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Abstract: We propose here a framework to build a statistical atlas of diffusion tensors
of canine hearts. The anatomical images of seven hearts are first non-rigidly registered in
the same reference frame and their associated diffusion tensors are then transformed with a
method that preserves the cardiac laminar sheets. In this referential frame, the mean tensor
and its covariance matrix are computed based on the Log-Euclidean framework. With
this method, we can produce a smooth mean tensor field that is suited for fiber tracking
algorithms or the electromechanical modeling of the heart. In addition, by examining the
covariance matrix at each voxel it is possible to assess the variability of the cardiac fiber
directions and of the orientations of laminar sheets. The results show a strong coherence of
the diffusion tensors and the fiber orientations among a population of seven normal canine
hearts.
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Vers un Atlas Statistique de I’Architecture des Fibres
Cardiaques

Résumé : Dans ce rapport, nous présentons un cadre pour construire un atlas statistique
des tenseurs de diffusion de cceurs de chien. Tout d’abord les images anatomiques de sept
coeurs sont recalées de maniére non-rigide dans le méme référentiel et leurs tenseurs de diffu-
sion associés sont alors transformés suivant une méthode qui conserve les feuillets laminaires
des fibers cardiaques. Dans ce référentiel, un tenseur moyen et sa matrice de covariance sont
calculés avec la métrique Log-Euclidienne. Avec cette méthode, nous obtenons un champ
de tenseurs moyens lisse qui convient & une reconstruction des fibers ou & une modélisation
électromécanique du cceur. De plus, en examinant la matrice de covariance en chaque voxel il
est possible d’évaluer la variabilité de la direction des fibres cardiaques et de ’orientation des
feuillets laminaires. Les résultats montrent une grande cohérence des tenseurs de diffusion
et des orientations des fibres dans une population de sept cceurs normaux de chiens.

Mots-clés : DT-MRI, DTI, tenseur de diffusion, Log-Euclidien, fibre cardiaque, cceur,
myocarde, atlas
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4 J.M. Peyrat et al.

1 Introduction

While the main geometrical arrangement of myofibers has been known for decades, its vari-
ability between subjects and species still remains largely unknown. Understanding this
variability is not only important for a better description of physiological principles but also
for the planning of patient-specific cardiac therapies [22]. Furthermore, the knowledge of
the relation between the myocardium shape and its myofiber architecture is an important
and required stage towards the construction of computational models of the heart [4] [T9]
since the fiber orientation plays a key role when simulating the electrical and mechanical
function of the heart.

The knowledge about fiber orientation has been recently eased with the use of Diffusion
Tensor Imaging (DTT) since there is a correlation between the myocardium fiber structure
and diffusion tensors [I3] [2I]. DTT also has the advantage to provide directly this infor-
mation in 3D with a high resolution but it is unfortunately not available in vivo due to
the cardiac motion. There has been several works [ [IT] |[T2] in the past decade that have
studied the variability of fiber orientation from DTT (similar studies has been done for brain
as well [T4]). Those studies estimated the fiber direction as the first eigenvector of each ten-
sor and for instance compared its transmural variation with that observed from dissection
experiments.

We propose here to extend those studies by building a statistical model of the whole
diffusion tensor and not only its first eigenvector. This tensor analysis allows us to study
the variability of laminar sheets which are associated with the second and third eigenvectors.
Performing this analysis based on vector analysis (instead of tensor analysis) would have
been difficult because the second and third eigenvalues have often very similar values and
may lead to interpretation errors. To the best of our knowledge, this is the first attempt to
perform a first and second order statistical analysis of DT images of canine hearts.

Our statistical analysis proceeds as follows. We first register the seven canine heart
images in a same reference frame using anatomical MR images. Then we properly transform
the diffusion tensors considering properties of the cardiac fiber microstructure. Finally we
use coherent statistical tools on tensors to study the variability of individual hearts from
this average model and to evaluate the relevance of such a model. An application of this
framework is done using a dataset of seven normal canine hearts.

INRIA
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2 Materials and Methods

2.1 Data Acquisition

We used a dataset of seven ex vivo perfused normal canine hearts acquired and provided by
the Center of Cardiovascular Bioinformatics and Modeling (CCBM) at the Johns Hopkins
University. Each heart was placed in an acrylic container filled with Fomblin, a perfluo-
ropolyether (Ausimon, Thorofare, NJ). Fomblin has a low dielectric effect and minimal MR,
signal thereby increasing contrast and eliminating unwanted susceptibility artifacts near the
boundaries of the heart. The long axis of the hearts was aligned with the z-axis of the
scanner. Images were acquired with a 4-element knee phased array coil on a 1.57 GE CV/I
MRI Scanner (GE, Medical System, Wausheka, WI) using an enhanced gradient system
with 40mT/m maximum gradient amplitude and a 1507 /m/s slew rate. Different resolu-
tions have been used around 0.3 x 0.3 x 0.9 mm? and from 14 to 28 gradient directions.
The images have been subsampled into 128 x 128 x 64 images with a resolution around
0.6 x 0.6 x 1.8 mm3. The temperature during acquisition varied between 18 — 25°C from
one heart to another.

A diffusion tensor T is a covariance matrix describing the anisotropic Brownian motion
of water molecules. Its eigenvalue decomposition leads to 7 = PDP7T with P the matrix
of the eigenvectors V' and D the diagonal matrix of the eigenvalues. The eigenvalues of the
diffusion tensor quantifies the diffusion rate of water molecules within the tissue structure
along the directions given by the corresponding eigenvectors. These eigenvalues are directly
linked to the mean free path of water molecules.

2.2 Mpyocardium Registration

We register DT images based on anatomical MRIs since we want to compare the diffusion
tensors corresponding to anatomical regions of different hearts without any prior knowledge
on their statistical variability. We would have introduced a bias in DTT analysis using DTI
registration algorithms [9] [24] [I8] or fiber direction registration 7). Before the registration
stage, we pre-process semi-automatically the images by extracting the image background,
and by cropping each image above the valve plane. We register the hearts on a template
given by an iterative mean estimation. It means we register each MR image onto a chosen one
from the dataset and once we have a first set of registered MRIs, we compute its mean image
that is used as a template for the next iteration. These iterations should be repeated until
convergence but usually one or two iterations are sufficient to get a good approximation of the
expected mean. The registration algorithm is initialized with a global affine transformation
of the hearts (cf. Section [A] for more details about the global affine transformation we
used) in order to ease the second non-rigid registration step. This second registration step is
based on a hybrid non-rigid intensity- and landmark-based registration algorithm [B]. The
hybrid algorithm gives us the ability to interactively refine the registration of a local region.

 http:/ /www.ccbm.jhu.edu/research/DTMRIDS.php
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The output of this process is a dense deformation field for each anatomically registered
cardiac image.

2.3 Transformation of Cardiac Diffusion Tensors

The next stage is to transform the DT image based on the estimated deformation field.
For each voxel, the global deformation field is approximated at the first order by an affine
transformation. This underlying affine transformation A is computed from the identity
matrix Id and the Jacobian VF of the deformation field F' (computed with a 3D Sobel-
filter):

A=1d+VF

Now we have the well known problem of applying an affine transformation to a diffusion
tensor image. Since it was shown that there is a correlation between the cardiac tissue
microstructure and the eigensystem of the diffusion tensors [12] [13] [21], we can transform
the underlying tissue microstructure with the affine transformation. Then we reconstitute
the diffusion tensor from this transformed microstructure knowing the relationship between
the two of them. The solution we propose here to handle this problem proved to be similar
to the Preservation of the Principal Direction (PPD) reorientation strategy [I]:

_ (Afl)T‘/g
1A= v3|

Vi = ek vy

!
AV V»=VsoW

where V7, V5, V3 are the primary, secondary and tertiary eigenvectors of the original diffusion
tensor and where V{, V4, V4 are the ones of the transformed diffusion tensor.

The PPD has been already justified and validated in the case of brain DTI [I] but only
partially in the case of cardiac DTI. We propose here a more complete justification of the
PPD strategy for cardiac DTI transformation.

As described in Figure [ the myocardium microstructure is made of laminar sheets
of muscle fibers [I6]. The space between the laminar sheets is composed of extracellular
water and collagen network linking these sheets together. This extracellular space has a
mostly unrestricted diffusion in the direction of the first two eigenvectors of the diffusion
tensor. The interface plane between the laminar sheets and the extracellular space is an
important barrier for water molecules and its normal defines the third eigenvector. The
extracellular water between fibers in the laminar planes can explain the difference between
the primary eigenvector in the fiber direction and the secondary eigenvector orthogonal
to the fiber direction. But the cardiomyocyte geometry is also proposed to explain the
privileged diffusion direction in the fiber orientation. A cardiomyocyte is much longer (50~
120 pm) than wider (5-25 um) and much longer than the mean free path (roughly 10 pum
in our case). It means that the cell membrane does not have an important influence on the
water diffusion in the fiber direction. Nevertheless the mean free path is still lower than the
one in an unrestricted diffusivity region because of the subcellular structures as organelles,

INRIA
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muscle fibre

collagen

Figure 1: From the macrostructure to the microstructure of cardiac fibers (from LeGrice et
al. [16]). Link between the primary eigenvector Vi, the secondary eigenvector V; and the
tertiary eigenvecor V3 of the diffusion tensor and the underlying structure.

structural proteins, myofilaments, etc. This is not the case in the other directions where the
width of the cells is close to the mean free path.

Let us now analyze the effect of the basic transformations (translations, rotations, shears
and scaling) describing an affine transformation. The way to transform the fiber structure
and thus the diffusion tensors through translation and rotation is obvious. The scaling only
changes the density of fibers microstructure inside a voxel (we consider that the cells size
and the thickness of the laminar sheets and intralaminar spaces are roughly the same in
all hearts) and finally not the diffusion rate i.e. the eigenvalues of the diffusion tensor.
The shearing induced by the affine transformation is not so simple to apply to the diffusion
tensors. We illustrate in Figure 2 the shearing applied to the basic microstructure of cardiac
fibers. The direct transformation of the original eigenvectors V; leads to the vector AV; and
the transformation deduced from the fiber structure deformation leads to the vector V/. As
we determine the fiber structure deformation through the fiber direction deformation, the

RR n° 5906
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Figure 2: [Middle] Original basic fiber microstructure with eigenvectors V; [Left and Righi]
Shearing applied to the basic fiber microstructure : continuous arrows AV; are the trans-
formed eigenvectors through the shearing and dashed arrows V' are the eigenvectors regard-
ing to the correlation between the fiber microstructure and the diffusion tensor.

transformed primary eigenvector V; is the same as the direct transformation of the original
primary eigenvector V;:

AV;
Vi = A
b TTAW]]

The tertiary eigenvector is defined by n, the vector normal to the laminar sheets which
are considered locally plane. The image of a plane through an affine transformation is a
plane. It means that these laminar sheets are stable. We just have to find n’ the unit vector
normal to the plane defined by the image V{ of V4 and the image AV, of V5 [23]:

' (A_l)T’rL
1(A™) " n]]

The transformed secondary eigenvector obtained from the correlation between the struc-
ture of the fibers happens to be the one that builds an orthonormal basis with the two
others. It means that constructing first the secondary (as done for the PPD) or the tertiary
(as we do) and then determine the other one to obtain an orthonormal basis leads to the
same results. This is the keypoint that justifies the use of the PPD in our specific case of car-
diac DTI. A more complex structure with crossing fibers is a good counter-example where

n
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this strategy is not optimal, it would lead to a simplification of the underlying structure
deformation.

2.4 Tensor Statistics
2.4.1 Log-Euclidean Mean and Covariance Computation

The Log-Euclidean framework [2] provides a consistent and rigorous framework to study
the statistical variability of DTT for each voxel of the heart. In this framework the space of
diffusion tensors is a vectorial space which means it inherits from all the statistical properties
and tools we can get from a vectorial space. We thus compute the mean of all the registered
DTI and the corresponding covariance [17] at each voxel:

N
Doy = exp(% Z log(D;))

N
Cov = =1 >_ vect(log(D;) — log(Dioy))-vect(log(D;) — log(Diog))"
i=1
where vect(D) is the vectorial representation [I7] of the diffusion tensor D.

2.4.2 Log-Euclidean Covariance Analysis

The difficulty to visualize the 6 x 6 covariance matrix of diffusion tensors leads us to study
first its norm /Trace(Cov), which allows us to identify the variable and stable regions of
the heart. To help us in translating the DTI variability into the fiber structure variability,
we can analyze this covariance matrix extracting 6 specific variance parameters at each voxel
in the coordinate system of the mean tensor: 3 for each eigenvalue variability and the 3 for
each eigenvectors orientation variability around the mean.

Let us consider the diagonalization of the mean in the Log-Euclidean space:

W =log(Dioy) = Z)\ Vivit

where \; = logd; and d; are the eigenvalues of the diffusion tensor ﬁlog
Considering small variations d\; and &V; of the eigenvalues \; and the orthonormal
eigenvectors V; around the mean diffusion tensor:

W4 0W = (A 4+ 0A) (Vi 4 6V1) (Vi + 6V1) T+
(A2 + 0X2) (Vo + 6V2) (Vo + 0V2) T + (A3 + 0A3) (V3 + 0V3) (Vs + 6V3)"

where 0V1 = €12Va + €13V3, 0Va = €21 V1 + €23V3 and V3 = €51V + €3215

Since Vi,V and V3 build an orthonormal basis of R?: €;; = —€;;. Finally considering
only the first order terms leads to:

RR n° 5906
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3
SW =" SNWi + vV2(X2 — As)easWa + V2(A1 — Xa)ersWs + V2(A1 — Aa)eraWe
i=1

where the W; form an orthonormal basis of the tangent space at the mean diffusion tensors:

Wi = Vi Wi = LT + BT
1 V1 4 \{5(32 23)
Wo = VaVa" Ws = ==V T+ a"
2 2V2 5 \{5(31 13)
W3 = VsVs" W = —=(VaVi" + i1
3 3V3 6 \/5(21 12)

Eigenvalues Variability The projections of the covariance on the Wy, W5 and W3 vectors
describe the variances of the three eigenvalues in the Log-Euclidean space.

E(0X?%) = vect(W;)T .Cov.vect(W;) i=1,2,3

We can directly study the variability of the original diffusion tensor eigenvalues in the

Euclidean space using the following relationship: A; = log(d;) = 6\; = 55[?

E(6d;?) = d;*[E(0N:?)] = di*[vect(W;)T .Cov.vect(W;)] i=1,2,3

Var(eaz)

VLH'(E;[_)

Var(es3)

8]

Var(e;3)

Var(e-)
Var(g;»)

Figure 3: Orientation variability of eigenvectors

INRIA
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These variances F(5\;%) are also interesting to study directly since they can be linked
to the normalized scatter measure of the diffusion tensors about their mean [I4]. Indeed,
the normalized scatter measure S5 describes a global dispersion of all the eigenvalues at the
same time:

3
> E(6d:?)
— 92 =
7.2

L XN
~— > ID:—D|?
. N-14 _ E(sD]*) _ =1

11 ~ DI 23:
=1

By contrast, the standard deviation of the eigenvalues in the Log-Euclidean space extracted
from the covariance matrix gives information on the normalized dispersion of each eigenval-
ues about its Log-Euclidean mean independently:

2
BN = Z0dT) i=1,2,3
d

3

Eigenvectors Orientation Variability Let us consider now the orientation variability
of these eigenvectors. The projections on Wy, W5 and Ws represent the rotation of the
coupled orthonormal vectors (Va, V), (V1,V3) and (Va, V) respectively around Vi, V5 and
V3 (cf. Figure B)).

Var(exs) = E(e23?) = m[vect(W4)T.Cov.vect(W4)]
Var(ei3) = E(e132) = m[vect(W5)T.Cov.vect(W5)]
Var(erz) = E(e12?) = m[vect(Wg)T.Cov.vect(Wg)]

It is important to notice that the rotation variability is highly dependent on the accuracy
of the distinction between primary, secondary and tertiary eigenvectors. Indeed if two eigen-
values are similar the diffusion tensor describes an isotropic plane from which the extraction
of eigenvectors has a lack of relevancy in terms of structural meaning. An isotropic plane
can be defined by any orthonormal basis of vectors contained in this plane.

The dyadic coherence has already been proposed [6] [14] to assess the orientation disper-
sion about the mean direction. The dyadic coherence « is defined as:

=1 — /52246-1/33

where (3; are the eigenvalues of the mean dyadic tensor V.VT of the diffusion eigenvector V'
at each voxel sorted from the largest to the smallest (i = 1,2, 3).
As we are working on unit vectors [8]:

Bi+pP2+03=1

RR n° 5906



12 J.M. Peyrat et al.

which means 81 =1 — (62 + 3) =1 — o*.

The dyadic coherence k = 1— is linked to the radius of the cone of uncertainty

__o®
2(1 — o?)
around the eigenvector V. In the same way, that normalized scatter value of Sy describes a
global dispersion of the eigenvalues, the dyadic coherence describes a global dispersion of the
eigenvectors orientation where we can extract a dispersion of the eigenvectors orientation
from the covariance matrix in a specific direction Thus we have access to an ellipsoidal cone
of uncertainty (cf. FigureB) around the eigenvector instead of a circular one with the dyadic
coherence.

Finally the covariance matrix analysis has the advantage to provide less global and
more accurate information about the variabilities of the eigenvectors and eigenvalues of the
diffusion tensor, as well as the variability of the diffusion tensor itself without distinguishing
eigenvalues and eigenvectors.

INRIA
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3 Results

We applied the proposed framework to the dataset of seven canine hearts presented previ-
ously. We obtain a smooth average cardiac DTI (cf. Figure H and Bl catching the shared
transmural variation of the fibers directions (cf. FigureH) that is similar to the one generally
observed [20]. The norm of the covariance matrix in Figure [l shows a global stability of the
compact myocardium and several variable regions especially at the RV and LV endocardial
apices where the fiber structure is probably less organized. Some other variabilities at the
surface of the heart might also be due to registration artifacts.

Figure 4: [Left and Upper Right] Average Canine Cardiac DTI showing smooth directions
[Lower Right] Fiber tracking in the left ventricle wall with high stiffness parameters for a
better visualization of the fan cardiac architecture varying with the transmural depth. In all
the figures the RGB colors represent the components of the primary eigenvector Red = |V,|,
Green = |V, |, Blue = |V.| with z,y in the axial plane and z orthogonal to the axial plane
as described with the colored sphere.

RR n° 5906
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Figure 5: Fiber tracking on the average cardiac DTI. The fibers displayed cross the two
planes in blue and green.

In order to have a better interpretation of this covariance matrix and to understand
the origin of the variabilities, we decompose it into specific modes as described previously.
We can see in Figures Bl that the eigenvalues variabilities are homogeneous in the compact
myocardium. There are still some differences in the variability between eigenvalues but
considering their variability proportionally to their mean value, we expect a significant
variability of their fractional anisotropy (cf. Figure [). Knowing that the temperature
acquisition was not the same for all the hearts (18 — 20°C and 25°C), the variability of
the eigenvalues might not be so relevant to study. Mostly the order of the eigenvalues is
important. Indeed even if we introduce these values in an electromechanical model we do not
really know how to translate them in terms of electrical conductivity [20]. The ongoing work
on the development of current density imaging techniques [I5] could help in determining such
a correlation. The statistical study of these eigenvalues gives us an idea of the average values
of diffusion which are uniformly distributed in each heart and uniformly variable among the
population of hearts. At least, it could help in detecting locally defined pathologies.

INRIA
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>1.5 leg{mm2.s1)

Figure 6: Statistical Variability of Diffusion Tensors. Norm of the covariance matrix (upper
in 8 orthogonal views - more figures in Section [A2). Decomposition of the covariance in
6 eigenmodes describing the variability of the 15, 2" 374 eigenvalues (from middle left to
middle right) and the rotation of the plane orthogonal to the 15, 2"? and 3" eigenvectors
(from lower left to lower right).

The separation of the eigenvalues variability and the eigenvectors orientation variability
is important to evaluate the variability of the myocardial fibers architecture. As seen in
Figures B (and in Figures [ and [ in Section [A2), the orientation of the fibers is stable
among a population (mean standard deviation of 8.8 and 9.4 degrees around the secondary
and the tertiary eigenvectors) for the two rotations in the planes containing the primary
eigenvector. It means that the fiber orientation of the average cardiac DTI is shared by
the dataset. The orientation of the laminar sheets described by the rotation of the plane
Span(Va, V3) around V; shows a much higher mean standard deviation of 23 degrees. First
of all this variability is underevaluated considering that the statistical study we proposed
is a simplification at the first order. Secondly this variability is due to the difficulty to
differentiate the secondary and tertiary eigenvectors when they have similar eigenvalues.
When we study the fiber organization (i.e. the 3 rotation eigenmodes) we are not anymore
in the diffusion tensor space and an isotropic plane of diffusion leads to a low accuracy
in translating it into structural information. To achieve it an additionnal information will

RR n° 5906
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be necessary as the one coming from the neighbourhood [I1]. Another explanation might
also be the existence of two populations of symmetric laminar sheets organization in canine
hearts [T1] [T2] (and ovine hearts [T0] as well) corresponding to the optimal configurations to
maximize the systolic shear [3]. Mixing these two populations leads to the computation of an
average cardiac DTI model that does not represent a real case of laminar sheets organization.
The clustering of these populations will be necessary to confirm this hypothesis and then
to build two different models of cardiac fibers architecture. A computation of the normal
of the laminar sheets (with a sheet tracking algorithm for example) and a further study of
their orientation variability is essential to determine its origin and of course to translate an
atlas of cardiac DTT into an atlas of the cardiac fiber architecture.

RR n° 5906
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4 Conclusion

We proposed a theoretically grounded, simple and powerful framework working directly on
diffusion tensors to build an average model and to study their variability over a population of
cardiac DTIs. The use of these average models instead of analytical models is an important
stage to refine the electromechanical modeling with more accurate and reliable data and
also with additional informations concerning the anisotropy in the plane orthogonal to the
fiber directions. This framework is a first step towards a statistical atlas of the cardiac
fiber architecture that will probably lead to a better understanding of the cardiac fiber
architecture shared by a population of healthy or failing hearts, or to compare and to
differentiate populations of hearts (canine-human, normal-failing. . .).

The results presented were obtained from a dataset of seven canine hearts. A more
important dataset of hearts is needed to get a statistically reliable atlas. Another step
would be to apply this framework to human hearts in perspective of clinical applications.

INRIA
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A Appendix

A.1 Details about the Registration Algorithm

Basically, the first registration step is an initialization for the non-rigid registration. Indeed,
the non-rigid registration algorithm we use has been designed for small displacements. It can
lead to unexpected results when large displacements are computed. To solve this problem,
we propose here to apply first a global affine transformation A using specific landmarks that
are easy to define and to identify geometrically: the RV and LV endocardial apices (Agy
and Ary) and the 2 corner points of the right ventricle in the valve plane (C; and C3). As
long as these 4 landmarks do not lead to an ill-posed problem (which should be the case
most of the time considering the heart geometry and the chosen landmarks), they define a
unique global affine transformation. Otherwise more landmarks could be used for a robust
least square estimation of the global affine transformation.

Figure 8: Initialization of the myocardium registration: global affine transformation A.

Actually, we currently use only 3 of these 4 landmarks (cf. Figure B). The matching of
the corner points defines (cf. Figures M):

1. a rotation Ro, ¢ around the direction of the axis of the heart to match the directions
given by the 2 pairs of corner points

2. a translation T to match the centroids G and G’ of the 2 pairs of corner points

3. a scaling Sr to match the length of the line segments defined by the 2 pairs of corner
points

INRIA
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Finally, the LV endocardial apex is used to define a scaling Sy along the axis of the heart to
match the 2 pairs of axial planes: the valve plane and the one containing the LV endocardial
apex.

Sr =] C.C4ll / [IC2Cq|

Ro.,0

Figure 9: Initialization of the myocardium registration: scaling Sy along the axis of the
heart.
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A.2 Additional Figures

»1.5 log{mm2.s1)

&

Figure 10: Norm of the covariance matrix in 3 orthogonal views (1/2).
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Figure 11: Norm of the covariance matrix in 3 orthogonal views (2/2).
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