N

N

Space-Time Adaptation for Patch-Based Image
Sequence Restoration

Jérome Boulanger, Charles Kervrann, Patrick Bouthemy

» To cite this version:

Jérome Boulanger, Charles Kervrann, Patrick Bouthemy. Space-Time Adaptation for Patch-Based
Image Sequence Restoration. [Research Report] PI 1798, 2006, pp.17. inria-00071294

HAL 1d: inria-00071294
https://inria.hal.science/inria-00071294
Submitted on 23 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://inria.hal.science/inria-00071294
https://hal.archives-ouvertes.fr

ISSN 1166-8687

PUBLICATION

INTERNE
N° 1798

SPACE-TIME ADAPTATION FOR PATCH-BASED IMAGE
SEQUENCE RESTORATION

JEROME BOULANGER , CHARLES KERVRANN AND
PATRICK BOUTHEMY

™ |RISA

CAMPUS UNIVERSITAIRE DE BEAULIEU - 35042 RENNES CEDEX - FRANCE






INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALEATOIRES
» I R I S E Campus de Beaulieu — 35042 Rennes Cedex — France

Tél. : (33) 02 99 84 71 00 — Fax : (33) 02 99 84 71 71
» http:/www.irisa.fr

Space-Time Adaptation for Patch-Based Image
Sequence Restoration

* Kok ok sk
Jérome Boulanger , Charles Kervrann and Patrick Bouthemy

Systemes cognitifs
Projet Vista

Publication interne n ° 1798 — Mai 2006 — 17 pages

Abstract: We present a novel space-time patch-based method for image sequence restora-
tion. We propose an adaptive statistical estimation framework based on the local analysis
of the bias-variance trade-off. At each pixel, the space-time neighborhood is adapted to
improve the performance of the proposed patch-based estimator. The proposed method is
unsupervised and requires no motion estimation. Nevertheless, it can also be combined with
motion estimation to cope with very large displacements due to camera motion. Experi-
ments show that this method is able to drastically improve the quality of highly corrupted
image sequences. Quantitative evaluations on standard artificially noise-corrupted image
sequences demonstrate that our method outperforms other recent competitive methods. We
also report convincing results on real noisy image sequences.
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Une méthode adaptive spatio-temporelle pour la
restauration de séquences d’images video

Résumé : Nous présentons une nouvelle méthode pour la restauration de séquences
d’images exploitant des “patches”. Nous proposons une approche d’estimation adaptative
s’appuyant sur l'analyse locale du compromis biais-variance. Pour chaque pixel, le voisi-
nage spatio-temporel considéré est adapté afin d’améliorer les performances de ’estimateur
proposé. Cette méthode est non-supervisée et ne requiert pas d’estimation du mouve-
ment. Cependant, elle peut aussi étre combinée avec une estimation du mouvement afin
de faire face, par exemple, aux grands déplacements dus aux mouvements de la caméra. Les
expériences montrent que cette méthode est capable d’améliorer significativement la qualité
de séquences d’image fortement bruitées. Des évaluations quantitatives sur des séquences
artificiellement bruitées selon un protocole standard démontrent que notre méthode surpasse
d’autres méthodes récentes. Nous apportons également des résultats convaincants sur des
séquences d’images réelles.

Mots clés : Restauration de séquences d’images, débruitage, estimation non paramétrique,
filtrage non linéaire, compromis biais-variance
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1 Introduction

Image sequence restoration takes a crucial place in several important application domains.
Infra-red imaging, confocal microscopy, ultra-sound and X-ray imaging are known to be
noisy modalities. Restoring old films or videos is also of key importance for cultural her-
itage preservation. Image sequence restoration is then widely studied and still an active
field of research. The main difficulties arise from non-stationarities observed in the spatio-
temporal signals. Denoising or restoration methods must preserve space-time discontinuities
while minimizing the error between the unknown original noise-free image sequence and the
denoised sequence.

A review of image sequence restoration methods can be found in [4]. These methods,
especially designed for image sequences, take into account temporal correlation between
images, and some of them involve a motion compensation/detection stage [7,10,28]. Other
image sequence restoration methods can be exported from the still image denoising domain
(see [6] for a recent review). Thus, wavelet shrinkage [13,24], Wiener filtering [9] or PDE-
based methods [18] have been extended to process image sequences. However, other methods
like Total Variation minimization [25] cannot be easily extended to space-time domain.
Recently an extension of the non-local mean filter [6] also related to the universal denoising
(DUDE) algorithm [21], has been proposed to process image sequences and relies on the
principle that the image sequence contains repeated patterns [5] by averaging. The detection
of repeated patterns can be used to reduce the noise in images. Such an approach is already
popular in texture synthesis [11], inpainting [8], video completion [26] and has also been
explored for image restoration [27]. Nevertheless, searching similar examples in the whole
image sequence is infeasible in practice. Accordingly, a variant of the non-local mean filter
has been recently proposed in [20] and use a pre-classification of the pixels in the sequence
in order to speed up the denoising procedure.

The original method we propose is a space-time patch-based adaptive statistical method
for image sequence restoration. A preliminary version has been described in [3]. It is related
to the statistical framework described for still images [15-17,23] and image sequences [12].
Unlike robust anisotropic diffusion [2] and non-linear Gaussian filtering [1], our approach
supplies scale selection by estimating the appropriate space-time filtering window at each
pixel. Moreover, the proposed method differentiates the space and time dimensions unlike
other methods that consider the image sequence as an isotropic 3D volume [18,24]. As a
matter of fact, a naive approach can introduce motion blur and artifacts if the time dimension
is merged with spatial dimension. In contrast to [12,15], our approach is not based on a
geometrical partition of the neighborhood in sectors. It uses a fixed neighborhood geometry
but involves an appropriate and more flexible weighted sum of data points in an adaptive
neighborhood which is far more flexible and efficient. The weights are defined by computing
a distance between a patch centered at the considered pixel x; and patches taken in an
adapted space-time neighborhood. Additionally, a confidence level (i.e. , estimate variance)
attached to each restored pixel is provided.

The remainder of the paper is organized as follows. Section 2 describes our general
framework for image sequence restoration. In Section 2.2, the adaptive choice of the local
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4 Boulanger, Kervrann & Bouthemy

Current pixel located at x;.

Patch 4, ,,—1 of size 3 x 3 associated to x; (in green).

Space-time neighborhood W; ,, (in blue).

Figure 1: Patch-based space-time framework. To each point of the image sequence is associ-
ated an estimated space-time neighborhood W) ,,. To each point x; of this neighborhood is
associated a 3 x 3 patch. Every weight w;; is defined as a function of the distance between
the patch centered in point x; and the patch centered in point x; € W; .

space-time neighborhood is introduced. Section 2.3 deals with the similarity measure in-
volved in the selection of patches in the space-time neighborhood, and Section 3 gives details
of the algorithm implementation. In Section 4, we report an important set of experimental
results on artificially noise-corrupted video sequences as well as on a real noisy IR image
sequence. Intensive comparison with other recent methods has been carried out, demon-
strating that our method outperforms them. We also present how our denoising method
can be combined with a motion estimation method if required. Finally, Section 5 contains
concluding remarks.

Irisa
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2 Patch-based space-time approach

2.1 Model description

We consider the following statistical image model:
Vi = u(x;) + &, (1)

where x; € Q denotes the pixel location in the space-time volume Q C R3. The function
u; = u(x;) is the ideal image to be recovered from observations Y;. The errors ¢; are assumed
to be independent zero-mean Gaussian variables with unknown variance 72.

We need minimal assumptions on the structure of the image for recovering w. In what
follows, we assume that there exists repeated small image patches of the patch centered at x;
in the space-time neighborhood of pixel x;. However, the size and shape of this neighborhood
will vary in the image sequence because of non-stationarities and presence of discontinuities.
If we can determine the adequate neighborhood for each pixel, then the regression function
u can be estimated by optimizing a local maximum likelihood (ML) criterion. The proposed
method addresses these two issues as described below.

We design a sequence of increasing nested space-time neighborhoods {W;  }nejo: N7, cen-
tered at each point x;, i.e., Wi, C W; ,y1, with N denoting the largest neighborhood.
Additional details about the neighborhood design are given in Section 2.2. As for initializa-
tion, we choose the smallest neighborhood (the 8 nearest neighbors in the 2D space domain)
as the pilot (starting) neighborhood W; o at x;. Then, we compute an initial estimate @;,o
of u(x;) and its associated variance 67, as

o= Y wy¥; and G7o=7 )  w} (2)
x;€Wi 0 x;€Wi 0
where 72 is an empirical estimate of the noise variance 72 as described in Section 3. At
the initialization step, the weights w;; are defined as a function of the distance between two
spatial p x p image patches or space-time p X p X q image patches centered at x; and x;
respectively. There is no real difference for the proposed method between spatial only and
space-time patch since the spatial only patch can be considered as a space-time patch with
the temporal dimension ¢ equal to one.
At the first iteration, we consider a larger space-time neighborhood W;; such that
Wio C W;1 and calculate new estimates ;1 and 61‘2, 1 over W; 1. We continue this way,
and at iteration n, we define the estimator as

. v A2 _ a2 2
Wi = E wi;Y; and 6;, =7 E Wy (3)
x;€EWin x;€EWin

where the estimator 4, , corresponds to a weighted average of the intensities located in the
space-time neighborhood. We propose to define weights w;; as a function of the distance
between two image patches 01; ,—1 and 1 ,,—1 estimated at iteration n — 1 and centered in
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intersection

estimate

Time
intensity

\ —

0 1 2 3 4 5 step

Figure 2: (a) Spatio-temporal neighborhood: colors correspond to iterations plotted in (b);
(b) confidence intervals: circles represent estimates 4, , obtained at each iteration n. The
gray rectangles represent the intersection between the current confidence interval and the
previous one. As long as the estimate belongs to this intersection, the estimation process is
updated.

x; and x; respectively as shown in Figure 1. In the two next sub-sections, we specify the
sequence of neighborhoods {W;,} and we propose a suitable distance to compare image
patches.

2.2 Space-time neighborhood adaptation
2.2.1 Space-time neighborhood geometry

One important contribution of this work is the on-line construction of the space-time neigh-
borhood sequence {W; , }ncjo.n]- First, we consider a simple hyper-cube space-time volume
as neighborhood shape. Also, we separate the space dimensions and the time dimension.
Consequently, space-time neighborhoods are parametrized by their extent in the space do-
main and their extent in the time domain. The use of two distinct extents (one is for the
space dimensions and the other one is for the time dimension) allows us to respect space-
time discontinuities and the image sequence is not considered as an isotropic 3D volume. In
Fig 2(a), the increasing neighborhood sequence is illustrated. At each iteration, the spatial
extent and the temporal extent are alternatively increased until a stopping rule is satisfied.
Then, the growth of the neighborhood is stopped for this direction (e.g., time) and contin-
ues in the other direction (e.g., space) until the stopping rule is again satisfied. The next
paragraph will explicitly define the considered stopping rule.

Irisa
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4
—bias : x*
variance : 1/xP
3t —MSE: (bias2 + variance)“2 i
2 L
1t
00 1 2 3 4

Figure 3: Illustration of the bias-variance trade-off principle. When the size of the neigh-
borhood increases, the bias of the estimator increases while taking into account more and
more intensity sample, the variance decrease. The parameters o and [ are two unknown
constants.

2.2.2 Space-time neighborhood selection

A point-wise rule is used to guide the space-time neighborhood selection process. This
rule aims at selecting the optimal neighborhood at x; and is based on the measure of the
closeness of the estimator u; to the unknown function u; given by the local Ly risk. This
local measure of performance, used to take into account the non-stationarities in the image
sequence, can be decomposed in two terms, that is the squared bias and the variance of the
estimate as follows

E [, —u]> = [bias (@) +62,, (4)

where E[.] denotes the mathematical expectation. In the sequel, we can reasonably assume
that the squared bias is an increasing function of the neighborhood size and the variance is
a decreasing function of the neighborhood size [15,16,19,23]. Figure 3 illustrates the bias-
variance trade-off principle. Then, the optimal neighborhood will be the one that achieves
an optimal compromise between these two terms. A closed-form optimal solution for the
ideal neighborhood is not available for such a non-linear estimator. However, we can assume
that the optimal neighborhood W, is the one for which the squared bias and the variance
are nearly the same [19]: E [u], — ;] ? ~ 2077,

A practical rule corresponding to the optimal compromise and based on a pairwise com-
parison of successive estimates, can be derived to select the optimal neighborhood [16].

It amounts to define the largest neighborhood satisfying the point-wise statistical rule

PIn®1798
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16,19, 23]
|ai,n - ai,n/| <" &i,n’a \V/Tl/ <mn, (5)

as the optimal neighborhood. This rule can be interpreted as follows. While the successive
estimates 1; ,, are sufficiently close to each other, we continue the estimation process. More
specifically, the estimation process is continued, while new estimates belong to the inter-
section of previously estimated confidence intervals [, — 104 n, Ui + 16:n] (see Fig. 2).
Besides, let us point out that we do not need to store all the previous estimates {t; n' }n/<n
but only the current intersection of confidence intervals, the last estimate and its variance
for each pixel. Finally, the factor n can be easily chosen in the range [2, 4] as justified with
statistical arguments in [15,16,23].

2.3 Similarity measure for patch selection

In contrast to geometry-based approaches [12,15], we use weights that allow us to select
the correct data points in the neighborhood for averaging. This selection is based on the
similarity between a given spatial p X p or a space-time p X p X ¢ image patch at x; and p X p
(or a p x p x ¢) image patches at x; belonging to the space-time neighborhood W; ,,. Such
patches are able to capture texels and local geometry in images. The Lo distance is widely
used for similarity measure between image patches. However, in order to take into account
the local variance of the estimator, we introduce the following symmetric distance between
image patches 0; ,—1 and 0;,—1:

1

Ay = B [(ﬁi,n—l — ﬁj,n—l)T Ai)_nl,l(ﬁi,n—l —Wp—1)+ (W1 — ﬁj,n—l)TVj,_nl,l(ﬁi,n—l —Ujn-1)

(6)
where the two vectors 0; ,—1 and ,—1 denote the spatial p x p (or space-time p X p X q)
image patches respectively centered at x; and x;. The two matrices Vi ,,_1 and Vj,,_; are
diagonal with the diagonal elements equal to 61.2) , and 612'771 respectively. We decide that the
two vectors 0; ,—1 and 0;,—1 are similar with a probability of false alarm 1 — o, under the
hypothesis that they are Gaussian distributed, using a classical x? test with p? degrees of
freedom. In other words, if A;; /A < 1, with X chosen as a quantile of a X12)2717a distribution,
we can decide that the two patches are similar. In our experiments, we use a confidence
level of 99% and set « to 0.01 .
The distance A;; is transformed into a similarity measure using the exponential kernel.
We compute the similarity measure for all the points of the neighborhood and normalize it
to obtain the following expression for the weights:

_Aij
e~ 2x
Wij = ———=a; (7)
g e 2x
XjGWLn

If the distance A;; between two patches is large then the weight w;; associated to pixel x;
is small and the pixel will not participate in the estimation at point x;. Consequently, this

Irisa
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weighting provides an efficient and flexible way to retain the appropriate pixels contributing
to the estimation of u; in the adaptive space-time neighborhood while effectively preserving
space-time discontinuities. Let us note that the process is entirely data-driven and does not
require any particular geometry adapted to image contents as proposed in [12].

2.4 Motion compensation

The motion of the image sequence can be taken into account in order to apply the proposed
method along the direction of the motion. However, dense motion estimation is known to
be a difficult task in noisy contexts [5]. Then, we propose to robustly estimate a global
parametric motion model only, which is able to capture the dominant image motion due to
the camera movement. This is achieved using the multi-resolution robust method described
in [22]. A similar exploitation of a parametric motion compensation was proposed in [9] and
associated with a 3D Wiener filtering technique.

Once the dominant motion has been estimated, the filtering along the motion direction
can be considered in three ways. A naive one would be to warp all the frames in the referential
of the first frame. Because of the accumulation of errors and because of interpolations, it
turns out that such a scheme does not improve the performance of the denoising process.
The second way is to compensate the motion into the space-time neighborhood by warping
the frames into the referential of the current frame, but it also involves interpolations. Then,
we propose to avoid interpolation by adapting the shape of the space-time neighborhood
according to the estimated dominant motion. This is achieved by translating the patch at
point x; = (z;,y;,t;) with displacement given by the estimated parametric motion model at
the center (z;,y;,t;) of the neighborhood W ,,. Moreover, when using p X p x ¢ space-time
image patches, the motion have also to be compensated into the patch. Experiments show
that this third way is able to improve the performance of the proposed method.

3 Algorithm implementation

At the initialization, the noise variance 72 has first to be estimated. It can be robustly
estimated by calculating pseudo-residuals ¢; as described in [14]. We consider four spatial
neighbors and two spatial ones, and pseudo-residuals are compactly represented by ¢; =
(8Y; — AY;) /\/42 where AY; is the discrete Laplacian of Y; at x; (See Eq. (1)) and the
constant /42 is introduced to ensure that E[s?] = 72. Given the residuals ¢;, the noise
variance 72 can then be robustly estimated as:

T = 1.4826 med; (| &; — med; |¢;] |) (8)

Let us recall that parameter \ is set to the 0.99 quantile of the Xfyg_o.gg distribution with

a size of patch p chosen within {3,5,7,9}. The last parameter 7 is set to 21/2 to ensure a
good accuracy of the estimation [16,19,23]. During the estimation, spatial and temporal
extents of the space-time neighborhoods are alternatively increased (see Section 2.2).

PIn®1798
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Figure 4: Performance of our denoising method for several noise levels and for several patch
sizes including a no-patch version (pixel-wise). The PSNR is used to measure the overall
performance of the filtering and the test sequence is Akyio (176 x 144 x 300). This sequence
mainly exhibits low motion. Experiments show that the introduction of patches improves
the PSNR of at least 2dB. We can also point out that the results for patches 7 x 7 and
9 x 9 are similar.

Furthermore, the algorithm can be easily parallelized. Indeed, the estimation steps
use only local information and thus we have distributed the computation load over eight
CPUs dividing the computation time by eight. Finally, another possibility to speed up the
algorithm is to use a dyadic scheme when increasing the extent of the neighborhood. The
proposed method is very simple to implement and does not require the fine adjustment of
parameters A and 1 which control the estimation process.

4 Experimental results
In this section, a large set of experiments are reported to validate our patch-based space-
time adaptive estimation method. We first consider real image sequences with artificially

added Gaussian white noise. Using this usual protocol, we compare our method to other
recent methods for denoising image sequences. For an objective performance evaluation, we

Irisa
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consider the global measure given by the Peak-Signal-to-Noise-Ratio defined as PSNR =
201og,((255/mse) (mse denotes the mean squared error between the original noise-free
image sequence and the denoised image sequence). The visual quality of the image sequence
is also taken into account. We then discuss the usefulness of motion compensation and
we comment the respective performance of 2D spatial patches and 3D space-time patches.
Finally, the proposed method is applied to a real noisy Infra-Red image sequence.

Performance assessment We first report experiments to evaluate the influence of the
noise level and the spatial patch size on the overall method performance. Figure 4 plots
PSNR values obtained for eight noise levels and five patch sizes. First, we can note that
the patch-based method performance is smoothly affected with the increase of the noise level.
The improvement gained by introducing patches (to be compared to no-patch version) is
clearly demonstrated. As it could be expected, it is useless to consider too large patches.
When the size of the patch increases, the PSN R increases too, however, results for sizes
7x 7 and 9 x 9 are quite similar while the computation time is proportional to the number
of pixels in the patch.

The well known sequence “Flower garden” is shown on Fig. 5 to illustrate the visual
quality of the denoised image sequence in very noisy conditions. In order to give insights
into the spatio-temporal behavior of the denoising method, we have displayed XT slices of
the image sequence. The reported results demonstrate that our method can cope with the
presence of motion while preserving temporal discontinuities and reaches a PSN R of 23.59
using 7 x 7 patches and 6 iterations. By applying our own implementation of the non-local
mean algorithm [5] on the “Flower garden” sequence using a 7 x 7 patch in a 21 x 21 x 3
neighborhood and choosing a bandwidth equal to h = 12 x 72, we get a PSNR equal to
21.14dB only.

Comparison with other recent methods We have compared our method with four
other recent methods: a combination of a spatial Wiener filter with a motion-compensated
temporal Kalman filter [10], a space-time non linear adaptive K-NN filter [28], a 3D wavelet-
based method [24] and a 3D point-wise adaptive estimate using different neighborhood
geometries [12]. For these experiments, the motion-compensation stage is not applied.

Eight test sequences corrupted with noise of different levels are used. For a fair evalu-
ation, we have considered the results supplied by the authors themselves in the referenced
papers. Therefore, we cannot provide the PSN R measures for all the test sequences and
Table 1 contains all the available results. Our method clearly outperforms all the other meth-
ods since it supplies the best PSN R results for all the tested sequences, sometimes with a
quite significative improvement (up to 4dB). Let us also stress that the implementation of
our method is straightforward and our method involves no parameter tuning.

Motion compensation In this section, we aim at evaluating the impact of a motion
compensation stage on the performance of our method. We have applied this version to
the “Awvenger” sequence which contains two moving cars tracked by the camera mounted
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Sequence name Size PSNR | (a) | (b) (c) (d) (e)
Akiyo 176 x 144 x 300 22 - - - 33.86 | 34.31
Salesman 176 x 144 x 449 28 344 | 32.5 - - 35.13
24 31.1 - - 32.60
Garden 352 x 240 x 115 28 - 28.2 - - 31.33
Miss America 176 x 144 x 108 28 - 35.3 - - 39.39
Miss America 128 x 128 x 128 7 - - 26.36 - 26.69
12 - - 28.16 - 29.63
17 - - 30.46 - 32.05
22 - - 32.66 - 34.20
Suzie 176 x 144 x 150 28 34.8 - - - 37.07
24 32.0 - - - 35.11
Trevor 176 x 144 x 90 28 33.9 | 34.1 - - 36.68
24 31.3 - - - 34.79
Foreman 176 x 144 x 300 28 33.9 - - - 34.94
24 31.1 - - - 32.90

Table 1: PSNR results for eight test sequences and five denoising methods. (a) Join Kalman
and Wiener denoising with motion compensation using dense motion field [10], (b) Adap-
tive K-NN space-time filter [28],(c)Wavelet-based method for image sequence denoising:
TIWP3D [24], (d) 3D non-parametric regression approach [12], (e) the proposed adaptive
method with 7 x 7 patches and 6 iterations without motion compensation. Numerical results
for the other methods are taken from the related publications. The symbol — means that
results were not provided by the authors for the corresponding test sequence.

in an helicopter. Fig. 6(a) and (b) respectively contain one image of the original image
sequence and of the noisy image sequence with an additive Gaussian white noise of standard
deviation 7 = 20. Fig. 6(c) displays the result of the version of our method without motion-
compensated while Fig. 6(e) shows the improvement supplied by the motion-compensation
stage. The PSN R difference between the two image sequence is about 1dB and the visual
quality is also improved. We can then conclude that, when the global motion the image
sequence is well described by a 2D parametric model, the proposed motion compensation
scheme improves the quality of the denoising process. A quadratic motion model was used.
Let us add that the motion of the two cars is not handled by the dominant motion model.
However, since our method involves a data-driven adaptation scheme, the neighborhoods for
the pixels belonging to these two cars essentially reduce to 2D spatial ones.

Space-time patches Fig. 6(d) shows one image of the “Avenger” sequence denoised using
the proposed method with space-time 3 x 3 x 3 patches. It can be compared to the result
obtained with spatial 5 x 5 patches and shown in Fig. 6(c). In the two cases, the number
of intensity values used to compute the similarity measure (see Eq. 7) is approximatively

Irisa
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A

Figure 5: Sequence “Flower garden”. (a) one image of the original sequence, (b) the same
image of the noisy sequence with an additive Gaussian white noise of standard deviation
7 =30 ( PSNR = 18.58dB ) and (c) the corresponding image of the denoised sequence,
PSNR = 23.59dB. (d), (e) and (f) represent corresponding X7 slices in the space-time
domain. The camera motion appear as lines in the X7 slices.

the same. The PSNR difference is negligible. Nevertheless, the use of space-time patches
increases the temporal stability of the reconstructed structures along the image sequence
which is an important point for the visual quality.

Experiment on a real image sequence Fig. 7 reports an experiment on a real infra-red
sequence which is naturally noisy. It is taken from a plane approaching an harbor with boats
and a moving vehicle on the pier. The noise standard deviation is estimated to 7.3. The
contrast of some structures on the ground is very low and the sequence is shaking due to the
plane vibrations. We use once again a quadratic motion model to estimate the dominant
motion. Let us recall that this model is exact in the case of a rigid motion and a planar scene.
The proposed method (Fig. 7c.) can be favorably compared to our own implementation of
the non-local means algorithm (Fig. 7b.) [5]. The details of the images like the small vehicle
are better restored while the noise has been well removed. Finally, temporal discontinuities
of the sequence due to the vibrations are also preserved.

5 Conclusion

We have described a novel and efficient unsupervised method for denoising image sequences.
The proposed method is based upon an adaptive estimation statistical framework. It can
specify, in a simple data-driven way, the most appropriate space-time neighborhood and
associate weights to select the data points involved in the intensity estimation process at
each pixel. Moreover, it involves a patch-based approach extended to the space-time domain.

PIn®1798



14 Boulanger, Kervrann & Bouthemy

(b) PSNR = 22dB

(d) PSNR = 31.47dB (e) PSNR = 32.50dB (f) PSNR = 32.40dB

Figure 6: Sequence “Avenger”. (a) 384 x 288 x 12 original sequence (b) noisy sequence
with an additive Gaussian white noise of standard deviation 7 = 20, denoised sequence
with the proposed method using : (¢) 5 x 5 patches and no motion compensation stage (5
min), (d) 3 x 3 x 3 patches and no motion compensation stage (6 min), (e) 5 x 5 patches
with the motion compensation stage using a quadratic motion model (9 min), (d) 3 x 3 x 3
patches with the motion compensation stage using a quadratic motion model (20 min). The
computation time is indicated for a Linux PC with 8 x 3Ghz CPU.

All the parameters of the algorithm are well calibrated and our method does not require
any fine parameter tuning. Quite satisfactory results have been obtained on several image
sequences. Furthermore, it was experimentally demonstrated that our method outperforms
other recent methods. The visual quality improvement of the denoised image sequences is
noticeable since noise is well smoothed out while spatial and temporal discontinuities are well
preserved. Finally, some improvements are proposed to incorporate a motion-compensation
stage improving the performance of the proposed method.
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