N
N

N

HAL

open science

A Practical Self-Shadowing Algorithm for Interactive
Hair Animation

Florence Bertails, Clément Ménier, Marie-Paule Cani

» To cite this version:

Florence Bertails, Clément Ménier, Marie-Paule Cani. A Practical Self-Shadowing Algorithm for
Interactive Hair Animation. [Research Report] RR-5465, INRIA. 2005, pp.18. inria-00071244

HAL 1d: inria-00071244
https://inria.hal.science/inria-00071244
Submitted on 23 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00071244
https://hal.archives-ouvertes.fr

ISRN INRIA/RR--5465--FR+ENG

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

A Practical Self-Shadowing Algorithm
for Interactive Hair Animation

Florence Bertails — Clément Ménier — Marie-Paule Cani

N° 5465
Janvier 2005

Théme COG

apport
derecherche

% I N RIA

RHONE-ALPES

A Practical Self-Shadowing Algorithm
for Interactive Hair Animation

Florence Bertails, Clément Ménier , Marie-Paule Cani

Théme COG — Systémes cognitifs
Projets Evasion et Movi

Rapport de recherche n° 5465 — Janvier 2005 — 18 pages

Abstract: This paper presents a new fast and accurate self-shadowing algorithm for animated
hair. Our method is based on a 3D light-oriented density map, a novel structure that combines an
optimized volumetric representation of hair with a light-oriented partition of space. Using this 3D
map, accurate hair self-shadowing can be interactively processed (several frames per second for a full
hairstyle) on a standard CPU. Beyond the fact that our application is independent of any graphics
hardware (and thus portable), it can easily be parallelized for better performance. Our method is
especially adapted to render animated hair since there is no geometry-based precomputation and
since the density map can be used to optimize hair self-collisions. The approach has been validated
on a dance motion sequence, for various hairstyles.

Key-words: Hair self-shadowing, interactive rendering, hair simulation.

Unité de recherche INRIA Rhone-Alpes

655, avenue de I’Europe, 38334 Montbonnot Saint Ismier (France)
Téléphone : +33 4 76 61 52 00 — Télécopie +33 4 76 61 52 52

Un algorithme pratique d’ auto-ombrage
pour |"animation interactive de chevelures

Résumé : Ce papier présente une nouvelle approche pour traiter I’auto-ombrage dans les chevelures
de maniéere précise et efficace. Notre méthode se base sur une carte 3D de densité, orientée selon la
direction de la lumiére; cette structure tire parti a la fois d’une représentation volumique optimisée
pour la chevelure, et d’une partition de I’espace orientée selon la lumiére. L’utilisation de cette
carte de densité nous permet de calculer interactivement I’auto-ombrage au sein d’une chevelure
(quelques images par seconde pour une chevelure compléte) sur un CPU standard. Independante du
matériel graphique (et donc portable), notre application peut également étre parallélisée facilement
pour améliorer les performances. En outre, la méthode est particulierement adaptée au rendu de
cheveux animés car elle ne requiert aucun précalcul géométrique, de plus la carte de densité s’avere
trés utile pour optimiser le traitement des collisions entre cheveux. Nous avons validé notre approche
sur un mouvement de danse, pour divers styles de coiffures.

Mots-clés : Auto-ombrage, rendu interactif, simulation de cheveux

A Practical Hair Self-Shadowing Algorithm 3

1 First section

2 Introduction

Self-shadowing is of great relevance to the realistic appearance of hair as it greatly contributes to
the impression of volume (see Figure 8). Considering the high number of thin, translucent fibers
composing a human hair, this phenomenon is difficult to reproduce both accurately and efficiently.

Our work was especially motivated by the need for a simple, fast and accurate technique to
render animated sequences involving dynamic hair. Recently, much effort has been made to achieve
interactive frame rates in the simulation of dynamic hair [BKCNO03, WL03, BCNO03]. But usually,
these good performances only include the cost for animation while realistic hair rendering is done
offline. Bando et al. use billboards to render their hair animations at interactive frame rates, but they
do not account for hair self-shadowing. Ward et al. [WLL*03] represent hair with different LOD
to get interactive simulations. Self-shadowing is processed using one of the GPU-based approaches
mentioned hereunder.

Approaches targeting interactive self-shadowing are very recent and mostly rely on advanced
GPU’s capabilities [MKBRO04, KS04]. Though very successful, these methods are currently very
dependent on the hardware architecture, and remain difficult to implement. This paper investigates
an alternative solution based on the CPU which turns out to be simpler to implement, more flexible,
and which still yields interactive frame rates.

2.1 PreviousWork

Realistic rendering of human hair requires the handling of both local and global hair properties.
Local hair properties describe the way individual hair fibers are illuminated and then represented
in the image space, whereas global properties define how the hair fibers interact together. Global
hair properties especially include hair self-shadowing which plays a crucial role in volumetric hair
appearance and which is the main focus of this paper.

2.1.1 Local Hlumination

To render an individual hair strand, Kajiya and Kay earlier proposed a reflectance model [KK89]
that has been widely used subsequently. Their model is composed of a lambertian diffuse component
and an anisotropic specular component. Many later approaches have subsequently proposed further
refinements to this model [LTT91, Ban94, Gol97, Kim02]. Recently, Marschner et al. [MJC*03]
measured the scattering from real individual hair fibers and proposed a physical-based scattering
model accounting for subtle scattering effects (such as multiple specular highlights) observed in
their experiments. In our approach, we use Kajya-Kay’s reflectance model but our self-shadowing
technique could be combined with any other local illumination model.

RR n° 5465

4 F Bertails, C. Ménier, M-P. Cani

2.1.2 Self-Shadowing

Two main techniques are generally used to cast self-shadows into volumetric objects* : shadow maps
and ray casting through volumetric densities.

In traditional depth-based shadow maps, the scene is rendered from the light point of view, and
the depth of every visible surface is stored into a 2D shadow map. A point is shadowed if the
distance between the point and its projection to the light’s camera is greater than the depth stored
in the shadow map. This algorithm is not adapted to render semi-transparent objects such as hair
because it stores only a single depth per pixel. To handle the self-shadowing of semi-transparent
objects, Lokovic et al. proposed an extension to the traditional shadow maps, called deep shadow
map [LV0Q]. For each pixel of the map, the method stores a transmittance function (also called
visibility function) that gives the fraction of light penetrating at every sampled depth along a ray
casted from the pixel.

Kim and Neumann proposed a practical implementation of this approach, called the opacity
shadow maps [KNO1], and applied it to hair rendering. In their method, the hair volume is uni-
formly sliced along the light rays and each hair volume comprised between two consecutive slices
is rendered from the light’s point of view into the alpha buffer, leading to an opacity shadow map;
final rendering is done by interpolating the different opacity shadow maps.

The same idea was recently exploited by other authors [MKBRO04, KS04] to get a fast rendering
by using recent GPU’s capabilities. Koster et al. achieved real-time results by accelerating the im-
plementation of the opacity shadow maps and by making some assumptions about the hair geometry.
Mertens et al. used an adaptive clustering of hair fragments instead of an uniform slicing, which en-
abled them to interactively build a more accurate transmittance function.

In the case of semi-transparent volumetric objects, self-shadowing is often computed from ray
tracing using a volumetric density representation of the object. Such methods were first applied to
renderings of clouds or smoke [Bli82, KH84]. In a preprocessing step, Kajiya et al. compute a 3D
grid of voxels containing density distributions of the underlying geometry. During ray tracing, the
brightness of the ray is determined by accumulating the contribution of each voxel traversed by the
ray.

To our knowledge, Kajya and Kay were the only ones who applied this kind of technique to
hair [KK89]. In their approach, they used texels as a generalization of volume densities in order to
account for the specific behavior of the micro surfaces composing hair.

Methods based on ray tracing can often be very prohibitive in terms of rendering time, as they
require the calculation and the sorting of multiple intersections between the rays and the objects
that need to be shadowed. Conversely, the key benefit of the approaches that are based on shadow
maps is the light-oriented sampling of geometry, which makes the computation of accumulative
transmittance straightforward. Actually, our method inspires from both. Combining a volumetric
representation of density with a light-oriented sampling allows us to define a practical and interactive
self-shadowing algorithm.

IPlease refer to [WPF90] for a complete survey on shadowing methods.

INRIA

A Practical Hair Self-Shadowing Algorithm 5

2.2 Oveview

Our goal is to provide an easy, accurate and efficient way of casting shadows inside hair. Our method
has to be flexible enough to handle and accelerate simulations that involve animated hair.

Our main contribution is to propose a new algorithmic structure called a 3D light-oriented
shadow map that inspires from both traditional 3D density volumes and more recent 2D shadow
maps as it combines an optimized volumetric representation of hair with a light-oriented partition of
space.

The main advantages of our method are the following :

 Our application is portable, simple to implement and can render a whole hairstyle composed
of thousands of hair strands interactively on a standard CPU. Furthermore, it can easily be
parallelized to increase performance.

» The approach is especially adapted to animated hair since the algorithmic structures that we
used are efficiently updated at each time step. Moreover we show that our data structures
provide an inexpensive way of processing hair self-collisions.

 Our technique does not make any assumption about the hair geometry, and thus could be
applied to render any hairstyle. It has been validated on various hairstyles, either static or
animated with different kinds of motion.

Section 3 describes our 3D light-oriented shadow map structure. Section 4 explains how the
self-shadowing process can be efficiently done by using this new structure. Section 5 deals with the
two extensions of our method mentioned above : on the one hand, we show that our 3D map is very
helpful to process hair self-collisions efficiently; on the other hand we provide a parallelized version
of our algorithm that improves the global performance of the simulation. The last two sections
discuss our results before concluding.

3 3D Light-Oriented Shadow Map

Our 3D shadow map is a uniform cubic voxel grid that associates to each voxel (or cell) a density
value and a transmittance value.

The different hair models that we want to render are composed of a set of segments, but our
algorithm could also apply to other kinds of geometry such as polygonal surfaces for example.

3.1 A Light-Oriented Local Frame

In our method, the light rays are assumed to be parallel (ie. coming from an infinitely distant source),
which is a reasonable assumption for handling common lighting conditions like sun lighting. This
point will be discussed in conclusion.
Instead of having a fixed-oriented structure like in previous approaches, our map is always
aligned with the light direction. More precisely, the map is placed in a local frame % = (O, Xmap, Y map, Zmap)

RR n° 5465

6 F Bertails, C. Ménier, M-P. Cani

where Xpmap coincides with the normalized light vector L and O is the origin of the map (see Figure
2).

As we shall see in Section 4.2, this configuration is very helpful for computing the accumulated
transparencies efficiently. Note that for non-animated data requiring “dynamic” lighting (ie. a mov-
ing light), this choice would not be appropriate since the material geometry is to be recomputed each
time the light moves. But in our case, hair geometry needs to be updated at each time step, so the
moving light case does not yield extra cost for us.

3.2 Object Spaceto Map Space

To occupy a limited memory, our data structure exploits the fact that during animation, the hair
volume is always located inside a bounding box of constant spatial dimension : indeed hair always
remains attached to a scalp, and hair strands are assumed to be inextensible. Storing hair elements
can thus be done inside a bounded structure, provided we build a mapping function from the 3D
object space to this 3D bounding space.

The spatial dimension of the map is thus fixed and only depends on the maximal length lyax0f
a hair strand. If the dimension of the map is superior or equal t0 2 X lyax + hax, Where hpey is the
maximal dimension of the head, it is ensured that the grid will always represent a bounding volume
for the hair at any time step. Of course, the best choice for the dimension of the map is the minimal
number satisfying the constraint above.

The size (or resolution) of the map (ie. the number of cells it contains) depends on the desired
accuracy of self-shadowing. Some tests have been made in Section 6 to compare results using
different map resolutions.

In the remainder of the paper, NCELLS will denote the number of cells in each direction Xmap,
Ymap and Zmap of the map frame £, and ds will represent the step of the map, ie. the spatial
dimension of a cell (see Figure 1).

- X
i T ds
P -
__ i 7 ds

Y,
map rY rZ ‘ >\'k = %

’{Z map /'1 :
X 3
map rX
-

Figure 1: One cell of the map containing a point P. The A; parameters give the location of P inside
the cell, and will be useful for the filtering process (see Section 4.3).

INRIA

A Practical Hair Self-Shadowing Algorithm 7

To find the index of the cell corresponding to a point P(x,y,z), the coordinates of P are first ex-
pressed in the map frame % as (Xmap, Ymap, Zmap), and then applied the following mapping function :

W R3 — [0---NCELLS)®

Xmap 2 | mod NCELLS
ymap | — | |%F®] mod NCELLS
Zmap | % | mod NCELLS

Figure 2 shows the mapping between the object space and the map space.
Thanks to the mapping function W, access to elements of the map is done in constant time, which
greatly contributes to the efficiency of the method.

\ / |Object Space |
PO

l AN

Hair
location
inside

e 4 il Map Space
1 : i
T

Imax

2

min

Figure 2: Correspondence between the object space and the map space. Because of the modulo
operator in the mapping function W, the first slice of the map (in light order) does not necessarily
have the lowest index. The first slice and the last slice have consecutive indexes.

RR n° 5465

8 F Bertails, C. Ménier, M-P. Cani

4 Self-Shadowing Algorithm

Our self-shadowing algorithm is composed of three main steps : hair density filling (1), transmittance
computation (2), and filtering (3). Initially, each cell of the map has a null density (and we call it an
empty cell).

The following figure summarizes the whole rendering pipeline?.
4.1 FillingHair Density into the Map

The first step of the algorithm consists of filling the map with hair density. This is simply done by
traversing the hair geometry and doing the following operations :

« Each hair strand s; is sampled using a Catmull-Rom spline into nSmooth points P};

« For each point P}, the density of the cell W(P}) is incremented.

2In our case, each hair strand is drawn as an OpenGL line strip

Nitmap | computeselfshadows() reset density

— — Fill density map (1) ~

— Compute transmittance (2)

draw next frame

Draw()
For each vertex :

I yes
- Compute local illumination Did the camera move?
- Filter transmittance (3)

- Compute final color of the vertex
- Send the vertex to the GPU

Did the light OR
the geometry change”

yes

Figure 3: The rendering pipeline.

INRIA

A Practical Hair Self-Shadowing Algorithm 9

Of course the resulting density value obtained for one cell only makes sense relative to values
of the other cells. Indeed, each isolated density value is arbitrary, and especially depends on the
number of sample points used for each strand. Assuming that hair sampling is uniform, which is a
reasonable assumption, the relative density multiplied by a scaling factor f approximates the light
fall off through the corresponding cell; this quantity is commonly called the extinction parameter
[LVv00].

In practice, our hair sampling is the same as the one that is used at the final drawing stage, in
order to ensure that each drawn vertex belongs to a non-empty cell.

4.2 Computing Transmittance

The fraction of light that penetrates to a point P of space can be written as [LV00] :

t(p) =exp(— [k() ®

where | is the length of the path from the light to the point, and k is the extinction function along the
path.

The function 7 is called the transmittance function. A sampled evaluation of 7 can be done by
accumulating transparencies of sampled regions along the light direction.

In our case, we need to evaluate the transmittance function at each cell of the map. To do this,
we compute the transparency of each cell (i, j,k) as :

Ti,jk = exp(—Ki,j kds))

where the extinction coefficient k; j « is computed using the density value of the cell (i, j,k), as
explained before in Section 4.1 : k; j = f x d; j x where d; ; is the density of cell (i, j,k) and f is
a scaling factor.

The transparencies are then composited together to get the final transmittance of each cell (i, j, k) :

i
Ti,j,k = I_l exp(—dil’j’kfds) (3)
i'=imin
where inin is the index of the map slice that is the closest to the light (see Figure 2).
As we mentioned in the previous section, the novelty of our approach in comparison with pre-
vious algorithms using voxel grids is that cells are sorted along the light direction : accumulating

transparencies then becomes straightforward :

* A transmittance parameter prevTrans is first initialized to 1 which is the proper value for a
transparent and fully illuminated cell;

» The column (j,k) is traversed, starting from slice inin (the closest slice to the light) until slice
imax (the furthest slice) :

— Ifcell (i, j, k) is non-empty, its transmittance is set to prevTrans x exp(—d; j x fds) (using
Equation 3) and the parameter prevTrans is updated to this value.

RR n° 5465

10 F Bertails, C. Ménier, M-P. Cani

— Otherwise cell (i, j, k) is given the transmittance prevTrans.

Note that some empty cells might also be in shadow, since filling densities into the map does
not necessary yield a connective set of non-empty cells. Even if only vertices belonging to non-
empty cells will be drawn, giving a proper transmittance value to empty cells is important because
such cells could be involved in the filtering process, if a non-empty cell has empty neighbors (see
next section). The algorithm described above guarantees that every cell of the map has a proper
transmittance value.

4.3 Filtering and Composing Colors

Before drawing hair primitives, it is necessary to filter transmittance values, otherwise regular pat-
terns aligned with the density map will be quite visible, as shown by Figure 4.
For each point P that has to be sent to the GPU for final drawing :

+ We compute the relative position of P (Aj,Aj, Ax) with respect to its corresponding cell W(P)
(see Figure 1);

« \We compute transmittance at point P by applying a trilinear interpolation as :

Trans(P) = Z AvAjAgTrans(i’, j', k')
i'efi—1,...,i}
j’e{j_17"'7j}
Ke{k—1,.k}
ifi' =i

where Aiy = { (1—A)) otherwise

i
Figure 4: The effect of filtering the transmittance values. Left image : self-shadows without filtering :

regular patterns aligned with the map are visible. Right image : self-shadows with filtering : artefacts
have vanished, hair looks coherent.

INRIA

A Practical Hair Self-Shadowing Algorithm 11

(similar for A and Ay)
* Finally, the color ®p of vertex P is obtained by the following equation :

®p = Ppnpient+Trans(P) x (Ppit fuse + Pspecutar (P))

5 Extensions
5.1 Handling Hair Self-Collisions

Because of the high number of hair strands composing a human hairstyle, hair self-collisions rep-
resent a difficult and computational expensive issue in hair animation, and it often takes more than
80% of the simulation time.

An acceptable approximation of hair self-interaction consists of considering that internal col-
lisions mainly account for the hair volume [LKO1]. Starting from this assumption, hair density
information is very useful : if the density is local over a fixed threshold (corresponding to maximum
quantity of hair that can be contained in a cell), the hair strands should undergo constraints that
spread them out.

Hair is animated using an approach inspired from hair guidance methods [DTKT93, CJY02]. In
our case, hair is composed of approximately a hundred wisps where each wisp is simulated through
three guide hair strands. Each guide hair strand is animated using a fast rigid links simulation
[Ove91]. Final rendered hair strands are simply interpolated from the guide hair strands within each
wisp.

Using the density map at each time step, hair self-collisions are processed by applying repulsive
forces from the center of each cell having a too high density. The accompanying video shows that
results look realistic although the method is extremely simple. Furthermore, this is a very cheap way
to handle hair self-collisions (it only takes 2.5% of the whole processing time).

5.2 Parallelization of the Algorithm

One advantage of having a CPU-based algorithm is that parallelization can be considered in order
to increase its efficiency. As a matter of fact, the described method is very well suited for such

Simulation Self-Shadows Rendering

- Density
- Transmittance
for half-map

Simulate
half-hairstyle

- Filter transmittance
- Local illumination
- Display

- Density
- Transmittance
for half-map

Simulate
half-hairstyle

Figure 5: A parallel version of our algorithm.

RR n° 5465

12 F. Bertails, C. Ménier, M-P. Cani

a technique. We present here the parallel implementation of the simulation and self-shadowing
algorithms.

« Simulation: thanks to the use of the density-map for handling self-collisions, each wisp can
be simulated independently. This allows for a straight-forward parallelization where each
processor computes a part of the hair, gathering at the end their partial results.

« Self-Shadowing: here again a straight-forward parallelization can be applied thanks to the fact
that the map is light-oriented. As described in Section 4.2, the calculations for each column
(j,k) can be done independently.

We have tested this implementation on a standard PC cluster and were able, using 3 CPUs, to easily
double the frame rate in comparison with the single processor results given in the next section.

When trying to use more CPUs, the network gathering and sending of the vertices to the GPU
became the main bottleneck. Sending vertex arrays directly to the GPU should reduce this bottle-
neck.

6 Resultsand Discussion

Our algorithm has been applied both to static and dynamic hairstyles. In each case we compare it
with existing methods in terms of quality and performance.
Our accompanying video shows dance motion sequences rendered with our method.

Figure 6: Applying our self-shadowing algorithm to a hairstyle captured from photographs by the
method of Paris et. al [PBS04]. The hairstyle is composed of 87,500 hair strands (1,123 K segments)
and it took 2 seconds to render it.

INRIA

A Practical Hair Self-Shadowing Algorithm 13

Figure 7: Evaluation of the quality of self-shadowing, using different map resolutions. From left to
right : 32 x 32 with ds = 0.5; 64 x 64 with ds = 0.2, 128 x 128 with ds = 0.1 and 256 x 256 with
ds =0.05.

Map reset Trans Filter Total

+ density +draw rendering
Smooth 0.038 0.015 0.037 0.09
Curly 0.062 0.015 0.053 0.13

Table 1: Detailed performance of the rendering process (computing density, transmittance, filtering
and final drawing) of a smooth hairstyle composed of 100K segments and a curly hairstyle composed
of 200K segments. The results are expressed in seconds per frame; they have been obtained using
an Intel P4 CPU at 3GHz.

6.1 Rendering Static Hair

Figures 8 and 6 show that our self-shadowing algorithm produces good visual results for merely
synthetic hairstyles as well as for hairstyles captured from real hair geometry. We can see in Figure
6 that self-shadows make volumetric wisps stand out, whereas no self-shadows flatten the hair.

Figure 7 shows results obtained on curly hair when using different map resolutions. We can
notice that for fine resolutions (128 x 128 or 256 x 256), curly wisps are properly shadowed and
their shape is thus clearly visible, which is not the case for the coarsest resolutions. In practice, we
found that a 128 x 128 resolution was sufficient to account for small shape details of hair.

In comparison with [MKBRO4] our self-shadowing algorithm runs at a higher frame rate (11
FPS instead of 6 FPS for 100K hair segments).

6.2 Rendering Dynamic Hair

Figure 9 shows two snapshots from our hair animations. Our self-shadowing algorithm captures the
fine discontinuities observed in a real hair during motion, as illustrated in Figure 10.

RR n° 5465

14

F. Bertails, C. Ménier, M-P. Cani

!) !)

Figure 8: A dynamic hair without self-shadowing (left image) and shaded with our algorithm (right
image). The 3D light-oriented map storing hair density and transmittance (middle image). The
whole simulation (including animation and our rendering) is running interactively on a standard

CPU.

Figure 9: A smooth brown hairstyle (100 K segments) and a curly red hairstyle (200 K segments)
animated with different dance motions and interactively rendered with our algorithm.

Anim Hair self- Rendering Total

collisions simu
Smooth | 0.067 0.003 0.09 0.16
Curly 0.254 0.003 0.13 0.557

Table 2: Detailed performance of the simulation (animation, rendering and hair self-collisions) of
two hairstyles composed of 134 animated wisps; the smooth hair style is composed of 100K rendered
segments and the curly hair style is composed of 200 K rendered segments. The results are expressed
in seconds per frame; they have been obtained using an Intel P4 CPU at 3GHz.

INRIA

A Practical Hair Self-Shadowing Algorithm 15

Table 2 gives the detailed performance of the whole simulation, including animation, hair self-
collisions and rendering for both smooth and curly hairstyles. Note that the animation time is not
the same for the two hairstyles, because it includes the update and the smoothing of the interpolated
hair strands.

A hair composed of 3350 hair strands and 100K segments is thus completely simulated at an
interactive frame rate of 6 FPS. Let us mention that for aesthetic results, we have also implemented
hair-body collisions using a standard method based on spheres approximation. Handling such col-
lisions makes the performance fall down to 3.5 FPS for the smooth hairstyle, and 1.5 FPS for the
curly hairstyle (as mentioned in the video) but no optimization has been developed yet for that spe-
cific problem, considering that it was beyond the scope of this paper.

As shown in the video, the hair volume is properly generated using a repulsive force field based
on local densities, as explained in 5.1. However, this method does not account for hair anisotropy
nor wisps interpenetration. This could be done by adding more information to the map, such as hair
orientation.

7 Conclusion and Future Work

We have presented a new hair self-shadowing algorithm based on a 3D-light oriented density map.
Our approach can interactively render various hairstyles composed of thousands of hair strands, and
yields convincing results. Our algorithm can easily be parallelized to improve the performance.
Furthermore, we have shown that our density map is very helpful in accelerating the simulation
process, as it can be used to handle self-collisions in an inexpensive way with visually good results.
We are planning to use the hair density information again to optimize hair-body collisions.

For simplicity purpose, our approach makes the assumption of an infinitely distant source, which
could be a limitation for rendering scenes illuminated by punctual sources. Yet, it seems that we
could easily handle the case of punctual sources by only changing our mapping function W : instead

Figure 10: Comparison between a real shadowed hair (left image) and our model (right image) with
similar lighting conditions.

RR n° 5465

16 F Bertails, C. Ménier, M-P. Cani

of considering an uniform square space partition, the new mapping function W’ should account for
an angular space partition starting from the source point, and then sampled normally to the light
rays. Provided the evaluation of W’ has a low cost, our algorithm should remain interactive and the
parallelized version should work exactly the same.

Our method could also handle several light sources, by simply adding as many light-oriented
maps as sources. The final transmittance of a point P would have to be interpolated between the
transmittance values obtained from the different sources.

To get a better precision in our computations for a low cost, an interesting idea would be to
follow the same approach than Mertens et. al [MKBRO04] who build an adaptive slicing along a light
ray and thus get a better approximation of the visibility function than approaches using a uniform
slicing.

References

[Ban94] D. Banks. Illumination in diverse codimensions. In Proceedings of ACM SIG-
GRAPH’94, Computer Graphics Proceedings, Annual Conference Series, pages 327—
334,1994,

[BCNO3] Y. Bando, B-Y. Chen, and T. Nishita. Animating hair with loosely connected particles.
Computer Graphics Forum, 22(3):411-418, 2003. Proceedings of Eurographics’03.

[BKCNO3] F. Bertails, T-Y. Kim, M-P. Cani, and U. Neumann. Adaptive wisp tree - a multires-
olution control structure for simulating dynamic clustering in hair motion. In ACM
SIGGRAPH Symposium on Computer Animation, pages 207-213, July 2003.

[Bli82] James F. Blinn. Light reflection functions for simulation of clouds and dusty surfaces.
In Proceedings of the 9th annual conference on Computer graphics and interactive
techniques, pages 21-29. ACM Press, 1982.

[CJY02] J.T. Chang,J.Jin, and Y. Yu. A practical model for hair mutual interactions. In ACM
SIGGRAPH Symposium on Computer Animation, pages 73-80, July 2002.

[DTKT93] A. Daldegan, N. M. Thalmann, T. Kurihara, and D. Thalmann. An integrated system for
modeling, animating and rendering hair. Computer Graphics Forum, 12(3):211-221,
1993.

[Gol97] D. Goldman. Fake fur rendering. In Proceedings of ACM SIGGRAPH’97, Computer
Graphics Proceedings, Annual Conference Series, pages 127-134, 1997.

[KH84] James T. Kajiya and Brian P Von Herzen. Ray tracing volume densities. In Proceedings
of the 11th annual conference on Computer graphics and interactive techniques, pages
165-174. ACM Press, 1984,

[Kim02] T-Y. Kim. Modeling, Rendering and Animating Human Hair. PhD thesis, University of
Southern California, 2002.

INRIA

A Practical Hair Self-Shadowing Algorithm 17

[KK89]

[KNO1]

[KS04]

[LKO1]

[LTT91]

[LVOO]

[MJC*03]

[MKBRO04]

[Ovedl]

[PBS04]

[WL03]

[WLL+03]

[WPF90]

RR n° 5465

J. Kajiya and T. Kay. Rendering fur with three dimensional textures. In Proceedings
of ACM SIGGRAPH’89, Computer Graphics Proceedings, Annual Conference Series,
pages 271-280, 1989.

T-Y. Kim and U. Neumann. Opacity shadow maps. In Rendering Techniques 2001,
Springer, pages 177-182, July 2001.

M. Koster and H-P. Seidel. Real-time rendering of human hair using programmable
graphics hardware. In Computer Graphics International (CGI), pages 248-256, June
2004.

D-W. Lee and H-S. Ko. Natural hairstyle modeling and animation. Graphical Models,
63(2):67-85, March 2001.

A. M. LeBlanc, R. Turner, and D. Thalmann. Rendering hair using pixel blending and
shadow buffers. The Journal of Visualization and Computer Animation, 2(3):92-97, —
1991.

Tom Lokovic and Eric Veach. Deep shadow maps. In Proceedings of the 27th annual
conference on Computer graphics and interactive techniques, pages 385-392. ACM
Press/Addison-Wesley Publishing Co., 2000.

S. Marschner, H. Jensen, M. Cammarano, S. Worley, and P. Hanrahan. Light scat-
tering from human hair fibers. ACM Transactions on Graphics (Proceedings of the
SIGGRAPH conference), 22(3):281-290, July 2003.

T. Mertens, J. Kautz, P. Bekaert, and F. Van Reeth. A self-shadow algorithm for dynamic
hair using density clustering. In Proceedings of Eurographics Symposium on Rendering,
2004.

C. Van Overveld. An iterative approach to dynamic simulation of 3-D rigid-body mo-
tions for real-time interactive computer animation. The Visual Computer, 7:29-38,
1991.

Sylvain Paris, Hector Bricefio, and Francgois Sillion. Capture of hair geometry from
multiple images. ACM Transactions on Graphics (Proceedings of the SIGGRAPH con-
ference), 2004.

K. Ward and M. C. Lin. Adaptive grouping and subdivision for simulating hair dynam-
ics. In Proceedings of Pacific Graphics’03, September 2003.

K. Ward, M. C. Lin, J. Lee, S. Fisher, and D. Macri. Modeling hair using level-of-
detail representations. In International Conference on Computer Animation and Social
Agents (CASA), May 2003.

Andrew Woo, Pierre Poulin, and Alain Fournier. A survey of shadow algorithms. IEEE
Computer Graphics and Applications, 10(6):13-32, 1990.

18 F Bertails, C. Ménier, M-P. Cani

Contents
1 First section 3
2 Introduction 3
2.1 PreviousWork 3
2.1.1 Local Hlumination 3
2.1.2 Self-Shadowing 4
2.2 OVEIVIEW o e e 5
3 3D Light-Oriented Shadow Map 5
3.1 AlLight-Oriented Local Frame 5
3.2 ObjectSpacetoMapSpace v v i i 6
4 Self-Shadowing Algorithm 8
4.1 Filling Hair Density intotheMap 8
4.2 Computing Transmittance. o v i 9
4.3 Filteringand ComposingColors 10
5 Extensions 11
5.1 Handling Hair Self-Collisions 11
5.2 Parallelization of the Algorithm L 11
6 Results and Discussion 12
6.1 RenderingStaticHair e 13
6.2 Rendering DynamicHair 13
7 Conclusion and Future Work 15

INRIA

/<

Unité de recherche INRIA Rhéne-Alpes
655, avenue de I’Europe - 38334 Montbonnot Saint-Ismier (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)
Unité de recherche INRIA Lorraine : LORIA, Technop6le de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lés-Nancy Cedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)
Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)
http:/ /www.inria.fr

ISSN 0249-6399

