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Utilisation de la théorie des jeux
pour I’étude des marchés d’électricité

Résumé : Nous étudions un modéle de jeu statique décrivant un marché spot d’électricité,
ou interagissent un certain nombre de fournisseurs. Chaque fournisseur soumet une fonction
prix au marché. Le marché réagit & ces propositions en fixant les quantités d’électricité
achetées a chaque fournisseur. L’objectif du marché est de satisfaire sa demande au meilleur
prix.

Nous étudions successivement les cas oa les fournisseurs cherchent & maximiser leurs
parts de marché et le cas ot les fournisseurs cherchent & maximiser leurs profits.

Nous abordons briévement le cas ol les fournisseurs peuvent fournir de 1’électricité sur
plusieurs marchés concurrents.

Mots-clés : Théorie des jeux, Equilibre de Nash, Marchés spot, Marché d’électricité



Game theory for the electricity market 3

1 Introduction

Since the deregulation process of electricity exchanges has been initiated in European coun-
tries, many different market structures have appeared (see e.g. [I1f). Among them are the
so called day ahead markets where suppliers face a decision process that relies on a central-
ized auction mechanism. It consists in submitting bids, more or less complicated, depending
on the design of the day ahead market (power pools, power exchanges, ...). The problem
is the determination of the quantity and price that will win the process of selection on the
market. Our aim in this paper is to describe the behavior of the participants (suppliers)
through a static game approach. We consider a market where S suppliers are involved. Each
supplier offers on the market a price function. The response of the market to these offers
is the quantities bought from each supplier. The objective of the market is to satisfy its
demand at minimal price.

Closely related papers are [12] and [5]. They also consider optimal bids on electricity
markets. Nevertheless, in [I2], the authors take the quantity of electricity proposed on the
market as exogenous, whereas here we consider the quantity as part of the bid. In [B], the
authors do not consider exactly the same kind of market mechanism, in particular they
consider open bids and fix the market clearing price as the highest price among the accepted
bids. They consider fixed demand but also stochastic demand.

The paper is organized as follows. The model is described in Section B together with
the proposed solution concept. In Section Bl we consider the case where the suppliers strive
to maximize their market share, while in Section Bl we analyze the case where the goal is
profit maximization. In Section [l we introduce some alternative market organization that
we compare with the organization studied in the previous sections. Some hints for the case
where suppliers propose electricity on several markets are presented in Section @l We finally
conclude in Section [ with some comparison remarks on the two criteria used, and some
possible directions for future works.

2 Problem statement

2.1 The agents and their choices

We consider M electricity markets, called My, .-, Maq that have an inelastic (to price)
demand for d; units of electricity that is provided by S suppliers called S;, j =1,2,...,S.

In most of the paper we will consider the case of a single market, (M = 1). So we have
chosen to describe here only this case. In Section Bl we will extend the subsection below to
the case of several markets. Hence for now we consider the single market case.

2.1.1 The suppliers

Each supplier S; sends an offer to the market that consists in a price function p;(-), that
associates to any quantity of electricity g, the unit price p;(q) at which it is ready to sell
this quantity.

RR n° 5274
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We shall mainly use the following special form of the price function :

Definition 1 We consider the single market case. For supplier S;, a quantity-price strategy,
referred to as the pair (¢;,p;), is a price function p;(-) defined by

om0 rasy,
pla ={ B 20 s )

q; is the mazimal quantity S; offers to sell at the finite price p;. For higher quantities the
price becomes infinity.

Note that we use the same notation, (p;) for the price function and for the fized price.
This should not cause any confusion.

Apart form the strategies previously defined, we will also make use of linear strategies in
Section [ and Section [l More precisely a linear strategy, is such that the price for quantity
q sold is given by

p(q) = aq+ B,

where o and 3 are positive parameters.
Note that the two sets of strategies, “quantity-price strategies” and “linear strategies” are
disjoint.

2.1.2 The market

Suppose we have a single market. The market collects the offers made by the suppliers,
i.e. the price functions p1(-),pa(-), -+ ,ps(-), and has to choose the quantities g; to buy
from each supplier Sj, j =1,---,S. The unit price paid to S; is p;(q;)

We suppose that an admissible choice of the market is such that the demand is fully satisfied
at finite price, i.e. such that,

S
j=1

When the set of admissible choices is empty, i.e. when the demand cannot be satisfied at
finite cost (for example when the demand is too large with respect to some finite production
capacity), then the market buys the maximal quantity of electricity it can at finite price,
though the full demand is not satisfied.

;=d, 3; >0, and p;(q;) < +oo, Vj. (2)

S]]

2.2 Evaluation functions and objective
2.2.1 The market

We suppose that the objective of the market is to choose an admissible strategy (i.e. sat-
isfying @)), (¢, - ,qs) in response to the offers pi(-),--- ,ps(-) of the suppliers, so as to

INRIA



Game theory for the electricity market 5

minimize the total cost.
More precisely the market problem is :

_Hlilfl (pM(pl()a apS(')7§17"' 768)7 (3)
{@}i=1s
with
def S
@M(pl()v e 7p$(')3qlv e aqs) = ij(q])qjv (4)
j=1

subject to constraints (&).

Remark 1 Note that the price at which the market buys electricity may be different from
one supplier to the other.

We could also study some market organization where, based upon the offers of the suppliers,
the market set a unique price p* at which it buys to any suppliers. The quantities bought to
each supplier is determined according to the fized price p* and the offers of the suppliers.
This market organization can be observed on markets such as the market Power Next in
France or NordPool for nordic countries. This aspect will be briefly discussed in Section [A.

Remark 2 Here we have omitted to take into account transportation cost. The underlying
reason for that, is that we consider a single market and local producers. Hence we supposed
that the transportation costs each supplier have to support are more or less the same.

This assumption cannot be made in case of several markets (see Section [d).

2.2.2 The suppliers

The two criteria, profit and market share, will be studied for the suppliers :

e The profit - When the market buys quantities g;, j = 1,---, S, supplier S;’s profit
to be maximized is

s, (1), ps(-),7;) < pi(@;)a; — C;(@;), (5)

where Cj(-) is the production cost function.

Assumption 1 We suppose that, for each supplier S;, the production cost C;(-) is a
piecewise C' and increasing convex function.

When C; is not differentiable we define the marginal cost CJ’- (q) as

. dc;

hInE~>OJr d_q] (q - 6)'

Because of the assumption made on C;, the marginal cost C]‘ is monotonic and non-
decreasing. In particular it can be a piecewise constant increasing function.

RR n° 5274
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This assumption fits with the classical structure of marginal costs in electricity sector.
As a matter of fact, marginal costs are increasing, piecewise constant : the producers
starts producing in its cheapest production facility (whenever possible). If the market
asks more electricity, the producer starts up the one but cheapest production facility
etc. For a given production facility, the cost depends only on row material, and is
linear with respect to production.

e The market share - for supplier S;, g; is the quantity bought from him by the
market, i.e. we define this criterion as

s, (1), ps(),7;) € ;- (6)

For this criterion, it is necessary to introduce a price constraint. As a matter of fact,
the obvious, but unrealistic, solution without price constraint would be to set the price
to zero whatever the quantity bought is.

We need a constraint such that, for example, the profit is non-negative, or such that
the unit price is always above the marginal cost, C.

Assumption 2 For the sake of generality we suppose the existence of a minimal unit
price function L; for each supplier. Supplier S; is not allowed to sell the quantity q at
a unit price lower than L;(q), i.e. for the market share criterion, an admissible price
strategy should satisfy,

q;(q) > L;(q), Yq.

A natural choice for £; is C;, which expresses the usual constraint that the unit price

is above the marginal cost. One could also choose £;(q) = ch(q) which expresses the

fact that the profit cannot be negative.

2.3 Equilibria

From a game theoretical point of view, a two time step problem with S + 1 players will be
formulated. At a first time step the suppliers announce their offers (the price functions)
to the market, and at the second time step the market reacts to these offers by choosing
the quantities g; of electricity to buy from each supplier. Each player strives to optimize
(i.e. maximize for the suppliers, minimize for the market) its own criterion function (¢s,, j =
1,---,S, pum) by properly choosing its own decision variable(s). The numerical outcome of
each criterion function will in general depend on all decision variables involved. In contrast
to conventional optimization problems, in which there is only one decision maker, and where
the word “optimum” has an unambiguous meaning, the notion of “optimality” in games is
open to discussion and must be defined properly. Various notions of “optimality” exist (see

[)-

INRIA
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Here the structure of the problem leads us to use a combined Nash Stackelberg equilib-
rium. Please note that the “leaders”, i.e. suppliers, choose and announce functions p;(-).
In [T] the corresponding equilibrium is referred to as inverse Stackelberg.

More precisely, define {7;(pi(-), -~ ,ps(-)),j = 1,...,S}, the best response of the market
to the offers (p1(-), -+ ,ps(:)) of the suppliers, i.e. a solution of the problem @)-@). The
choices {pj(-),q;, j =1, --,S} will be said optimal if the following holds true,

q; Zag(PT()7 ,pfg()), (7)
For every supplier S;, j =1,...,S and any admissible price function p;(-) we have
where ot
3 = q;(P1()s i)y S () 9)

The Nash equilibrium Equation @) tells us that supplier S; cannot increase its outcome by
deviating unilaterally from its equilibrium choice (p;(-)). Note that in the second term of
Equation (), the action of the market is given by (@) : if S; deviates from p7(-) by offering
the price function p;(-), the market reacts by buying from S; the quantity ¢; instead of 7;.

Remark 3 As already noticed the minimization problem [@)-[@) defining the behavior of the
market may not have any solution. In that case the market reacts by buying the mazimal
quantity of electricity it can at finite price.

At the other extreme, it may have infinitely many solutions (for example when several
suppliers use the same price function). In that case Gj() is not uniquely defined by FEquation
(@), consequently the Nash equilibrium defined by Equation [8) is not well defined.

We would need an additional rule that says how the market reacts when its minimization
problem has several (possibly infinitely many) solutions. Such an additional rule could be,
for example, that the market first buys from supplier S1 then from supplier S5, etc. or that
the market prefers the offers with larger quantities, etc. Nevertheless, it is not necessary to
make this additional rule explicit in this paper. So we do assume that there is an additional
rule, known by all the suppliers that insures that the reaction of the market is unique.

3 Suppliers maximize market share

In this section we analyze the case where the suppliers strive to maximize their market shares
by appropriately choosing the price functions p;(-) at which they offer their electricity on the
market. We restrict our attention to price functions p;(-) given in Definition [l and referred
to as the quantity-price pair (¢;, p;).

For supplier S; we denote £;(-) its minimal unit price function that we suppose nonde-
creasing with respect to the quantity sold. Classically this minimal unit price function may
represent the marginal production cost.

RR n° 5274
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Using a quantity-price pair (q;,p;) for each supplier, the market problem (@) can be
written as

under =1 (10)

To define a unique reaction of the market we use Remark B, when Problem () does not
have any solution (i.e. when Zle g; < d) or at the other extreme when Problem (0 has
(possibly infinitely) many solutions.

Hence we can define the evaluation function of the suppliers by

Js;((q1,p1), -+ 5 (gs,ps)) =@ (p1(+), - -+ ,ps()),

where the price function p;(-) is the pair (¢;,p;) and ;(p1(-),- - - , ps(-)) is the unique optimal
reaction of the market.

Now the Nash Stackelberg solution can be simply expressed as a Nash solution, i.e. find
* def * def

u* = (uj,---,us), uj = (q;,pj), so that for any supplier S; and any pair u; = (g;,p;) we
have

JSJ‘(U*) 2 JSJ(U*—_]v’aJ)7 (11)
where (u* ;, ;) denotes the vector (uy,---,uf_y,Uj,uj g, ,us)-

Assumption 3 We suppose that there exist quantities QQ; for j =1,...,S, such that

S
£;(Q) < +o0 and Y _Q; > d, (12)

j=1

The quantities (Q; represent the mazimal quantities of electricity supplier S; can offer to
the market. It may reflect maximal production capacity for producers or more generally any
other constraints such that transportation constraints.

Remark 4 The condition {I3) insures that shortage can be avoided even if this implies high,
but finite, prices.

We consider successively in the next subsections the cases where the minimal price func-
tions £; are strictly increasing and continuous (Subsection Bl or non decreasing (possibly
constant on some interval), and discontinuous (Subsection B2)). This last case is the most
important from the application point of view, since we often take £; = C’} which is not in
general continuous.

INRIA



Game theory for the electricity market 9

3.1 Strictly increasing minimal price functions
We suppose the following assumption holds,

Assumption 4 For any supplier S;, j € {1,--- ,S} the minimal price function L; is strictly
increasing from [0,Q;] to RY and lim, ., £;(y) = L;(x), for all 2 € [0,Q,].

Proposition 1

1. Suppose that Assumption[] holds. Then any strategy profile u* = (uj,us, - - ,u%) with
u} = (qj,p*) such that

Li(q;) =p*, Vje{l,---,S} such that g; >0
L£;(0) > p*, Vje{l,--- S} such that qf =0 (13)
Yieqra.s1 4 = d;

is a Nash equilibrium.

2. Suppose furthermore that Assumption[d holds, then the equilibrium exists and is unique.

Proof

First note that because of the last equation in ([3) the solution of the minimization problem
of the market ([0 is unique (the suppliers satisfy exactly the demand), and hence the values
of the evaluation functions of the suppliers are well defined.

1. We show that none of the Supplier can increase its profit by unilaterally deviate from
its strategy uj. For that, it is sufficient to show that for any u; # uj, v} = (¢},p"),
we have

']Sj (uija u;) = JSj (uij’ uj)v
First note that, because of the last equation in ([3)), the market buys the total quantity
of electricity proposed by the suppliers, i.e. we have q; = ¢}, and then Jg; (u*) = q;-
We now examine the two possible types of deviation for supplier j, namely, S; may
choose a strategy u; = (¢;,p;), such that the quantity ¢; is either lower or strictly
higher than ¢ :

— If u; is such that ¢; < ¢}, then obviously the demand is not anymore sat-
isfled and the market has to buy the total quantity ¢; to S;, hence we have
Js, (u*_j,uj) =q¢; <q=Js; (u*).

— If u; is such that ¢; > g}, then because £; is strictly increasing by Assumption Bl
and because of the price constraint, we must have p; > £;(q;) > £;(q;) = p*. So
after the deviation, Supplier S; propose its electricity at a price higher than the
price p* of the other suppliers. Hence, from the market reaction (), we deduce
that the market first buy to the other suppliers, and then complete the demand
to S;, i.e. buys the quantity d — E#j q; = q; to S;j. Consequently we have,

Js; (0%, u5) = q; = Js, (u®).

RR n° 5274
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2. From AssumptionBland AssumptionH] the function Ej_l is well defined from [£;(0), +c0]
to [0,Q;]. We consider the prolongation of this function (that we still denote E;l),
by defining L‘;l(p) =0 for any 0 < p < £;(0). We can now define a function O, the
total offer, by

O: [O, +Oo] - [0> Zf:l QJ]
p - Zf:1 ‘Cj_l (p)

O is a non decreasing continuous function taking finite values in the interval [0, >, Q;[.

Since by Assumption Blwe have ) ; @j > d, there exists a unique p” that solves Problem
([@3), i.e. such that O(p*) = d. The quantities ¢; are defined as ¢ = E;l(p*), and
because of the extension of the definition of ﬁ;l, it is clear that ¢; = 0, for j such
that £;(0) > p*.

This ends the proof.

&

Remark 5 Note that we have a condition for a new entrance on the market. As a matter of
fact, when the market is at equilibrium, let p* be the equilibrium price. If for a new supplier
that tries to enter the market, its minimal price L£;(0) > p*, then it cannot win any market
share on that market.

3.2 Nondecreasing minimal price functions

We now address the problem where the minimal price functions £; are not necessarily strictly
increasing. Nevertheless we assume that they are nondecreasing. We set the following
assumption,

Assumption 5 We suppose that the minimal price functions L; are nondecreasing, piece-
wise continuous, and that lim L;(y) = L;(x) for any x > 0.
y—a~

Replacing Assumption Bl by Assumption Bl there may not be any strategy profile (see
FigureB) or at the other extreme there may be possibly infinitely many strategy profiles (see
Figure[l) that satisfy Equations ([I3)). Proposition [l fails to characterize the Nash equilibria.

For any p > 0, we define p;(p) as the right continuous inverse of £;, or with other words
as the maximal quantity supplier S; can offer at price p, i.e.

oy J max{q>0,L;(q) <p}, if jis such that £;(0) < p,
pi(p) = { 0, otherwise . (14)
Hence p;(p) is only determined by the structure of the minimal price function £;. In
particular it is not dependent on any choice of the suppliers.

As a consequence of Assumption[, p;(p) increases with p, and for any p > 0, lim,,_,,+ p;(y) =

p;(p)-

INRIA
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M
MD-g) @)
p* - A ,,,,,,
s —
1 «
Y :
=
D
Figure 1: Non uniqueness
M(q
M(D-q,) )
s — 1
1 <
- :
—
D
Figure 2: Non existence
Denote by O(-) the function from R" to R™ defined by
S
o) =Y _ p;(D) (15)
j=1

O(p) is the maximal total offer that can be achieved at price p by the suppliers respecting
the price constraints. The function O is possibly discontinuous, nondecreasing (but not

RR n° 5274
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necessarily strictly increasing) and satisfies lim,_,,+ O(y) = O(p). Assumption Bl implies
that

S S
O(sup £;(Q;)) = ij(ﬁj(Qj)) > ZQJ' > d,

hence there exists a unique p* < sup; £;(Q;) < +oo such that

s
O(p*) = Zpg‘(p*) >d, (16)
Ve > 0, Ja(p* —€) <d.

The price p* represents the minimal price at which the demand could be fully satisfied taking
into account the minimal price constraint.

Assumption 6 For p* defined by ([IA), one of the following two condition holds,

1. There ezists a unique j € {1,---,S} such that E;l(p*) # (0, where E;l(p) dof {q €
0,d], Lj(q) = p}. In particular, there exists a unique j € {1,---,S} such that
L;(p;(p*)) = p*, and such that for j # j, we have L;(p;(p*)) < p*.

2. At pri%e p* the mazimal total quantity suppliers are allowed to propose is exactly d,
i.e. Zj:l pi(p*) = d.

Proposition 2 Suppose Assumptions B and B hold. Consider the strategy profile u* =
(ui, - ,us), uj = (q;,p;) such that,

e p* is defined by Equation (I8),
e for j # j, i.e. such that L;(p;(p*)) < p* (see Assumption[B), we have q; = p;(p*) and
p; € [EJ(Q;)up*[ )

o for j =j, i.e. such that L;(p;(p*)) = p* (see AssumptionB), we have ¢; € [min((d —
Zk# a)» pi(P*)), p;(p*)], and p%f € [p*,p|, where P is defined by

P min{Li(q"), k # ) (17

then, u* is a Nash equilibrium.

Remark 6 There exists an infinite number of strategy profiles that satisfy the conditions
of Proposition[d (the prices p; are defined as elements of some intervals). Nevertheless, we
can observe that there is no need for any coordination among the suppliers to get a Nash
equilibrium. FEach supplier can choose independently a strategy as described in Proposition
[, the resulting strategy profile is a Nash equilibrium. Note that this property does not hold
in general for non-zero sum games (see the classical “battle of the sexes” game [fI]). We can

INRIA
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also observe that for each supplier the outcome is the same whatever the Nash equilibrium
set. In that sense we can say that all these Nash equilibria are equivalent.

A reasonable manner to select a particular Nash equilibrium is to suppose that the sup-
pliers may strive for the mazimization of their profits as an auziliary criterion. More pre-
cisely, among the equilibria with market share mazimization as criterion, they choose the
equilibrium that brings them the mazximal income. Because the equilibria we have found
are independent, it is possible for each supplier to choose its preferred equilibrium. More
precisely, with this auziliary criterion, the equilibrium selected will be,

q; = p;i(p*), pj =p* —¢€, forj#j (i.e. such that L;(p;(p*)) < p*),

4 =p;(p*), P; =D~
where € can be defined as the smallest monetary unit.

Remark 7 Assumption is necessary for the solution of the market problem (Il) to have
a unique solution for the strategies described in Proposition [@, which are consequently well
defined.

If Assumption [ does not hold, we would need to make the additional decision rule of the
market explicit (see Remark[3). This is shown in the following example (Figure [3), with
S = 2. The Nash equilibrium may depend upon the additional decision rule of the market.
In Figure[d, we have L1 (p1(p*)) = L2(p2(p*)) = p* and p1(p*) + p2(p*) > d, where p* is the

Figure 3: Example

price defined at {IA). This means that Assumption[8 does not hold.

Suppose the additional decision rule of the market is to give the preference to supplier
S, i.e. for a pair of strategies ((q1,p), (q2,p)) such that ¢1 + g2 > d the market reacts by
buying the respective quantities ¢ and d — q respectively to supplier S1 and to supplier So.

RR n° 5274
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The Nash equilibria for market share mazximization are,
UT = (qiF S [d_ q27(j1]7p*)7 ’LL; = @2719; S [ﬁ27p*[);

where §; = pi(p*), Gi = pi(p* —€), and P2 = L2(g2).

Suppose now the additional decision rule of the market is a preference for supplier Ss.
The previous pair of strategies is not a Nash equilibrium any more. Indeed, supplier S can
increase its offer, at price p*, to the quantity Go. The equilibrium in that case is

UT = (qr S [d - Cj?anl]up*)u ’LL; = (d?ap*)

Remark 8 In Proposition [d we see that at equilibrium, the mazximal price p that can be
proposed is given by ). A sufficient condition for that price to be finite is that for any
je{1,2,--- S} we have,
> Qr>d (18)
k#j
Equation (I8) means that with the withdrawal of an individual supplier, the demand can still
be satisfied. This will insure that none of the suppliers can create a fictive shortage and then
increase unlimitedly the price of electricity.

Proof of Proposition We have to prove that for supplier S; there is no profitable
deviation of strategy, i.e. for any u; # uj, we have Jg, (u* ;,u}) > Jgs, (0 ;, u;).

e Suppose first that j ¢ S(p*) so that £;(p,;(p*)) < p*. Since for the proposed Nash
strategy uj = (q;-‘, p;), we have p7 < p*, the total quantity proposed by .5; is bought
by the market (g; = ¢;). Hence J;(u*) = g;.

— If the deviation u; = (g;,p;) is such that ¢; < ¢}, then clearly Jg,(u*) = ¢; >
qj > Js,(u” ;,u;), whatever the price p; is.

— If the deviation u; = (g;,p;) is such that ¢; > p;(p*) then necessarily, by the
minimal price constraint, Assumption Bl and the definition of ¢; = p;(p*), we
have

pi > Li(g5) > Li(g] ) > il;pp?;-
j

Hence now supplier S; is the supplier with the highest price. Consequently the
market first buys from the other suppliers and satisfies the demand, when nec-
essary, with the electricity produced by supplier S; (instead of the supplier S;).
Hence the market share of S; cannot increase with this deviation.

*

e Suppose now that j = j, i.e. we have, £;(p;(p*)) = p*.

— If the first item of Assumption [l holds, then at the proposed Nash equilibrium,
supplier S; is the supplier that meets the demand since it proposes the highest
price.
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Hence if supplier S; wants to increases its market share, it has to sell a quantity
G >d— Zk# q;.- But we have,

L) = Li(d =) qi) =p" > rrklgp?;-
P

This proves that the quantity ¢; cannot be offered at a price such that the market
would buy it.

— If the second item of Assumption B holds, then the proposition states that the
quantity proposed, and bought by the market is p;. An increase in the quantity
proposed would imply an higher price, which would not imply an higher quantity
proposed by the market since now the supplier would have the highest price.

o

Now we suppose that Assumption Bl does not hold. So for the price p* defined by (I6)
we have more than one supplier S; such that £;(p;(p*)) = p*.

As shown in the example of Remark [ (see Figure B)), the Nash equilibria may depend
upon the reaction of the market when two suppliers, S; and S;, have the same price p; =
p; = p*. It is clear that for a supplier S; in such a way that £;(p;(p*)) = p*, two possibilities
may occur at equilibrium. Either, for some supplier S; that fixes its price to p; = p*, the
market reacts in such a way that g; < p;(p* — ¢), in which case at equilibrium we will have
p; = p" — ¢, or the market reacts such that g, > p; (p* — ¢€), and in that case we will have
p;=0r"

’ Although the existence of Nash equilibria seems clear for any possible reaction of the
market, we restrict our attention to the case where the market reacts by choosing quantities
(Gj) j=1,..s that are nondecreasing with respect to the quantity ¢; proposed by each supplier
S;. More precisely we have the following assumption,

Assumption 7 Let u = (uy,...,us) be a strategy profile of the suppliers with u; = (¢;,p)
forie{l,---  k}. Suppose the market has to use its additional rule to decide how to share
the quantity d < d among suppliers S to Sk (the quantity d—d has already been bought from
suppliers with a price lower than p).

Leti e {1,--- ,k}, we define the function that associates q; to any q; > 0, where g, is the
i-th component of the reaction (q,,--- ,qs) of the market to the strategy profile (u_;, (¢;,p)).
We suppose that this function is nondecreasing with respect to the quantity q;.

The meaning of this assumption is that the market does not penalize an “over-offer” of a
supplier. For fixed strategies u_; of all the suppliers but .S;, if supplier S;, such that p; = p
increases its quantity ¢;, then the quantity bought by the market from .S; cannot decrease.
It can increase or stay constant. In particular, it encompasses the case where the market
has a preference order between the suppliers (for example, it first buys from supplier S;,,
then supplier S}, etc...), or when the market buys some fixed proportion from each supplier.
It does not encompass the case where the market prefers the smallest offer.
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Proposition 3 Suppose Assumption [ does not hold while Assumption [ does. Let the
strategy profile ((q},p}), -+ , (a5, %)) be defined by

— For j such that L;(p;(p*)) < p* then,
pi=p"—¢ q =pi(p°—e).

— If S; is such that L;(p;(p*)) = p*, then either

* * *

pi=p" ¢ =pi(), (19)
when the reaction of the market is such that
7; = pi(p* —¢€), Ve>0,

or

pj=p"—¢6 q =pi(p"—e). (20)
when the new reaction of the market, for a deviation p; = p* would be such that

This strategy profile is a Nash equilibrium.

Proof The proof follows directly from the discussion made before the proposition, and from
the proof of Proposition o

Example We consider a market with 5 suppliers and a demand d equal to 10. We suppose
that the minimal price functions £; of suppliers are increasing staircase functions, given in
the following table (the notation (]a,bl;c) indicates that the value of the function in the
interval |a, b] is equal to ¢),

supplier 1 | (]0,1];10), (]1, 3]; 15), (3, 4]; 25), (]4, 10]; 50)
supplier 2 | ([0,5];20), (I5, 6]; 23), (16, 7]; 40), (|7, 10]; 70)
supplier 3 | (]0,2];15), (]2, 6];25), (6, 7]; 30), (]7, 10]; 50)
supplier 4 | (]0,1];10), (]1,4]; 15), (J4, 5]; 20), (]5, 10]; 50)
supplier 5 | ([0, 4];30), (]4, 8];90), (]8, 10]; 100)

We display in the following table the values for p,(p) and O(p) respectively defined by

equations () and (IH).

P pi(p)  p2(p) ps(p)  palp) ps(p) | O(p)
p€[0,10] 0 0 0 0 0 0
pell0,15[ | 1 0 0 1 0 2
pe[15,20[| 3 0 2 4 0 9
pef20,23[| 3 5 2 5 0 15
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The previous table shows that for a price p in [15,20[, only suppliers S1, S3 and S,
can bring some positive quantity of electricity. The total maximal quantity that can be
provided is 9 which is strictly lower than the demand d = 10. For a price in [20,23[, we
see that supplier S5 can also bring some positive quantity of electricity, the total maximal
quantity is then 15 which is higher than the demand. Then we conclude that the price p*
defined by equation ([IB) is p* = 20. Moreover, L2(p2(p*)) = L4(ps(p*)) = p* which means
that Assumption Bl is not satisfied. Notice that for supplier S5, we have £5(0) = 30 > p*.
Supplier S5 will not be able to sell anything to the market, hence, whatever its bid is, we
have g5 = 0. We suppose that Assumption [ holds. According to Proposition B, we have
the following equilibria.

UI = (37PT € [15,20[)7'“3 = (2,]?; € [15720[) and u;’; = (p*,q*), p* > £5(Q)

to which the market reacts by buying the respective quantities g, (u*) = 3, g5(u*) = 2
and gs;(u*) = 0. The quantity 5 remains to be shared between Sy and Sy according to the
additional rule of the market. For example, suppose that the market prefers S, to all other
suppliers. Then

uy = (¢5 € [1,5],p5 = 20) and u; = (4,p; € [15,20]).

to which the market reacts by buying g,(u*) = 1 and g,(u*) = 4. If now the market prefers
Sy to any other, then

us = (g5 €[0,5],p5 = 20) and u; = (5,p; = 20).

to which the market reacts by buying g,(u*) = 0 and g,(u*) = 5.

4 Suppliers maximize profit

In this section, the objective of the suppliers is to maximize their profit, i.e. for a strategy
profile u = (u1, -+ ,us), u; = (g;,p;), their evaluation functions are

Js; () = p;g; — C5(T;), (21)

where C;(-) denotes supplier S;’s production cost function, and g; is the optimal reaction
of the market, i.e. the solution of Problem () together with an additional decision rule,
known by all the suppliers, in case of non-unique solutions (see Remark B). As before, we
do not need to make this rule explicit.

In contrast to the market share maximization, we do not need a minimal price functions
L;. Nevertheless we need a maximal unit price pmax under which the suppliers are allowed
to sell their electricity. This maximal price can either be finite and fixed by the market or
be infinite.

From all the Assumptions previously made, we only retain in this section Assumption [Il
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Lemma 1 We define, for any finite price p > 0, @j (p) as the set of quantities that mazi-
mizes the quantity qp — C;(q), i.e.

ay def

Qi(p) = arg max qp — C; (9), (22)
and for infinite price, R
Qj(+00) = min(Q;, d), (23)

where Q); is the mazimal production capacity of S;.
We have for finite p,

{0} if C'(0) > p,
(P) = {d} Zf C'(d) <p, (24)
{a, Cj(q™) <p < Ci(qh)}, otherwise.

Proof We prove the last equality of (24)). For any ¢ € @j (p), we have for any € > 0,
pqg—Cj(q) = plg+e€) — Cj(qg +e),
from which we deduce that

Ci(qg+¢€) — Cj(q)

€

2P

and letting € tends to zero, it follows that C}(q*) > p. The other equality is obtained with

negative e.

The first two equalities of ([24)) follow directly from the fact that C’ is supposed to be

nondecreasing. S
Note that if C'(-) is a continuous and nondecreasing function, then ([£4) is equivalent to

the classical first order condition for the evaluation function of the supplier.

Lemma 2 The function p — Ir1[a>ccl](qp — Ci(q)) is continuous and strictly increasing.
q¢€l0,
Proof We recognize the Legendre-Fenchel transform of the convex function C;. The con-
tinuity follows from classical properties of this transform.
The function is strictly increasing, since for p > p/, if we denote by ¢ a quantity in
argmax,co,q (g0’ — Ci(q)), we have

max (gp — Ci(q)) > gp — Ci(q)
q€10,d]

> gp’ — Ci(@)= max (gp" — Ci(q))-
q€[0,d]
o
We now restrict our attention to the two suppliers’ case, i.e. S = 2.
Our aim is to determine the Nash equilibrium if such an equilibrium exists. Hence we need to
find a pair ((¢},p}), (¢5,p3%)) such that (¢, p}) is the best strategy of supplier S; if supplier
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Sa chooses (q3,p3), and conversely, (g3, p3) is the best strategy of supplier Sy if supplier Sy
chooses (¢, pt). Equivalently we need to find a pair ((¢},p%), (¢5,p3)) such that there is no
unilateral profitable deviation for any supplier S;, i =1, 2.

Let us determine the conditions which a pair ((¢7, p}), (¢35, p5)) must satisfy in order to be
a Nash equilibrium, é.e. no profitable deviation exists for any supplier. We will successively
examine the case where we have an excess demand (¢7 + ¢35 < d) and the case where we have
an excess supply (¢} + ¢ > d).

Excess demand : ¢] + ¢; < d In that case the market buys all the quantities proposed
by the suppliers, i.e. §; = ¢ #0, i =1,2.

1. Suppose that for at least one supplier, say supplier Si, we have p] < pmax. Then
supplier S; can increase its profit by increasing its price to pmax. Since gj + g5 < d the
reaction of the market to the new pair of strategies ((¢7, Pmax), (¢5,03)) is still ¢}, 3.
Hence the new profit of S; is now ¢ipmax — C1(q7) > qip7 — Ci(qf).

We have exhibited a profitable deviation, (¢}, pmax) for supplier S;. This proves that
a pair of strategies such that ¢f + ¢5 < d with at least one price p; < pmax cannot be
a Nash equilibrium.

2. Suppose that pj = p5 = pmax, and that there exists at least one supplier, say supplier
Si, such that ¢f = 77 € Q1(Pmax), i-e. such that the reaction of the market does not
maximize S1’s profit (see Lemma [ll). Consequently, the profit for S7, associated with
the pair ((¢F, Pmax), (43, Pmax)) is such that

qumax - Cl (GD < max (qpmax - Cl (Q))
q€[0,d]
Since

i max — -C = max C ’
Jim, - max (g(pmax — €) = C1(q)) = max (gp 1(9))

there exists some € > 0 such that

max (q(pmax - E) - Ol (q)) > anmax - Ol (qi)
qE[O,d]

This proves that any deviation (41, pmax —€) of supplier Sp, such that ¢; € Q1 (Pmax—€),
is profitable for S;.

Hence, a pair of strategies such that ¢ + ¢35 < d, p] = p5 = p*, to which the market
reacts with, for at least one supplier, a quantity g; ¢ Qi(pmax) cannot be a Nash
equilibrium.

3. Suppose that pT = p; = Pmax> QT = qu S Ql(pmax) and q; = g; S QQ(pmax) (Ze the

market reacts optimally for both suppliers).
In that case the pair ((¢f, p3), (¢5,p3)) is a Nash equilibrium. As a matter of fact no
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deviation by changing the quantity can be profitable: since g; is optimal for pyax, the
price cannot be increased, and a decrease of the profit will follow from a decrease of
the price of one supplier (Lemma [B)).

Excess supply : ¢i + ¢35 > d Two possibilities occur depending on whether the prices
pj, j = 1,2 differ or not.

1. the prices are different, i.e. p; < p} for example.
In that case the market first buys from the supplier with lower price (hence g =
inf(qf,d)), and then completes its demand to the supplier with highest price, Sy (hence
7 =d—7q).
For € > 0 such that pj + € < p3, we have
¢ipi — Ci(q7) < max {gp7 — C1(q)} < max {q(p] +€) — C1(q)}-
q€[0,d] q€[0,d]
Hence supplier S; is better of increasing its price to p] + € and proposing quantity
q1 € @1(1)’{ +€). As a matter of fact, since pj + € < p3, the reaction of the market will
be 61 = ljl.
So a pair of strategies with p; # ps cannot be a Nash equilibrium.

2. the prices are equal, i.e. p] = pj def o

Now the market faces an optimization problem () with several solutions. Hence it
has to use its additional rule in order to determine the quantities g7, g5 to buy from
each supplier in response to their offers ¢f, ¢5.

If this response is not optimal for any supplier, i.e. g} & @1(]9*) and @ ¢ @g(p*), the
same line of reasoning as in Item [ of the excess demand case proves that the pair
((¢7,p7), (¢5,p%)) cannot be a Nash equilibrium.

Suppose that the reaction of the market is optimal for both suppliers, i.e. G; € @1(1)*)
and @ € @2 (p*). A necessary condition for a supplier, say S1, to increase its profit is
to increase its price and consequently to complete the offer of the other supplier Ss.
We have two possibilities,

(a) If for at least one supplier, say supplier S7, we have,
(d = 43)Pmax — C1(d — q3) > max {gp" — C1(q)},
qE[O,d]

then supplier S; is better of increasing its price to pmax and completing the market
to sell the quantity d — g5.

(b) Conversely, if none of the suppliers can increase its profit by “completing the offer
of the other”, i.e. if
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(d = @5)Ppmax — C1(d — ¢3) < qrél[%]{qp* - Ci(9)}, (25)
(d = q7)Pmax — C2(d — ¢7) < max {gp™ — C2(q)}, (26)
qE[O,d]

then the pair ((¢},p%), (¢5,p3%)) is a Nash equilibrium.

As a matter of fact, for one supplier, say S1, changing only the quantity is not
profitable since ¢f € ()1, decreasing the price is not profitable because of Lemma
Inequality (@H) prevents S; from increasing its price.

Remark 9 Note that a sufficient condition for Inequality (Z3) and (Z8) to be true, is that
both suppliers choose q; =d, j =1,2.
With this choice each supplier prevents the other supplier from completing its demand with
maximal price. This can be interpreted as a wish for the suppliers to obtain a Nash equilib-
rium. Nevertheless, to do that, the suppliers have to propose to the market a quantity d at
price p* which may be very risky and hence may not be credible. As a matter of fact, suppose
S1 chooses the strategy g1 = d,p1 = p* < Pmax- If for some reason supplier Sy proposes a
quantity q2 at a price pa > p1, then S1 has to provide the market with the quantity d at price
p1 since G = d, which may be disastrous for S;.

Note also that if pmax is not very high compared with p* the inequalities (Z3) and (Z8) will
not be satisfied. Hence these inequalities could be used for the market to choose a maximal
price Pmax such that the equilibrium may be possible.

The previous discussion shows that in case of excess supply, the only possibility to have
a Nash equilibrium, is that both suppliers propose the same price p* and quantities ¢}, g3,
such that, together with an additional rule, the market can choose optimal quantities g7, 75
that satisfy its demand and such that g} € @j (p*).

This is clearly not possible for any price p*. If the price p* is too small, then the optimal
quantity the suppliers can bring to the market is small, and for any q € Q1(p*) + Q2(p*), we
have ¢ < d. If the price p” is too high, then the optimal quantity the suppliers are willing to
bring to the market are large, and for any ¢ € Q1(p) + Q2(p), we have ¢ > d. The following
Lemma characterizes the possible values of p* for which it is possible to find ¢; and g2 that
satisfy q1 € Q1(p*), ¢2 € Q2(p*) and ¢1 + q2 = d.

Let us first define the function C; from [0, d] to the set of intervals of R™ as

Ci(q) = [Cj(q7),Ci(q™)],

for ¢ smaller than the maximal production quantity @;, and C;(¢) = 0 for ¢ > Q. Clearly
Ci(q) = {Cj(q)} except when C’ has a discontinuity in g. We now can state the lemma.

Lemma 3 It is possible to find q1,q2 such that g1 + ¢ = d, q1 € @1(1)) and gz € @Q(p) if
and only if
pel,
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where,
def
= | (€@ ncsd—q)),
q€(0,d]

or, equivalently, when Q1+ Q2 > d, T def [Z7,Z7], where

7~ min{p, max(q € Qu(p)) + max(g € Qo(p)) > d},
7+ max{p, min(g € Q1(p)) +min(q € Qa(p)) < d},

and T = () when Q1 + Q2 < d.

Proof If p € Z, then there exists ¢ € [0,d] such that p € C{(¢) and p € C5(d — q). We take

g1 = q, ¢ = d — q and conclude by applying Lemma [I

Conversely, if p ¢ Z, then it is not possible to find g1, g2 such that ¢ + ¢2 = d, and such

that p € C1(q1) N Ch(gz) i.e. such that according to Lemma[ll¢; € Q1(p) and g2 € Q2(p).

Straightforwardly, if Z~ < p < I, then there exists ¢1 € Q1(p) and g2 € Q2(p) such that

@ +q=d. ©
We sum up the previous analysis by the following proposition.

Proposition 4 In a market with maximal price pmax with two suppliers, each having to
propose quantity and price to the market, and each one wanting to mazximize its profit, we
have the following Nash equilibrium:

1. If pmax < mln{p € 7}-Excess demand case, any strategy profile ((¢7, Pmax), (¢4, Pmax)),
with ql S Ql(pmdx) and g5 € Qg(pm&x) is a Nash equilibrium. In that case we have
qi + g5 <d.

2. If pmax = min{p € I}, any pair (¢, Pmax); (43, Pmax)) where ¢i € Q1(Pmax) and
¢ € Q2(Pmax) s a Nash equilibrium. In that case we may have ¢ + ¢5 > d or
* *
q1 + qds < d.

3. If pmax > min{p € T}- Excess supply case, any pair
((q1,p"), (g5,p*)), such that p* € Z, p* < pmax and which induces a reaction (q;,qs),
ql S qT: 62 S q;; SUCh tha't
(a) G + 7 =d,
(b) al € Ql(p*)7 62 € Q2(p*)7

(c)
(d - QS)pmaX Ol( - Q2)
(d - qr)pmax - C12( - qr)

is a Nash equilibrium.
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We now want to generalize the previous result to a market with § > 2 suppliers.

Let ((¢f,p3), .-, (g%, p%)) be a strategy profile, and let (g;,...,qs) be the induced reac-
tion of the market. This strategy profile is a Nash equilibrium, if for any two suppliers, .S;,
S;, the pair of strategies ((¢;,p;), (¢},p;)) is a Nash equilibrium for a market with two sup-

pliers (with evaluation function defined by Equation (1)) and demand d = d — Y ke{iy Qi
Hence using the above Proposition Bl we know that necessarily at equilibrium the prices
proposed by the suppliers are equal, and the quantities ¢; induce a reaction of the market
such that g; € Q;(p*).

Let us first extend the previous definition of the set Z by 7 = 0 if Zle Q; < d, and

otherwise,

1[I, 1),

where
I~ =min{p, 37, max(q € Q;(p)) > d},

A~

T+ = max{p, Y7, min(g € Q;(p)) < d}.

(27)

We have the following

Theorem 1 Suppose we have S suppliers on a market with mazimal price pmax and demand
d.

1. If pmax < min{p € 7}-Excess demand case, any strategy profile (¢}, Pmax), " s (¢5; Pmax)),

with q; € Qi(Pmax), 7 = 1,---,8, is a Nash equilibrium. In that case we have
S *
> 145 <d.

2. If Pmax = min{P S I}: any stmtegy proﬁle ((QTupmax)a T 7(q27pmax)) where q; €
Qj(Pmax), 3 =1,---,8 is a Nash equilibrium. In that case we may have Ele q >d

or Ele q; <d.

3. If pmax > min{p € T}- Excess supply case, any strategy profile ((¢;,p*),-- - , (¢5.p*)),
such that p* € T, p* < pmax and which induces a reaction (g, - ,qs), 4; < ¢}, j =
1,---,S, such that

(a) Z;‘g:lqj:d;
(b) aj EQ\j(p*)a jzla 78;
(¢c) foranyj=1,---,S

(A= qi)pmax — Ci(d =Y _qf) <T;p" — C5(T;), (28)
k#j k#j

is a Nash equilibrium.
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The previous results show that a Nash equilibrium always exists for the case where the
profit is used by the suppliers as an evaluation function. For convenience we have supposed
the existence of a maximal price py.x. On real markets we observe that, usually this maximal
price is infinite, since most markets do not impose a maximal price on electricity. Hence the
interesting case is the case where ppa.x > min{p € Z}. The case with pp.x < min{p € T},
can be interpreted as a monopolistic situation. The demand is so large compared with the
maximal price that each supplier can behave as if it is alone on the market.

When puax is large enough, Proposition Bl and Theorem [I exhibit some conditions for a
strategy profile to be a Nash equilibrium. We can make several remarks.

Remark 10 Note that conditions (Z8) are satisfied for q; = d. Hence we can conclude

that, provided that the market reacts in such a way that g; € @j, the strategy profile
((d,p*), - ,(d,p*)) is a Nash equilibrium. Nevertheless, this equilibrium is not realistic.
As a matter of fact, to implement this equilibrium, the suppliers have to propose to the mar-
ket a quantity that is higher than the optimal quantity, and which possibly may lead to a
negative profit (when pmax s very large). The second aspect that may appear unrealistic is
the fact that the suppliers give up their power of decision. As a matter of fact, they announce
high quantities, so that (Z8) is satisfied, and let the market choose the appropriate q;.

A more realistic way for (Z8) to be satisfied, is that for any supplier j, >4 > d.

Example We consider the market, with demand d = 10 and maximal price ppax = +00,
with the five suppliers already described page [[6l In order to be able to compare the
equilibria for both criteria, market share and profit, we suppose that the marginal cost is
equal to the minimal price function displayed in the table page [ i.e. C} = L;.

The following table displays the quantities o(p) Lof 2?21 min{q € @j (p)} and O(p) of

> max{q € Q;(p)}-

P €[0,10[ [ =10 | €]10,15] | =15 | €]15,20[ | = 20 | €]20, 23]
o(p) 0 0 2 2 9 9 15
O(p) 0 2 2 9 9 15 15

From the above table we deduce that Z = {20}, hence the only possible equilibrium
price is p* = 20. As a matter of fact, we have O(20) = 15 > 10 = d, and for any p < 20,
O(p) < 10 = d, and 0(20) = 9 < 10 = d, and for any p > 20, o(p) > 10 = d. Hence
p* =20 € 7 as defined by Equation (21).

Now concerning the quantities, the equilibrium depend upon the additional rule of the
market. We suppose that the market chooses g; € Q;, Vi € {1,---,5}, and then to give
preference to Si, then to So, etc.

The equilibrium is ¢f >3, ¢ >1, ¢;>2, q¢; >4, ¢ >0.

The fact that the market wants to choose quantities g, € @i(20) implies that g, €
Q1(20) = 37 62 € Q2(20) = [075}7 63 € Q3(20) = 27 64 € Q4(20) = [475]7 65 = 07
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and the preference for Sy compared to Ss implies that g, =3, gy =1, @3 =2, q, =
4, g5 =0.

If the preference would have been S5 then S4 then S5 etc... the equilibrium would have
been the same, but we would have had

q1:37 62207 63:27 q4:57 65:0

5 Single price versus multiple price market organization

Our aim in this section is to analyze and compare a second possible organization. Previously
we used an organization market, referred to as multiple price market organization, where
the market possibly buys to each supplier at a different price.

In practice when the number of suppliers becomes large, i.e. when the markets become
more fluid. In that case we observe that the markets determine a single price, based upon
the offers of the suppliers. In this section we describe such an organization, referred to as
single price market organization, and we compare it to the multiple price market organiza-
tion.

Note also that when the market becomes more fluid, it is more likely that Condition ([IX)
introduced in Remark [ applies, i.e. that none of the suppliers can create a fictive shortage
and then increase unlimitedly the price.

Note that in the following we will not restrict our attention to the quantity-price strategies
as defined by Definition [l

5.1 Single price market organization

We suppose that each supplier provides the market with a price function strategy p;(q).
According to these offers, the market deduces a unique minimal price p® (and quantities g;
to buy to each supplier), that solves the optimization problem

S

P min P,

- {@;}i=1.- s
subject to (29)
a; > 07

‘ S
i=1

Remark 11 Note that the minimization problem (Z9) may not have any solution. This
would be the case if the demand d is too high compared to some mazximal production quantities
of the suppliers. In that case, as previously, we suppose that the market buys as electricity
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it can at some mazimal given price.

At the other extreme the minimization problem may have several solutions. In that case we
are once more faced to the necessity to introduce an additional decision rule to determine
the exact quantities bought by the market to each supplier. See Remark [3

Equivalently, we can use supply functions g¢;(p) instead of the price function p;(g). For
a given price function p;(-) of S;, we define the corresponding supply function as the right
continuous inverse function of p;(-), i.e.

qj(p) = max{q > 0, p;(q) < p},

and the problem Z9) of the market becomes,

S
p* =min{p| > q;(p) > d}. (30)

j=1

If the price function is strictly increasing, then obviously the supply function is its inverse
function. In that case the inequality (B) becomes an equality, and we have g; = ¢;(p°).

5.2 Comparing the two market organizations

Here we show that the two market organizations are not equivalent. More precisely, we are
going to show on a simple example, that the quantities of electricity sold by the suppliers
are different from one organization to the other one.

As a matter of fact, suppose we have two suppliers. We show that for the two given offers,

p1(q) = a1q + B1 and p2(q) = azq + B2, a1 >0, az >0,

the reaction of the market is different, in terms of prices and quantities bought to each
supplier.

For the two linear strategies p;i(-) and pa(-) of the suppliers it is equivalent to consider
their supply functions (the inverse functions of the price functions), namely,

1 01 1 B2
qi(p) = —p— — and ¢2(p) = —p — —.
aq aq (6%) (6]

Let us compute the reaction of the market for the two market organizations.

e Single price market organization The market reacts by solving problem (B),
namely find p® solution of the minimization problem,

p° = minp, (31)
41,92
subject to
pi(@) +p2(T) <p, @ +T=d (32)

INRIA



Game theory for the electricity market 27

Suppose that d is sufficiently large (p1(0) < p2(d) and p2(0) < pi(d)). Because we
have chosen linear strategies (i.e. strictly increasing strategies), it is equivalent to find
p® such that,

a1 (p°) + q2(p°) = d.

It comes that

. a1 + o1 B2 + aroed
a1 + a2 '
We deduce that the quantities bought to each suppliers, g = g, (p®), are respectively

s Po— 1+ aad s Pr— B2+ aid
=", and 3= ——"—
ay + oo a1+ ag

3

and the cost paid by the market to satisfy its demand is,
o5 — d(cfr + a1 B2 + aqaad)

0424-0&1

e Multiple price market organization. The market reacts by fixing the quantities
7, and g, that solve problem @)@, i.e.

min p1(q;)q; + p2(72)7a-
q1:92

It comes straightforwardly that, for a demand d large enough (see above conditions),

_ B — P _ B — B2
= s S EEEE—— d = s
4 =q; + 2(c1 + a2) and ¢ = g3 2(ar + az)
from which we deduce that the unit price for each suppliers are
_ _ a1 (1 — Ba) _ _ az(B1 — ()
= = p’ + _— and - =p° — .
P=n@)=p 201 T oa) P =p2(q2) =p ot

and the total cost incurred by the market to fulfill its demand is
— 1 — 2
C_Cs__(ﬁl 52)'

B 4 a1 + a2

Not surprisingly (considering the degree of freedom of the market), we observe that, unless
081 = P2, the price paid by the market is lower when it is allowed to set different prices for
different suppliers.

Remark 12 Note that 3; represents the fized part of the price. Hence when both producers
have the same fized part, the two organizations (single price or multiple price) are equivalent
(same prices, same quantities). For some fized values of an and aq the difference of cost
between the two organization increases as the difference of fized part between the suppliers
(B2 — 1) increases.

Nevertheless this property does not hold when there are more than two suppliers.
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5.3 Nash equilibrium for the two market organizations ?

The aim in this subsection is to examine in which case the markets with the two described
organizations can be stabilized with a Nash equilibrium, when the suppliers use supply
functions as strategies. We consider the case of profit maximization.

5.3.1 Single price organization

Suppose that the market announces a price p “small”, then it is clear that the suppliers react
by setting the quantities @;(p) that maximizes the profit of Supplier S; in a monopolistic
situation, 7.e. the quantity given by the supply function defined by Equation (22)) :

~

Qj(p) = nax pg — Cj(q)-

Hence for p fixed, the vector (@1(19)7 -, Qs (p)) is a Nash equilibrium (provided that p is

small enough, i.e. is such that ), @j (p) < d).
Now if the market set the price p* defined by

S
pY =min{p st. > Q;(p) = d}, (33)

Jj=1

where d is the fixed demand, the vector of quantities (@1(]9“’), -, Qs (p™)) is a Nash equi-
librium and furthermore the demand is fully satisfied.

Note that these equilibrium have been studied in [5], and in particular some extension when
B3) does not have any solution (due to some discontinuities for example).

__From the above reasoning, one would be tempted to deduce that the supply functions
(Q1(+), - ,Qs(+)) is a Nash equilibrium for our problem. Nevertheless we show, by exhibit-
ing a counter example, that this is wrong.

Remark 13 Note that it is not a contradiction that (@1(pw), e ,@g(pw)) is a Nash equi-
librium for ¢ fized, and that (@1(), e ,@5()) s not an equilibrium. As a matter of fact
the role, and information, of the market and the suppliers are different in the two situations.
In the first situation, the suppliers react to, and are informed of the action of the market
(they know p* ), while in the second situation the reverse occurs : the market reacts to, and
is informed of the actions of the suppliers.

Counter Example We suppose that we have 2 suppliers on the market, that incur a
quadratic production cost, i.e.

Cj(a) = ¢;q*.
The offer of each supplier on the market is a supply function ¢;(-) that gives for any price p
the quantity of electricity Supplier S; commits itself to provide on the market. The market
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price p® resulting from the pair of offers (¢i(-),¢2(+)) is the minimal price such that the
(inelastic) demand d is fully satisfied, i.e. such that ¢;(p®) + ¢2(p®) = d. The profit for
Supplier S; is then
Is; (@), a2()) = p°q; (0°) — ¢jq;(p°).

Now we examine the supply function that gives for any price p the production that maximizes
the evaluation function of the supplier (Equation Z2). More precisely, for each fixed price p,
the optimal quantity to bring on the market for Supplier S; is

A p

Q;(p) = argmaxpq — ¢;¢* = %0

q CJ

For the strategy profile (Q1(-), Q2(-)), the market price is p* such that Qr (pw)—i—@g(pw) =d,
1.€.

pw - 2d6102
c1 + co '
It follows that the quantities of electricity sold by suppliers are
ng dCl
Y= and ¢ = ,
a1 o+ q2 1+ g
leading to the profits,
d?c2 d?*cc
T = 220 and gy = S
(e H ) (c1+c2)

We show now that the pair (@1(), @2()) is not a Nash equilibrium in the class of supply
functions. To that aim, suppose that Supplier S sticks on its choice Ql() We show that
there is a profitable deviation for Supplier S5, i.e. another supply function, such that S
increases its profit.

First let us keep in mind that at clearing the sum of the quantities sold is exactly equal to
the demand d. This situation can be seen as supplier So completes the quantity of supplier
S to fulfill the demand.

For any p, denotes 12 (p), the quantity

Ua(p) = p(d — Q1(p)) — c2(d — Q1 (p))>.

12(p) represents the profit of supplier S, if the price fixed by the market is p and supplier
Sy sticks on the strategy ¢i(-).
Developing 12 (p) it comes that

1
Ya(p) = @(2dc1 —p)(2pe1 — 2¢1¢2d + cap).
1

Note that 12 (p®) = Js,(Q1(-), Q2(+)). If we evaluate in p = p* the derivative of ¥ (p) with
respect to p, we obtain that,

d d

Bz oy = 295,

dp 1+ ca
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From that we deduce that Supplier Ss would be better of deviating from the strategy g2(-)
to induce an higher price. We can see that 15(-) attains its maximum for

x 2d01 (Cl + 02)
- 2c1 + co '

Hence any supply function ¢2(-) such that the solution of ¢ (p) + ¢2(p) = d gives p = p*
constitutes a best response of Supplier Ss to the supply function @1() of Supplier S;. In
particular, we can choose the constant supply function ¢5(-) = d — @1(]9*). This obviously
is a profitable deviation for Supplier S>. As a matter of fact, the clearing price for the pair
of strategies (Q1(:),q3(+)) is p*, the quantities sold are respectively ¢;(p*) and d — §1(p*),
and from the previous calculations, the profit of Supplier 2 is higher than if he would have
sold the quantity d — §; (p*)-
For example, if we set d =1 and

Ci(q) = ¢*, and Ca(q) = 2¢°,

we obtain the optimal monopolistic quantities

~ p ~
Q1(p) = > Q2(p) = 1

hS

If the suppliers use the price strategies defined by ¢;(p) = @j (p), the resulting price on the
market will be p® such that N N

Q1(p°) + Q2(p®) =d =1,
that is such that £ 4+ § = 1 that is p* = %, from which it follows that the quantities of
electricity sold by suppliers are ¢; = 2 and ¢5 = %. This bring them the respective profits

21 4 21 2
JS1(§7§):§7 o

Now, suppose that Supplier S; sticks on its choice @1((]) = £, and suppose that S uses the
constant supply function G2(q) = 1.
Now the clearing price p® is such that

pS

2
. _ 3

that is p* = 3.

The quantities sold respectively by S; and Ss are @1(%) = % and (}2(%) = %, while their
profits become

=Js, (@1()7 (12())

ool N
Ne) i)

>

75, (@10), () = g and Js,(@1(),82()) =

This shows that the pair (@1(), @2()) is not a Nash equilibrium since by deviating from
this pair producer S5 increases its profit.
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Linear strategies and Nash Equilibrium Here we restrict our attention to linear strate-
gies and to quadratic production cost.

Remark 14 Note that linear strategies are of particular interest. As a matter of fact,
usually the markets determine the class of strategies they will accept from the suppliers. We
observe that these piecewise strategies are often chosen by the markets.

Suppose that each supplier S; chooses the linear production function
q;(p) = a;p — b, a; >0, b; >0,
so as to maximize the profit given by,
P°7; — 5,

where p° is the price fixed by the market, and g, the quantity bought by the market to
Supplier 5.

The market reacts to the pair (¢1(+), g2(+)) or equivalently to ((a1,b1), (az,b2)) by fixing
the clearing price to p® such that ¢ (p®) + ¢2(p®) = d. It comes that

. bitbytd
a1 + as '

Consequently the profit for each supplier is (as a function of (a1,b1, az, b)),

p°q;(p°) = ¢j4;(p°)?, (34)
that is
(b1 + b2 + d)(a1bs + a1d — braz)  c1(arbs + ard — braz)?
J ,bi1,a9,bs) = — , 35
5, (a1, b1, a2 2) (a1 + a2)? (a1 + az)? (35)
and

(bl + b2 —+ d)(a2b1 + G,Qd — bgal) _ (6] (a2b1 + G,Qd — b2a1)2
(al + a2)2 (a1 + a2)2

']52 (alv blv az, b2) = ) (36)

For the pair of production functions (¢; (), ¢5(-)) or with a slight abuse of notation, for the
pair ((a},b7), (a3, b5)) to be a Nash equilibrium, the first order conditions for maximization,
must hold true, so for j = 1,2, we must have

aJs,
3aj

d.Js,
b,

(a3,by,as,b5) =0, and (a3,b7,a3,05) = 0. (37)
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This can be rewritten as

A(d + bt + b)

=0
(a1 + a3)?

A
= =0
(af + a3)?

Bd+bi+b3) _
(af +a3)®
B

= 0

(a7 +a3)®
where A and B are defined by,

A = 2b%ag + 2bicray? — aibs + asby + asd — ajd — 2cidasal — 2c1byasal,
B = 2b3al + 2b302a’{2 —a3b] + ajb] + ajd — a5d — 2cadaias — 2c2biajas.

Taking into account that a} > 0,07 > 0 the system () can be rewritten as
A=0and B=0.

This gives the family of solutions, 4.e. of possible Nash equilibrium, parametrized by a; > 0
and b; >0

ai =ay, a3 = as,

b — (1 + 202@1)(@1 + 2c1a9a1 — ag)d
! 2c0a9a1 + 2c1a2a1 + a1 + as

(1 + 2c1a2)(ag + 2caa1a2 — a1)d
2cia1a9 + 2c0a1a0 + as + aq '

by =

Nevertheless a closer look at the second order conditions for maximization shows that the
Hessian of Jg, (a1, b1,a7,b}) evaluated at any points satisfying the first order conditions for
Nash equilibrium, (B8), has a negative determinantf]. This proves that the points satisfying
Equation (BR) are not Nash equilibrium.

Also we have checked that there cannot be any Nash equilibrium at the boundary of the
domain, i.e. such that one of a1, as, by or by is null.

Hence we do not have Nash equilibrium for this game in the class of linear strategies.

Remark 15 Note that the computation above does not take into account any upper bound
for the price function such as an upper bound for a; and a lower bound for b; or a mazximal
price for some given quantity (for example d).

As in the previous part (for quantity-price strategies) the introduction of some mazimal
price may help to stabilize the market.

IThese computations has been done using Maple. Because of their lengths we do not display here the
expressions obtained for the Hessian and its determinant.
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5.3.2 Multiple price market organization

As previously, we consider linear strategies and suppose that the suppliers incur a quadratic
cost.

Here it is more convenient to work with price functions, ¢.e. functions p; : ¢ — p;(q) =
ajq + B, with o; > 0 and §; > 0.

The market reacts to a pair (p1(-),p2(+)) of price functions, by solving an optimization
problem, where g, and g, are the optimization variables, the total cost is the objective
function with the constraint that the demand d must be fully satisfied, that is

min p1q, +p2(d - 61)7 Gy =d—7y.
‘hZO

It comes that
1035 = f1 + 2aad

1= 2 a1 + ao

- lﬁl ﬁz + 20(1d
A 2 a1 + o

Substituting these values into the profit function and deriving with respect to the coef-

ficient «;, B; we obtain the following set of first order conditions for the Nash equilibrium,

(81 — B2 — 2a0d)( (B2 + 2aad) (a1 — a2) + f1(Bas + a1) — 2¢1(a1 + ) ) =0
Bi(ar + 2a9) — ag (B + 2a2d) — c1(aq + a2)) =0
(B2 = fr — 2da)( (Br + 20ad) (a2 — 1) + B2(3a1 + ) — 2c2(a1 +a2) ) =0
B2(200 + a2) — o (B1 + 2c1d) — (o1 + 2)) =0

A closer look to this system shows that it has no solution. Hence with this market
organization there is no Nash equilibrium.

Remark 16 As previously the above calculation are done without any upper bound on the
price. The introduction of some upper bound may lead to stabilization of the market.

6 The multiple market case

In this last section we present a model in order to study the case of multiple markets. We
show that considering more than one market leads to a model that is much more compli-
cated, both from the modeling point of view and the calculation point of view. Concerning
modeling, a game appears at the level of the markets and the structure of the strategies of
the suppliers are more complex.

In subsection BEIl we describe a model to handle the multiple market case. In the multiple
market case constraints resulting from interconnection and line capacity decreases the degree
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of freedom of the suppliers : they cannot sent as much electricity as they wish on the markets.
We did dot take into account these constraints in the model we have described. Nevertheless
they may lead to a simplest model, where some markets may be, in first approximation,
considered as remote.

In Section we investigate in a more abstract context the possibility to use inverse
Stackelberg equilibrium.

6.1 Several market game model
6.1.1 Players and strategies

Here we consider that the S suppliers S; propose electricity on M different markets, M.
We suppose that each market M; has a demand d; inelastic to price. The aim of each market
is to fulfill its demand at minimal price.

Suppliers’ strategy. A strategy for a supplier S; consists of a vector of price functions
pi(-) = (pj1(:), -+ ,pim(:)) (pji(-) represents the offer of supplier S; on market M;). The

markets react by setting the quantities @ju G ) bought to each supplier.
As for the price function we can think that for a supplier S;, the offer on each market
pji(+), may have as argument the vector (gy,,- - , ;). Nevertheless, this does not reflect

the actual organization of real electricity markets. As a matter of fact, a market will not
accept an offer conditioned by the quantities g;; of electricity bought by the other markets.
For convenience, we will nevertheless use these strategies later on (Section B2) to illustrate
some aspects of the model.

A more realistic way to define a price function strategy in that case, is to suppose that
each supplier S; splits its maximal production capacity in maximal capacity on each market.
More precisely, we suppose that the maximal capacity supplier S; is ready to bring to the
market M; is @Q);;, such that

M
i=1
where (); represents its maximal production capacity.
A price function pj;(-) for supplier S; on market M; will be such that

Vq > Qji, pji(q) = +o00.

In the case where the suppliers want to maximize their market share, we have to set some
condition that prevents them to fix a price arbitrarily low (see Assumption B for the sin-
gle market case. Note that for the multiple market case the price fixed by the suppliers
must include some transportation costs denoted by d,; (the transportation cost per unit of
electricity). We suppose that for a local producer the transportation cost in zero (§;; = 0).
Hence, the previous condition may be to prevent the suppliers,
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e to sell below the marginal cost. In that case a price function has to satisty,
M
T i=1

e or to have a negative profit. In that case, the price function has to satisfy,

M M M
Vi=1,- M, Vg < Qji, Y _pii(@)T5 > Ci(O_a) + D Sjidji- (39)

=1 i=1 =1

Remark 17 We see that the determination by the suppliers of the quantities Q;; is crucial
and depends upon the guess of the reaction of the market. As a matter of fact if for some
market M; the quantity Q;; is much larger than the quantity G;; the market M; will actually
buy, then the quantity Q;; —q;; cannot be sold anywhere else.

The underlying assumption for this kind of price function, is that the offers of the sup-
pliers has to be done before any market has decided of the quantities to buy.

If when setting an offer on some market, a supplier already knows the reaction of some
other market, then this has to be taken into account in the definition of a strategy.

Markets’ strategy For the market a strategy is the choice of quantities bought to each
suppliers in reaction to the offers made by the suppliers.

6.1.2 Evaluation function and objective

We suppose that the objective of the markets is to minimize the total price paid for satisfying
its demand, when possible, that is

S
def — \—
I = iji(jS>jS7 (40)
j=1

We suppose that the Market M; reacts to an offer (or strategy profile) p = (p1(-),- - ,ps(*)),

or more precisely to the vector (p1;(),- -, psi(-)) of the suppliers so as to satisfy its demand
d; and to minimize the total cost Jy, (given by (E)).
We can consider that each market has specific market organization such as the one studied
previously (i.e. single price market organization and multiple price market organization).
The problem to solve by each market depends upon its organization. For example, if M;
follows a multiple price market organization as described previously, its problem to solve
will be

S
s i(@5i )i 41
{qji}j:L-..'Sj:lej (1 )q] ()
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subject to
S

j=1
In the case where the constraint [@2) cannot be satisfied (for example when the demand d;
is too large), then Markets M; reacts by buying the maximal quantity at finite price, and
its demand is not fully satisfied.

As for the suppliers we can consider as previously the two criteria : market share maxi-
mization or profit maximization.

Remark 18 As in the single market case, the solution of the minimization problems of the
markets may not lead to a unique choice of quantities bought to each suppliers. As previously
(see Remarks[d and[d) the markets need additional rule to set a unique reaction to the offers
of the suppliers. We suppose that this additional rule is known to the suppliers before they
choose their price function.

Hence, the game can be viewed as a three stage problem : at first stage, the markets choose
their additional rule, ot a second stage the suppliers, with the knowledge of this additional
rule set their offers on the markets, and at the las stage the market react to the offers by
setting unique quantities bought to each suppliers.

The problem can be now viewed as a two step Nash-Nash problem. As a matter of fact, the
offers made by the suppliers at the second step depend upon the additional rule of the markets
My, -+, Maq. Hence using backward induction reasoning, when at stage one, the markets
decide upon the additional rule, they have to take into account the expected reaction of the
suppliers to these additional rules. Hence there is an interdependence between the markets
when choosing the additional rule. We make the assumption that the markets behave non
cooperatively, and hence the have to determine a Nash at this initial stage. Hence we have
now set a two level Nash game.

6.2 Two level Nash equilibrium with linear price function

The aim of this subsection (and the following) is to illustrate the difficulties that may appear
when studying a two stage Nash-Nash problem as set at Remark [8

We illustrate Nash-Nash calculations for suppliers’ linear strategies. For the sake of
simplicity, we omit the cost line.

We suppose here that the unit price function for each supplier S; is linear and has as
argument the total amount sold by S;, and furthermore that it does not depend on the
market. More precisely, consider unit price characterized by two parameters each;

pj @jl + 6;‘2) =0y (%‘1 J’_ajZ) + ;. (43)

We suppose that the parameters a; and 3; are positive. As previously noticed, these strate-
gies are not realistic, since they have as argument the total amount of electricity sold, that
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is in particular, the offers on each market is correlated to the reaction of the other market,
which is not realistic. Nevertheless these strategies allows us to illustrate Nash-Nash calcu-
lations.

We consider linear unit production cost for each supplier (with C; the coefficient of propor-
tionality). Hence the evaluation function for Supplier S; is given by,

JS]- = Pj@ﬂ +Gj2)-(§j1 + 6;‘2) - Cj'@jl +Gj2)-

For a pair of unit price functions (pi1(-), p2(-)) as in (@) and the respective reactions (q; 1, Ga1)
and (qqo,Jes) of Markets M7 and Ms, Market M; faces the costs

(@1(T11 + T12) + 1)1 + (02(Ta1 + Toz) + B2 + 621)T1,

and market M5 the cost

(@1(Q11 +T12) + B1 + 012)T12 + (@2(T21 + Taa) + £2)T22;

where it is tacitly understood that the lines S to M; and S5 to Ms do not have transporta-
tion costs. The quantities g;; have to satisfy

q11 + 921 = dy, Qi + o = da,

for the total demands to be satisfied.

We suppose that the suppliers first announce their unit price function to which the
markets reacts so as to minimize their total cost. Hence the solution adopted here is a two
level Nash equilibrium or a Stackelberg Nash equilibrium. More precisely, at the first level
(in time) the Suppliers (leaders) have to determine a Nash equilibrium taking into account
the reaction of the markets, at the second level, given the strategies of the suppliers, the
markets (followers) also have to determine a Nash equilibrium.

We use backward induction and first compute the Nash equilibrium at the follower level,
i.e. the Nash equilibrium at the level of the market, given a pair of strategies of the Suppliers
(the leaders).

Given a pair of strategies of the suppliers, i.e. a pair ((aq, 1), (a2, 82)), the Nash equi-
librium for the two markets is easily calculated to be

_ —f1 + B2 + 3azdy + 2021 + 012
1 = 3(a; + az) )
T = B1 — B2+ 3ardy — 2021 — 5127
3(a1 + a2)
Ty = —B1 + B2 + 3aads — 2612 — 621
3(a1 + a2) ’
B1 — B2 + 3ards + 2512 + 21

3(0[1 + Ozz)

[y

)
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provided that all quantities concerned lie in the interior of their intervals and have the
appropriate signs. Please note that these assumptions may not be valid in many cases (such
is a1 + ae = 0 excluded for instance). Also, the second-order conditions (players minimize,
i.e. second derivative must be positive) must be satisfied. Though not derived explicitly,
these second-order conditions are oy + as > 0.

Remark 19 Note that the quantities 31 and B2 appear only in a combined way as B1 — Ba.
This means that if a Nash solution is found for 57 and (35 say, then other Nash solutions
exist for B+~ and 35+~ with v arbitrary. In other words, the Nash solution is not unique
and the two suppliers will probably end up choosing their 31 and B2 arbitrarily high.

The total production for S, Ss, respectively is

=201 + 202 + 3az.(di + d2) + d22 — d12
3(0&1 =+ OLQ)

1 412 =

)

261 — 202+ 3a.(d1 + d2) + 012 — 01
3(0&1 + OLQ) )

Qo1 + Qoo =

Short-hand notations for these two equations (to be used in a minute) are

ni no

34 YT 3d

What remains is to investigate the roles of the suppliers. The profit, with linear production
cost, for the suppliers are

(1 (@1 +Ti2) + (B1 = C))(@11 +Tia)y  (@2.(T21 + Ta2) + (B2 — C2)) (@21 + Ta2)s

respectively, in which the above equations for §,; + G,, and gy, + @y, must be substituted.
With the notation just introduced, these profits can be written as

a1 4+ (B — C1)z,  asy® + (B2 — Co)y.

The first expression must be maximized with respect to 51 and a; and the second one with
respect to B2 and as. Thus one obtains again a Nash equilibrium, but now on the level of
the leaders (the suppliers). This leads to

ox ox ox ox
2 _ _ _ _
x° 4+ 20[1{E—aal + (61 Cl>aa1 0, 20[117661 +x + (ﬂl Cl)aﬂl 0.
and o o B o
2., o y B Y _o o y B v _,
Y-+ Y 500 + (B2 Cz)—6a2 0, Oézy—aﬂ2 +y+ (B2 Cz)—aﬂ2 0
Since

ox ny ox -2 ﬁ _ng oy -2

dan  —3d2" 9B 3d’ Oas —3d2 9By 3d’
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one obtains
nl((nl — 3ﬁ1)d — 2a1n1)

943 =0

—40&1711 + 3d(n1 — 2,61) - 0
942 -

’ng((ng — 3ﬁ2)d — 2a2n2) - 0
9d3 -

—4a2n2 + 3d(’l’L2 — 2ﬁ2) - 0
9d? -

in which derivation it has been assumed that d = a1 + a2 # 0. Solving these equations (ac-
tually, setting all numerators equal to zero), however, always leads to d = 0. So, apparently
the Nash solution does not exist, since we required that «; > 0.

6.3 The inverse Stackelberg solution for the two two

In this section there are two suppliers S; and S who announce their decisions up; as a

function of the quantities uay, def G;; that the markets M; and M> will buy. These functions
will be indicated as up, = 7v;(un,,unrs,), j = 1,2. Thus an inverse Stackelberg problem has
been formulated. The cost functions, to be minimized, will be formally written as

']Ml(uM17u’P17u’P2)7 JM2(UM25U’P17U’P2)3 JSI(UMI,UMz,Upl), JSz(uMlauszuPz)' (44)

We will emphasize the particular structure of these functions rather than their proximity to
reality. The interpretation of Jys, (uas, , wp,, up,) for instance is that the value of the criterion
is determined by the total amount of electricity requested and this will depend on the price
setting of the two suppliers, up, = v;(uns,,uns,), j = 1,2. In practice, the market will buy
an amount u,, from supplier S, with w1, + u1, = uar,, such as to get the electricity at the
lowest price. The cost function J; does not directly depend on the amount of electricity
required by the second market. For Jys, (ups,,up,, up,) a similar explanation can be given.
The cost function of the first supplier, i.e. S1, depends on the total amount of electricity
sold, i.e. on ups, and upy,, its own price setting, but not directly on the price setting of the
other supplier. A similar remark explains the arguments of Js, (uns, , uns,, up,)-

In the remainder of this section, we will consider two subsections, one with one supplier
and two markets, and the other one with one market and two suppliers. No realistic cost
functions are envisaged. Because of this, we will talk about leaders rather than suppliers
and about followers rather than markets. Only very limited results are known. for sake
of simplicity, we will confine ourselves to cost functions as introduced above with scalar
decision variables only.

6.3.1 One leader, two followers
The cost functions are symbolically given by

Ity (uaey,up,), I, (Une,, up,), Js, (Un , Ung,, up, ).
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Suppose that the absolute minimum of Jg, is given by uj, ,u},,, u}p . This solution will
be achieved if all three players would help minimize Jg,. The leader will try to obtain this
team solution by enforcing the two followers play in such a way that while minimizing their
own criteria, they simultaneously help the leader obtain his team minimum. Let us suppose
that this is possible with a linear function

up, = Y1(Uny, UM, ) = Qrun + @2t + as.
If possible, the coefficients «; must satisfy (necessary conditions)

* _ * *
Up, = ozluMl—l—ozguMz—i-ozg,

O, (i, v (Why, s Uhy, )
6uMi

= 0,i=12.

Thus we have three equations with three unknowns. In [9] it is shown that this system
of equations may be solvable and that the solution thus obtained satisfies the second order
sufficiency conditions. This approach is directly extendibles to one supplier and many (more
than two) markets.

6.3.2 Two leaders, one follower

The cost functions now have the following dependence

']Ml (uMl’uP17u’P2)7 JSI (uM17u’Pl)7 JSz (uM1auP2)'

One makes the following hypothesis. If the v function of one leader is supposed to be
given, then for the other leader a two person game remains with this leader and the follower
as players. By properly choosing its own ~ function, the latter leader can obtain his team
minimum (i.e. as if all three players helped this particular leader in obtaining his absolute
minimum). This hypothesis is known to generically hold when there are no constraints on
the decision variables.

Now, if the leaders would react alternately to one another, alternately the solution to
the problem would coincide with the absolute minimum of one leader and with the absolute
minimum of the other leader. Obviously this process never converges and a Nash solution
between the two leader does not exist.

If, however, constraints exist on the decision variables, then it is known that generically
the team optimum cannot be obtained by either leader. Examples are known for this sit-
uation [9] in which the Nash equilibrium between the two leaders does now exist with the
surprising property that it coincides with the team minimum of the follower!

7 Conclusion

We have shown in the previous sections that for both criteria, market share and profit
maximization, it is possible to find a Nash equilibrium for a number S of suppliers. It is
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noticeable that for both cases the equilibrium price involved is the same (i.e. p* given by
Equation ([I3) for market share maximization and p* € 7 defined by Equation (£1) for profit
maximization), only the quantities proposed by the suppliers differ.

Nevertheless as already discussed in Remark [, for profit maximization, the equilib-
rium strategies involved are not realistic in the interesting cases (pmax large). This may
suggest that on these unregulated markets where suppliers are interested in instantaneous
profit maximization, an equilibrium never occurs. Prices may becomes arbitrarily high and
anticipation of the market behavior, and particularly market price, basically impossible.

This paper contains some modeling aspects that could be considered in more detail in
future works. A first extension would be to consider more general suppliers. As a matter of
fact, in the current paper, the evaluation functions chosen are more suitable for providers.
Indeed, for profit maximization, we assumed that we had a production cost only for that part
of electricity which is actually sold. This would fit the case where suppliers are producers.
They produce only the electricity sold. The evaluation function chosen does not fit the
case of traders who may have already bought some electricity and try to sell at best price
the maximal electricity they have. The extension of our results in that case should not be
difficult.

We supposed that every supplier perfectly knows the evaluation function of the other
suppliers, and in particular their marginal costs. In general this is not true. Hence some
imperfect information version of the model should probably be investigated.

Also the multiple market case which is definitely important should be investigated in
more details. In particular, the impact of the constraints due to communication lines and
interconnection between markets should be studied. Appreciating to what extend consider-
ing the markets as remote could be a reasonable approximation, would help the analysis in
this domain.
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