined
in an extension of degree 4.

When f has two real and two complex roots, the degree of the extension on which the four lines
are defined is again the order of the Galois group of f , but the degree of the extension on which the
two real lines are collectively defined is only half the order of the Galois group. This degree is 1, 2,
3, 4 or 12.

Every extension degree can be attained by picking the right polynomial f . To build examples in
all cases, it is sufficient to find the equations of two distinct rational cones containing the four points
qi = (1, ti, t2

i ,0) and having the same vertex. Assume f is given by:

f = t4 +αt3 +βt2 + γt +δ.

Then the following pair (QS,QT ) satisfies the constraints:
{

xz− y2 = 0,
δx2 + γxy+βy2 +αyz+ z2 = 0.

Any two distinct quadrics of the pencil generated by QS and QT intersect in four (real or imaginary)
concurrent lines defined collectively on an extension of Q of degree equal to the order of the Galois
group of f .

By picking the right polynomial, we can generate pairs of quadrics intersecting in four concurrent
lines for all types of Galois groups of a quartic. For instance, taking f = t4 + t +1, we build the two
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quadrics
{

xz− y2 = 0,
x2 + xy+ z2 = 0.

The four real concurrent lines of the intersection are defined on an extension of Q of degree 24, since
the Galois group of f is the group S4 of permutations of four elements (of order 24). Each line is
defined in an extension of degree 4.

3.3 Two concurrent lines and a double line in P3(C), σ3 = [12]

In this case, the restricted pencil has a real and rational double root corresponding to a pair of planes
QR and a rational simple root corresponding to another pair of planes. The second pair is always
real. There are two cases.

Double line. The pair of planes QR is imaginary. The intersection is reduced to the singular line
of this pair, which is clearly rational.

Double line and two simple lines. The double line is rational (otherwise its conjugate would also
be in the intersection). The two simple lines are contained in QR and go through the common singular
point p of QS and QT . They are rational if and only if QR has a rational point outside its singular
line, i.e. if the discriminant of QR is a square.

A simple example where this is not the case is as follows:
{

xy = 0,
y2 −2z2 = 0.

3.4 Two double lines in P3(C), σ3 = [1(11)]

The determinantal equation has a real and rational double root corresponding to a double plane QR.
The other root corresponds to a (real or imaginary) pair of planes. There are two cases.

Point. The pair of planes is imaginary. The intersection is reduced to the intersection of its singular
line with QR, i.e. the rational point p.

Two real double lines. The two double lines are conjugate. They contain the rational point p and
are rational if they go through another rational point. This happens when the discriminant of the pair
of planes is a square.

This situation does not necessarily happen, as the following example shows:
{

z2 = 0,
x2 −2y2 = 0.
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3.5 Line and triple line in P3(C), σ3 = [3]

The determinantal equation has a real and rational triple root corresponding to a real pair of planes.
The intersection consists of the (triple) singular line of this pair of planes, which is clearly rational,
and of a single line which is also rational, otherwise its conjugate would also be in the intersection.
The simple line is found by intersecting one of the planes with any other cone of the pencil.

3.6 Quadruple line in P3(C), σ3 = [(21)]

Here, the determinantal equation has a real and rational triple root, corresponding to a double plane.
The intersection consists of the (quadruple) line of tangency of this double plane with a cone of the
pencil. This line is clearly rational.

3.7 Remaining cases

In the remaining cases, that is when the restricted determinantal equation identically vanishes, the
description of the possibles cases given in Section II.4.2.6 directly yields algorithms for computing
parameterizations of the intersection over Q[ξ].

4 Examples

The algorithm described in this paper for computing a near-optimal parameterization of the inter-
section of two arbitrary quadrics with integer coefficients has been fully implemented in C++. The
implementation details as well as an analysis of the complexity (i.e., the height) of the integer coef-
ficients appearing in the parameterizations are presented in Part IV [4].

In this section, we illustrate our algorithm with three examples covering different situations. The
output given is the actual output of our implementation, with debug information turned on so as to
follow what the algorithm is doing.

4.1 Example 1

Our first example is as shown in Output 1. As explained in Section II.5, we first determine the type
of the intersection by looking at the multiple roots of the determinantal equation and the ranks of
the associated quadrics. Here, we find two real double roots corresponding to quadrics of rank 3:
Algorithm II.6 tells us that the real type of the intersection is “cubic and secant line”. We have
rational roots, so we can parameterize the intersection using cones. One of the two cones of the
pencil is

QR = −2QS +QT = −25wx−30wy−5wz−20xy−30w2 −5x2 −20y2.

This cone has the point (−2,1,4,0) as vertex and contains the vertex of the second cone, i.e.
(−4,1,4,1). The line of the intersection is the line joining these two points. Here, we have ap-
plied a simple reparameterization to the line by picking two other representative points with smaller
“height” than the original two. On the reparameterized line, a very simple point is (−2,0,0,1) which
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Output 1 Execution trace for Example 1.
>> quadric 1: 3*x^2 + 5*x*y + 2*x*z + 13*x*w + 14*y^2 - 4*y*z + 4*y*w + z^2 + 6*z*w + 14*w^2
>> quadric 2: x^2 - 10*x*y + 4*x*z + x*w + 8*y^2 - 8*y*z - 22*y*w + 2*z^2 + 7*z*w - 2*w^2

>> launching intersection
>> determinantal equation: 4*l^4 + 12*l^3*m + l^2*m^2 - 12*l*m^3 + 4*m^4
>> gcd of derivatives of determinantal equation: 2*l^2 + 3*l*m - 2*m^2
>> ranks of singular quadrics: 3 and 3
>> two real rational double roots: [ 1 2 ] and [ -2 1 ]
>> complex intersection: cubic and secant line
>> real intersection: cubic and secant line
>> reparameterization of line
>> singular point of cone: [ -2 1 4 0 ]
>> rational point on cone: [ -2 0 0 1 ]
>> parameterization of cone with rational point
>> cubic and line intersect at [ -4 1 4 1 ] and [ -2 1 4 0 ]
>> status of intersection param: optimal
>> end of intersection

>> parameterization of cubic:
[4*u^3 + u^2*v + 2*v^3, - u^3 - v^3, - 4*u^3 - u^2*v + u*v^2 - 4*v^3, - u^3]
>> parameterization of line:
[- 2*u, v, 4*v, u - v]

>> time spent: 10 ms

we use as rational point for parameterizing QR. Plugging the parameterization of QR in the second
cone and leaving aside the linear factor corresponding to the line gives the cubic.

4.2 Example 2

Our second example is displayed in Output 2. Here, the determinantal equation has a double real
root at (λ,µ) = (0,1), the two other simple roots are real (solution of E(λ,µ) = 4µ2 −λ2 = 0), the
singular quadric R = R(0,1) is a real pair of planes and E(0,1) > 0, so Algorithm II.3 tells us that
the intersection is two secant conics, the singularities of the intersection being convex. Here, the two
planes of R are rational:

QR = (w− y+2z)(w−4x+3y−2z).

We can parameterize each of these planes and plug their parameterization in turn in any other quadric
of the pencil. This gives the implicit equations of the two conics which we can parameterize. As
explained in Section 2.5, we are here in one of the few situations where we cannot guarantee that
what we output is optimal: the square root in the parameterization of the conics might well be
unnecessary. (It turns out that in this particular example it is necessary.) This explains why the
implementation reports that the parameterizations of the two conics are only near-optimal.

4.3 Example 3

Our last example is presented in Output 3. Here, the determinantal equation vanishes identically
and all the quadrics of the pencil share a common singular point, with coordinates (1,3,−1,−2).
We apply to all the quadrics of the pencil a projective transformation sending this point to the point
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Output 2 Execution trace for Example 2.
>> quadric 1: 16*x^2 - 12*x*y + 8*x*z + 4*x*w - y^2 - 20*y*z + 2*y*w - 2*z^2 + 3*w^2
>> quadric 2: 4*x*y - 8*x*z - 4*x*w - 3*y^2 + 8*y*z + 2*y*w - 4*z^2 + w^2

>> launching intersection
>> determinantal equation: - l^4 + 4*l^2*m^2
>> gcd of derivatives of determinantal equation: l
>> double real root: [ 0 1 ]
>> inertia: [ 1 1 ]
>> parameterization of pair of planes
>> complex intersection: two secant conics
>> real intersection: two secant conics, convex singularities
>> parameterization of rational conic
>> status of conic 1 param: near-optimal
>> parameterization of rational conic
>> status of conic 2 param: near-optimal
>> end of intersection

>> parameterization of conic 1:
[- 3*u^2 - 9*v^2 - 14*u*v*sqrt(2), - 12*u^2 - 36*v^2 + (- 7*u^2 - 14*u*v + 21*v^2)*sqrt(2),
- 2*u^2 - 6*v^2, - 8*u^2 - 24*v^2 + (- 7*u^2 - 14*u*v + 21*v^2)*sqrt(2)]
>> parameterization of conic 2:
[(u^2 - 28*u*v - 42*v^2)*sqrt(2), - 2*u^2 - 84*v^2 - 28*u*v*sqrt(2), - 8*u^2 - 336*v^2
+ (- 6*u^2 + 252*v^2)*sqrt(2), - 10*u^2 - 420*v^2 + (- 8*u^2 - 28*u*v + 336*v^2)*sqrt(2)]

>> time spent: 10 ms

Output 3 Execution trace for Example 3.
>> quadric 1: 17*x^2 - 12*x*y + 14*x*z - 8*x*w - 4*y^2 - 18*y*w + 5*z^2 + 2*z*w - 16*w^2
>> quadric 2: - 3*x^2 + 28*x*y + 30*x*z + 24*x*w - 4*y^2 + 8*y*z - 2*y*w + 9*z^2 + 18*z*w

>> launching intersection
>> vanishing 4 x 4 determinantal equation
>> dimension of common singular locus: 0
>> common singular point of quadrics: [ 1 3 -1 -2 ]
>> computing matrix sending singular point to [ 0 0 0 1 ]
>> 3 x 3 determinantal equation: - l^3 + l^2*m + 5*l*m^2 + 3*m^3
>> gcd of derivatives of 3 x 3 determinantal equation: l + m
>> double real root: [ -1 1 ]
>> second root: [ 3 1 ]
>> complex intersection: two concurrent lines and double line
>> real intersection: two concurrent lines and double line
>> reparameterization of line
>> parameterization of pair of lines
>> reparameterization of lines
>> the three lines meet at [ 1 3 -1 -2 ]
>> status of intersection param: optimal
>> end of intersection

>> parameterization of double line:
[v, 3*v, - 2*u - v, u - 2*v]
>> parameterization of line 1:
[- 3*u + v, 3*v, u - v, - 2*u - 2*v]
>> parameterization of line 2:
[u - v, 3*u + 6*v, - u + 5*v, - 2*u]

>> time spent: 10 ms

INRIA



Near-Opt. Param. of the Intersection of Quadrics: III. Parameterizing Singular Intersections 25

(0,0,0,1). The determinantal equation of the pencil restricted to the upper left 3×3 part has a double
real root at (−1,1). Corresponding to this double root is a real pair of planes QR and Algorithm II.2
tells us that the real type of the intersection is “two concurrent lines and a double line”.

As we have seen in Section 3.3, the double line of the intersection is the singular line of QR.
To parameterize the other two lines, we first parameterize QR and plug the result in the equation
of the other pair of planes of the pencil, corresponding to the second root (3,1) of the restricted
determinantal equation. The result follows.

5 Conclusion

We have presented in Parts I, II, and III of this paper a new algorithm for computing an exact para-
metric representation of the intersection of two quadrics in three-dimensional real space given by
implicit equations with rational coefficients. We have shown that our algorithm computes projective
parameterizations that are optimal in terms of the functions used in the sense that they are poly-
nomials whenever it is possible and contain the square root of some polynomial otherwise. The
parameterizations are also near-optimal in the sense that the number of square roots appearing in the
coefficients of these functions is minimal except in a small number of cases (characterized by the
real type of the intersection) where there may be an extra square root (see Table 1 for a summary).
Furthermore, we have shown that in the latter cases, testing whether the extra square root is unnec-
essary and, if so, finding an optimal parameterization are equivalent to finding a rational point on
a curve or a surface. Hence, leaving for a moment that well-known problem aside, our algorithm
closes the problem of finding parameterizations of the intersection that are optimal in the senses
discussed above. It should be emphasized that our algorithm is not only theoretically powerful but
is also practical: a complete, robust and efficient C++ implementation is described in Part IV [4].

For most applications, the near-optimal parameterizations of intersections of quadrics computed
by our algorithm are good enough since they are at most one square root away from being optimal.
However, there may be situations where one is interested in fully asserting the optimality of a pa-
rameterization and, if a given parameterization is not optimal, in obtaining one. As we have seen,
this is akin to deciding whether a given curve or surface has a rational point and to computing such
a point. The problem of finding integer (or rational) points on an algebraic variety is known to be
hard in general, and many instances of the problem are undecidable [6]. When the intersection is a
smooth quartic, deciding whether the extra square root can be avoided amounts to finding a rational
point on a surface of degree 8 (see Section I.7) and very little is known about this problem, to the
best of our knowledge. The situation is, however, better for the other near-optimal cases, which
boil down to finding a rational point on a (possibly non-rational) conic. Indeed, when the conic is
rational, Cremona and Rusin [1] recently gave an efficient algorithm for solving this problem, which
has been implemented in recent releases of the Magma computational algebra system [5]. As an
example, this implementation solves the problem for an equation of the form ax2 +by2 = cz2, where
a,b and c are 200-digit primes, in less than 2 seconds on a mainstream PC. In the future, we plan to
use this algorithm in our intersection software.

Finally, it should be stressed that the classification, presented in Part II, of pairs of quadrics
depending on the type of their real intersection is of independent interest. For instance, it could be
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used in a collision detection context to predict when collisions between two moving quadrics will
occur.
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A A primer on Galois theory

Galois theory was introduced in the 19th century for deciding when a polynomial is solvable by rad-
icals. We give here a brief introduction to this theory, which is especially geared towards geometric
objects.

Let K be a finite field extension of the field Q of the rational numbers. Its dimension as Q-
vector space is called the degree of K. In our context, K is usually the smallest field containing the
coefficients of the equations or of the parameterization of a geometric object such as a point, a line, a
curve or a plane. This field K may always be defined as Q(α), where α is a root of some polynomial
f of degree n = degree(K).

The splitting field K ′ of K is defined as the smallest field containing all the roots of f . It may
be proved that it is independent from the choice of f and α. The Galois group G of K and K ′ is the
group of the field automorphisms of K ′. It is immediate that the elements of G permute the roots of
f , and this allows to identify G to a subgroup of the group Sn of all the permutations of the n roots
of f .

The important fact for geometric considerations is that any element g of G acts on any object
defined from the elements of K by the four field operations (+,−,∗,/) simply by replacing any
element of K appearing in the definition of the object by its image by the automorphism g, exactly
as the complex conjugation acts on any object defined with complex numbers. The different images
of an object under the action of the elements of G are called the conjugates of this object.

If H is a subgroup of the Galois group G, one may define K ′H , the field of the elements of K ′

such that g(x) = x for any g ∈ H. The main result of Galois theory is that the map H 7→ K ′H is a
bijection between the subgroups of G and the subfields of K ′H . Moreover, we have degree

(

K′H)

=
order(G)/order(H). It follows that an element of K which has k conjugates lies in a subfield of K of
degree k.

This may be extended to the

Galois principle: Two conjugate objects are isomorphic and any object which has k
conjugates (including itself) may be defined on a field of degree k and may not be defined
on a smaller field.

This principle is behind all our proofs of optimality. We describe briefly some other conse-
quences in the context of intersection of quadrics.

One of its first consequences is that any object which has no conjugate except itself may be
rationally defined. For example this is the case for the singular point of a singular quartic appearing
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as the intersection of two rational quadrics. If the intersection of two quadrics is decomposed in a
cubic and a line, both may be rationally defined, because their conjugates have to be components
of the intersection and the conjugate of a line is a line. Similarly, if the determinantal equation of a
pencil of quadrics has two double roots and if the corresponding singular quadrics are a cone and a
pair of planes, both are rational because they are not isomorphic.

A more involved application of the Galois principle occurs when the intersection of two quadrics
consists in four non concurrent lines. As a conjugate of a line in the intersection may only be another
line of the intersection, each line may be defined on a field of degree 4. Moreover, if a point lies on a
line, any conjugate of the point lies on the corresponding conjugate of the line. Thus the arrangement
of the four lines and their four intersection points is preserved by the action of the Galois group. It
follows that the Galois group is included in a group of order 8 which acts on the lines and their
intersections as the 8 isometries of a square act on its edges and its vertices. By looking at the
subgroups of this group, the Galois principle says that the field K of definition of any of the lines
has a degree which divides 4, and that if its degree is 4 it has a subfield of degree 2. Therefore each
line may be parameterized with at most 2 square roots. As the splitting field has degree at most 8, it
is possibly generated by another square root. This shows, without any explicit computation, that at
most 3 square roots are needed to define all the four intersection points and the four lines.

B Rational canonical form for the four skew lines case

We here give a proof of Proposition 2.1.

Proof. Let K be a Q-extension field of smallest degree on which the four lines of the intersection are
rationally parameterized, and let L be the field generated by the roots of the determinantal equation.
To decompose the singular quadrics of the pencil in two planes, we have to extract the square roots
of two elements d1 and d2 of L, which are algebraically conjugate on Q if L is different from Q.
Let t2 −2αt + γ be the (rational) polynomial having d1 and d2 as roots. It is easy to verify that K is
generated by the roots of the biquadratic polynomial t4 −2αt2 + γ.

Let the points pi, i = 1, . . . ,4, be the singular points of the intersection in P3(C) of any two
distinct quadrics of the pencil. Now, let us choose four points qi on which the Galois group G of
this polynomial acts in the same way as on the pi. For instance, take for qi, i = 1, . . . ,4, the points
of coordinates (1, ti, t2

i , t3
i ), where the ti are the roots of the biquadratic polynomial, numbered such

that t1 = −t3. It is now easy to compute the equations H j of the planes containing all the points qi

except q j. The quadrics of equations
{

H1H3 +H2H4 = 0,
√

α2 − γ(H1H3 −H2H4) = 0

are rational and their intersection consists in the four (not necessarily real) lines q1q2, q2q3, q3q4,
and q4q1. Now, the change of frame sending the qi to the points of coordinates (ti,−1/ti, t2

i −α,1)
is rational and leads to the equations

{

x2 − γy2 −2wz = 0,
αx2 +2γxy+αγy2 − z2 − (α2 − γ)w2 = 0.
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There is a unique projective transformation sending the points pi on the qi and leaving fixed some
rational point which is not on any of the planes defined by the pi or by the qi. This transformation
is invariant under the action of the Galois group G. Thus it is rational, showing the existence of the
rational change of frame which is sought.

We now show how the different types of real intersection follow from the signs of δ = α2 − γ,α,
and γ. First note that the determinantal equation for the rational canonical pencil above is

D(λ,µ) = γ
(

λ2 −δµ2)2
.

Furthermore, the double roots of D are (λ0,µ0) = (±
√

δ,1) and, when δ > 0, the associated pairs of
planes have equations

λ0QS +µ0QT = (α±
√

δ)
(

x+(α∓
√

δ)y
)2

− (z±
√

δw)2.

The discriminants of the two pairs of planes of the pencil are thus d± = α±
√

δ.
We know from Table I.4 that, when the real intersection consists of two lines, the double roots are

complex, hence δ < 0. In the other cases, the double roots are real and distinct thus δ > 0. Note that
d+d− is then equal to c. When the real intersection is empty, the inertia of the two pairs of planes is
(2,0), hence d± < 0; thus d+ +d− = 2α < 0 and d+d− = γ > 0. When the real intersection consists
of two points, the discriminants of the two pairs of planes have opposite signs, thus d+d− = γ < 0.
Finally, when the intersection consists of four skew lines, the discriminants of the two pairs of planes
are both positive, thus d+ + d− = 2α > 0 and d+d− = γ > 0. This completes the proof since these
cases for the signs of δ, α, and γ are disjoint.

C Examples in all cases

Table 2 gives an exhaustive list of examples covering all possible degrees of extension fields on
which the components of the intersection are defined, for all real types of intersection. The next-to-
last column gives the optimal ring of definition on which a parameterization of the given example
is known to exist (ξ is the parameter of the parameterization). When the parameterization output
by our algorithm is optimal, the last column gives the degree of the Q-extension field on which the
coefficients of the parameterization of each real component of the intersection is defined. When our
algorithm is only near-optimal, the last column gives both the optimal degree and the near-optimal
one.

Table 2: Exhaustive list of examples when the intersection is 0- or 1-dimensional over C.

complex type real type example field of definition degree

smooth quartic,
σ4 = [1111]

/0

{

6xy+5y2+2z2+6zw−w2=0

3x2+y2−z2+11w2=0
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Table 2: (continued)

complex type real type example field of definition degree

smooth quartic,
two finite

components

{

x2+y2−z2−w2=0

xy−2zw=0
quartic in Q[ξ,

√
∆], ∆ ∈ Q[ξ] 1 / 2

{

6xy+5y2+2z2+6zw−w2=0

3x2+y2−z2−w2=0

quartic in Q(
√

δ)[ξ,
√

∆],

∆ ∈ Q(
√

δ)[ξ]
2

smooth quartic,
one finite

component

{

x2+y2+2zw=0

x2+z2+zw−w2=0
quartic in Q[ξ,

√
∆] 1 / 2











2x2−2xy+2xz−2xw+y2

+4yz−4yw+2z2−4zw=0

x2−2xy+4xz+4xw−y2

+2yz+4yw+4zw−2w2=0

quartic in Q(
√

δ)[ξ,
√

∆],

∆ ∈ Q(
√

δ)[ξ]
2

smooth quartic,
two infinite
components

{

xy+zw=0

x2−y2+z2+2zw−w2=0
quartic in Q[ξ,

√
∆], ∆ ∈ Q[ξ] 1 / 2

{

x2−2y2+4zw=0

xy+z2+2zw−w2=0

quartic in Q(
√

δ)[ξ,
√

∆],

∆ ∈ Q(
√

δ)[ξ]
2

nodal quartic,
σ4 = [112]

point

{

y2+z2+w2=0

xy+w2=0
point in Q 1

nodal quartic

{

y2+z2−w2=0

xy+w2=0
quartic in Q[ξ] 1 / 2

{

y2+z2−3w2=0

xy+w2=0
quartic in Q(

√
3)[ξ] 2

nodal quartic
with isolated
singularity

{

y2−z2−w2=0

xy+w2=0

quartic in Q[ξ],

point in Q

1 / 2

1
{

y2+z2−3w2=0

xw+y2=0

quartic in Q(
√

3)[ξ],

point in Q

2

1

cuspidal quartic,
σ4 = [13]

cuspidal quartic

{

yz+w2=0

xz+y2=0
quartic in Q[ξ] 1

cubic and secant
line, σ4 = [22]

cubic and secant
line

{

y2+zw=0

xy+w2=0

cubic in Q[ξ],

line in Q[ξ]

1

1

cubic and
non-secant line

{

xw+yz=0

xz−yw+zw=0

cubic in Q[ξ],

line in Q[ξ]

1

1

cubic and tangent
line, σ4 = [4]

cubic and tangent
line

{

yw+z2=0

xw+yz=0

cubic in Q[ξ],

line in Q[ξ]

1

1

two secant conics,
σ4 = [11(11)]

/0

{

z2−w2=0

x2+y2+w2=0
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Table 2: (continued)

complex type real type example field of definition degree

two points

{

z2+w2=0

x2−y2+w2=0
two points in Q 1

{

z2+w2=0

x2−2y2+w2=0
two points in Q(

√
2) 2

one conic

{

zw=0

x2+y2+z2−w2=0
one conic in Q[ξ] 1 / 2

{

x2−4xw+3w2=0

x2+y2+z2−4w2=0
one conic in Q(

√
3)[ξ] 2

{

x2−4xw−3w2=0

x2+y2+z2−w2=0
one conic in Q(

√

4
√

7−10) 4

two non-secant
conics

{

x2−w2=0

y2+z2−w2=0
two conics in Q[ξ] 1 / 2

{

x2−w2=0

y2+z2−3w2=0
two conics in Q(

√
3)[ξ] 2

{

x2−3w2=0

y2+z2−3w2=0
two conics in Q(

√
3)[ξ] 2 / 4

{

x2−33w2=0

y2+z2−3w2=0
two conics in Q(

√
3,
√

11)[ξ] 4

two secant conics

{

x2−y2=0

y2+z2−w2=0
two conics in Q[ξ] 1 / 2

{

x2−y2=0

y2+z2−3w2=0
two conics in Q(

√
3)[ξ] 2

{

x2−3y2=0

y2+z2−3w2=0
two conics in Q(

√
3)[ξ] 2 / 4

{

x2−33y2=0

y2+z2−3w2=0
two conics in Q(

√
3,
√

11)[ξ] 4

two tangent conics,
σ4 = [1(21)]

point

{

x2+w2=0

xy+z2=0
point in Q 1

two conics

{

x2−w2=0

xy+z2=0
two conics in Q[ξ] 1

{

x2−2w2=0

xy+z2=0
two conics in Q(

√
2)[ξ] 2

double conic,
σ4 = [1(111)]

/0

{

w2=0

x2+y2+z2=0

double conic

{

x2=0

y2+z2−w2=0
conic in Q[ξ] 1 / 2

{

x2=0

y2+z2−3w2=0
conic in Q(

√
3)[ξ] 2
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Table 2: (continued)

complex type real type example field of definition degree

conic and two lines
not crossing,
σ4 = [2(11)]

point

{

xy=0

y2+z2+w2=0
point in Q 1

conic and point

{

xw=0

y2+z2−w2=0

point in Q,

conic in Q[ξ]

1

1 / 2
{

xw=0

y2+z2−3w2=0

point in Q,

conic in Q(
√

3)[ξ]

1

2

conic and two
lines

{

xy=0

y2+z2−w2=0

two lines in Q[ξ],

conic in Q[ξ]

1

1
{

xy=0

2y2+z2−3w2=0

two lines in Q(
√

3)[ξ],

conic in Q[ξ]

2

1 / 2
{

xy=0

y2+z2−3w2=0

two lines in Q(
√

3)[ξ],

conic in Q(
√

3)[ξ]

2

2

conic and two lines
crossing,

σ4 = [(31)]
conic

{

yz=0

xz+y2+w2=0
conic in Q[ξ] 1

conic and two
lines

{

yz=0

xz+y2−w2=0

conic in Q[ξ],

two lines in Q[ξ]

1

1
{

yz=0

xz+y2−2w2=0

conic in Q[ξ],

two lines in Q(
√

2)[ξ]

1

2

four skew lines,
σ4 = [(11)(11)]

/0

{

x2+y2=0

z2+w2=0

two points

{

x2+y2−2zw=0

2xy+z2+w2=0
two points in Q 1

{

x2+3y2−2zw=0

x2−6xy−3y2−z2−4w2=0
two points in Q(

√
3) 2

{

x2+2y2−2zw=0

x2−4xy−2y2−z2−3w2=0
two points in Q(

√

1+
√

3) 4

two skew lines

{

x2−25y2−2zw=0

3x2+50xy+75y2−z2+16w2=0
two lines in Q[ξ] 1

{

x2−4y2−2zw=0

x2+8xy+4y2−z2+3w2=0
two lines in Q(

√
6)[ξ] 2

{

x2−3y2−2zw=0

x2+6xy+3y2−z2+2w2=0
two lines in Q(

√√
3−1)[ξ] 4

four skew lines

{

x2−9y2−2zw=0

5x2+18xy+45y2−z2−16w2=0
four lines in Q[ξ] 1

{

x2−y2−2zw=0

3x2+2xy+3y2−z2−8w2=0

two lines in Q[ξ],

two lines in Q(
√

2)[ξ]

1

2
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Table 2: (continued)

complex type real type example field of definition degree
{

x2−16y2−2zw=0

5x2+32xy+80y2−z2−9w2=0
four lines in Q(

√
2)[ξ] 2

{

x2−y2−2zw=0

2x2+2xy+2y2−z2−3w2=0

two lines in Q(
√

2)[ξ],

two lines in Q(
√

6)[ξ]

2

2
{

x2−20y2−2zw=0

6x2+40xy+120y2−z2−16w2=0
four lines in Q(

√
2,
√

10)[ξ] 4
{

x2−2y2−2zw=0

2x2+4xy+4y2−z2−2w2=0
four lines in Q(

√

2+
√

2)[ξ] 4
{

x2−3y2−2zw=0

3x2+6xy+9y2−z2−6w2=0

two lines in Q(
√

3−
√

3)[ξ],

two lines in Q(
√

3+
√

3)[ξ]

4

4

two skew lines and
a double line,
σ4 = [(22)]

double line

{

y2+w2=0

xy+zw=0
double line in Q[ξ] 1

two skew lines
and a double line

{

y2−w2=0

xy−zw=0

double line in Q[ξ]

two simple lines in Q[ξ]

1

1
{

y2−2w2=0

xy−zw=0

double line in Q[ξ]

two simple lines in Q(
√

2)[ξ]

1

2

two concurrent
double lines,
σ4 = [(211)]

point

{

w2=0

x2+y2+zw=0
point in Q 1

two double lines

{

w2=0

x2−y2+zw=0
two lines in Q[ξ] 1

{

w2=0

x2−2y2+zw=0
two lines in Q(

√
2)[ξ] 2

conic and double
line, σ4 = [1{3}]

conic and double
line

{

xw=0

xz+y2=0

conic in Q[ξ],

line in Q[ξ]

1

1

four concurrent
lines, σ3 = [111]

point

{

x2+z2=0

y2+z2=0
point in Q 1

two concurrent
lines

{

xz−y2=0

−x2+z2=0
two lines in Q[ξ] 1

{

xz−y2=0

−2x2−y2+z2=0
two lines in Q(

√
2)[ξ] 2

{

xz−y2=0

2xy+z2=0

one line in Q[ξ],

one line in K[ξ],degree(K) = 3

1

3
{

xz−y2=0

−3x2+z2=0
two lines in Q(

√

3
√

3)[ξ] 4
{

xz−y2=0

−3x2−3xy+z2=0

one line in K[ξ],degree(K) = 4

one line in K′[ξ],degree(K′) = 4

4

4
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Table 2: (continued)

complex type real type example field of definition degree

four concurrent
lines

{

xz−y2=0

4x2−5y2+z2=0
four lines in Q[ξ] 1

{

xz−y2=0

2x2−3y2+z2=0

two lines in Q[ξ],

two lines in Q(
√

2)[ξ]

1

2
{

xz−y2=0

−4x2+8xy−4yz+z2=0
four lines in Q(

√
2)[ξ] 2

{

xz−y2=0

xy−3y2+z2=0

one line in Q[ξ],

three lines li in Ki[ξ],degree(Ki) = 3

1

3
{

xz−y2=0

2x2−4y2+z2=0
four lines in Q(

√

2+
√

2)[ξ] 4
{

xz−y2=0

4x2−10y2+z2=0
four lines in Q(

√
6,
√

14)[ξ] 4
{

xz−y2=0

2x2+10xy+15y2+7yz+z2=0

two lines in Q(
√

2)[ξ],

two lines in Q(
√

5)[ξ]

2

2
{

xz−y2=0

xy−4y2+z2=0

one line in Q[ξ],

three lines li in Ki[ξ],degree(K) = 3

1

3
{

xz−y2=0

2x2−5y2+z2=0

two lines in Q(
√

5+
√

17)[ξ],

two lines in Q(
√

5−
√

17)[ξ]

4

4
{

xz−y2=0

x2−3xy−7y2+z2=0
four lines li in Ki[ξ],degree(Ki) = 4 4

{

xz−y2=0

x2+xy+z2=0
four lines li in Ki[ξ],degree(Ki) = 4 4

two concurrent
lines and a double

line, σ3 = [12]
double line

{

xy=0

y2+z2=0
double line in Q[ξ] 1

two concurrent
lines and a
double line

{

xy=0

y2−z2=0

double line in Q[ξ],

two simple lines in Q[ξ]

1

1
{

xy=0

y2−2z2=0

double line in Q[ξ],

two simple lines in Q(
√

2)[ξ]

1

2

line and triple line,
σ3 = [3]

line and triple
line

{

xz+y2=0

yz=0

simple line in Q[ξ],

triple line in Q[ξ]

1

1

two concurrent
double lines,
σ3 = [1(11)]

point

{

z2=0

x2+y2=0
point in Q 1

two double lines

{

z2=0

x2−y2=0
two lines in Q[ξ] 1

{

z2=0

x2−2y2=0
two lines in Q(

√
2)[ξ] 2
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Table 2: (continued)

complex type real type example field of definition degree

quadruple line,
σ3 = [(21)]

quadruple line

{

y2=0

xy+z2=0
line in Q[ξ] 1

quadruple line,
σ2 = [11]

quadruple line

{

x2=0

y2=0
line in Q[ξ] 1
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