
HAL Id: inria-00071232
https://hal.inria.fr/inria-00071232v2

Submitted on 4 Dec 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formally Certified Floating-Point Filters For
Homogeneous Geometric Predicates

Guillaume Melquiond, Sylvain Pion

To cite this version:
Guillaume Melquiond, Sylvain Pion. Formally Certified Floating-Point Filters For Homogeneous Geo-
metric Predicates. RAIRO - Theoretical Informatics and Applications (RAIRO: ITA), EDP Sciences,
2007, 41, pp.57-69. <10.1051/ita:2007005>. <inria-00071232v2>

https://hal.inria.fr/inria-00071232v2
https://hal.archives-ouvertes.fr

Theoretical Informatics and Applications Will be set by the publisher

Informatique Théorique et Applications

FORMALLY CERTIFIED FLOATING-POINT FILTERS FOR
HOMOGENEOUS GEOMETRIC PREDICATES

Guillaume Melquiond1 and Sylvain Pion2

Abstract. Floating-point arithmetic provides a fast but inexact way
of computing geometric predicates. In order for these predicates to be
exact, it is important to rule out all the numerical situations where
floating-point computations could lead to wrong results. Taking into
account all the potential problems is a tedious work to do by hand. We
study in this paper a floating-point implementation of a filter for the
orientation-2 predicate, and how a formal and partially automatized
verification of this algorithm avoided many pitfalls. The presented
method is not limited to this particular predicate, it can easily be used
to produce correct semi-static floating-point filters for other geometric
predicates.

1991 Mathematics Subject Classification. 65G50,68Q60,65D18.

1. INTRODUCTION

Computational geometry algorithms, such as convex hull computations, Delau-
nay triangulations and arrangements computations, are notoriously sensitive to
numerical instability. The most important characteristic of these algorithms is
that they mix numerical computations, with combinatorial ones. Their input is
for example a set of points in the plane or in space, given by their coordinates,
and their output contains a combinatorial part such as a graph: a simple linear

Keywords and phrases: Geometric predicates, semi-static filters, formal proofs, floating-point

1 Laboratoire de l’Informatique du Parallélisme
UMR 5668 CNRS, ENS Lyon, INRIA, UCBL

46 allée d’Italie, 69364 Lyon Cedex 07, France
E-mail: Guillaume.Melquiond@ens-lyon.fr
2 INRIA Sophia Antipolis,
2004 route des Lucioles, BP 93, 06902 Sophia Antipolis, France

E-mail: Sylvain.Pion@sophia.inria.fr
c© EDP Sciences 1999

2 TITLE WILL BE SET BY THE PUBLISHER

sequence for the 2-dimensional convex hull, or more complex ones in the case of
triangulations... Many such algorithms are gathered in the CGAL1 library [3].

In order to derive a combinatorial, discrete, structure from a set of numerical
inputs, a set of functions are used, called geometric predicates, which evaluate
the relative positions of a few geometric objects, such as the orientation of three
points in the plane. From the implementation point of view, using floating-point
approximate arithmetic to evaluate these predicates has shown to be the source of
many non-robustness problems, because the incorrect geometry of these approxi-
mate predicates violates basic geometric theorems on which the algorithms rely [8].
One of the most appreciated solutions to this problem, due to its generality, is to
render these predicates exact, thus following the Exact Geometric Computation
paradigm [14].

The use of exact multi-precision arithmetic instead of floating-point provides
the necessary exactness, but it is not usable naively in practice, due to considerable
efficiency loss. Therefore an additional step has been developed in what is called
arithmetic filters, which are a way to filter out easy cases of the predicates using
certified floating-point arithmetic, calling the slow exact arithmetic as a last resort,
far less often. There are different kinds of filters, varying in efficiency and precision.
Static filters have been first developed [6], and rely on static forward analysis of
error propagation. They tend to be restricted in the input, but are fast. Many
variants exist [2, 5, 12]. Dynamic filters are easier to use and more general, but
slower [1].

Static filters variants use floating-point error propagation, which are risky and
error prone when done by hand. Some more or less automatic tools have been
developed to produce their code [2,7,9,11], but it remains an error-prone task due
to the complex nature of floating-point arithmetic.

In this paper, we detail the formal proof of a particular kind of static filters,
which is implemented in CGAL [3]. We focus on the 2-dimensional orientation
of points as predicate, since it is one of the most critical. We then show that
the techniques apply similarly to many more important other predicates. And we
conclude with a comparison to other existing methods.

2. ORIENTATION-2 PREDICATE

This predicate is one of the most often encountered geometric predicates. Given
three points p, q, and r in the plane, it answers if they are collinear, or if they are
clockwise or counter-clockwise oriented. If the Cartesian coordinates of the three
points are known, the answer is given by the sign of a 3×3-determinant of the
coordinates, or the sign of a 2×2-determinant of the vectors.

orient2(p, q, r) =

∣∣∣∣∣∣
px qx rx

py qy ry

1 1 1

∣∣∣∣∣∣ =
∣∣∣∣ qx − px rx − px

qy − py ry − py

∣∣∣∣
1http://www.cgal.org/

TITLE WILL BE SET BY THE PUBLISHER 3

2.1. Naive implementation

Algorithm 1 Floating-point orientation-2 naive implementation
double pqx = qx - px, pqy = qy - py;

double prx = rx - px, pry = ry - py;

double det = pqx * pry - pqy * prx;

if (det > 0) return POSITIVE;

if (det < 0) return NEGATIVE;

return ZERO;

Algorithm 1 shows a naive implementation of the orientation-2 predicate. It
first computes floating-point approximations of the vectors pq and pr. Then it
simply computes an approximation of the 2×2-determinant and returns its sign.

If the computations were done on real numbers, this implementation would
lead to the correct result. Unfortunately floating-point numbers suffer from both
a limited precision and a limited range. These limitations can lead to a det value
with a different sign.

Let us consider the following example. When the result of a floating-point
computation is outside the range of representable numbers, it is replaced by an
infinite value. Let M be the biggest power-of-2 number that is still representable.
Let p, q, and r be

(p, q, r) =
(
−M M −7M/8

1 3 −17/16

)
Computing pqx will produce an unrepresentable value 2M . As a consequence

the variable will contain +∞. None of the other variables nor pqy * prx will
contain an infinite value. Hence the infinite value contained in pqx will propagate
till the final variable det and the predicate will answer POSITIVE. Unfortunately
the real value of the determinant is a negative number: −M/8.

This example shows that the limited range of floating-point numbers can lead to
the wrong sign. The limited precision can also lead to a wrong answer, especially
when the points are almost aligned. A small rounding error will spoil each floating-
point computations and the computed values may slowly drift away from the real
values.

2.2. Floating-point considerations

The IEEE-754 standard [13] covers both the data formats and the precise be-
havior of the arithmetic operators. In particular, it describes how rounding and
limited precision affect the operators.

A floating-point operation c̃ ← ã ⊕ b̃ can theoretically be decomposed in two
steps: the first one computes the exact real result c = ã + b̃ and the second one
rounds this exact result c to the nearest floating-point number c̃. The distance
between the exact result and the computed value is bounded by ε0 · |c| and by

4 TITLE WILL BE SET BY THE PUBLISHER

ε0 · |c̃|, if the result is in the range of normal numbers, and η0 otherwise. If |c| is
bounded by r, and if ε0r ≥ η0, then the computational error is bounded by ε0r.

Both ε0 and η0 depend on the floating-point format chosen to implement the
algorithm. In case of the IEEE-754 double precision floating-point arithmetic with
rounding to nearest, these constants are ε0 = 2−53 and η0 = 2−1075.

Unfortunately, the standard does not prevent a processor to use an excess pre-
cision when computing in its default mode of operations. It does not describe how
programming languages and their compilers should comply with it either. As a
consequence, a double rounding phenomenon can appear. A value will first be
computed and rounded in the default extended precision of the processor. It will
then be stored in memory with a reduced precision. This storage induces a second
rounding.

The total rounding error of these two operations can then exceed the rounding
error that would have happened if a single rounding had been done. For example,
this phenomenon can happen in a program relying on double precision floating-
point computations compiled by GCC for the x86 processor family. Depending
on whether the result of a floating-point operation is only stored in a processor
register or goes through the memory, the value will be rounded one or two times.
The floating-point registers use 64-bit wide mantissas while the double type causes
the compiler to store the values in memory with 53-bit wide mantissas. In order
to take the double rounding phenomenon into account, the constants have to be
changed accordingly: ε0 = 2−53(1 + 2−11) and η0 = 2−1075(1 + 2−12).

2.3. Robust implementation

Algorithm 2 Floating-point orientation-2 filter
double pqx = qx - px, pqy = qy - py;

double prx = rx - px, pry = ry - py;

double maxx = max(abs(pqx), abs(prx));

double maxy = max(abs(pqy), abs(pry));

double eps = 8.8872057372592758e-16 * maxx * maxy;

if (maxx > maxy) swap(maxx, maxy);

if (maxx < 1e-146) { // underflows?

if (maxx == 0) return ZERO;

} else if (maxy < 1e153) { // no overflow?

double det = pqx * pry - pqy * prx;

if (det > eps) return POSITIVE;

if (det < -eps) return NEGATIVE;

}

// fall back to a more precise, slower method

TITLE WILL BE SET BY THE PUBLISHER 5

Algorithm 2 takes into account the properties of floating-point arithmetic in
order to return the correct sign. In case the sign cannot be computed by using
floating-point arithmetic, the algorithm falls back on a more precise yet slower
method in order to determine the exact result. The cost of this slower method is
amortized due to the fact that the filter part is expected to be able to determine
the exact result with a high probability. We are not going to describe this part in
this paper.

Like the naive implementation, this algorithm will first compute the vectors pq
and pr and then compute the determinant of their coordinates. It will however
contain some logic to prevent returning a wrong sign. In particular it will compute
a value ε bigger than the rounding error caused by the limited precision of floating-
point computations.

Indeed the computed value det is not the exact result det of the determinant.
If there exists a value ε that bounds the error |det − det| ≤ ε, then det and det
have the same sign if |det| > ε. Otherwise the slower method is used.

3. CERTIFYING THE ALGORITHM

3.1. The case of the 2×2-determinant

When computing a 2×2-determinant by its simplest formula with a floating-
point arithmetic, an error will appear. The computed value z̃ is not the exact
value z, and their signs may be different if z is close enough to 0. Moreover, the
inputs s̃, t̃, ũ, and ṽ may already be spoiled by rounding errors and differ from
the real inputs s, t, u, and v.

z = s · v − t · u
z̃ = (s̃⊗ ṽ)	 (t̃⊗ ũ)

If the inputs were bounded, a simple forward error analysis would suffice to
bound the absolute error between z and z̃. The relative error is not usable since
the results of the computations are potentially subnormal. So we artificially bound
the inputs by involving the values m = max(|s̃|, |t̃|) and n = max(|ũ|, |ṽ|).

If m or n is zero, the computed value z̃ will be exactly zero. Thanks to sub-
normal numbers, the result of a subtraction is zero only if the two floating-point
operands are equal. Consequently, if m or n is zero, it means that the real deter-
minant also has a column of zeros, and is then equal to zero. The algorithm can
directly answer that the three points are aligned.

We can rule out this case and now consider both m and n to be positive. |s̃/m|,
|t̃/m|, |ũ/n|, and |ṽ/n| are all bounded by 1. Let us call δ the bound on the
absolute error of the bounded problem. Can we now deduce a property similar to

|z̃ − z| ≤ m · n · δ ?

6 TITLE WILL BE SET BY THE PUBLISHER

3.2. Involving δ

The objective is to inductively compute a property on z̃ − z of the form x ∈
f(m,n) · I. I is a closed and bounded interval of the real numbers R, such that
it could be obtained by considering the bounded problem. And f is a positive
function, easily computable. In the case of z̃ − z, this function is simply the
product m · n, and we expect to find an interval close to [−δ, δ].

We will enclose expressions dealing with real numbers. These expressions are
built of R ring operators (addition and multiplication) and a rounding operator
◦ : R → F. This unary function expresses the following property: in normal
situation, a floating-point operator shall behave as if the computation was first
done with an infinite precision and the result was then rounded to the working
precision. As a consequence, an expression like s̃⊗ ṽ can be rewritten as ◦(s̃ · ṽ).

The induction will be done on the structure of these expressions.

3.2.1. First rounding

Let us initialize the induction. The expressions s̃ and t̃ are bounded by m ·
[−1, 1], and ũ and ṽ by n · [−1, 1].

We will also need to bound the first rounding errors. For example, as explained
in Section 2.2, the error s̃− s will be bounded by (m · [−ε0, ε0]) ∪ [−η0, η0]. So if
m · ε0 ≥ η0, then

s̃− s ∈ m · [−ε0, ε0]

In both cases, the intervals could be obtained by studying the problem restricted
to inputs between −1 and 1. Now we can start the structural induction.

3.2.2. Addition and multiplication

Let a and b be two real expressions respectively bounded by f(m,n) · A and
g(m,n) ·B.

a + b ∈ (f(m,n) ·A) + (g(m,n) ·B)
∈ max(f(m,n), g(m,n)) · (A + B)
∈ f(m,n) · (A + B) when f = g

a · b ∈ (k · l) · (A ·B)

The intervals A + B and A · B must verify the inclusion property of interval
arithmetic [10]. [a + b, a + b] is such an interval for A + B since it contains all the
possible results x + y for x ∈ A and y ∈ B.

Once again, the intervals can be computed by simply considering the problem
restricted to bounded inputs.

3.2.3. Rounding error

The last expression that needs to be bounded is the rounding error ◦(a) −
a. Thanks to the property described in Section 2.2, if |A| is the magnitude

TITLE WILL BE SET BY THE PUBLISHER 7

max(|a|, |a|) of the interval A = [a, a], and if f(m,n) · |A| · ε0 ≥ η0, then

◦(a)− a ∈ f(m,n) · [−|A| · ε0, |A| · ε0]

This error interval [−|A| ·ε0, |A| ·ε0] is an interval enclosing ◦(a′)−a′ for a′ ∈ A,
but it is generally not the sharpest. This widened interval is necessary in order for
it to be usable in the general unbounded case. As a consequence, when computing
δ on the bounded problem, we cannot search for the best interval. We have to
restrict ourselves to the theorems shown here.

In both rounding error computations, a condition r · ε0 ≥ η0 has to be verified
so that the inclusion properties are valid. This condition is directly included in
Algorithm 2. By testing if maxx (the smallest of m and n) is big enough, we verify
that the global error eps is not underestimated. If this test fails, we discard the
floating-point determinant and switch to another method for evaluating its sign.

3.2.4. Rewriting formulas

Since none of the previous rules applies to ◦(a), we would never find a bound
on z̃ − z. Indeed, this formula can only be split between z̃ and z; and although
the right hand side z can be bounded thanks to the rules we described, the left
hand side cannot.

To avoid this problem, we rewrite z̃ − z such that we have an expression that
can be bounded by induction. In particular, since the addition in these formulas is
associative (it is the addition of R, not a floating-point addition), we can replace
z̃ − z with (z̃ − z′) + (z′ − z), and z′ = s̃ ⊗ ṽ − t̃ ⊗ ũ. The left hand side of
the addition is now a rounding error (z̃ = ◦(z′)). The right hand side cannot be
directly bounded though, so it will be rewritten too, and so on.

3.3. Computing and proving δ

We use the tool Gappa2 [4] to generate both the value of δ and a formal proof
of the correctness of this value. Given a logical property involving real expressions
containing rounding operators, Gappa tries to certify it. More precisely, we will
ask Gappa to bound the expression z̃ − z knowing that the four floating-point
elements of the determinant are between −1 and 1.

Algorithm 3 shows the code fed to Gappa. The question mark in the property
means Gappa does not have to try to validate a given bound; it just has to compute
an absolute error bound it can formally prove.

The first equalities are just notations that Gappa will expand in the prop-
erty it has to analyze. The <homogen80x init> (noted ◦i in the following) and
<homogen80x> are both rounding operators. The first one corresponds to the ini-
tialization of the induction. The equality det <homogen80x>= pqx * pry - pqy
* prx is just syntactic sugar to express that det denotes ◦(◦(pqx · pry)− ◦(pqy ·
prx)).

2http://lipforge.ens-lyon.fr/www/gappa/

8 TITLE WILL BE SET BY THE PUBLISHER

Algorithm 3 Gappa’s algorithm description.
some notations:

pqx = <homogen80x_init>(qx - px);

pqy = <homogen80x_init>(qy - py);

prx = <homogen80x_init>(rx - px);

pry = <homogen80x_init>(ry - py);

det <homogen80x>= pqx * pry - pqy * prx;

exact = (qx-px)*(ry-py) - (qy-py)*(rx-px);

the property Gappa has to find and verify:

{ pqx in [-1,1] /\ pqy in [-1,1] /\

prx in [-1,1] /\ pry in [-1,1] ->

det - exact in ? }

Mathematical version of the property:
|pqx| ≤ 1 ∧ |pqy| ≤ 1 ∧ |rqx| ≤ 1 ∧ |rqy| ≤ 1 →

|det− ((qx− px) · (ry− py)− (qy− py) · (rx− px))| ≤ ?

We are not using the standard Gappa rounding operators like <float80ne>, al-
though they provide some powerful theorems on floating-point arithmetic. Indeed,
Gappa is a generic tool for bounding expressions involving rounding operators, so
it does not know about the induction we are performing. As explained in Sec-
tion 3.2.3, we are restricted to a subset of floating-point arithmetic theorems. As
a consequence, we define two new rounding operators in order to force Gappa to
create a suitable proof. For each of them, only one Gappa theorem is defined, and
hence there is only one way Gappa can deal with these operators.

◦i(a)− a ∈ B · [−ε0, ε0] with ◦i (a) ∈ B

◦(a)− a ∈ A · [−ε0, ε0] with a ∈ A

As described in Section 3.2.4, the shape of the expressions are not such that they
can be bounded directly. They first have to be rewritten, so that the sub-terms
are in a suitable form. Fortunately, Gappa automatically does this rewriting, the
user does not have to do it beforehand.

3.4. Other parts of the algorithm

Computing the pq and pr vectors and the 2×2-determinant are not the only
parts of the implementation that may lead to imprecise results. The δ⊗m⊗n value
is itself computed by floating-point arithmetic. Consequently it may be smaller
than the real ε value, and the determinant would then be wrongly believed to be
bigger than the error threshold.

The computation of eps only involves multiplications; the error analysis can
then use relative error. It is especially important since we do not want to bound
m and n, and consequently the absolute error cannot be used.

TITLE WILL BE SET BY THE PUBLISHER 9

The relative error however involves avoiding the range of subnormal results in
order for it to stay bounded. The constraints Algorithm 2 puts on maxx and maxy
already guarantee none of the multiplications will underflow when computing eps.

Algorithm 4 Gappa’s script for checking there is no overflow.
some notations:

t1 = pqx * pry;

t2 = pqy * prx;

det = <float80x>(t1) - <float80x>(t2);

the property Gappa has to verify:

{ pqx in [-1e153,1e153] /\ pqy in [-1e153,1e153] /\

prx in [-1e153,1e153] /\ pry in [-1e153,1e153] ->

t1 in [-1b1023,1b1023] /\ t2 in [-1b1023,1b1023] /\

det in [-1b1023,1b1023] }

The constraints also prevent the computations from overflowing. The script 4
contains the description of this property of the algorithm. The computation of
the determinant only happens when all the values are bounded by 10153, this is
expressed by the hypotheses on the expressions pqx, pqy, etc. The three goals
express that none of the theoretical non-rounded values is outside the range of
floating-point numbers. Hence no overflow will happen during the computation of
their rounded counterparts.

We use the notation -1b1023 to write dyadic numbers, it means −1 × 21023:
this is the smallest power-of-two number still representable in double precision. It
could be written in decimal notation 8.98846567431e+307, but it would be a lot
less readable.

Another rounding mode, float80x, was used in order to describe this property.
There is one theorem defined with this rounding mode: it expresses the range of
a rounded value when the range of the non-rounded value is known. It is done
by rounding the lower and upper bounds respectively toward −∞ and +∞ in
floating-point double precision. As a consequence, this rounding mode is a bit
different from float64ne which rounds the bounds to the nearest floating-point
values. float64ne could have been used if there had been no double rounding
phenomenon. By rounding the bounds toward the outside, float80x applies in
all these situations at the cost of a slight pessimism.

4. GENERALIZATION TO OTHER PREDICATES

4.1. Homogeneous predicates

The orientation-2 predicate is the sign of a 2×2-determinant. As a consequence,
the numerical value the filter has to compute is multilinear with respect to the rows
(or columns) of this determinant. Hence this value is related to the product m ·n.
But more importantly, the absolute error on this value is also related to m · n.
Hence the bound δ ·m · n we were trying to reach is not especially pessimistic.

10 TITLE WILL BE SET BY THE PUBLISHER

More generally, this method applies to any predicate such that its numerical
value is computed by an homogeneous polynomial. Indeed, by correctly choosing
the initial bounding functions, the rules of Section 3.2 will lead to tight bounds
on the absolute error, with simple bounding functions.

Fortunately, orientation-2 is not the only homogeneous predicate: a good num-
ber of common predicates follow the same shape. Indeed, due to their geometric
nature, they mainly deal with distances. Hence they are homogeneous expressions,
and the arguments that we have detailed for the 2D orientation predicate apply
to the higher dimensional versions.

We have applied our techniques to the 2D and 3D orientation predicates, as well
as the 2D and 3D predicates testing if a point is inside the circumscribing circle
(resp. sphere) of 3 (resp. 4) other points. They are called incircle and insphere
respectively. These predicates are the most useful in building triangulations and
meshes.

4.2. Generating Gappa code

As shown by Algorithm 3, the file describing the orient2 predicate for Gappa
can be written by hand, it is only a few lines long. But such a work will become te-
dious for higher order predicates. The insphere is for example a 5×5-determinant;
as such, its expanded expressions, both exact and computed, are not that easy to
write.

To circumvent this difficulty, we have written a C++ class. This class interfaces
with CGAL generic geometric predicates in order to automatically generate the
input file for Gappa. We soon expect to be able to directly generate the C++
robust floating-point filters, in addition to Gappa files. We also intend to generalize
the method for some other geometric predicates, still homogeneous, but containing
more complex control structures.

4.3. Comparisons to other existing methods

As written in the introduction, there are various kinds of filters which have
been proposed in the literature. Dynamic filters based on interval arithmetic
are immune to problems due to boundary conditions, since these problems are
supposed to be dealt with by the interval arithmetic which is used. However, they
tend to be slower than methods requiring static analysis such as the one presented
here.

The original paper on static filters by Fortune did not address the underflow
issue, nor did Shewchuk’s work (as explicitly stated in his paper). Indeed, it is not
hard to find a data set which produces an underflow leading to a wrong answer.
Taking a large degree predicate such as the insphere predicate, the following set
of points appears to be cospherical while it is obviously not:

TITLE WILL BE SET BY THE PUBLISHER 11

Table 1. Benchmarks of a 3D Delaunay triangulation

Method Random
uncertified floating-point 3.29
our filter + interval + exact 4.33
interval + exact 12.5
exact 296
Shewchuk’s predicates 4.39

p = (0, 0, 0)
q = (1e-67, 0, 0)
r = (0, 1e-67, 0)
s = (0, 0, 1e-67)
t = (1e-67, 1e-67, 2e-67)

4.4. Benchmarks

We have conducted some benchmarks in order to evaluate the overhead of all
necessary checks at run time. The benchmark consists of computing the 3D De-
launay triangulation of 105 random points in the unit cube, using CGAL [3]. The
algorithm makes extensive use of the orientation and insphere predicates.

The experiments have been performed on a Pentium 4 PC at 1.7 GHz, we have
used the GNU G++ compiler version 4.0 with the command line options -O3
-DNDEBUG. Table 1 reports the timings in seconds, for the average of 3 consecutive
runs. Note that the choice of a random data set hardly triggers a robustness
failure.

The various methods that we have compared are:

• uncertified floating-point: the pure floating-point evaluation using
doubles, which is uncertified.
• our filter + interval + exact: the filter we have described in this

paper, which is proved, and in case of uncertainty calls a more precise
evaluation based on interval arithmetic, followed by an exact computation.
• interval + exact: uses interval arithmetic, followed by an exact compu-

tation if the intervals are not precise enough.
• exact: uses exact multiprecision computation.
• Shewchuk’s predicates: uses the predicates provided by Shewchuk [12].

As shown by Table 1, our filter is the first component of a geometric predicate
a bit faster than Shewchuk’s on average on the test machine. But its main quality
does not lie in its speed, it lies in its robustness: floating-point underflow and
overflow are taken into account, and the code is still valid on hardware architectures
that suffer from double rounding.

12 TITLE WILL BE SET BY THE PUBLISHER

5. CONCLUSION

Once some pitfalls of floating-point arithmetic like underflows, overflows, or
double rounding are set aside, it becomes quite easy to design an algorithm which
is not impacted by floating-point rounding errors. However such an algorithm can
not be called robust.

We have formalized in this paper a method that allows us to design simple
and fast yet robust floating-point filters. This method only applies to homoge-
neous algorithms; but since geometric predicates mainly deal with distances, they
generally are homogeneous.

This homogeneity is used to compute a bound on the general error by studying
the behavior of the filter when fed with specific entries. This error bound does not
require the intermediate results not to underflow: as long as a few constraints are
verified, the filter will correctly handle any loss of precision.

The homogeneity also makes it so that the error bound is tight enough for
the floating point filter to actually be useful. Indeed, as shown by Table 1, our
predicates are almost as fast as the näıve uncertified floating-point predicates: the
slow path (interval arithmetic and then exact arithmetic) is seldom taken.

References

[1] H. Brönnimann, C. Burnikel, and S. Pion. Interval arithmetic yields efficient dynamic filters

for computational geometry. Discrete Applied Mathematics, 109:25–47, 2001.
[2] C. Burnikel, S. Funke, and M. Seel. Exact geometric computation using cascading. Internat.

J. Comput. Geom. Appl., 11:245–266, 2001.

[3] The CGAL Manual, 2004. Release 3.1.
[4] Marc Daumas and Guillaume Melquiond. Generating formally certified bounds on values and

round-off errors. In 6th Conference on Real Numbers and Computers, Dagstuhl, Germany,

2004.
[5] Olivier Devillers and Sylvain Pion. Efficient exact geometric predicates for Delaunay trian-

gulations. In Proc. 5th Workshop Algorithm Eng. Exper., pages 37–44, 2003.

[6] S. Fortune and C. J. Van Wyk. Static analysis yields efficient exact integer arithmetic for
computational geometry. ACM Trans. Graph., 15(3):223–248, July 1996.

[7] S. Fortune and C. Van Wyk. LN User Manual. AT&T Bell Laboratories, 1993.
[8] Lutz Kettner, Kurt Mehlhorn, Sylvain Pion, Stefan Schirra, and Chee Yap. Classroom exam-

ples of robustness problems in geometric computations. In Proc. 12th European Symposium

on Algorithms, volume 3221 of Lecture Notes Comput. Sci., pages 702–713. Springer-Verlag,
2004.

[9] Aleksandar Nanevski, Guy Blelloch, and Robert Harper. Automatic generation of staged

geometric predicates. In International Conference on Functional Programming, Florence,
Italy, 2001. Also Carnegie Mellon CS Tech Report CMU-CS-01-141.

[10] Arnold Neumaier. Interval methods for systems of equations. Cambridge University Press,
1990.

[11] Sylvain Pion. De la géométrie algorithmique au calcul géométrique. Thèse de doctorat en

sciences, Université de Nice-Sophia Antipolis, France, 1999. TU-0619.

[12] Jonathan Richard Shewchuk. Adaptive precision floating-point arithmetic and fast robust
geometric predicates. Discrete Comput. Geom., 18(3):305–363, 1997.

[13] David Stevenson et al. An American national standard: IEEE standard for binary floating
point arithmetic. ACM SIGPLAN Notices, 22(2):9–25, 1987.

TITLE WILL BE SET BY THE PUBLISHER 13

[14] C. K. Yap and T. Dubé. The exact computation paradigm. In D.-Z. Du and F. K. Hwang,

editors, Computing in Euclidean Geometry, volume 4 of Lecture Notes Series on Computing,

pages 452–492. World Scientific, Singapore, 2nd edition, 1995.

Communicated by (The editor will be set by the publisher).

