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Caractére bien posé de ’algorithme de tir pour les
problémes de commande optimale avec un controéle
scalaire et une contrainte sur 1’état

Résumé : Dans cet article, on étudie I’algorithme de tir pour les problémes de commande
optimale avec contraintes sur 1’état. On donne les conditions supplémentaires nécessaires,
sous lesquelles la formulation alternative est équivalente au Principe de Pontryaguine. On
montre que l’algorithme de tir est bien posé, si et seulement si (i) une condition suffisante
minimale du second ordre est satisfaite, et (ii) lorsque la contrainte est d’ordre ¢ > 3, il
n’y a pas d’arc frontiére. Enfin, une analyse de stabilité et de sensibilité est effectuée,
sans hypothése de complémentarité stricte aux points de contacts isolés. On utilise pour
ceci la théorie de la forte régularité de Robinson, dont on donne une caractérisation par
une condition suffisante du second-ordre. Les dérivées directionnelles sont obtenues comme
solution d’un probléme linéaire quadratique.

Mots-clés : Commande optimale, Principe de Pontryaguine, contrainte sur ’état, condi-
tions de jonctions, algorithme de tir, conditions d’optimalité du second ordre, régularité
forte, analyse de sensibilité, dérivée directionnelle.



Well-Posedness of the Shooting Algorithm for State Constrained Optimal Control Problems3

1 Introduction

For optimal control problems satisfying the strengthened Legendre-Clebsch condition, Pon-
tryagin’s principle allows to express the control as a function of state and costate. For
unconstrained problems, the resulting two points boundary value problem reduces to a fi-
nite dimensional “shooting” equation whose unknown is the initial costate (see e.g. [21]).
The extension to control constrained problems is relatively easy, assuming nontangentiality
conditions when a constraint becomes active or inactive. This approach allows to com-
pute accurate solutions at low cost, once the structure of active constraints is known. For
state constrained optimal control problems, a reformulation of the optimality conditions is
needed, and the shooting equations take only into account some of the optimality conditions.
Therefore, checking that the shooting equations are well-posed under minimal hypotheses
becomes challenging.

An alternative formulation suitable for the shooting algorithm in presence of state con-
straints was first introduced by Bryson, Denham and Dreyfus [6, ], in an heuristical manner.
Some additional conditions (necessary for optimality) were missing, as was shown in Jack-
obson, Leyle and Speyer [13], where the first results on the regularity of the multiplier and
on junctions conditions are stated. A significant clarification of their work can be found in
Maurer in the unpublished paper [I7], where the link between the results of [I3] and the
alternative formulation of [6, [f] is established. Numerous different versions of Pontryagin’s
Principle with state constraint were given in the literature; see [I1]. Stability results for
first order state constraints were obtained by Dontchev and Hager [9], using an abstract
Implicit Mapping Theorem in metric spaces. See also Malanowski [14], still for first-order
constraints. Maurer and Malanowski obtain sensitivity results in [I5] (first-order) and [16]
(higher order), when strict complementarity holds, by application of the Implicit Function
Theorem to the shooting mapping, and obtain derivatives as the solution of an equality con-
strained linear quadratic problem, but when the order of the constraint is ¢ > 2, the data of
the latter depend on the (precomputed) variation of entry times. Numerical applications of
the shooting algorithm to state constrained problems in the aerospatial field are presented
e.g. in [0, 2] and [I8], where the role of additional conditions appears crucial to eliminate
nonoptimal solutions; numerical examples of sensitivity analysis are given in [I].

This paper handles the case of a scalar control and a regular scalar state constraint, for
which regularity and junctions conditions results are known. We assume that the Hamilto-
nian is uniformly strongly convex w.r.t. to the control variable, there are finitely many non
tangential junctions times, and strict complementarity on boundary arcs holds.

We express the additional conditions under which the alternative formulation is equiva-
lent to Pontryagin’s principle. We prove that the shooting algorithm is well-posed (invertible
Jacobian) iff (i) the no-gap second-order sufficient condition in [3] holds, and (ii) when the
constraint is of order ¢ > 3, there is no boundary arc. Then stability and sensitivity re-
sults, removing the strict complementarity hypothesis at touch points, are derived, applying
Robinson’s strong regularity theory [20] to the shooting mapping. We give a necessary
and sufficient second-order condition characterizing the strong regularity property. The
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4 F. Bonnans €& A. Hermant

directional derivatives of the control and state are obtained as solutions of an inequality
constrained linear quadratic problem, independent on the variations of junctions times.

The paper is organized as follow. In section Pl we give the characterization of Pontryagin
extremals as solutions of the shooting equations under some minimal additional conditions.
Then, in section B, we give the characterization of the well-posedness of the shooting algo-
rithm and the relation with the no-gap second-order optimality conditions obtained in [3].
Finally, in section H], we give stability and sensitivity analysis results.

2 Junctions Conditions

Denote by L>°(0,T) the Banach space of essentially bounded functions and by W1°°(0,T)
the Sobolev space of functions having a weak derivative in L>°(0,T"). Let the control and
state space be respectively U := L>°([0,T];R) and ) := W1>°([0,T]; R"). We consider the
following optimal control problem with a scalar state constraint and a scalar control:

() i [ .01+ o) 1)
subject to (1) = f(u(t)y(1)) ae. t€[0.T] ; y(0) =0 )
s <0 vee 1] Q

The data of the problem are the distributed cost £ : R x R™ — R, final cost ¢ : R — R,
dynamics f : R x R® — R", state constraint g : R” — R, final time 7" > 0, and initial
condition yo € R™.

We assume throughout the paper that the following holds:

(A0) The mappings ¢, ¢, f and g are k-times continuously differentiable (C*) with k >
2, have locally Lipschitz continuous second-order derivatives, and the dynamics f is
Lipschitz continuous.

(A1) The initial condition satisfies g(yo) < 0.

The space of row vectors is denoted by R™*. The space of continuous functions over
[0,T] is denoted by C[0,T]. The dual space of Radon measures, denoted by M]0,T], is
identified with the space of functions of bounded variation BV (0,T') vanishing at zero. The
transposition operator in R™ is denoted by a star *. Fréchet derivatives of f, ¢, etc. w.r.t.
arguments u € R, y € R™, are denoted by a subscript, for instance f,(u,y) = Dy f(u,y),
fuu(u,y) = D2, f(u,y). Total derivation w.r.t. to time is denoted by a dot, for example
F9(1) = g, (y(£)5(2).

A trajectory is an element (u,y) of U x Y satisfying the state equation (2). Define the
classical (resp. generalized) Hamiltonian functions of (P), H : R x R™ x R™ — R (resp.
H:R xR xR"” x R™ — R) by:

H(u,y,p) = L(u,y) +pf(u,y);  H(po,u,y,p) := pol(u,y) + pf(u,y).

INRIA



Well-Posedness of the Shooting Algorithm for State Constrained Optimal Control Problems5

First order necessary optimality conditions for (P) are given by the Pontryagin Minimum
Principle.

Definition 2.1. A trajectory (u,y) is o Pontryagin extremal, if there exists po € RT,
p € BV([0, T|;R™) and n € M0, T], with (po,dn) # 0, such that:

y(t) = Hy(po,u(t),y(t),p(t) ae. tc[0,T] ;5 y(0)=yo (4)

—dp(t) = Hy(po,u(t),y(t),p(t))dt + g,(y(t))dn(t) vt € [0,T] (5)

p(T) = pody(y(T)) (6)

u(t) € argmin,pH(po,w,y(t),p(t)) a.e. te€0,T] (7)
T

oy(t) < 0, Wel,T]; dj>0; / 9(y(H)dn(t) = 0. (8)

By dn > 0, we mean that fOT o(t)dn(t) > 0 for all nonnegative continuous function
¢ € C[0,T], or equivalently that 7 is non decreasing. The costate equation (Bl) has the
following signification:

T T
p(t):/t Hy(po,U(S),y(S),p(S))dsﬂL/t 9y(y(5))dn(s) + ¢y (y(T))-

The next Theorem is well-known (see [8, 0] for non differentiable versions).

Theorem 2.1. A trajectory (u,y) solution of (P) is a Pontryagin extremal.

Definitions A boundary (resp. interior) arc is a maximal interval of positive measure
Z C [0,T] such that g(y(t)) = 0 (resp. g(y(t)) < 0) for all t € Z. If [Ten, Tes] is @ boundary
arc, T., and 7., are called entry and exit point, respectively. Entry and exit points are
said to be regular if they are endpoint of an interior arc. A touch point 7 in (0,7) is an
isolated contact point (endpoint of two interior arcs). Entry, exit and touch points are called
Junctions points (or times). We say that the junctions are regular, when the junctions points
are regular. In this paper, only the case of finitely many regular junctions is dealt with.
The first-order time derivative of the state constraint along a trajectory (u,y), i.e.,
9V (u,y) = Lg(y®) = g,(y)f(u,y), is denoted by gM)(y) if the function R x R — R;

(u,y) — gy(y) f(u,y) does not depend on u (that is, the function (u,y) — g&l)(u, y) is iden-

tically zero). We may define similarly ¢(®,..., g9 if g, f are C? and if g&j) = 0, for all
j=1,...,q— 1, and we have g\ (u,y) = géj_l)(y)f(u,y), forj=1,...,q.

Let ¢ > 1 be the smallest number of times derivations of the state constraint, so that a
dependence w.r.t. u appears. If ¢ is finite, we say that ¢ is the order of the state constraint
(see e.g. [6]). A state constraint of order ¢ is said to be regular along the trajectory (u,y),
if the condition below holds:

3v>0, [¢@a,y(t)| >, forallte][0,T]and ucR. 9)

RR n° 5889



6 F. Bonnans €& A. Hermant

Note that the set of generalized multipliers (po, p, n) is a cone. When py = 0, we say that
the multiplier is singular; otherwise it is said regular. Dividing then (p,7n) by po, we obtain
the qualified version of Pontryagin’s principle, substituting to the generalized Hamiltonian
the classical Hamiltonian. It is easily seen that a Pontryagin extremal satisfying (@) and
(A1) has no singular multiplier, and that the multiplier (p,n) in the qualified version of
Pontryagin’s principle (pg = 1) is unique.

Being of bounded variation, p has at most countably many discontinuity times and has
everywhere on [0, 7] left and right limits, denoted by p(t*) = limy_,+ p(t'). The jump at
7 € (0,T) is denoted by [p(7)] = p(r) — p(77). Similar conclusions hold for 7.

Assumptions Let (u,y) be a Pontryagin extremal with costate p and multiplier 7, sat-
isfying Def. Bl (with po = 1). We say that (u,y) is a regular Pontryagin extremal, if
assumptions (A2)-(A4) below are satisfied.

(A2) The Hamiltonian is strongly convex w.r.t. the control variable, uniformly w.r.t. ¢ €
[0,T7]:
Ja>0, Hy(t,yl),ptr))>a forallte|0,T)and @ cR. (10)

(A3) The data of the problem are C?¢, i.e. k > 2q in (A0), the state constraint is of order
q and regular, i.e. (@) holds.

(A4) The trajectory (u,y,) has a finite set of junctions times, that will be denoted by
T =: Tep U Ty UTy,, with T, Top and Ty, the disjoint (and possibly empty) subsets
of respectively regular entry, exit and touch points, and we suppose that g(y(T")) < 0.

Hypothesis (A4) implies that all entry and exit points are regular junction points. In the
sequel, we denote by Z, the union of boundary arcs, i.e. T, := UMY [rl,, 7% ] for T, :=
{7l <. <MY and To, = {7}, < - <70},

Remark 2.1. In all the paper, (A3) can be weakened, replacing (@) by:

Fv,e>0, gD (a,yt))| >, forallt, dist(t,Z, UT;,) < e and @ € R. (11)

Notations Given a finite subset S of (0,7), we denote by PC%[0,T] the set of functions
over [0, T that are of class C* outside S (PC stands for piecewise continuous), and have,
as well as their first k derivatives, a left and right limit over S U {0, T}.

Let ¢ be a real-valued function over [0,7]. Assuming w.l.o.g. the elements of S in in-

creasing order, we may define p(S) = (p(7))res € R4S, We adopt a similar convention
for vectors: vs := (v )res € RE4S and will also use the following notations:
vh 9(y(5))
I/é:q — c RqCardS : g(O:q—l)(y(S)) = e RqCardS'
Vs gD (y(S))

INRIA



Well-Posedness of the Shooting Algorithm for State Constrained Optimal Control Problems7

2.1 Alternative Formulation of Optimality Conditions

Under assumption (A4) we have a finite number of arcs and we can show, with regularity
assumptions (A2)-(A3), that the multiplier 7 is differentiable on the interior of each arc
[13, I7]. An analysis of the optimality system on interiors of arcs shows then that a regular
Pontryagin extremal satisfies the conditions stated in Proposition 2l below. An analysis at
junctions times leads afterwards to junctions conditions given in Proposition

Proposition 2.1. Let (u,y) be a regular Pontryagin extremal, satisfying (A2)-(A4). Then
we have u € PCL[0,T], y € PCL([0,T);R™) and there exists p € PCL([0,T];R™), ny €
PCY2[0,T)], and jump parameters vr, such that the following optimality system is satisfied:

y(t) = Hp(ut),y(t),pt)) = f(ut),y(t)) on [0,TI\T; y(0)=yo (12)
—p(t) = Hy(u(t),y(t),p(t)) + gy (y(t))no(t) on [0, T]\T (13)
p(T) = oy(y(T)) (14)

0 = Hy(u(t),y(t),p(t) on[0,T]\T (15)
g(y(t)) = 0 onZy i mo(t) =0 on[0,T]\Z, (16)
gly®)) < 0 on[0,T]\(ZyUTsw) ; mo(t) >0 on intZ, (17)
gly(r)) = 0  VreT, (18)
p(r)] = —vegyy()); vr 20  VreT. (19)

We denote by intZ, the interior of Z,. A touch point 7 € 7, is said to be essential,
if vy > 0 in ([[@). We denote by 7,%°° the set of essential touch points. Hypotheses (A2)-
(A4) also imply the continuity of the control variable and of some of its time derivatives at
junction points. The next proposition is due to Jacobson et al. [I3]. Its proof was later
clarified in Maurer [17].

Proposition 2.2. Let (u,y) be a reqular Pontryagin extremal, satisfying (A2)-(A4). Then:
(1) For all entry or exit point T € Te, U Ty () If q is odd, u and its ¢ — 1 first derivatives
are continuous at 7, v = 0 and p is continuous at 7; (b) If q is even, u and its ¢ — 2 first
derivatives are continuous at T.

(ii) For all touch point 7 € Tyo: (a) u and its ¢ — 2 first derivatives are continuous at 7; (b)
If 7 is non essential (i.e. v, =0), u and its q first derivatives and p are continuous at T;
(c) if ¢ =1, then T is a non essential touch point.

Remark 2.2. If (u,y) satisfies (A2)-(A4) and [[2)-(), the multiplier n € M|0, T] such
that (u,y) satisfies definition Z1lis given by:
dn(t) = Y vedr +no(t)dt, (20)
TeT

where ¢, denotes the Dirac measure at time 7, v, = [(7)] is the nonnegative jump at 7 € 7,
and the density no € PC%[0,T] equals % almost everywhere.

RR n° 5889



8 F. Bonnans €& A. Hermant

We now present the alternative formulation that will be used in the shooting algorithm.
First introduced heuristically in [6], it is based on the use of the mixed explicit constraint
g9 (u(t),y(t)) = 0 on boundary arcs. Let the augmented Hamiltonian H : R x R x R™ x
R — R be defined by:

g(uayquvnq) = H(vaapq) +77qg(q)(u7y)a (21)
where ¢ denotes the order of the state constraint and H is the classical Hamiltonian (@).

Definition 2.2. We say that a trajectory (u,y) satisfying (A3)-(A4) is solution of the
alternative formulation, if there exist p, € PC%([0,T];R™), n, € PC%[0,T], alternative
jump parameters V%—en, j=1,...,q and vg,, such that the following relations are satisfied
(we omit dependence in time):

§ = Hy(w,y,pgmg) = flu,y) on [0,T] 5 y(0)=1yo (22)

—pg = Hy(w,y.pqgng) = Hy(u,y,pg) + nggl? (u,y) on [0,TI\T  (23)

Pq (T) = ¢y (y(T)) (24)

0 f{u(u, Y;Pq; 77(1) = Hy(u, yqu) + 77(197(}) (u,y) on [0, T\ T (25)

gD yr) = 0 forj=0,1,...,q—1; 7Ty, (26)
g D(u,y) = 0 on 7, (27)
gy(r)) = 0 for all 7 € Ty, (28)
ng(t) 0 on [0, 7]\ Zy (29)
()] = => vigiV(y(r)) forallTe T, (30)
[pg(7)] = 0 for all 7 € 7, (31)
[pg(T)] = —vrgy(y(r))  forall 7 € T (32)

In the heuristical formulation of [6], equations ([22)-(8) are interpreted as necessary
optimality conditions for the problem of minimizing (1) subject to @) and £8)-(E8) for a
fized set of junctions times 7. Alternative jump parameters I/}.;g appearing in ([B0) are seen
as multipliers associated with the ¢ interior point constraints in (28] at a regular entry time

Ten -
The assumption equivalent to (A2) for the alternative formulation, is the following, see

remark 23(ii):
(A2,) 3a >0, Hu (i, y(t), pgtT),n,(tF)) > a, for all t € [0,T] and @ € R.

2.2 Additional Conditions

Relations [22)-@0) due to [6] are necessary, but not sufficient conditions for Pontryagin
extremals. This was underlined in [I3] where some additional necessary conditions were

INRIA



Well-Posedness of the Shooting Algorithm for State Constrained Optimal Control Problems9

provided, that allowed to show that a trajectory (with a fourth order state constraint)
was not a Pontryagin extremal. We state in Prop. 23 the characterization of Pontryagin
extremals based on the alternative formulation. We need some preliminary lemmas.
Lemma 2.1. Let (u,y) a trajectory, and (py,n,) € PCL([0,T],R™) x PCY[0,T)] satisfying
(A2,)-(A4) and @2)-(23), (Z8), (ZA). Then (u,y,pq.1n,) belongs to the set PCL0,T] x
PCL([0,T);R™) x PCL([0,T],R™) x PCL[0,T).

Proof. This is a consequence of the Implicit Function Theorem applied locally to (Z3) on
interior arcs, and to (Z3) and 27) on boundary arcs. O

Lemma 2.2. If constraint regularity (A3) holds along a trajectory (u,y), and if u €

PCL[0,T), then, for all t € [0,T], vectors (gy(y(t)), - ,ggq 1)( (t))) are linearly indepen-
dent (and hence, ¢ < n).

Proof. Since u € PCZ[0, T, the mappings (A;)o<i<q—1 : [0,T]\ 7 — R" defined inductively

by:
{ 0= ot ) .
A(t) = fy(u(t),y(O)Aia(t) = Aa(t)  1=1,...,q -1,
are well-defined, and A; € PCL ([0, T];R") for [ =0, ...,q — 1. Tt has been showed in [I7]

that the following relations holds, for all ¢ € [0, T7:

G ENAEE) =0  forl=0,...,q—2;j=0,....,q—2—1, (34)
o (u(t®), (1) = gV ) Ai(tF)  for1=0,...,q— L

Set C' = (gy(y(t))*, - ,qu 1)( (t))*). The above relations imply that the ¢ x ¢ matrix
D := CT(A 1(t%), ..., Ag(tT)) is lower triangular with nonzero diagonal elements equal

to g(q)( (1), y(t)), hence has rank ¢. Therefore C' has rank at least ¢. The conclusion
follows. =

Proposition 2.3. Let (u,y) a trajectory satisfying (A2,)-(A4) and the alternative formula-
tion (ZA)-(28). Define the functions n;, 0 < j < q — 1, costate p and jump parameters vr,,
and vy, by:

_;dad .
WO = GO im0 gs € 0TNT,
pit) = pot)+ Zn 99 Vw®)  te0.TI\T, (36)
Vien = 7]:En - 771( )7 V' Ten € Ten ) Vrew = (Te_;l;)7 V Ter € Teg- (37)

Then (u,y) is a Pontryagin extremal that satisfies [IZ)-{I3) iff all the following additional
conditions are satisfied:

Jy@) < 0 on 0T\ (TUT) (53)
()= ()1 = 0 oy (39)

RR n° 5889



10 F. Bonnans €& A. Hermant

At all entry time 7¢y,:

vl =m(r}) if qis odd ; .
{ ]/71_:: Z m (T(;tz) ,qu is even ; qu-m =5 (Tetl) v )= 27 ,q (40)
At all exit time 7.,:
Mm(7,) =0 ifqisodd N e
{ m(rs,) >0 ifqis even ~’ (7)) =037 =2...q (41)
At all touch time 7,:
Vs, > 0. (42)

Remark 2.3. (i) If (u,y) is a regular Pontryagin extremal solution of (&)-(Id), the func-
tions n;, 1 < j < ¢, costate p, and jump parameters VT such that (u,y) satisfies the
alternative formulation (22)-8) and additional conditions (BH) (D) can be recovered from
p, no and v as follows. The functions 7; are first given from (B2l by successive integrations
of 1y over boundary arcs, with constant at exit times 7., given by B4) for j = 1 and EI)
for j =2,...,q. Costate p, follows then from (BH), and jump parameters at entry times uﬁm
are given by B7) for j = 1 and @) for j = 2,...,q. Jumps parameters vr, associated with
touch points are the same in both formulations.

(ii) Assumptions (A2) and (A2,) are equivalent, since the constraint being of order g, we
have:

ﬁuu(uayapqunq) = Huu(u;y7p) 177_7() (J ( )fuu(uﬂy)+nqg’l(lq)(u7y)
= Huu(u,y,p) — zj m()gﬁ(y)(u,y) = Huu(u,y,p).

Proof of Proposition [Z33. Since 7, is piecewise C? by Lemma L], functions 7;, 0 < j < ¢—1
are well-defined. We show the equivalence between equations ([2)- (@) and equations (22)-

B2) augmented with (B)-E2).

Equivalence between state equations ([[2) and (22), final costate conditions () and
24), state constraint equations ([H) and 26), @7), ) on boundary arcs, (I8) and 28 at
touch points, is obvious. Equivalence between costate equations (I3)) and 23), and between
control equations ([[H) and [ZH) follows from calculation, using the relations between the
functions n;, p and p, and the fact that the state constraint is of order ¢ (see e.g. [17]).

Additional conditions are necessary to ensure equivalence between complementarity and
junctions conditions. Obviously, [BR)-(B9) is equivalent to (), as well as [B2) and EZ) to
(@@ for touch points. It remains to check that () is also equivalent to ) and EI) at
entry/exit points. Let 7¢,, € T¢p. Expressing [pq(7en)] using on the one hand, the relationship
B8) between p and pg, and on the other hand, jump condition @), we obtain:

[pg(Ten)] = —Vr,9y(y(Ten)) Z ] 1)( (Ten)), (43)

[pq(Ten)] = _Z vz, .9 (J 1) n)) (44)

INRIA



Well-Posedness of the Shooting Algorithm for State Constrained Optimal Control Problemsl1

By Lemma £ at ¢t = 7., the right-hand sides of (@3] and {d]) are equal, iff the coefficients
(3—1)

of g (y(7en)) for j = 1,...,q are equal. Eliminating v, that must be non negative
(and equals zero for odd order state constraints by Prop. E22), we deduce {0). Proceeding
similarly at exit points, () follows. O

Remark 2.4. Proposition slightly improves section 5 of [I7], in the sense that we
give the complete set of additional conditions for which equivalence between Pontryagin’s
extremals and the alternative formulation holds.

Remark 2.5. Sign condition of néq) on the boundary arc BY) and exit-point conditions

() implies that the following necessary condition:

o dad .
(—1)? Jmnq(t) =n;(t) >0 onZ, forj=1,...,q (45)

holds, as a consequence of (BY) and (@I)). It is easily seen by induction, since 7j; = —n;—1 <0
on 7, and 7;(7z,) > 0, for all 7o, € 7Zc,. By (@), we deduce also that v/ >0, for all 7 € Zey,
and j=1,...,q.

2.3 The shooting algorithm

The shooting algorithm extracts from the necessary optimality conditions a finite dimen-
sional set of equations (the shooting equations). If its Jacobian is invertible, we obtain a
locally convergent algorithm by solving the shooting equations using, say, Newton’s method.

In the unconstrained case, the initial value of the costate py is mapped with the final
condition (24)). To handle alternative formulation of Def. 22 jump parameters and junctions
times are introduced as shooting parameters. A given set of shooting parameters determines
a unique trajectory (u,y) and multipliers (pq, 74) solution of the coupled state-costate system
22)-@3) with initial condition py(0) = po, algebraic equations ZH)-@d), that give v and 7,
as implicit functions of (y, py) by (A2)-(A3), and jump conditions B0)-(B2).

We use the shooting formulation of Maurer and Malanowski [15], [16]. Jump parameters
Vi;i at an entry time 7., are associated with the ¢ interior points conditions [26). Necessary
optimality conditions for entry and exit points 7.,, and 7., and touch points 7¢, (when g > 2)
are as follows:

9Vwr)y(Ten) = 0 5 g Dulrh) (7)) = 0 (46)
9V (y(ro)) = 0. (47)

By Proposition 22 the control is continuous along a regular Pontryagin extremal, so that
(EB) is a necessary optimality condition for entry/exit times. For a first order state con-
straint, we assume in the sequel that 7;, = () (see remark 23 below). Otherwise, since a
touch point 74, is a local maximum of g(y), [@D) is a necessary optimality condition, and
together with the interior point constraint (28], this gives two conditions associated with
Tto and its jump parameter v, , for each 1, € 7.
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12 F. Bonnans €& A. Hermant

Definition 2.3. A trajectory (u,y) is a shooting extremal if it satisfies the alternative

formulation (Def. [Z2) and conditions [Z8)-F7)-
Let us show how (HH) relates to the additional conditions of Prop.

Proposition 2.4. Let (u,y) be a trajectory solution of the alternative formulation (24)-(28)
and satisfying (A2,)-(A4). Then the two following conditions are equivalent:
(i) The control u is continuous at entry/exit times Ten, Tex (i.e., {{0) holds);

(ii) The following subset of {ZQ)-({71) holds:
n(td) = VL, =0 5 me(re) =0. (48)

Proof. Let 7o, € Ton. By (A3), the function 4 — s (@i, y(Ten)) is one-to-one. Since
99D (u(th), y(Ten)) = 0, we have that ¢(@ (u(7.),y(7en)) = 0 iff the control is continuous at
time Te,,; the same type of arguments holds for exit points. It follows that (HH) is equivalent
to the continuity of the control at entry/exit points.

By ([23), we have

Hy(u(7), Y(Ten)s pg(7e,,),0) = 0 = ﬁU(u(T;)vy(Ten) Pq(Te )7711( ))-

We abbreviate u(7,,,) to u~ and so on. Using the jump condition of the costate @B0), it
follows that:

Hy(ut,y,pf i) = Hub, y,py) ngg“ D) fulu™,y) + 0 g (b, y).

The state constraint being of order ¢, we have géj _1)(y) fulu,y) = gff)( ) =0for j =
1,...,q9— 1, and hence, we obtain

0 = Hu(ub,y,p;) + (0 —vg)gi? (u,y).

Since g(Q)( *,y) # 0 by (A3), it follows that H,(u't,y,p,) = 0iff n] = v,. Since by (A2,),
Hy(u®,y,p;) = 0 iff u = u~, we deduce that u is continuous at time 7., iff n} = v,.
Similar arguments hold for exit points. The conclusion follows. O

Remark 2.6. Since by (A2), u is continuous a.e. on [0, 7] and has left-and right limits at
all t € [0,T1], it is sufficient in Proposition 24 to assume that (@) or (I holds, for @ in the
segment [u(t™),u(th)] (instead of R), for all ¢ € [0,T].

Remark 2.7. We can also check that if (u, y) is a shooting extremal satisfying (A2,)-(A4),
then u is continuous at touch points 7 € Ty, if ¢ > 2. Indeed, EH), @9) and B2) lead to

0 = Hu(u+ay7p;)_Hu(u77yap;)
- Hu(u+a Z/qu_> - Hu(u_a Z/qu_) - V‘rgy(y)fu(yvu-‘r)

Since g, fu, = g&l) =0 and Hy(-y,p, ) is one-to-one by (A2,), we obtain u™ = u~.

INRIA



Well-Posedness of the Shooting Algorithm for State Constrained Optimal Control Problems13

It follows that if (u,y) is a shooting extremal satisfying (A2,)-(A4), then u is continuous
on [0, 7], still assuming that 7;, = 0 if ¢ = 1 (see remark ZJ).

The structure of a trajectory is defined as the (finite) number of boundary arcs and
touch points of the trajectory, and the order in which they occur w.r.t. time. Assuming the
structure of the optimal trajectory to be known, the shooting mapping is defined as follows.
Denote by N, and Ny, the number of boundary arcs and touch points of the trajectory,
respectively. The space of shooting parameters is:

O :=R" x R1Yo x RNto x RMo x RNo x RNto,

With the above notations, and for a given order of boundary arcs and touch points, the
shooting mapping F is defined over a neighborhood in © of shooting parameters associated
with a regular Pontryagin extremal, into O, by:

5 pe(T)" — ¢y (y(T))*
e 9T (y(T.0))
o VT, N ( (7:50))
"=\ 7. g(‘”( (7o), y(Ten)) (49)
Tex @ (u ( ) 9(Tex))
7;0 g ( ( to))

By construction, a zero of the shooting mapping F provides a trajectory (u,y) that is a
shooting extremal. In view of Propositions 223 and 24 the following holds:

Corollary 2.1. A shooting extremal is a Pontryagin extremal iff it satisfies the following
minimal additional conditions: (Z8) on interior arcs, {39) on boundary arcs, {3 at touch
points, and for all entry point 7e,, € Ten, and exit point Tey € Toy:

if ¢ > 2 is even: Vien—(—l)qfln(q Virty>0; (—1)‘17117((1"*1)(76;)20;(50)
if¢g>3isodd,j=1,...,q—1,andif ¢ >4 iseven, j=2,...,qg—1:
v, — (=11 ”( =005 (D g ) =0,

Ten

(51)

Remark 2.8. It follows that for first and second-order state constraints, and for constraints
of order ¢ > 2 having no boundary arcs (see remark concerning existence of boundary
arcs for state constraints of order ¢ > 3), the additional conditions reduce to the inequalities

B3), B9), @), and also (&) when ¢ = 2 at entry/exit points.

Remark 2.9. For a first-order state constraint, jump parameters vz, associated with touch
points are equal to zero along a Pontryagin extremal by Prop. So we may ignore touch
points in the shooting algorithm, and for this reason, we assume in this paper that Tz, = ()
ifg=1.
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14 F. Bonnans €& A. Hermant

3 Well-Posedness of the Shooting Algorithm

We say that the shooting algorithm is well-posed, if the Jacobian of the shooting mapping
(D) is invertible at some local solution of (P). This allows to apply locally a Newton method
in order to find a shooting extremal; the additional conditions for a Pontryagin extremal
have to be checked afterwards.

Let us first give some definitions. Given u € U, denote by y, the (unique) solution of
state equation [ ). This well-defined mapping is of class C* under assumption (A0). Let
the cost function be:

T
J(u) = / Cu(t), o)t + S(u(T)). (52)

We say that a trajectory (u,y = ) is a local optimal solution of (P), satisfying the quadratic
growth condition, if there exists ¢, > 0 such that:

J(@) > J(u) +clla—ul; Vi€ Bo(u,r); glya(t)) <0on [0,7], (53)

where B, denotes the open ball in L°°(0,7T) with center « and radius r. This condition
involves two norms, L°°(0,T) for the neighborhood, and L2(0,T) for the growth condition.
Let (u,y) be a regular Pontryagin extremal. We make the strict complementarity as-

sumption (compare to (BY), @) and E&0)):
(A5) (i) For all boundary arc [7ey, Tex]:
44

(—1)qﬁnq(t) >0 a.e. on (Ten, Tex)s (54)
. d¢? n d? _
If q1s odd: @nq(Ten) <0 ) @nq(Tez) < 07 (55)
. 1 da-t n da—t _
If g is even: v. + an(ﬁm) >0 ; W’I]q(Tem) < 0. (56)
(ii) For all touch point 7, € T30t
Vr,, > 0. (57)

Recall that (—1)? (f—;,nq (t) equals ng, the density of n (see Prop. ). Let ¢ := 2¢ — 1 if
qis odd and q := 2q — 2 if ¢ is even. By Prop. 22 § + 1 is the smallest possible order for
which the corresponding derivative of g(y) may be nonzero at a jonction point. Note that
Gg=qforqg=1,2.

Lemma 3.1. Let (u,y) be a regular Pontryagin extremal satisfying (A2)-(A4). Assumptions
(&Z3) and (58) holds respectively when q is odd and even, iff the following non tangentiality
condition at order ¢ + 1 holds: for all entry time 7y, € Tep, and all exit time Tep € oy,
da+1 dda+1

()™ LW, <05 S aw(E)]s < 0. (59)

e
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Well-Posedness of the Shooting Algorithm for State Constrained Optimal Control Problems15

Proof. By Prop. 23 (see (B0)), BH) is equivalent, when ¢ is even, to say that v, > 0 at
entry/exit points 7 € Z¢,, U T¢i. The conclusion is then a consequence of Prop. 23 and
Lemma [A2 whose (technical) proof is given in the Appendix. O

Assumption (A5)(ii) implies, if ¢ = 1, that T3, = 0 by Prop. EZ(ii). When ¢ > 2, we
assume that all touch points of (u,y) are reducible, in the following sense:
(A6) For all touch point 74, € Tzt
d2
@g(y(t))lt:m <0. (59)

This makes sense, since when ¢ > 2, we have %g(y(t)) = ¢@(u,y) and u is continuous by
Prop.

3.1 Statement of main results

Define the quadratic cost function:

T~
%wa::/’mwﬂmwymmmszmmw

2(T) by (y(T XT: z; viz(7)" g5 (y(r)z(7) (60)
(95 (W(0)2(7)*

+ TGXT;O Vr ( ) Gyy(y(7))2(T) — % W (y(6)) [1=r )

where H is the augmented Hamiltonian &), and the set of constraints:
i = fy(u,y)z + fulu,y)v on [0,7] ;  2(0)=0 (61)
99 (y()z(r) =0 for j=0,....q—1 ; T€T, (62)
g (ult), (1) (v(t), 2(t) =0 teT, (63)
9y(y(7))2(1) =0 7€ Tio. (64)

Since the state equation and constraints are linear, and the cost function is quadratic, all
with bounded coefficients, we may take as linearized control and state spaces V := L2(0,T)
and Z := H'(0,T;R"), where H'(0,T) is the Sobolev space of functions in L?(0,7T) with
weak derivatives in L?(0,T). Let the Linear Quadratic Problem (PQ,) be defined by:

PrQ,) min jq(v 2) subject to (&1)-(64). (65)

(v,2)EVXZ 2
Consider the following second-order conditions:
(v, 2) = 0 is solution of (PQ,). (66)
(v, z) = 0 is the unique solution of (PQ,). (67)
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16 F. Bonnans €& A. Hermant

Theorem 3.1 (No-gap second order optimality conditions). (i) Let (u,y) be a local
solution of (P) satisfying (A2)-(A6). Then its associated multipliers in the alternative for-
mulation are such that the second-order necessary condition ([GH) holds.

(ii) Let (u,y) be a Pontryagin extremal satisfying (A2)-(A6). Then the second-order suffi-
cient condition {@74) holds iff (u,y) is a local optimal solution of (P) satisfying the quadratic
growth condition (&3).

Theorem 3.2 (Well-Poseness of the Shooting Algorithm). Let (u,y) be a local optimal
solution of (P) satisfying (A2)-(A6). Then the shooting algorithm is well-posed, iff the two
conditions below hold: (i) If ¢ > 3, the trajectory (u,y) does not have boundary arcs; (ii)
The second-order sufficient condition ([67) holds.

In general, even for unconstrained problems, the invertibility of the Jacobian of the
shooting mapping at a Pontryagin extremal does not imply that the second-order suffi-
cient condition (B7) holds. We comment the ill-posedness of the shooting algorithm along
boundary arc of order ¢ > 3 in remark

Combining Th. Bii) and B2 we obtain that if (u,y) is a local optimal solution of (P)
satisfying (A2)-(A6) and condition (i) of Th. B2 then the shooting algorithm is well-posed
iff (u,y) satisfy the quadratic growth condition.

3.2 Proof of the no-gap Second-order Optimality Conditions (The-

orem [3.1)

We use the no-gap second order optimality conditions established in [3]. Let (u,y) be a
regular Pontryagin extremal, with the multiplier n € MJ0,T] given by ). Consider the
quadratic cost function:

T
T(v,%) = / gy (165, 2) (0 2), (0, 2))dt + 2(T)* 6y (y(T))2(T)

T (1) 2 (68)
" (9y_(y(r))=(1))
L R WOSLUED DR
o " ; 4190 ((0)]i=-
where H is the classical Hamiltonian ), and the constraint
gy(y(t))z(t) =0 on I, U Tz, (69)

The quadratic problem used in the formulation of second-order optimality condition in [3]
is the following:

(PQ) min %j(v, 2) subject to (&11), (€9). (70)

(v,2)EVXZ

Theorem 3.3. (i) If (u,y) is an optimal solution of (P) such that (A2)-(A6) hold, then
(v,2) =0 is solution of problem (Z0).
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Well-Posedness of the Shooting Algorithm for State Constrained Optimal Control Problems17

(ii) If (u,y) is a Pontryagin extremal such that (A2)-(A6) hold, it is a local optimal solution
of (P) satisfying the quadratic growth condition (&3) iff problem (Z0) has zero for unique
solution.

Proof. See Corollary 3.2 and Theorems 4.1 and 5.1 in [3]. O

We establish the link between Th. B3 and the second-order conditions (B8)- (@) derived
from the alternative formulation. In the end of this section we often omit the time argument
when there is no ambiguity. The proof of the next lemma is easy and omitted.

Lemma 3.2. Assume that the state constraint is of order q. Then for all trajectory (u,y)
and all linearized trajectory (v,z) € V x Z satisfying (1), the following holds:

%gy(y(t))Z(t) = gD wyz  j=1,...,¢4-1, (71)
L)) = o (w9)z + 90w,y -

Lemma 3.3. Let (u,y) be a regular Pontryagin extremal, with classical and alternative

multipliers (p,n) and (pq, 1, ulT;‘i, vT,,), respectively, related to each other by (F3)-(33), H4)
and (Z). Then the quadratic cost functions J and J,, defined respectively in ({G8) and (ED),
are equal to each other over the space of the linearized trajectories (v,z) € V x Z satisfying

(E2).

Proof. Let (v,z) € V x Z satisfy {ll) and set Apg = J(v,2) — J4(v, z). Using 20), it is
easily seen that the terms corresponding to the touch points and final time vanish, hence we
get:

T

T
Apg = / (b — Do) D F(1,) (0 2), (v, 2))dt + / 0y () (22 =)0 (1)t

T
—/ D29 (u, y)((v, 2), (v, 2))g ()t + D~ vrgyy () (2, 2)(7)

0 TET e

+ > |9z 2)() —ZVZgéé_l)(y)(zvz)(T)

T€Ten

In the sequel we abbreviate the notation ((v,z),(v,2)) by ((v,2))?. Relations (BH)-(B8)
between p and p, lead to

a T G , , T
Ao = g / 6597V () D2 £ (1) (v, )y (1)t + / Gy ()2, 2o (1)t

T
—/O D?¢D (u,y)((v, 2))*ng(8)dt + Y vrgyy(y)(z,2)(7)

TE’]—em
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18 F. Bonnans €& A. Hermant

T€Ten

+ Z (Vrguu Z gy]y 1) Z Z)(T)) . (73)

The constraint being of order ¢, we have g¥)(u,y) = géj_l)f(u,y) for j=0,...,¢q—1. Tt
follows that

D2 (w,y)(@.2)* = g (F(w0).2,2) + 205 (5 DF @) (@:2) 7
+ 95 VD2 (u, ) (v, 2))%

In addition, by the linearized state equation (BII), we have, for all j =1,...,¢

(ig{/y D(y()(=(8), (1) = 94, (W) (f (w,9), 2. 2) + 29,7V () (2, Df (u, y) (v, 2)),

which gives by @), for j =1,...,q
;tgfﬁ, Dy()(2(1), 2(t) = D*¢D(u, y)((v,2))* = g7 () D f(u, y)((v,2))*. (75)

Since gg*l)(u y) =0 for j = 1,...,q, we have g, (7= 1)( )(z,2) = D?gU=D (u,y)((v, 2))? for
j =1,...,q. Multiplying (Z3) by 7;, integrating over [0,7] and integrating by parts the
left—hand side (recall that 77; = —n;_1), we obtain, for j =1,...,¢:

/ D29 D (u,y) (v, 2) 21 ()t + > 5D () (=, 2 ()

TETex

= > 9 W) =

T ) T T )
/ D99 (u, y)((v,2))*n; (t) - / 9§V D f(u,y)((v, 2))*n; (1)t
0 0

Adding the above equalities for j = 1,...,q, we get after simplification by the terms
fOT D2g9) (u,y)((v, 2))?n; for j =1,...,q — 1 that:

T
/O I @) mOA 43S gD )z 2y ()

J=1TETex

SY Y W) =

J=17T€ETen

/D2 @ (u, ) (0, 2))?nq ¢ Z/ GV D2 f(u, ) (0, 2)) % (£)dt.
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Well-Posedness of the Shooting Algorithm for State Constrained Optimal Control Problems19

Substituting into [3) gives:

q
Apg = Y. (Vrgyy Zg“ V() (2, 2)n(r ))

TETex

q

+ 0y (Vrgyy (z,2) (M) + Y (i (v ) = vd) g 1)(3/)(2,2)(7)) :

TETen j=1

Using B7) and additional conditions at entry and exit points (E)-(#I), we obtain that
Apg = 0. Thus, the cost functions of the two quadratic problems coincide on the feasible
set. o

Proof of Theorem[ZJl The state constraint being of order ¢, it follows from ([I)-(2) that
62)-®4) and BY) are equivalent. By Lemma I3 problems (PQ,) and () have the same
feasible set and cost function on that feasible set, and hence, they also have the same value
and same set of optimal solutions. The conclusion follows then from Theorem O

3.3 Proof of the Well-posedness (Theorem [3.2])

We give a sequence of lemmas; some of them will also be used in section 4. We denote
by 9 (y(Ten))2(Ten)s 9(0 ((Tea), y(Tee)) (0(TE), 2(Tew)), the vectors in RNt of compo-

nents g (y())2(r), g{2)  (u(r),y(r))(v(r*), (7)) respectively, for 7 € T,,. We denote by

93"V (Y(Ten))2(Ten) the vector in RN of component g (y(Ten))#(Zen), 0 < j < g — 1,
7€ Ton-

Lemma 3.4. Let 0y = (pf‘),uii,uﬂo,%n,%w,’l}o) € © be such that F(bp) = 0 with the
shooting mapping F defined in {9). Then F is of class C' on a neighborhood © of 0y, and
at the direction

w = (14,77% V701 0700, 070, 0T;,) € O, (76)

en

the vector M := DF(6p)w splits into M = (MG, M%)* given by:

m(T)" = byy (y(T))2(T)

Mo = | g™V (y(Ten)=(Zen) (77)
9(9(Ti0))=(Te)
00 Ten) YT T5), 2(Ton)) 07, 0 ) o
Mz = | g T) T 0T), 2(T)) + 07 w0 )y |+ (78)
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20 F. Bonnans €& A. Hermant

where (v, z,7,(), the linearized control, state, costate and state constraint multiplier, are
solutions of (omitting arguments (u,y, pq,nq) ond t)

Z = fyz+ fuv on [0,7T] ; 2(0)=0 (79)
—i = Hyyz+ Hyv+nfy,+(g{? on[0,T]\T (80)
0 = Hyyz+ Hyuv+7fu+ @  ae. on [0,T] (81)
= géq& + g{Dy a.e. on Iy (82)
= ¢ on [0, 7]\ 7, (83)
with initial and junctions conditions of m given by w(0) = 7o, and
q
[r(m)] = =Y _viz(m) gl Z% J(y(r)
=1
’ q—1 (84)
—or Y vigPy(r) 5 TETn
j=1
r(1)] =0 1€T, (85)
[7(7)] = =vr2(7) gy (Y(7)) = 19y (y(7)) = 0rvrgSV (y(7)) 5 7€ T (86)

Proof. We detail only how we obtain the jumps conditions of the linearized costate 7 at
entry times, the others equations being obvious. In view of ([B0), it is easy to check that the
jump of 7 at 7 € 7., is given by:

q q
Z v12(7)" gyy(y Z 9y(y — 074,

j=1

where the vector of sensitivity coefficients A, on junction time is given by:
Z 295y D W) (u(r ) 9(0) = Hy (u(7), y(7), pg (7)1 (7))

By continuity of u at junctions times and (B), we have (omitting argument 7 and setting
+_ +1)-
g = 1a(T7)):

Z 195,y Z =1 (y) £y (u,y) + nf g5 (u, y).

Since g (u,y) = gy " (v) F(u.y) + 9§’ " (), (u,y) for j = 1,...,q, and by Prop. B,
ng(7T) = v, we obtain (&4). O
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Well-Posedness of the Shooting Algorithm for State Constrained Optimal Control Problems21

We recall that a continuous quadratic form defined over a Hilbert space is a Legendre form
(see e.g. [12, H]), if it is weakly lower semi-continuous, and satisfies the following property:
for all weakly convergent sequence (v,) C L2(0,T), v, — v, we have Q(v,) — Q(v) iff
vy, — v strongly.

Lemma 3.5. Let (u,y) be a shooting extremal, satisfying (A2,)-(A4). For allv € V, define
2y, as the (unique) solution in Z of the linearized state equation ({@1l), and the operator
AV = W = LY(T,) x RNV x RN by

9s? (), y(-Nzo() + 60 (u(), y())o()lz,
Av = 9 (Y(Ton)) 20 (Ten) : (87)
Gy (Y(Ti0)) 20(T10)

Then: (i) The continuous linear operator A is onto. (ii) Assume that the second-order
sufficient condition (E4) holds. Then there exists o > 0, such that

Q) == J,(v,2,) > al|v]|3, Vv € Ker A. (88)
By ¢|z,, we denote the restriction to Z; of function ¢ defined over [0, 7.

Proof. The continuity of A follows from that of V — Z, v — 2,. By @) and Lemma B2 the
range of the mapping V — Z, v — g¢,(y(-))z,(+), is the subspace denoted by H{ of functions
o € H1(0,T) = W9%2(0,T) satisfying ©U)(0) = 0 for all j = 0,...,q — 1. Points (i) follows,
since by (A4), for all (¢(-), b%‘i,bﬁo) € W, there exists ¢ € H{ such that ¢(@(t) = 1(t) a.e.
on Zy, oV (Tpn) = by, , 5 =1,...,q, and ¢(Tso) = b,

By (A2,), we can show that Q(v) is a Legendre form over L?(0,7') (the proof is similar
to Lemma 4.3 in [3]). By (&), we have Q(v) > 0 for all v € Ker A, which implies ([88) by
Lemma O

Proposition 3.1. Let (u,y) be a shooting extremal and denote by 0y € O its set of shooting
parameters. Assume that: (i) The second-order sufficient condition {64) is satisfied; (ii) The
following holds at junctions times:

d d

9w Yl=r- £0 V7€ T3 G0 P plrs 0 Vr € T (89)
d
9 Wle=r, 0 V7 € T, (90)

Then the Jacobian DF(0y) of the shooting mapping is invertible, and for all § € ©, § =
(aT,blT;'i,tho,ch,ch,ch), the (unique) solution w € © of DF(Op)w = §, with w given
by (1d), is as follows. With the notations of Lemma [, denote by (us,ws) with ws =
(Cs, /\équm, Ns.7.,) the unique solution in L*(0,T) x W of the first-order optimality system of
the problem:

, 1 (y(7))zo(7)
PO min T, (v,2) + ahz (T cTyT ,
(P miy gJalv )+ ar T;m d “)(y)l t=r (91)
subject to Av = (01,(z,), bTmatho) :
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Then: mo = 75(0), where s is solution on [0, T)\T of () with (vs, (s, 2v;), final and jumps
conditions of ms being given by:

m(T) = 2s(T) by (y(T)) + i, (92)
) = Y )+ Y M ), T T ()
—[ms(1)] = 8,21 T € Teg, "~ (94)
~n)] = ez an(6) + Nirsil(r)

(e 8O 0 () EULG) I

+ crvr
20 )r T ()]

and we have: vr,, = As1,,,

MUl DI P (96)

9D W)le=r
= (2, (u(m), y(r) (v (), 25(7))

T = ) 67:‘3:67 97
7 R e 7 o7

a9

g(uy( u(7),y(7))(vs (77), 26(7))
di (Q)(u y)lt —

7= )\(1;17., o= )\f;ﬂ,—lﬂ lor, j=2,....q, TET.,. (99)

T

, TE Top, (98)

or =

Note that (vs, Cs, zv,, s) satisfies ([A)-@3). It follows by (A2,) and @) that (vs,(s5) €
PCZ0,T], and hence, vs has limits when t — 7~ and ¢t — 77, for 7 in respectively 7,, and

Tex, so [@0)-(@8) make sense.
Remark 3.1. Note that (B8) implies () when ¢ = 1,2, since § = g.

Remark 3.2. The above proposition is an explicit elimination property, valid for any order
q > 1, that enables to express the solution w of DF(8p)w = J in function of the optimal
solution and multipliers of the quadratic problem (P%), independent on the variations of
Junctions times. In the case ¢ = 1, the term in factor of variation of entry time o, in (&)
is zero, so that Lemma Bl is nothing but the block decoupling property of the Jacobian
already established in [T5]. In the case ¢ > 2, our result differs from the one in [16], since the
two authors use a quadratic problem depending on the variation of the entry point, leading
to an additional assumption (A.11).

Proof. Assume that (i)-(ii) hold and let 6 € ©. Let w € O be solution of DF(0y)w = 6. By
Lemma B4 @) and the last row of ([I¥) enable to eliminate the variations o7,, of touch
points, so that we obtain ([@f). Then, by Lemma B4 again, substituting o, into &) gives
@), with A5 7,, = v7,,- We recognize with (I7), ({9)-(@3) and @) the first order optimality
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conditions of (P;), where the multiplier associated with (@) is y7,, and the multiplier A} - ,
j=1,...,q, associated with entry points constraint (2) satisfy ([@J). Finally, by %) and
the two first rows of [[®), we get [@8)-(@7). By Lemma B3 Lemma[Adl (with » = 0) implies
that the first-order optimality system of (Ps) has a unique solution and multipliers. Hence
for all § € O, w exists and is uniquely determined by the above relations. It follows that the
Jacobian of the shooting mapping is onto, and hence invertible. O

Proof of Theorem[ZA Since (A5)(i) implies, by Lemma BT that &) holds, (89) is satisfied
when ¢ = 1,2 (see Rem. B)), or trivially when the trajectory (u,y) has no boundary arc, i.e.
Ten = Tor = 0. With (A6) and the second-order sufficient condition (1), the invertibility of
the Jacobian of the shooting mapping follows from Prop. Bl

Let us show now the converse. Assume first that (i) does not hold, i.e. ¢ > 3 and
(u,y) has a boundary arc. By Prop. EZX(i), @ is continuous at junctions times 7, and 7.
Therefore, the function & gD (u(t),y(t)) depending on (y,u,u) is also continuous at entry
and exit times and vanishes on the boundary arc, so that (8d) does not hold, at none of
the regular entry/exit times. Then it is easily seen by Lemma B4l that we can find some
non zero @ € O such that DF(6y)® = 0. Indeed, take e.g. 6, # 0 for 7 € 7., and all
other components of @ equal to zero. It follows that the Jacobian of the shooting mapping
is singular.

Assume now that (i) is satisfied but (ii) is not. Since (u,y) is an optimal solution of
(P), by Th. Bl the second-order necessary condition (Bf) is satisfied, hence the value of
problem (PQ),) is zero and (v, z) = 0 is solution. Since the second-order sufficient condition
(D) does not hold, there exists another optimal solution (%, Zy) # 0 of (PQ,), and hence a
non zero solution of its first-order optimality conditions (B1I)-(&4), [T9)-(B3), with final and
jump conditions of the associated costate 7o given by (@2)-([3) with az = 0, and multipliers
(/\%qn, A7,,) associated respectively with (62) and (&4)).

Setting 7o := 7(0), we claim that (7?0,5\171,5@0) # 0. Indeed, suppose that all of
them were zero. Eliminating v by Il as a linear function of (z,7), and integrating from
(2(0),7(0)) = 0 over the first arc the linear differential equations (Z9)-(80), we would have
(z,m,v,¢) = 0, until the first junction time. All the jump parameters S\JTen and qu—w being
equal to zero, eliminating on boundary arcs ¢ by B3), we would have (Zy, 7o, vo, 50) =0 over
[0, T, which leads to a contradiction.

Let now 57,, = Az, and (67,?2‘1) be solution of (@H)-@d) with ¢z = 0. We have
& = (%0,97" 470+ 67, 67.,,67,,) # 0, and by Lemma B, DF ()& = 0. Therefore, the
Jacobian of the shooting mapping is singular, which achieves the proof. O

4 Sensitivity Analysis without strict complementarity at
touch points

In this section, we show how to conduct a sensitivity analysis, removing the strict comple-
mentarity hypothesis for touch points. Let My be an open subset of a Banach space M
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(the perturbation space). Consider, for u € My, the family of perturbed optimal control
problems:

T
(PH) min /0 O(u(t), y(t), p)dt + d(y(T), ;1) subject to

(u,y)eUXY )
Y= f(u(t)7y(t)’ /U‘)7 ae le [O7T] ; y(O) = ﬂo(,u),
9(y(t), n) <0,

where /: R xR" x My — R, ¢ : R" x My — R, f: RxR™ x My — R", §:R™ x My — R,
and g : My — R” are C? mappings. We denote v} := go(1), £"(u,y) := (u,y, u), etc., and
identify (¢, ¢*, f*, g*,yf) with problem (P*).

We say that (P*) is a g-stable extension of (P), if (i) there exist o € My such that
(PHo) = (P), (i-e. Mo =/, etc.), (ii) the mappings ¢, ¢, f, g are C??, where g is the order of
the state constraint of problem (P), (iii) the state constraints are of order ¢ for all u € My,
(iv) the mappings f# are Lipschitz continuous over R x R™, uniformly over u € M.

For each u € My, problem (P*) satisfies (A0); taking if necessary a smaller neighborhood
of po, we may assume that (A1) holds as well. Given (u,u,v) € My x U x V, denote by
(yli, 4t ,) the state and linearized state, solution of:

g = fuyl) ;o yn(0) = yg, (100)
Moo= Myl + Ryl 5 2l (0) =0, (101)

and let J*(u) := [, 0" (u(t), yti(0))dt + " (y4(T)).

In the sequel, the bar refer to Pontryagin extremal (@, %) and associated multipliers of
(P) = (PM°), while the superscript u refers to those of (P*). We make in addition to
(A2)-(A4) the following assumptions:

(A7) (i) If ¢ = 2, @B) holds; if ¢ > 2, the trajectory (@, y) has no boundary arc; if ¢ < 2,
then the following strenghtening of (&4)-(R3) holds:

a4
36>0 (—1)‘1@77(1(15) >p for all t € Zy; (102)

(ii) If ¢ = 1, (u,y) has no (non essential) touch points; if ¢ > 1, all touch points of
(@, y) are reducible, i.e. (A6) holds.

Define the set of increasing times in (0,7") of cardinal N as
ITy ={reRY; 0<m <--- <7y <T} (103)

Set 79 := 0 and 741 := T. Given § C [Ty, we have a natural isomorphism between
PCE[0,T] and C*([0, 1]; RN +1), defined by:

Gi(s) = o(ri + (1ig1 —1)s), forall se(0,1), .
{ @i(0) = (1), i(1) = p(r,74) i=0,...,N. (104)
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We may therefore identify the set PC%[0,7] := U{PCE[0,T];S € ITy} of all possible N-
piecewise k times continuously differentiable functions, with C*([0,1]; RV 1) x ITy. The
corresponding notion of convergence follows: a sequence ¢" € PCX,[0,T] converges to
¢ € PCE0,T) if S* — S in RY and ¢" — ¢ in C*([0,1];RV*!). Similarly, a mapping
defined over an open subset W of a Banach space, W — PCk, w — ¥ € PCE, is of
class CF, if the mapping W — C*([0,1], RN x RN, w — (4%, S,,) is CF. We denote by
PCE"[0,T] = PC%[0,T] N C"[0,T] the subset of PC% [0, T] of functions having continuous
derivatives on [0, 7] until order » > 0. The next lemma is elementary and used at the end
of this section.

Lemma 4.1. Let W be an open subset of a Banach space, and W — PC’}V’O, w— ¥ €
PC3y a C' mapping. Then the mapping w — ©* is C* in L7(0,T), for all 1 < r < oco.
More precisely, forw € W, let S¥ = {7{" < ... < 7%} and denote by (¥, ") the derivative
in C*([0,1]; RN*TY) x ITn of the mappings w — (¢“,7") at point w. Then the derivative
& in L"(0,T) is given by:

gw(t) = ézw ( t_Ti > — (pw(t) (O'ZU + %(Uﬁ_l —UZ-H)) on (Tiw’q-ﬁ_l)_

w _ w p—
Tiv1 — T4 Tit1 i

By Prop. Z2 a regular Pontryagin extremal and its multipliers belong to the product
space

Xs = PCL°[0,T] x PCEL ([0, T);R™) x PCL([0,T],R™) x PC%[0,T], (105)

with here & = 7, the finite set of its junctions times assumed to be of cardinal N. So let us
define the union X of all such spaces, as well as some other sets needed latter:

Xy = WXs; Selln},

x& = PCL0,T] x PCL°([0,T],R"™) x PCL([0,T],R™) x PCL[0,T;
Xi = PCY0,T] x PCL’([0,T],R"™) x PC5([0,T],R™) x PC5[0,T7,
XLo= U{xd SelITy} Xy = U{XS, Se€ITn}.

Denote finally by 7,2¢° := Ty, \ 7,5°° the subset of cardinal Ny of non essential touch points
of the trajectory (u, 7).

The main result of this section is the next Theorem, that gives stability results for the
optimal control problem (P), without assuming strict complementarity at touch points.
Therefore we cannot apply directly the Implicit Mapping Theorem as it is done in |15, [16]
or in section

We say that a regular Pontryagin extremal (u*,y*) of (P*) have junctions points con-
verging to those of the trajectory (u,y), if each entry, exit and touch point of (u”,y*)
converges respectively to an entry, exit and touch point of (u,y), when p — wuo.

Theorem 4.1. Let (@, 7) be a Pontryagin extremal of (P) satisfying (A2)-(A4) and (A7).
Then the following statements are equivalent:
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(i) For all g-stable extension (P"), there exists a neighborhood V,, of po such that, for all
pw € V,, there exists o unique Pontryagin extremal (ut,y") for (P") that have junctions
points converging to those of the trajectory (u,q), the mapping p— (ut, y*, p*, n*) € Xn is
Lipschitz continuous over V,,, and the uniform second-order growth condition below holds:
there exists ¢, > 0 such that

Jh(u) = TH(W) + cllu— w3, Vu € Bao(i,r), g"(y) <0 on [0,T].  (106)
(ii) The following strong second-order sufficient condition holds:

J(v,z) >0, forall (v,2z) €V x Z\ {0} satisfying (E1) and
gy(g(t))z(t) =0  forallt € T, UTS. (107)

Remark 4.1. Note that condition (ii) is stronger that the following second-order charac-
terization of quadratic growth (B3) (see [3]):

J(w,z) >0, forall (v,z) €V x Z\ {0} satisfying (&1), ({IA) and
9y(4(7)2(1) <0 for all T € Tyo \ T,5™".

We need the following notations. For y close to po, let F(-, 1) be the shooting mapping
() for problem (PH), with the same structure that of the trajectory (u,y), i.e. the same
number of boundary arcs and touch points and the same order of their occurence w.r.t.
time. Thus non essential touch points are present in the shooting mapping, and may be
active or inactive for the perturbed problem. Let N := n + (¢ + 2)N; + 2N, denote the
dimension of the shooting mapping, with N, = Card 7., = Card 7, and N, = Card Ty,.
Split F into two components, such that F(-, u) = (®(-, pu)*, ¥(-, u)*)* and ¥ corresponds to
the component g*(y(7,7¢*)) € RNo. We consider the following problem, for y close to jo:
Find

0 = (m" Vi Ul Ve, T T, Tl T ™) € © (108)
such that:
OO, p) =0 ; U(O,p) €RY N (Whne) 5 Ve €REC (109)

Note that the complementarity condition for essential touch points will obviously holds by
continuity, since we perform a local analysis.

The point 6y, solution of (M) for u = wo, is said strongly regular (Robinson [20]),
if there exists a neighborhood Vy x Vs in RY x RY of (6,0), such that for all § € Vj,
§ = (61,09) € RV=No x RNo_ there exists a unique solution 6 in Vj of:

Do®(6o, p10)(0 — 0o) — 61 =0

11
DQ\I’(HQ, /1,0)(9 — 90) — 09 € RZ_VO n I/%:t'gcs ;. Vgpes € Rfo, ( 0)

and the mapping = : 6 — 6(9) is Lipschitz continuous over Vs. If 6y is strongly regular, then
by [20], there exists a neighborhood Vj/ x V,, of (6o, o), such that for each 1 € V,,, (I0Y) has
in Vj a unique solution 0 and there exists x > 0 such that for all p, ' € V,,,

0% — 0 | < kllp—p'l, (111)
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and in addition, the following expansion of #* holds:

0" = 6o + Z(=DyF (0o, po) (1 — o)) + ol|[p — pol])- (112)

4.1 Stability Analysis (Proof of Th. E.T)

The first step in the proof of (ii) = (i) in Th. EJlis to show that ([I7) implies the strong
regularity property. The existence of a locally unique shooting extremal (u*, y*) for problem
(PH), with a set of junctions points converging to that of (@, %), follows. The second step
is to check the additional conditions of Cor. Il implying that (u*,y*) is a Pontryagin
extremal. We end the proof by checking that u* satisfies the quadratic growth condition

(T8

Lemma 4.2. Under the assumptions of Th. ], condition (i) of Th. [-1] implies that 0,
is a strongly regular solution of II4) for u = po-

Proof. The proof is somewhat similar to the one of Proposition Bl Let § = (d1,d2) €
RN—No x RNo with

01 = (a1, b7 bre 07, OT CTg ere) 3 02 = brpee.
Let us show that there exists a unique w € O,
W = (M0, V70 V0 V355, 0T, Oy OT50, 000,
solution of the following relation, equivalent to () with w = 6 — fy:

Do®(bo, po)w — 01 =0

113
DQ\I/(G(), uo)w — 09 € RJXO n Fy%’t’gcs ;o YTes c Rfo ( )

Using the notation of Lemma B4 we will show that (T3] match the optimality conditions
of the following linear quadratic optimal control problem:

(1)
. 1 " 9y (y(7))z0(7)
(P%)  min ST, 20) + apz(T) + Y e IR
27" S VWl (114)
subject to Av = (0py(z,), b5 bress)* 5 B < brpes,

where the linear operators A, B are defined by:

9y (u(-), y (N2 () + 60 (u(), y())o()lz,

Av = 0T (y(Ton)) 20 (Ton)
0y (U(T25%)) 20 (T5) (115)
Bv = 0y (U(T2e%)) 2 (Te9),
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Being equal to A defined in (®T), the operator (A, B) is onto by Lemma By Lemma
A3 the Legendre form Q(v) := J,(v, 2,) is coercive over Ker A. It follows from Lemma
[A4 that problem (Ps) has a unique solution us € V, with unique associated Lagrange
multiplier ({5, A(lgjg—m, A5 Tess, Ag,rnes ) in L2(Zy) x RNvX4 5 RNto=No 5 RNo and the mapping
0 — (u57<—57)\(1$jg’6n7)‘5,7160337)\5,7?;‘35) is Lipschitz continuous. The associated state zs and
costate 75 being solution of ([Z9)-(&) as well as ([@2)-(@5), the mapping § — (25, 7ms) is also
Lipschitz continuous for the H! norm, therefore also for the PC$ [0, T] norm. Consequently,
by @I)-82), 6 — vs(r*) is Lipschitz continuous, for any 7 € 7. Then, as in Lemma, 1]
we can see that w is given by mo = 75(0), y7ess = A5 7ese, Y7nes = A5 7nes, and relations
@6)-([@d). The existence of a unique of w follows, as well as its Lipschitz continuity w.r.t.
J. O

By strong regularity, for all u € V,,, there exists a unique solution 6* of (9):

_ (b plig o p H 1,eSS L, nes / N
0" = (ml " A Ve Ve Tl T T T) € Vi CRY.

Denote the associated trajectory and multipliers by (u*,y*,pf,nt) € Xn. Recall that
(0", 1) = g*(y* (T ")) and set

Tio =T " U{T € T, g"(y"(7)) = 0}.

By (@), we have g*(y*(7)) < 0 and v# = 0 if 7 ¢ 7,;. Hence (u”,y*,pk,n4) is a shooting
extremal for (P*), with jumps parameters (v4'9, V% ) and junctions times (T2, T, T,4).

en’ ex?
Consider the mapping
Vix Vo = X%, (1,0) = (u? 5", pl? %) (116)

where (w0, yi? pif ni-f) is solution of E2)-@3), EF), @1), @I) and @0)-B2) for (P*),

with initial value of the costate, jumps parameters and junctions times given by argument
0. By the Cauchy-Lipschitz Theorem, this mapping is well-defined and of class C? on
neighborhoods V,, x Vi of (10, 80). It follows that the mapping

Vix Vo= Xy, (1,0) = (u? y"? ph? gt?), (117)
where 1} P 0<j<q—1,p"? and n? are defined by @5)-@2) and @), is of class C*.

Lemma 4.3. Under assumptions and condition (ii) of Th. [{.1], there exists a neighborhood
V.. of uo such that the mapping V,, — Xy, p — (ut,y*, 0", p") is well-defined and Lipschitz
continuous on V.

Proof. Since strong regularity holds by Lemma B2, the mapping 1 — 6, solution of (),
is well-defined on a neighborhood of p and Lipschitz continuous by (III). By continuity
of the mappings (IT7) and p — 6# and Rem. 8 Prop. 4 applied to (P*) and (u*,y*)
shows that u* is continuous, for all i close enough to po, and hence, (u*, y*) € PC’%S [0,T] x
PC%i ([0, T],R™). Reducing V* if necessary, by composition of i — 0" with the C'-mapping
(I3, we deduce that the mapping p — (ut,y*, n* p*) € Xy is Lipschitz continuous on a
neighborhood of u. O
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Lemma 4.4. Under assumptions and condition (i) of Th. [, the shooting extremal
(ut, y*) is a Pontryagin extremal for problem (PH).

Proof. By Corollary 2l and (A7), we need to check (B8)), 9), @) and also, when ¢ = 2,
(BD). By Lemma 3, B9) follows from [I02). If ¢ = 2, B0) follows from (B6). By continuity
of jumps at essential touch points and definition of (1), we obtain [@2). It remains to prove
BR). Near an entry/exit point 7# (when ¢ = 1 or 2) this is a consequence of hypothesis
EX) and continuity w.r.t. u of u(7#%). Similarly, near touch points, this follows from the
reducibility hypothesis. Finally outside a small neighbourhood of contact points, we obtain
that g*(u*, y*) < 0 by a standard compactness argument. O

The two next lemmas extend those in [3, section 4] to the setting of perturbed optimal
control problems.

Lemma 4.5. Assume that assumptions and condition (ii) of Th. {1 holds. Let (P"") be a q-
stable extension with its associated Pontryagin extremal (un,y,) and multipliers (p,,n,). Set
Q" (vn) == T""(vn, 2n), where JTH"(-,-) is given by (B8) for (P*"), and 2, := zii» ,,  defined

by (). Assume that v, — v € L?, and that gh~ (y,(t))zn(t) <0, for all t € supp(n,) and
all n. Let z := 2. Then the following holds:

gy(H(t)z(t) < 0 on supp(n); (118)

Q@) < liminf Q" (v,) and QD) — Q™(v,) iff v, — v strongly. (119)

Proof. Since by Lemma 3, (u,y,) converges uniformly to (@,y), and v, — v, we have
that (2,,) converges weakly in H! to z, and hence uniformly. Relation ([[I8) follows from
the convergence of entry, exit and essential touch points, strict complementarity ([I2),
convergence of 7, in PCY;, and uniform convergence of g5 (yn(t))z,. Let us now show ([TH).

Set Q% (vy,) = fOT vE HE (W, Yn,y pn)vndt. By Lemma B33, uniform convergence of z, and
convergence in Xn of HY\y (un,Yn,pn) and HEn (un, yn,pn), it follows easily that Q. (v,) —
Q% (vy,) — Q(v) — Q%(v). Writing Q° (v,,) = Q°(v,,) + 7y, with 7, = fOT v (HE (Wi, Yy D) —
H (1,5, p))vndt, by continuity of H:» at junctions times (Lemma [AT]), LemmaB3 implies
HEn Uy, Y Pn) — Huw (T, 7, p) uniformly, and hence, r,, — 0. Since by (A2), Q° : v —
fOT v* Hyy (4, J, p)v is a Legendre form, (IT9) follows. O

We recall the reduction approach of [3, section 5.2]. When ¢ > 2, all touch points of
the trajectory (u,y) being reducible, let €,6 > 0 and V,, be small enough, so that, for all
lu — @lloo < 9§, all p €V, and all 7, € Ty, the function g#(y) attains its maximum over
[Tto — €, Tto + €] at a unique point 7 € (T4, — &, Tto + €). Set Lty := Uy, e, (Tto — €, Tto + €)
and I, := [0, 7]\ I;o. When q = 1, set I, := [0,T] and I, := (). Then the following reduced
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problem is well-defined and locally equivalent to (P*):

H . # .
(Prea) uez?:j%,zs)‘] (u) subject to
%(yiz)lfbl))
A G _ 120
GH(u) = . € K:=C_[I)] x RN, (120)
gyl (rloNee)

The Lagrangian £* of the reduced problem ([20) is given, for u € B (@,d) and a multiplier
A= (m,v) € My[I] x RY*, by

Nio

£ = )+ [ g GO0 + D Gl ) (121)

Iy

Multipliers n* and M\ = (n;',v*) associated with u# in respectively problem (P*) and its
reduced form (P% ), are related by:

red

Nio
dp(t) =dnf(t)on I, ;  dp*(t) =Y vl'6u(t) on L. (122)

In addition, we can show that the reduced Lagrangian is twice Fréchet differentiable at u*,
and its second-order derivative satisfies, for v € V:

Diuﬁﬂ(uﬂ7 )‘M)(’Uﬂ U) = j“(v7 2571}), (123)

with J# given by (68). In the sequel, Tx(x) and Ni(z) denotes respectively tangent and
normal cones to K at point = € K (in the sense of convex analysis).

Lemma 4.6. Under assumptions and condition (ii) of Th. [, the shooting extremal
(ut, y") associated with (P") satisfies the uniform quadratic growth condition, and hence, is
a local optimal solution of (P*").

Proof. If the conclusion does not hold, then there exists a g-stable extension (73“") i — Mo,

Lemma (which implies in particular u, — @ in L*°), and a point un L{ feasible for
(PHn), @iy # Up, Gy, — @ in L, satisfying for all n:

T4 (i) < T4 (un) + 0| — unl|3)- (124)
Since A\, € Nic(G*" (uy,)), we have (for the appropriate duality products)
(An, G (Un) — G (un)) < 0, (125)

and thus £ (i, \n) — L2 (tun, M) < 0(||Tn — unl|3). Let 0 < &, := [|liy, — up|l2 — 0 and
Vp = €, (ly, — uyp). Since ||v, |2 = 1 for all n, taking a subsequence if necessary, we may
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assume that v, — v € V. Since DG'" (up)v, € Tic(G"" (un)), implying gi» (yn)zn < 0 on
supp(ny, ), by Lemma EH we have that ([(IX)-(IT9) hold. With the notations of Lemma EH
combining D, L (u,, A,) = 0 and [[23) with ([[Z4)-[I23), we get:

Qn(vn) - Duu‘cun (un7 An)(vn; vn) S 0(1)7 (126)

and thus Q(v) < 0. Also, by [Z)), DJ*" (uy)v, < o(1), and hence,
(s g (Yn)zn) = (A, DG (un)un) > o(1).

Passing to the limit, we obtain (7, g, (¥)z) > 0. By ([I8) and d7; > 0, we deduce that g,(7)Zz €
supp(7), thus @ and its associated linearized state z satisfy (BI) and ([Id). Therefore
condition (ii) and Q(v) < 0 imply ¥ = 0. Since by ([[ZH), lim Q"(v,) < 0, with Lemma EH,
we see that Q" (v,) — 0 = Q(7), and hence, v,, — ¥ = 0, contradicting |lv,||2 = 1 for all
n.

Proof of Theorem 1 (ii) = (i) is a consequence of Lemmas to 6l Let us show
(1) = (i1). Let p be a C'*° function over R, such that supp(p) C [—1,1], p is positive over

(—1,1) and p(1) = 1. For p > 0, the function ¢ defined by 1, (s) := ZTGT;;@S 2ty (%)

is C?7 and converge uniformly to zero, and so do its first 2¢ derivatives. Consider the
perturbed constraint mapping ¢/(y) := g(y) — ¥.(9(y)), and keep (f,£, ¢,yo) unchanged.
Observe that g is of order ¢, g* = g outside U;crnes(T — p,7 + p) and g*(y) < 0 on
(t — p, 7+ p), for all 7 € 7,2¢%. Since touch points are isolated, for p > 0 small enough,
we have g* = g on T, U 7,%%° = supp(7]), and it is easily seen that (@,y) is a Pontryagin
extremal for (P*), with the same Lagrange multiplier 7 and costate p. By (i), for u > 0
small enough, the uniform quadratic growth ([08) holds for (P*), and since assumptions
(A2)-(A6) are satisfied for (P*), it follows from Th. B33(ii) that the sufficient condition (ii)
holds, which achieves the proof. O

4.2 Sensitivity Analysis

If strong regularity holds, by (1) the mapping = : V% — V#; § + 6(J) solution of
(II0) is positively homogeneous of degree one. It follows then from [[I2) that p — 6* is
Fréchet directionally differentiable. The directional derivatives in direction d are obtained
by substituting into (II0) ¢ by —D,F (6o, po)d. Therefore,

grotd = 0y + wq + o(||d|]), (127)

1: .
where wy = (7,747, V4, Ti0s 0d, T » 0d, T, 0d,T;,) 18 as follows. Denote by (va,zq) and

en

(Ca, mas )\;z%—en, Ad,7,,) the (unique) optimal solution and multipliers of the quadratic problem
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below:

1T S
(Pd) (v zI)DEIEXZ §A D(Qu,y,,u),(u,y”u)H(uaya ﬁq,pq,uo)((’l},z,d),(’U,Z,d))dt

+ LD23((T). po) (1), ). (=(T). )
£ S UDPI I E), mo) (). ). (2(7). )

TETen Jj=1
1 . (DM (y(7), o) (2(7), d))?
+5 v- | D*5(g(7), 2(7),d), (2(1),d 4 ’
2 Tezﬂo ( g(y( ) lu’o)(( ( ) ) ( ( ) )) %g(l)(y(t))h:T
£(t) = Df(,5, po) (v, z,d) on [0,7], 2(0) =0
DG =D (g(7), o) (2(7),d) =0, 7 € Ten,
subject to: Dg(g(1), no)(2(1),d) =0, T e T8
Dg(y(7), po)(2(7),d) <0, T €T
Dy (a5, j10) (v, z,d) = 0 on Zp.
Then wy is given by: w40 = m4(0), Ya,7,, = Ad, Ty0s

Gar = _Dg(l)(g(7)7ﬂ0)(zd(7-)ﬂd)7 reTh, (128)

9D W)=

S 1 7o WP e U R (120

dtg(q)( 7y)|t T+
(

S DG (a(r), §(r), po) (va(r™), za(7), d) ceT (130)
’ L9 D (u, )]s - ’ ’
Vir = M Vir = N, —viloss, j=2....q 7€ Ty (131)

Once we have the expressions for the directional derivatives of the shooting paramaters,
by composition with the Fréchet derivatives of the C''-mapping (I at point (w4, d), we ob-
tain the expressions of the directional derivatives, in X, of the mapping p +— (ut, y*, nH, pH).
By Lemma HEJl we obtain then easily the expression of the directional derivatives of the con-
trol and state in L"(0,T) x WL (0, T;R"), for all 1 < r < oo.

Corollary 4.1. If either point (i) or (ii) of Theorem [[.]] is satisfied, then there exists a
neighborhood V,, of pu, such that the mapping V,, — Xn, p — (u*,y*, n*, p") is Fréchet-
directionaly differentiable on V. In addition, the directional derivative of the mapping
pw— (ut y*) din L7(0,T) x WHT(0,T;R™), 1 < r < oo, at point uo in direction d, is the
optimal solution (v4,zq) of problem (Py).

We end the paper by a remark related to the ill-posedness of the shooting algorithm for
state constraint of order ¢ > 3, when boundary arcs are present (see Th. B2).
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Remark 4.2. Ezristence of reqular boundary arcs for constraints of order ¢ > 3. Contrary
to some conjectures in the literature, regular boundary arcs can occur for state constraint
of all order. Take for example the problem:

T 2
i u(t)
g t)+ —— | dt
( q) (uqy)GL”(OI,r%l)IiWq,oc(oﬁT)‘/o (y( )+ 9 )

subject to ¥ (t) = u(t) ; y(0) =47 ; 9(0) =99 ; .5 ¥ I(0) =95

It is easy to check that, for 7 € (0,7"), y defined by y(¢) = 0 on [, T] and
— )24
t-n= if ¢ is odd
yity=4 (29 on [0, 7]
— (t — ) — l/(t i if ¢ is even o
(29)! (2¢ —1)!

is, for v > 7/2q if q is even and appropriate initial conditions when ¢ > 3, a solution
that satisfies all necessary optimality conditions and hence, by convexity of the problem,
an optimal solution with a regular entry point 7, and strict complementarity holds since
no(t) =1 on (7,T].

Robbins in [T9] studies this example for generic initial conditions and shows that the
optimal trajectory has a boundary arc, but the latter is not regular. Its entry point is the
limit of an infinite number of touch points, with a geometric decreasing of the length of
the interior arcs. Regular boundary arcs corresponds to the case when the multiplier of the
geometric sequence is equal to zero, for a specific subset of initial conditions. Therefore,
we see on that example, though satisfying all regularity assumptions (A0)-(A3), that the
structure of boundary arcs is mot stable under perturbations of the initial condition when
q > 3, which illustrates why the shooting algorithm should be ill-posed in that case.

A Technical lemmas

The two next lemmas follows immediatly from the junctions conditions established in [T3, [I7].

Lemma A.1. Let (u,y) be a regular Pontryagin extremal satisfying (A2)-(A4). Then the
function t — Hy, (u(t),y(t), p(t) is continuous on [0, T).

Proof. Let 7 € 7. Since u is continuous by Prop. 22, we have:

[Huu(u(r), y(7), p(r)] = (0] fuu (u(7), y(7)) = —vrgl) (u(r), y(7)) = 0,

since either v, = 0 when ¢ =1 or g&l) =0 when ¢ > 1. O

Lemma A.2. Let (u,y) be a regular Pontryagin extremal, satisfying (A2)-(A4), and T €
Ten U Tey an entry/exit time. The following conditions are equivalent:
(i) (&883) holds at 7; (ii) if q 4s odd, , lir? , no(t) > 0; if ¢ is even, v, > 0.

—T;tELy
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Proof. Define the mappings (A4;)o<i<q : [0, 7]\ 7 — R™ by B3) and (a;)o<i<q : [0, T]\7 — R
by:

aO(t) = gu(u(t)7 y<t)) ) (l[(t) = Ey(u(t)7 y(t))Al—l(t) - al—l(t) l= 17 BERRN/D
Then it can be seen by @) (see [I7]) that for all t € [0,T]\ 7, we have

&’ ; .
0 = S Hu(ul), y(t),p(1) = (<1 (a;(8) + p(HA; (1) G =0,.coq =1, (132
d4 dn
0 = FgHu(u®),y(®),p(t) = (=1)%(aq(t) +p(t)Aq(t) + ngﬁ) (u(t),y(t))). (133)
Since the derivatives of the control are continuous until order ¢ — 2, the functions a; and A;
are continuous for j = 0,...,q — 2, and it is then easily seen, since u is continuous, that the

jump of A;_; and a,—1 at 7 € T, when ¢ is even, are given respectively by
[Ag-1 (D] = (D)7 fuu(u(r), (7)) 5 [ag-1(7)] = (1) o (u(r), y(7)) [ (7).
Taking the jump in ([32) at 7 for j = ¢ — 1 yields then:
0 = (=) Hyu(u(r), y(r), p(r )l (7)) = w79, (y(1)) Ag1 (7).
By (), we have g, (y(7))Aq_1(7%) = g% (u(r), y(1)), so we obtain, when ¢ is even:
g1 Hua (u(r), y(7), p(r ")) u@~ V(7))
gt (u(7), y(7))

It follows that v, > 0 iff u(?~1) is discontinuous at 7, which is equivalent to say that (BX)
holds (when ¢ is even). When ¢ is odd, u(?—1), aq—1 and A,_q are continuous (and v, = 0).
Taking the jump in ([33)), we obtain:

v = (~1) (134)

0 = (=) Hyu(u(r),y(7), p(r))[u'? (7)] + [n0(7)] g2 (u(7), y(7)).
As a consequence, we have 79(7%) > 0 at an entry/exit point, where 7+ stands for 7+ if
7 € T, and 77 if 7 € T, iff u(9) is discontinuous at 7, and hence iff (&) holds. O

The next two lemmas recall classical results.

Lemma A.3. Let X be a Hilbert space and Q a Legendre form over X. Let A be a continuous
linear operator over X. The following assertions are equivalent:

(i) Q(v) > 0, for all v € Ker A;

(ii) There exists o > 0 such that Q(v) > av||3, for all v € Ker A.

Lemma A.4. Let X be a Hilbert space and Y a Banach space, H : X — X* = X a self-
adjoint continuwous linear operator, and A: X — Y and B: X — R", r € N, continuous
linear operators. Assume that:

(i) Ja >0 (Hz,z) > af|z||?, for all x € Ker A,
(ii) The operator (4, B) : X — Y x R" is onto.
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Then, for all (z*,y,0) € X* xY X R", there exists a unique (z,y*,v) € X x Y* x R"™,
solution of:
Hx + A*y* + B*v = zx*
Az =y (135)
Bx <4, v>0, v(Bx—24)=0,

and the mapping (z*,y,9) — (x,y*,v), where (x,y*,v) is solution of (IFH), is Lipschitz
continuous.
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