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Abstract: We establish the following max-plus analogue of Minkowski’s theorem. Any
point of a compact max-plus convex subset of (RU{—o00})™ can be written as the max-plus
convex combination of at most n + 1 of the extreme points of this subset. We establish
related results for closed max-plus convex cones and closed unbounded max-plus convex
sets. In particular, we show that a closed max-plus convex set can be decomposed as a
max-plus sum of its recession cone and of the max-plus convex hull of its extreme points.
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convex cones, convex sets, abstract convexity, Krein-Milman theorem, Carathéodory theo-
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Théoréme de Minkowski pour les ensembles convexes max-plus

Résumé : Nous établissons I’analogue max-plus suivant du théoréme de Minkowski. Tout
point d’un sous-ensemble convexe compact de (RU{—o00})™ peut s’écrire comme barycentre
d’au plus n+1 points extrémes de ce sous-ensemble. Nous établissons des résultats similaires
pour les cones convexes max-plus fermés et pour les convexes max-plus fermés non bornés.
Nous montrons en particulier qu’un sous-ensemble convexe max-plus fermé de (RU {—oo})”
peut se décomposer comme somme de son cone de récession et de ’enveloppe convexe de ses
points extrémes.

Mots-clés : Algébre max-plus, algébre tropicale, points extrémes, polyédres, polytopes,
cones convexes, ensembles convexes, convexité abstraite, théoréme de Krein-Milman, théo-
réme de Carathéodory



The Minkowski Theorem for Maz-plus Convex Sets 3

1. INTRODUCTION

The maz-plus segment joining two points u,v € (R U {—o0})™ is the set of vectors of the
form (a+u)V (84 v) where « and (3 are elements of RU {—oo} such that oV 3 = 0. Here,
V denotes the maximum of scalars, or the pointwise maximum of vectors, and for all scalars
a € RU{—o0} and vectors u € (RU{—00})", a + u denotes the vector with entries o + u;.

A subset of (RU{—00})™ is maz-plus convez if it contains any max-plus segment joining
two of its points. The maz-plus convex cone generated by u, v is the set of vectors of the form
(a+u)V(B+v), where a and (3 are arbitrary elements of RU{—o00}. A subset of (RU{—o0})"
is a maz-plus conver cone if it contains any max-plus convex cone generated by two of its
points. These definitions are natural if one considers the max-plus semiring, which is the set
R U {—o0} equipped with the addition (a,b) — a V b and the multiplication (a,b) — a + b.
Max-plus convex cones are also called semimodules over the max-plus semiring. An example
of max-plus convex set is given in Figure [l the convex set A is the closed grey region,
together with the portion of vertical line joining the point b to it. Three max-plus segments
in general position, joining the pairs of points (f, g), (h, ), and (4, k), are represented in bold.
By comparing the shapes of these segments with the shape of A, one can check geometrically
that A is convex.

In this paper we give representation theorems, in terms of extreme points and extreme
rays, for max-plus convex sets and cones.

Motivations to study the max-plus analogues of convex cones and convex sets arise from
several fields, let us review some of these motivations.

Max-plus convex sets were introduced by K. Zimmermann [Zim77|. Convexity is a pow-
erful tool in optimization, and so, max-plus convex sets arose in the quest of solvable op-
timization problems [Zim&84l [Zim03]. See also the book of U. Zimmermann [Zim&1] for an
overview.

Max-plus convex cones have been studied in idempotent analysis, after the observation
due to Maslov that the solutions of an Hamilton-Jacobi equation associated with a de-
terministic optimal control problem satisfy a “max-plus” superposition principle, and so,
belong to structures similar to convex cones, which are called semimodules or idempotent
linear spaces [LMSO1L [CGQO04]. Such structures have been used, for instance, to characterize
the sets of stationary solutions of deterministic optimal control problems [AGW05], and to
design numerical algorithms [EMO0, [AGL06|, to mention a recent application.

Max-plus convex cones have also been studied in relation to discrete event systems. The
reader may consult the survey papers [GP97, [CGQ99] for more background. In particu-
lar, reachable and observable spaces of certain timed discrete event systems are naturally
equipped with structures of max-plus polyhedral cones [Kat05]. Earlier discrete event sys-
tems motivations have been at the origin of the works [CGQ96, [CGQ97, [Gan98|, in which
the theory of max-plus polyhedral cones has been developed.

Of course, another interest in max-plus convexity stems from abstract convex analy-
sis [Sin97]. Several recent papers in this field, in particular those of Martinez-Legaz, Rubi-
nov, and Singer [MLLRS02|, and Akian and Singer [AS0O3|, are related to max-plus algebra.

RR n° 5907



4 Stéphane Gaubert , Ricardo Katz

A renewed interest in max-plus convex cones, or “tropical convex sets”, and specially, in
tropical polyhedra, has recently arisen in relation to tropical geometry (in this context, “trop-
ical” is essentially used as a synonym of “max-plus”, or rather, of the dual term, “min-plus”).
Tropical analogues of polytopes have been considered by Develin and Sturmfels [DS04], and
also by Joswig [Los05] (the tropical polytopes they consider are special finitely generated
max-plus convex cones, in which the generators have finite entries). Develin and Sturm-
fels have also pointed out an elegant relation between tropical polytopes and phylogenetic
analysis [DS04].

Some of these motivations have guided the development of max-plus analogues of classical
results of convex analysis, like the Hahn-Banach theorem [Zim77, [SS92, [CGQ04, [CGQS05].

We are interested here in the representation of convex sets in terms of extreme points or
extreme rays. This problem, in the case of finitely generated max-plus convex cones, has
been considered by several authors [Mol88, [Wag91l [(Gan98, [DS04, [CGB0O4]. The general case
has been less studied, with the exception of the paper [Hel&8]|, in which Helbig established a
max-plus analogue of Krein-Milman’s theorem, showing that a non-empty compact convex
subset of (R U {—o00})™ is the closure of the convex hull of its set of extreme points, in the
max-plus sense.

For conventional convex sets of finite dimension, however, a more precise result is true:
the closure operator can be dispensed with, since a classical theorem of Minkowski shows
that a non-empty compact convex subset of a finite dimensional space is the convex hull
of its set of extreme points. One may ask whether the same is true for max-plus convex
sets. We show that the answer is positive, and establish a max-plus analogue of Minkowski’s
theorem.

Note that the classical proof of Minkowski’s theorem cannot be transposed to the max-
plus case. The classical approach exploits the facial structure of convex sets. Recall that
a face of a convex set is by definition the intersection of the convex set with a supporting
hyperplane. For a conventional convex set, one can show that the extreme points of the
faces are extreme points of the set, and use this observation to prove Minkowski’s theorem,
by induction on the dimension of the convex set. This does not work in the max-plus case,
because an extreme point of a face may not be an extreme point of the set, as shown in
Example below. Hence, it does not seem possible to use Helbig’s approach to derive the
results of the present paper.

In fact, we give a direct proof of a Minkowski type theorem for max-plus convex cones
(Theorem Bl), from which we deduce the max-plus Minkowski theorem (Theorem B2), and
its generalization to the case of unbounded convex sets (Theorem B3)). Finally, we deduce
as a special case a slightly more precise version of the “basis theorem” of Moller [Mol88] and
Wagneur [Wag91] for finitely generated max-plus convex cones, Corollary B4l

Finally, we note that the main results of the present paper, Theorems BIHZ3 have been
announced (without proof) in the survey paper [GK06].

INRIA



The Minkowski Theorem for Maz-plus Convex Sets 5
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FIGURE 1. An unbounded max-plus convex set and three segments in gen-
eral position contained in it.

2. PRELIMINARIES

In this section, we give basic definitions and establish some elementary lemmas. To bring
to light the analogy with classical convex analysis, we shall use the following notation. We
denote by Ry,.x the max-plus semiring. We denote by a ® b := a V b the max-plus addition,
and by ab := a + b the max-plus multiplication. We set 0 := —oo, 1 := 0. The set of vectors
of size n over Ry, is denoted by R?,... A vector consisting only of 0 entries is denoted by 0.
By scalar, we mean an element of Ryx. If u,v € R} and A € Ryax, we set ud v :=u Vo,
and we denote by A\u the vector with entries A\ 4+ u;. Max-plus convex sets and cones have
been defined in the introduction. In the sequel, for brevity, the term “convex” used without
precisions shall always be understood in the max-plus sense. By “cone”, we shall always
mean a (max-plus) convex cone.
Definition 2.1. Let A be a subset of R}, ..

The convex hull of A, denoted by co (A), is the set of all (finite) convex combinations of
elements of A. These can be written as ®rexaru”, where K is a finite set, {u s a
family of elements of A and {ay} . are scalars that satisfy Srexoar = 1.

The cone generated by A, denoted by cone (A), is the set of all (finite) linear combinations
of elements of A. These can be written as ®rexaru”, where K is a finite set, {u 18
a family of elements of A and {oy}, o are scalars.

The recession cone of A at a point v € A is defined by:

k}kGK

k}keK

rec,(A) :={ueR}, | v@AIu€ A for all A € Ruax} -

max

Ezxample 2.2. The recession cone of the convex set A of Figure [l at any point v € A is
rec,(A) = cone ({(0,1),(2,0)}). It is shown on the right hand side of Figure B below.

RR n° 5907



6 Stéphane Gaubert , Ricardo Katz

We equip Rp,.x with the usual topology, which can defined by the metric: (z,y) —
le* — e¥|. The set R” . is equipped with the product topology. We denote by clo (A) the
closure of a subset A of R} ..

The following lemmas give some properties of recession cones.

Lemma 2.3. Let A be a closed subset of R} ... Then the recession cone of A at v is closed
for allv € A.

Proof. Let v € A. For all A € Ry,ax, define the map ¢y : RZ,. — R .. by ¢a(u) =v @ Au.
Since ¢, is continuous, rec,(A) = Nier,... ¢  (A) is an intersection of closed sets, and so,
it is closed. O

Lemma 2.4. Let A be a convex subset of R and v,w € A. If fv < w for some § # 0,
then rec ,(A) C rec,(A).

Proof. Let u € rec,(A). We assume, without loss of generality, that 5 < 1. Then, for all
A € Ruax,

wOMN=wdFvE LB A=wdBLds i) c A
since v ® 37! \u € A and since A is convex. It follows that u € rec,(A). O

n
max*

Proposition-Definition 2.5. Let A be a closed conver subset of R Then the recession

cone of A at v is independent of v € A. We denote it by rec (A).

Proof. Given x € R7,__, we define the support of x to be the set

suppr :={1<i<n| z #0} .

Observe first that if u,v € A, then u ® v € A and the support of u @ v is the union of the
supports of u and v. It follows that there is an element w € A with maximum support,
meaning that supp v C suppw for all v € A. Hence for every v € A there exists A, # 0 such
that A\,v < w. Therefore, by Lemma 4] it suffices to show that rec,,(A4) C rec,(A) for
every v € A.

Let {f:},cn C Rmax be a sequence such that lim, ... 6, = 0 and 0 < 3, < 1 for all
r € N. If u € rec,(A) and A € Ry ax, then

v® M= lim (v® B (w S B )

is a limit of elements of A because w @ 3, !\u € A for all 7 € N. Since A is closed, it follows
that v ® Au € A. Therefore, u € rec,(A), and so, rec,,(A) C rec,(A) for all v € A. O

Remark 2.6. The closure assumption in the previous proposition cannot be dispensed with.
Consider A = ([0,1] x {0}) UR? = {(21,0) | z; <1} UR? C R2, . Then,
rec (1,0) (A) = {(ul, UQ) S anax | Uu2 # (D} U {((D,@)} and rec (1)1)(14) = ernax .
The following max-plus analogue of the notion of extreme point was already used by
Helbig [HelRS].

INRIA



The Minkowski Theorem for Maz-plus Convex Sets 7

Definition 2.7 (Extreme point). Let A be a convex subset of RZ. . An element x € A is

an extreme point of A if for all y,z € A and «a, 3 € Ry such that a® [ = 1, the following
property is satisfied

(1) r=ay® Pz = r=yorzr ==z
The set of extreme points of A will be denoted by ext (A).

Thus, a point of A is extreme if it cannot belong to a segment of A unless it is an end of
this segment. We warn the reader that due to the idempotency of addition, the property (),
with a« @ 6 =1 and «, 8 # 0 is not equivalent to

r=ay® Pz = r=yand x = z.

Remark 2.8. If x € A is an extreme point of A, then x = ay @ Bz, with a @ 3 = 1 and
Y,z € A, implies:

(x=y,a=1)or (x=20=1).
Indeed, assume that x = y but @ < 1. Then, § = 1. Assume by contradiction that x # z.
Then, we have x; > z;, for some 1 < i <n, and so, z; = ay; ® z; = ax; D z; < x;, which is
nonsense.

When C' C R}, is a cone, it is clear that its only extreme point is 0. In this case, the

relevant notion is that of extreme generator.

Definition 2.9 (Extreme generator). Let C C R be a cone. An element x € C is an

extreme generator of C' if the following property is satisfied
r=ydz yz€C = rz=yorzx=z.

If x is an extreme generator of C, then the set Ryax® = {\x | X € Ryax} @S an extreme ray
of C. The set of extreme generators of C will be denoted by ext-g (C).

Extreme generators are called join irreducible elements in lattice theory.

Remark 2.10. It can be readily checked that every element of an extreme ray of C' is an
extreme generator of C.

Ezample 2.11. Let us consider the closed convex set A C R2 _ shown in Figure[l Tt can
be easily seen that its extreme points are a = (5,2), b = (4,0), ¢ = (3,2), d = (1,3) and
e = (2,5). The extreme rays of rec (A) are Ry,.x(0,1) and Ry,.x(2,0) (see the right hand

side of Figure [).

The following construction will allow us to derive results for convex sets as consequences
of results for cones.

Lemma 2.12. Let A be a convexr subset of RY, Then, the set

Ca={Az,\)| 2 € AN E Ry} CREEL

max

1S a cone.

RR n° 5907



8 Stéphane Gaubert , Ricardo Katz

Proof. Let 3 € Ryax and (A2, A1), (M22?, X2) € Oy, with 21,22 € A and A1, A2 € Ryax.
Assume, without loss of generality, that A := A\; @ Ay # 0. Since A is convex, A\~ }(\2! @
A22?) € A, and so,

Azt M) @ (Aex?, Xo) = AN Tzt @ Aaz?), \) € Ca.
Moreover, C4 is obviously preserved by the multiplication by a scalar. 0

Lemma 2.13. If A C R},
for cones.

« 45 a convex set then clo (A) is a convex set. The same is true

Proof. This follows from the continuity of the functions (z,y) — z @y and (\,z) — Az. O

We next establish some properties of the cone C4.

Proposition 2.14. If A C R} .. is a closed convex set, then

clo(Cy) = Cy U (rec(A) x {0}).

Proof. Let (y,a) € clo(Ca).

Assume first that o # 0. Since (y, «) € clo(Ca), there exists a sequence {(A.2", A)}, o C
Ca such that lim, o (A2",\) = (y,«). Then, as lim, oo A = a # 0 and A is closed,
we know that x = lim, ..o 2" = lim, oo A7 1A\.2" = a~ 'y belongs to A. Therefore,
(y, &) = limy oo (Arz", Ar) = (az, ) € Ca.

Assume now that o = 0. Let € A and 8 € Ryax- To prove that (y,a) € (rec (4) x {0})
it suffices to show that z @ 8y € A. As x € A we know that (x,1) € C4. Using the fact that
clo(Cy) is a cone (by Lemmas EZTA and ZT3), it follows that (z @ By, 1) = (x,1) ® S(y,0) €
clo(C4). Then, there exists a sequence {(\,.z", A\;)}, oy € Ca such that lim, o (A2, A) =
(x @ By,1). Therefore,

@ Py = Tlinolo Arz’ = (TILH;O /\T)(Tlirgo ") = Tlirrolo 2" €clo(A) = A.

Thus, clo(C4) C C4 U (rec (4) x {0}).

Obviously C4 C clo(C4). Let now (y,0) € rec(A) x {0}. Take any x € A. We
know that 2 @ Ay € A for all A € Rpax. Then, if {)\.}, .y C Ruax is a sequence such
that lim, . A\t = 0, it follows that (y,0) = lim, oo (A1 (x & A\y), A1) and therefore
(y,0) € clo(Cy) since (A (z @ A\y), A\ 1) € C4 for all r € N.

YO

Thus, C4 U (rec (4) x {0}) C clo(Ca). O

Corollary 2.15. If A C R”, is a compact convez set, then Cy C R™I1 is a closed cone.

X max

Proof. If A is a compact subset of R”,, ., it must be bounded from above, and so rec (A)

{0}. By Proposition ZT4 clo (C4) = C4 U {0} = C4y, and so, C4 is closed. O

Lemma 2.16. Let A be a closed conver subset of RY, Then,

max -’

ext-g (clo (C4)) N (rec (A) x {0}) = ext-g (rec (A)) x {0}.

INRIA



The Minkowski Theorem for Maz-plus Convex Sets 9

Proof. Let (z,0) € ext-g(clo(C4)) N (rec(A) x {0}). Then, in particular, x € rec(A).
Assume that * = y @ 2, with y,z € rec(4). As clo(Cs) = Cs U (rec(A) x {0}) by
Proposition T4, we know that (y,0),(2,0) € clo(Ca). Then z = y or z = z, since
(,0) = (y,0) @ (2,0) and (z,0) € ext-g(clo(Cy4)). Therefore, z € ext-g(rec(A)) and
(x,0) € ext-g (rec (A4)) x {0}.

Let now (z,0) € ext-g(rec (A)) x {0}. Then, obviously (z,0) € rec(A) x {0}. Assume
that (z,0) = (z',\1) @ (22, \2), with (2, \1), (2%, X2) € clo(C4). Then, x = z! @ 2?
and A\ = Ay = 0. Therefore, as clo(C4) = C4 U (rec(A) x {0}) by Proposition T4, it
follows that x',2% € rec(A). Finally, z = 2! or # = 22 since z € ext-g(rec(A4)). Thus,
(x,0) € ext-g (clo (Ca)). O

Lemma 2.17. Let A be a convexr subset of R”, Then,

ext-g (clo (C4)) NCy C ext-g (Ca).

max*

Proof. Obvious since C4 C clo(Cjy). O
The following proposition relates extreme points and extreme rays.

Proposition 2.18. Let C C R}, be a cone, let v # 0 and let ¢ : R}, — Runax be a
maz-plus linear form, meaning that (x) = @?:1(1 x; for some a € R, . Assume that
¥(x) # 0 for all x € C'\ {0}, and define the conver set:

Si={zeC| p@) =1} .
Then,
ext (X) =ext-g(C)NX .
Proof. Let z,y € ¥ and «, 8 € Ryax be such that o @ 8 = 1. Then, as

Y(ar @ By) = ap(z) © BY(y) =va @B =v(a®B) =~

and obviously ax @ By € C, it follows that ax @ Sy € X. Therefore, ¥ is convex.

Let z € ext (¥). Assume that © = y @ z, for some y,z € C'\ {0}. Then, ¢(y) = v or
P(z) = v since y = 111( )= w( ) & 1(z). Suppose, without loss of generality, that ¥(y) = 7.
As =y @ Y(2)y 1yp(2) Lz, where clearly y1(z) 12 € ¥ and ¥(2)y~! < 1, we know that

r=yorxz=n"yp(z)" 2z

Since = # y implies 1)(z)y~! = 1 (see Remark Z8), it follows that 2 = y or # = 2. Then,
x € ext-g (C) N X.

Let now « € ext-g(C) N Y. Suppose that z = ay & Bz, with y,z € ¥ and a® 8 = 1.
Since x € ext-g(C), we know that x = ay or x = (2. Assume, without loss of generality,
that © = ay. Then, v = ¥(z) = ¥(ay) = ary implies that « = 1, and so © = y . Therefore,
x € ext (X). O

Note that the condition of the previous proposition is satisfied, in particular, when ¢ (x) =
@7 qa;x; for some a € R™.

RR n° 5907



10 Stéphane Gaubert , Ricardo Katz

Corollary 2.19. Let A be a conver subset of RI Then,

ext-g (Ca) N (A x {1}) = ext (A) x {1}.
Proof. Consider the max-plus linear form 1) on R™}! defined by (2, \) = ), for all z € R",

max max

and A\ € Ry, take v := 1, and apply Proposition to the cone Cy C Rl We

deduce that ext-g (C4) N Y = ext (X), where ¥ := {(zA\,\) € C4 | A=1} = A x {1}. Since
ext (A x {1}) = ext (A) x {1}, the corollary is proved. O

Let us recall that a cone C C R} .
A C R2,. such that C = cone (A).

max

is finitely generated if there exists a finite subset

n

Lemma 2.20. A finitely generated cone of R s closed.

Proof. Let A= {u',...,u™} and C = cone (A). We assume, without loss of generality, that
uf # 0 for all 1 < k < m. Let ¢(z) := P, ,,, a;z; denote a linear form, such that a; > 0
for all 1 < i < n. Then, ¢(u") # 0, for all 1 < k < m. Let {a" =@ A\ju*} _ bea
sequence of elements of C' such that lim, .. 2" = z for some z € R} .

Since A;9(u*) < 9(z"), and since ¥(uF) # 0, A; is bounded as r tends to infinity.
Hence, we can assume, without loss of generality, that there exists \y € Rp.x such that

lim, o0 A, = g for all k =1,...,m (taking subsequences if necessary). Then,
lim 2" = lim (@)\Zuk) = @)\kuk eC.
T—00 T—00 k:1 k:1
Therefore, C' is closed. O

3. REPRESENTATION OF MAX-PLUS CONVEX SETS IN TERMS OF EXTREME POINTS AND
EXTREME GENERATORS

Now we prove the main results of this paper.

Theorem 3.1. Let C' C R}, be a non-empty closed cone. Then, every element of C is the

sum of at most n extreme generators of C, and so,
C = cone (ext-g (C)).
Proof. Let « € C. For each i € {1,...,n} define the set
Si={uelClu<z,uy=z}=CN{ueR], | u<z,u =ux}.

As {ueR? | u<z,u; =x;} is compact and C' is closed, we know that S; is a compact
subset of R?_ which is non-empty because = € S;. Therefore, S; has a minimal element u’.

We claim that u® is an extreme generator of C'. Assume that u’ = y® z for some y, z € C.
Then, u! = y; or ul = z;. Let us assume, without loss of generality, that u! = y;. Therefore,
y € S; since y < u’ <z and y; = u! = z;. Hence, u’ = y since y < u’ and u’ is a minimal
element of S;. Thus, u’ is an extreme generator of C. It is clear that x = ®F_,u’, and so,
x € cone (ext-g (C)).

We have shown that C' C cone (ext-g (C)). The other inclusion is trivial. O

INRIA



The Minkowski Theorem for Maz-plus Convex Sets 11

Theorem 3.2 (Max-Plus Minkowski Theorem). Let A be a mon-empty compact convex
subset of R .. Then, every element of A is the conver combination of at most n + 1
extreme points of A, and so,
A = co (ext (A)).
Proof. Let * € A. Define the cone Ca = {(Az,\) | 2 € AN € Ry} C RHL as in
Lemma -T2 Then, by Corollary ZTH, Cy4 is a closed cone and thus
Ca = cone (ext-g (C4))

by Theorem B11
As (z,1) € C4, by Theorem Bl we know that there exist n + 1 extreme generators of
Ca, namely (Aut, A1), ..., (App1u™ N\yy1), such that

n+1
(z,1) = P wur, ).
k=1
Hence,
n+1 n+1

T = @ \pu”, where @)\k =1.
k=1 k=1

By Corollary EET9, we know that (u*,1) € C4 is an extreme generator of C4 if, and only
if, u* € A is an extreme point of A. This shows that = is the convex combination of at
most n + 1 extreme points of A. It follows that A C co(ext (A)). The other inclusion is
trivial. O

Theorem 3.3. Let A C R} .. be a non-empty closed convex set. Then, every element of A

is the sum of the conver combination of p extreme points of A, and of q extreme generators
of rec (A), with p+q <n+1, and so:

A = co(ext (A)) ®rec(A).

Here, we denote by @ the max-plus analogue of the Minkowski sum of two subsets, which
is defined as the set of max-plus sums of a vector from the first set and of a vector from the
second one.

Proof. Let * € A. Define the cone Cq = {(Az,\) | 2 € A\ € Rypax} C REFL as in
Lemma EZTA Then, by Lemma T3 clo (C4) is a closed cone and thus

clo (C4) = cone (ext-g (clo (C4)))

by Theorem Bl
By Proposition ZT4 we know that

clo(Ca) =Cy U (rec(A) x {0}),
and then Lemmas ZT6 and EI4 imply:
ext-g(clo(Ca)) = Jext-g(clo(Ca)) N Ca]U [ext-g(clo(Ca)) N (rec(A) x {0})]
C  ext-g(Ca) U (ext-g (rec (4)) x {0}).
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Now, as (z,1) € C4 C clo(C4), by Theorem Bl we know that there exist a finite number
of elements of ext-g (C'4), namely (\yu*, \p) with 1 < k < p, and a finite number of elements
of ext-g (rec (4)) x {0}, namely (y",0) with 1 < h < ¢, such that

@1 =( P ) e ( P 6"0).

1<k<p 1<h<q
with p + ¢ < n + 1. Therefore,

x:( @ )\k’uk>€9( @ yh>, where @ A =1
1<k<p 1<h<q 1<k<p
and y" € rec(A) for all 1 < h < q. By Corollary EZT9 we know that (u*,1) € C4 is an
extreme generator of C4 if, and only if, u* € A is an extreme point of A. This shows that
is the sum of the convex combination of p extreme points of A and of ¢ extreme generators
of rec (A) with p+ ¢ < n+ 1. Hence, A C co(ext(A)) @ rec(A). The other inclusion is
trivial. O

As a corollary of Theorem Bl we get a precise version of the “basis theorem” for finitely
generated cones. The first results of this kind were obtained by Moller [MoI88] and Wag-
neur [Wag91]|. Several variants of this result have appeared in [Gan98, [DS04, [CGB04).

Corollary 3.4 (Basis theorem). Let C C R, be a finitely generated cone and A C C.
Then, C = cone (A) if, and only if, A contains at least one nonzero element of each extreme

ray of C.
Proof. This follows readily from Theorem Bl and from Lemma O

Ezample 3.5. As an illustration of Theorem B3] let us consider once again the closed convex
set A C R2,, depicted in Figure [l We have already seen (Examples and [ZTT)) that

ext (A) = {a,b,c,d, e} and rec (A) = cone {(0,1),(2,0)}. Then,
A =co {a,b,c,d,e} ®cone {(0,1),(2,0)}
by Theorem The sets co (ext (A)) and rec (A) are depicted in Figure Bl
Ezample 3.6. The set of extreme points of a compact convex set may not be closed. In the

max-plus case, there are even counter-examples in dimension 2. Such a counter-example is
shown in Figure Bl where the set A is given by

A=([-2,0]x {0 U ({0} x [0,-2)) U {z € R? | =1 < @1 + a2, 21,22 <O},

and
ext (A) = {(-2,0),(0,-2)}U{z € R* | =1 =1 + a2, 1,22 <0} .

Remark 3.7. As in the classical case, the set of extreme points of a compact convex set is
a Gs set (a denumerable intersection of open sets). Indeed, let A be a non-empty compact
convex subset of R .., and let d denote any metric inducing the topology of R} .. For all
positive integers k, let

Fy = {(2,y,2,8) € A% X Rypax | d(a,y) > 1/k, d(z,2) > 1/k, <1, 2=y ® Bz} .

INRIA



The Minkowski Theorem for Maz-plus Convex Sets 13

T2 €2

d Rec(A)

T -/ I

FIGURE 2. The sets co (ext (A)) and rec(A) of Theorem for the un-
bounded convex set depicted in Figure [ll

A ext(A)

FIGURE 3. A convex subset of R2

- ax and its set of extreme points.
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HT <

I

FIGURE 4. The point p is an extreme point of the face F' but it is not an
extreme point of the convex set

Let 7 denote the projection sending (z,y, z, ) to z. Since A is compact, F} is compact,
and since 7 is continuous, 7(F}) is compact. In particular, it is closed. A point z in A is
not extreme if and only if there exist two points y, z € A that are both different from x, and
a scalar 0 < 1, such that x = y & Bz. The latter property means that = belongs to some
7(Fy). So the set of extreme points of A, which can be written as Ng>1(R7,. \ 7(F)), is a
Gs set.

Let a™,a” € Ryax and let 9,1~ denote linear forms. We call half-space a set of the
form

HY ={zeRi | v (@) @a" 2y (2) ®a™} .
The opposite half-space H~ is defined by reversing the inequality. We say that HT is a
minimal supporting half-space of A if it contains A and if it contains no other half-space
containing A. We define a face of a convex set A to be the intersection of A with an half-
space opposite to a minimal supporting half-space. The following counter-example shows
that unlike in classical convex analysis, the extreme points of faces are not necessarily
extreme points of the set.

Ezample 3.8. Consider the half-space
H+={xERI2nax| xlEBlylZO} ,

which is represented by the light gray region in Figure Bl One can check that this is a
minimal supporting half-space of A (see [CGQS05] or [Jos05| for a description of max-plus
half-spaces). Hence, F := AN H~ is a face of A. This face is represented in bold on the
figure. The point p = (0, —1) is an extreme point of F, but it is not an extreme point of A.
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